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ABSTRACT

Model-based methods have recently shown great potential for off-policy evaluation
(OPE); offline trajectories induced by behavioral policies are fitted to transitions of
Markov decision processes (MDPs), which are used to rollout simulated trajectories
and estimate the performance of policies. Model-based OPE methods face two
key challenges. First, as offline trajectories are usually fixed, they tend to cover
limited state and action space. Second, the performance of model-based methods
can be sensitive to the initialization of their parameters. In this work, we propose
the variational latent branching model (VLBM) to learn the transition function
of MDPs by formulating the environmental dynamics as a compact latent space,
from which the next states and rewards are then sampled. Specifically, VLBM
leverages and extends the variational inference framework with the recurrent state
alignment (RSA), which is designed to capture as much information underlying the
limited training data, by smoothing out the information flow between the variational
(encoding) and generative (decoding) part of VLBM. Moreover, we also introduce
the branching architecture to improve the model’s robustness against randomly
initialized model weights. The effectiveness of the VLBM is evaluated on the
deep OPE (DOPE) benchmark, from which the training trajectories are designed
to result in varied coverage of the state-action space. We show that the VLBM
outperforms existing state-of-the-art OPE methods in general.

1 INTRODUCTION

Off-policy evaluation (OPE) allows for evaluation of reinforcement learning (RL) policies without
online interactions. It is applicable to many domains where on-policy data collection could be
prevented due to efficiency and safety concerns, e.g., healthcare (Gao et al., 2022b; Tang & Wiens,
2021), recommendation systems (Mehrotra et al., 2018; Li et al., 2011), education (Mandel et al.,
2014), social science (Segal et al., 2018) and video games (Silver et al., 2016; Vinyals et al., 2019).
Recently, as reported in the deep OPE (DOPE) benchmark (Fu et al., 2020b), model-based OPE
methods, leveraging feed-forward (Fu et al., 2020b) and auto-regressive (AR) (Zhang et al., 2020a)
architectures, have shown promising results toward estimating the return of target policies, by fitting
transition functions of MDPs. However, model-based OPE methods remain challenged as they
can only be trained using offline trajectory data, which often offers limited coverage of state and
action space. Thus, they may perform sub-optimally on tasks where parts of the dynamics are not
fully explored (Fu et al., 2020b). Moreover, different initialization of the model weights could
lead to varied evaluation performance (Hanin & Rolnick, 2018; Rossi et al., 2019), reducing the
robustness of downstream OPE estimations. Some approaches in RL policy optimization literature
use latent models trained to capture a compact space from which the dynamics underlying MDPs are
extrapolated; this allows learning expressive representations over the state-action space. However,
such approaches usually require online data collections as the focus is on quickly navigating to the
high-reward regions (Rybkin et al., 2021), as well as on improving coverage of the explored state and
action space (Zhang et al., 2019; Hafner et al., 2019; 2020a) or sample efficiency (Lee et al., 2020).

In this work, we propose the variational latent branching model (VLBM), aiming to learn a compact
and disentangled latent representation space from offline trajectories, which can better capture the
dynamics underlying environments. VLBM enriches the architectures and optimization objectives for
existing latent modeling frameworks, allowing them to learn from a fixed set of offline trajectories.
Specifically, VLBM considers learning variational (encoding) and generative (decoding) distributions,
both represented by long short-term memories (LSTMs) with reparameterization (Kingma & Welling,
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2013), to encode the state-action pairs and enforce the transitions over the latent space, respectively.
To train such models, we optimize over the evidence lower bound (ELBO) jointly with a recurrent
state alignment (RSA) term defined over the LSTM states; this ensures that the information encoded
into the latent space can be effectively teased out by the decoder. Then, we introduce the branching
architecture that allows for multiple decoders to jointly infer from the latent space and reach a
consensus, from which the next state and reward are generated. This is designed to mitigate the
side effects of model-based methods where different weight initializations could lead to varied
performance (Fu et al., 2020b; Hanin & Rolnick, 2018; Rossi et al., 2019).

We focus on using the VLBM to facilitate OPE since it allows to better distinguish the improvements
made upon learning dynamics underlying the MDP used for estimating policy returns, as opposed
to RL training where performance can be affected by multiple factors, e.g., techniques used for
exploration and policy optimization. Moreover, model-based OPE methods is helpful for evaluating
the safety and efficacy of RL-based controllers before deployments in the real world (Gao et al.,
2022a), e.g., how a surgical robot would react to states that are critical to a successful procedure.
The key contributions of this paper are summarized as follows: (i) to the best of our knowledge, the
VLBM is the first method that leverages variational inference for OPE. It can be trained using offline
trajectories and capture environment dynamics over latent space, as well as estimate returns of target
(evaluation) policies accurately. (ii) The design of the RSA loss term and branching architecture
can effectively smooth the information flow in the latent space shared by the encoder and decoder,
increasing the expressiveness and robustness of the model. This is empirically shown in experiments
by comparing with ablation baselines. (iii) Our method generally outperforms existing model-based
and model-free OPE methods, for evaluating policies over various D4RL environments (Fu et al.,
2020a). Specifically, we follow guidelines provided by the DOPE benchmark (Fu et al., 2020b), which
contains challenging OPE tasks where the training trajectories include varying levels of coverage of
the state-action space, and target policies are designed toward resulting in state-action distributions
different from the ones induced by behavioral policies.

2 VARIATIONAL LATENT BRACHING MODEL

In this section, we first introduce the objective of OPE and the variational latent model (VLM)
we consider. Then, we propose the recurrent state alignment (RSA) term as well as the branching
architecture that constitute the variational latent branching model (VLBM).

2.1 OPE OBJECTIVE

We first introduce the MDP used to characterize the environment. Specifically, an MDP can be
defined as a tuple M = (S;A;P; R; s0; 
), where S is the set of states, A the set of actions,
P : S � A ! S is the transition distribution usually captured by probabilities p(stjst�1; at�1),
R : S �A ! R is the reward function, s0 is the initial state sampled from the initial state distribution
p(s0), 
 2 [0; 1) is the discounting factor. Finally, the agent interacts with the MDP following
some policy �(ajs) which defines the probabilities of taking action a at state s. Then, the goal of
OPE can be formulated as follows. Given trajectories collected by a behavioral policy �, �� =
f[(s0; a0; r0; s1); : : : ; (sT�1; aT�1; rT�1; sT )](0); [(s0; a0; r0; s1); : : : ](1); : : : jat � �(atjst)g1, es-
timate the expected total return over the unknown state-action visitation distribution �� of the target
(evaluation) policy � – i.e., for T being the horizon,

E(s;a)���;r�R

�XT

t=0

tR(st; at)

�
: (1)

2.2 VARIATIONAL LATENT MODEL

We consider the VLM consisting of a prior p(z) over the latent variables z 2 Z � Rl, with Z repre-
senting the latent space and l the dimension, along with a variational encoder q (ztjzt�1; at�1; st)
and a generative decoder p�(zt; st; rt�1jzt�1; at�1), parameterized by  and � respectively. Basics
of variational inference are introduced in Appendix F.

1We slightly abuse the notation �� , to represent either the trajectories or state-action visitation distribution
under the behavioral policy, depending on the context.
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Latent Prior p(z0). The prior speci�es the distribution from which the latent variable of theinitial
stage,z0, is sampled. We con�gurep(z0) to follow a Gaussian with zero mean and identity covariance
matrix, which is a common choice under the variational inference framework (Kingma & Welling,
2013; Lee et al., 2020).

Figure 1: Architecture of variational latent model
(VLM) we consider.

Variational Encoder for Inference
q (zt jzt � 1; at � 1; st ). The encoder is
used to approximate the intractable
posterior, p(zt jzt � 1; at � 1; st ) =

p(zt � 1 ;a t � 1 ;z t ;s t )R
z t 2Z p(zt � 1 ;a t � 1 ;z t ;s t )dz t

, where the de-

nominator requires integrating over the
unknown latent space. Speci�cally, the encoder
can be decomposed into two parts, given that

q (z0:T js0:T ; a0:T � 1)

= q (z0js0)
TY

t =1

q (zt jzt � 1; at � 1; st ); (2)

here, q (z0js0) encodes the initial states0
in to the corresponding latent variablez0,
then,q (zt jzt � 1; at � 1; st ) enforces the transi-
tion from zt � 1 to zt conditioned onat � 1 andst . Both distributions arediagonalGaussians2, with
means and diagonal of covariance matrices determined by multi-layered perceptron (MLP) (Bishop,
2006) and long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) respectively. The
weights for both neural networks are referred to as in general.

Consequently, theinferenceprocess forzt can be summarized as

z 
0 � q (z0js0); h 

t = f  (h 
t � 1; z 

t � 1; at � 1; st ); z 
t � q (zt jh

 
t ); (3)

wheref  represents the LSTM layer andh 
t the LSTM recurrent (hidden) state. Note that we use 

in superscripts to distinguish the variables involved in thisinferenceprocess, against thegenerative
process introduced below. Moreover, reparameterization can be used to samplez 

0 andz 
t , such that

gradients of sampling can be back-propagated, as introduced in (Kingma & Welling, 2013). Overview
of the inference and generative processes are illustrated in Fig. 1.

Generative Decoder for Samplingp� (zt ; st ; r t � 1jzt � 1; at � 1). The decoder is used to interact
with the target policies and acts as a synthetic environment during policy evaluation, from which the
expected returns can be estimated as the mean return of simulated trajectories. The decoder can be
represented by the multiplication of three diagonal Gaussian distributions, given that

p� (z1:T ; s0:T ; r 0:T � 1jz0; � ) =
TY

t =0

p� (st jzt )
TY

t =1

p� (zt jzt � 1; at � 1)p� (r t � 1jzt ); (4)

with at � � (at jst ) at each time step. Speci�cally,p� (zt jzt � 1; at � 1) has its mean and covariance
determined by an LSTM, enforcing the transition fromzt � 1 to zt in the latent space given action
at � 1. In what follows,p� (st jzt ) andp� (r t � 1jzt ) generate the current statest and rewardr t � 1 given
zt , whose mean and covariance are determined by MLPs. As a result, thegenerativeprocess starts
with sampling the initial latent variable from the latent prior,i.e., z�

0 � p(z0). Then, the initial state
s�

0 � p� (s0jz�
0 ) and actiona0 � � (a0js�

0 ) are obtained fromp� and target policy� , respectively;
the rest ofgenerativeprocess can be summarized as

h�
t = f � (h�

t � 1; z�
t � 1; at � 1); ~h�

t = g� (h�
t ); z�

t � p� (~h�
t );

s�
t � p� (st jz

�
t ); r �

t � 1 � p� (r t � 1jz�
t ); at � � (at js

�
t ); (5)

2Assume that different dimensions of the states are non-correlated with each other. Otherwise, the states can
be projected to orthogonal basis, such that non-diagonal elements of the covariance matrix will be zeros.
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Figure 2: (Left) Recurrent state alignment (RSA) applied over the recurrent hidden states between
inference and generative process illustrated separately. (Right) Single-step forward pass of the varia-
tional latent branching model (VLBM), the training objectives for each branch and �nal predictions.

wheref � is the LSTM layer producing recurrent stateh�
t . Then, an MLPg� is used to generate

mapping betweenh�
t and~h�

t that will be used for recurrent state alignment (RSA) introduced below,
to augment the information �ow between the inference and generative process.

Furthermore, to train the elements in the encoder (3) and decoder (5), one can maximize the evidence
lower bound (ELBO), a lower bound of the joint log-likelihoodp(s0:T ; r 0:T � 1), following

L ELBO ( ; � ) = Eq 

hX T

t =0
logp� (st jzt ) +

X T

t =1
logp� (r t � 1jzt ) � KL

�
q (z0js0)jjp(z0)

�

�
X T

t =1
KL

�
q (zt jzt � 1; at � 1; st )jjp� (zt jzt � 1; at � 1)

� i
; (6)

here, the �rst two terms represent the log-likelihood of reconstructing the states and rewards, and the
last two terms regularize the approximated posterior. The proof can be found in Appendix E.

2.3 RECURRENTSTATE ALIGNMENT

The latent model discussed above is somewhat reminiscent of the ones used in model-based RL
policy training methods,e.g., recurrent state space model (RSSM) used in PlaNet (Hafner et al.,
2019) and Dreamer (Hafner et al., 2020a;b), as well as similar ones in Lee et al. (2020); Lu et al.
(2022). Such methods rely on agrowingexperience buffer for training, which is collectedonline
by the target policy that is being concurrently updated (with exploration noise added); however,
OPE aims to extrapolate returns from a �xed set ofof�ine trajectories which may result in limited
coverage of the state and action space. Consequently, directly applying VLM for OPE can lead to
subpar performance empirically; see results in Sec. 3. Moreover, the encoder above plays a key
role of capturing the temporal transitions between latent variables,i.e., p (zt jzt � 1; at � 1; st ) from
(2). However, it isabsentin the generative process, as the decoder leverages a separate network to
determine the latent transitions,i.e., p� (zt jzt � 1; at � 1). Moreover, from the ELBO (6) above it can
be seen that only the KL-divergence terms are used to regularize these two parts, which may not be
suf�cient for OPE as limited of�ine trajectories are provided. As a result, we introduce the RSA term
as part of the training objective, to further regularizep (zt jzt � 1; at � 1; st ) andp� (zt jzt � 1; at � 1). A
graphical illustration of RSA can be found in Fig. 2.3

Speci�cally, RSA is de�ned as the meanpairwisesquared error betweenh 
t from the encoder (3)

and~h�
t from the decoder (5),i.e.,

L RSA (~h�
t ; h 

t ;  ; � ) =
1
N

NX

i =1

TX

t =0

M (M � 1)
2

hM � 1X

j =1

MX

k= j +1

�
(~h�

t [j ] � ~h�
t [k]) � (h 

t [j ] � h 
t [k])

� 2
i
;

(7)

here, we assume that both LSTM recurrent states have the same dimension~h�
t ; h 

t 2 RM , with
h( �)

t [j ] referring to thej -th element of the recurrent state, andN the number of training trajectories.

Here, we choose the pairwise squared loss over the classic mean squared error (MSE), because MSE
could be too strong to regularizeh 

t and~h�
t which support the inference and generative processes

respectively and are not supposed to be exactly the same. In contrast, the pairwise loss (7) can

3Rewards and actions are omitted for conciseness of the presentation.
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promote structural similarity between the LSTM recurrent states of the encoder and decoder, without
strictly enforcing them to become the same. Note that this design choice has been justi�ed in Sec. 3
through an ablation study by comparing against models trained with MSE. In general, the pairwise
loss has also been adopted in many domains for similar purposes,e.g., object detection (Gould
et al., 2009; Rocco et al., 2018), ranking systems (Doughty et al., 2018; Saquil et al., 2021) and
contrastive learning (Wang et al., 2021; Chen et al., 2020). Similarly, we apply the pairwise loss over
h 

t and~h�
t , instead of directly overh 

t andh�
t , as the mappingg� (from equation 5) could serve as a

regularization layer to ensure optimality overL RSA without changingh 
t ; h�

t signi�cantly.

As a result, the objective for training the VLM, following architectures speci�ed in (3) and (5), can
be formulated as

max
 ;�

L V LM ( ; � ) = max
 ;�

�
L ELBO ( ; � ) � C � L RSA (~h�

t ; h 
t ;  ; � )

�
; (8)

with C > 0 andC 2 R being the constant balancing the scale of the ELBO and RSA terms.

2.4 BRANCHING FORGENERATIVE DECODER

The performance of model-based methods can vary upon different design factors (Fu et al., 2020b;
Hanin & Rolnick, 2018). Speci�cally, Rossi et al. (2019) has found that the convergence speed and
optimality of variational models are sensitive to the choice of weight initialization techniques. More-
over, under the typical variational inference setup followed by the VLM above, the latent transitions
reconstructed by the decoder,p� (zt jzt � 1; at � 1), are only trained through regularization losses in (6)
and (7), but is fully responsible for rolling out trajectories during evaluation. Consequently, in this
sub-section we introduce the branching architecture for decoder, with the goal of minimizing the
impact brought by random weight initialization of the networks, and allowing the decoder to best
reconstruct the latent transitionsp� (zt jzt � 1; at � 1) as well asst 's andr t � 1 's correctly. Speci�cally,
the branching architecture leverages an ensemble ofB 2 Z+ decoders to tease out information from
the latent space formulated by the encoder, with �nal predictions sampled from a mixture of the
Gaussian output distributions from (5). Note that the classic setup of ensembles is not considered,
i.e., train and average overB VLMs end-to-end; because in this caseB different latent space exist,
each of which is still associated with a single decoder, leaving the challenges above unresolved. This
design choice is justi�ed by ablations studies in Sec. 3, by comparing VLBM against a (classic)
ensemble of VLMs.

Branching Architecture. Consider the generative process involvingB branches of the decoders
parameterized byf � 1; : : : ; � B g. The forward architecture over a single step is illustrated in Fig. 2.4

Speci�cally, the procedure of samplingz� b
t ands� b

t for eachb 2 [1; B ] follows from (5). Recall that
by de�nition p� b (st jz

� b
t ) follows multivariate Gaussian with mean and diagonal of covariance matrix

determined by the corresponding MLPs,i.e., � (s� b
t ) = � MLP

b;� (z� b
t ) and� diag (s� b

t ) = � MLP
b;� (z� b

t ).

In what follows, the �nal outcomes�
t can be sampled following diagonal Gaussian with mean and

variance determined by weighted averaging across all branches using weightswb's, i.e.,

s�
t � p� (st jz

� 1
t ; : : : ; z� B

t ) = N
�
� =

X

b

wb � � (s� b
t ); � diag =

X

b

w2
b � � diag (s� b

t )
�

: (9)

The objective below can be used to jointly update,wb's,  and� b's, i.e.,

max
 ;�;w

L V LBM ( ; � 1; : : : ; � B ; w1; : : : ; wB )

= max
 ;�;w

� TX

t =0

logp� (s�
t jz� 1

t ; : : : ; z� B
t ) � C1 �

X

b

L RSA (~h� b
t ; h 

t ;  ; � b) + C2

X

b

L ELBO ( ; � b)
�

;

s.t. w1; : : : ; wB > 0 ;
X

b

wb = 1 and constantsC1; C2 > 0: (10)

Though the �rst term above already propagates through allwb's and� b's, the third term and constraints
overwb's regularize� b in each individual branch such that they are all trained toward maximizing

4For simplicity, the parts generating rewards are omitted without lost of generality.
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the likelihoodp� b (s� b
t jz� b

t ). Pseudo-code for training and evaluating the VLBM can be found in

Appendix A. Further, in practice, one can de�newb = v2
b

� +
P

b v2
b
, with vb 2 R the learnable variables

and0 < � � 1, � 2 R, the constant ensuring denominator to be greater than zero, to convert (10)
into unconstrained optimization and solve it using gradient descent. Lastly, note that complementary
latent modeling methods,e.g., latent overshooting from Hafner et al. (2019), could be adopted in (10).
However, we keep the objective straightforward, so that the source of performance improvements can
be isolated.

3 EXPERIMENTS

Figure 3: Mean rank correlation, regret@1 and MAE over
all the 32 Gym-Mujoco and Adroit tasks, showing VLBM
achieves state-of-the-art performance overall.

To evaluate the VLBM, we follow
the guidelines from the deep OPE
(DOPE) benchmark (Fu et al., 2020b).
Speci�cally, we follow the D4RL
branch in DOPE and use the Gym-
Mujoco and Adroit suites as the test
base (Fu et al., 2020a). Such environ-
ments have long horizons and high-
dimensional state and action space,
which are usually challenging for
model-based methods. The provided
of�ine trajectories for training are
collected using behavioral policies
at varied scale, including limited ex-
ploration, human teleoperation etc.,
which can result in different levels of
coverage over the state-action space. Also, the target (evaluation) policies are generated using online
RL training, aiming to reduce the similarity between behavioral and target policies; it introduces
another challenge that during evaluation the agent may visit states unseen from training trajectories.

Environmental and Training Setup. A total of 8 environments are provided by Gym-Mujoco and
Adroit suites (Fu et al., 2020b;a). Moreover, each environment is provided with 5 (for Gym-Mujoco)
or 3 (for Adroit) training datasets collected using different behavioral policies, resulting in a total of
32 sets ofenv-dataset tasks5 – a full list can be found in Appendix A. DOPE also provides 11
target policies for each environment, whose performance are to be evaluated by the OPE methods.
They in general result in varied scales of returns, as shown in the x-axes of Fig. 7. Moreover, we
consider the decoder to haveB = 10 branches,i.e., f p� 1 ; : : : ; p� 10 g. The dimension of latent space
is set to be 16,i.e., z 2 Z � R16. Other implementation details can be found in Appendix A.

Baselines and Evaluation Metrics. In addition to the �ve baselines reported from DOPE,i.e.,
importance sampling (IS) (Precup, 2000), doubly robust (DR) (Thomas & Brunskill, 2016), variational
power method (VPM) (Wen et al., 2020), distribution correction estimation (DICE) (Yang et al., 2020),
and �tted Q-evaluation (FQE) (Le et al., 2019), the effectiveness of VLBM is also compared against
the state-of-the-art model-based OPE method leveraging the auto-regressive (AR) architecture (Zhang
et al., 2020a). Speci�cally, for each task we train an ensemble of 10 AR models, for fair comparisons
against VLBM which leverages the branching architecture; see Appendix A for details of the AR
ensemble setup. Following the DOPE benchmark (Fu et al., 2020b), our evaluation metrics includes
rank correlation, regret@1, and mean absolute error (MAE). VLBM and all baselines are trained
using 3 different random seeds over each task, leading to the results reported below.

Ablation. Four ablation baselines are also considered,i.e., VLM, VLM+RSA, VLM+RSA(MSE)
and VLM+RSA Ensemble. Speci�cally, VLM refers to the model introduced in Sec. 2.2, trained
toward maximizing only the ELBO,i.e., (6). Note that, arguably, VLM could be seen as the general-
ization of directly applying latent-models proposed in existing RL policy optimization literature (Lee
et al., 2020; Hafner et al., 2019; 2020a;b; Lu et al., 2022); details can be found in Sec. 4 below. The
VLM+RSA ablation baseline follows the same model architecture as VLM, but is trained to optimize
over both ELBO and recurrent state alignment (RSA) as introduced in (8),i.e., branching is not used
comparing to VLBM. The design of these two baselines can help analyze the effectiveness of the RSA

5From now on the dataset names are abbreviated by their initials,e.g., Ant-M-R refers to Ant-Medium-Replay.
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