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ABSTRACT

While the human brain efficiently handles various computations with a limited number of
neurons, traditional deep learning networks require a significant increase in parameters to
improve performance. Yet, these parameters are used inefficiently as the networks employ
the same amount of computation for inputs of the same size, regardless of the input’s
complexity. We address this inefficiency by introducing self-introspection capabilities to
the network, enabling it to adjust the number of used parameters based on the internal
representation of the task and adapt the computation time based on the task complexity.
This enables the network to adaptively reuse parameters across tasks, dynamically adjust-
ing the computational effort to match the complexity of the input. We demonstrate the
effectiveness of this method on language modeling and computer vision tasks. Notably, our
model surpasses much larger ResNet-50 and EfficientNet on ImageNet, achieving 96.62%
accuracy, and achieves a 95.8% F1 score on the SQuAD dataset, all with just a three-layer
network. These results showcase the potential for dynamic and reflective computation,
contributing to the creation of intelligent systems that efficiently manage resources based
on input data complexity.

1 INTRODUCTION

The complexity and scale of deep learning models have skyrocketed, propelling significant advancements
across diverse fields which involves images, text and even robotics. However, adaptation of computation
to problem difficulty is still one of the most challenging aspects in deep learning. Traditional architectures
process inputs through a uniformly fixed number of layers, often waste computational resources on simple
tasks or lack sufficient depth for more complex ones (Canziani et al., 2016; Wang et al., 2016; Bai et al.,
2023). This one-size-fits-all approach does not account for the varying difficulties of input data, leading to
inefficiencies and suboptimal performance (Huang et al., 2017b; Fregoso-Aparicio et al., 2021).
Drawing inspiration from the human brain (Schulz & Gershman, 2019), which dynamically allocates and re-
uses limited neurons to handle multiple tasks efficiently, we propose a Model INtrospection for a Dynamically
adaptive (MIND) model. The MIND model incorporates two networks: the primary prediction network and
an auxiliary introspection network. By assessing the representation of each input in the prediction model, the
introspection network determines the computational capacity to employ. This process involves selecting the
number of layers to iterate through in the prediction model, thereby adapting the computational effort to the
complexity of the input.
Unlike conventional models, which scale parameters indiscriminately (Jeon et al., 2021; Lu et al., 2022; Wu
et al., 2020), our model adaptively reuses parameters across tasks. By doing so, it balances the inherent tension
between the efficient use of parameters across tasks of varied complexity and the challenge of parameter
allocation based on input difficulty.
The introspection network operates as a switch, choosing between the Fixed-Point Iterative (FPI) layers or
opting for a no-operation action, based on the input representation in the prediction model (Vaswani et al.,
2017; Hochreiter, 1995). Notably, given that the introspection network’s decision is based on the input
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representation produced by the more complex prediction network, it does not need as much complexity as
that required for a direct input assessment.

Figure 1: Architecture of the MIND model and the order
of operation. The introspection network decides on the
computational branch to follow, optimizing efficiency by
allocating more resources to harder inputs and less to
easier ones. FPIs reuse parameters and dynamically adapts
to the input difficulty.

In essence, the MIND model effectively manages
the allocation of computational efforts, saving
complex tasks for more comprehensive process-
ing and conserving resources for simpler ones.
Figure 1 outlines the architecture of our proposed
model.
To demonstrate the effectiveness of this ap-
proach, we show how the MIND model can de-
tect patterns of varying difficulty using an Ising
model (Cipra, 2000) as a toy example, illustrating
its adaptive computational capabilities. We fur-
ther validate the MIND model’s effectiveness on
standard benchmarks across multiple domains. In
language modeling, we evaluate on SQuAD (Ra-
jpurkar et al., 2016) and WikiText (Gardent et al.,
2017). To demonstrate that it’s domain-agnostic,
we also validate on vision benchmarks includ-
ing CIFAR-100 (Krizhevsky et al., 2009) and
ImageNet (Deng et al., 2009). Remarkably, the
MIND model surpasses ResNet-50 (He et al.,
2016) and EfficientNet (Tan & Le, 2021) on Ima-
geNet, and Transformer (Vaswani et al., 2017) on
SQuAD, while using only a three-layer predictive
network and 5 to 12 times fewer parameters.
The remainder of this paper is structured as fol-
lows: Section 2 provides an overview of back-
ground work related to adaptive computation and
introspection mechanisms in deep learning; Section 3 details the architecture of the MIND model, explaining
the roles of the primary prediction network and the auxiliary introspection network; Section 4 presents our
experimental methodology, the datasets used, and the results obtained from our evaluations.

2 RELATED WORK

2.1 FIXED-POINT METHODS IN NEURAL NETWORKS

Fixed-point iteration (FPI) methods have a rich history in neural network optimization and architecture design.
Both Almeida (1987) and Pineda (1987) independently introduced the concept of fixed points by extending
backpropagation to recurrent neural networks. Recent advances, such as the modernized formulation of Liao
et al. (2018) and the Deep Equilibrium Models (DEQs) proposed by Bai et al. (2019), build on these early
insights. DEQs implicitly define infinitely deep networks through a fixed-point formulation, continuing the
tradition of using FPI methods in neural networks. Our approach integrates these developments, incorporating
FPI layers to enable adaptive computation depth.
FPI are designed to find a fixed point z that satisfies: z = f(z, x). Here, f is the neural network layer’s
function, x is the input to the layer, and z is the fixed-point that we want to compute. The general iterative
scheme for finding this fixed point can be expressed as:

z(k+1) = f(z(k), x)

where z(k) is the estimate at iteration k. The process begins with an initial guess z(0) and iterates until
convergence, i.e., ∥z(k+1) − z(k)∥ < ϵ where ϵ is a small tolerance. Furthermore, Liao et al. (2018) shows a
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crucial theorem:

z = J⊤,h∗

F z +

(
∂L

∂y

∂y

∂h∗

)⊤

. (1)

The equation determines the new state z by applying a transformation to the current state, adjusted by
transposed gradients of the loss with respect to outputs and parameters reduces memory usage during
backpropagation by not storing all intermediate vectors. The theoretical underpinnings of FPI in neural
networks have been further solidified by works such as of Barrett & Bolt (2024), who developed frameworks
for differentiating through nonsmooth iterative algorithms.

2.2 ADAPTIVE COMPUTATION AND INTROSPECTIVE NEURAL ARCHITECTURES

The idea of dynamically adjusting computational effort based on input complexity has gained significant
traction in recent years. Granas & Dugundji (2003) introduced Adaptive Computation Time (ACT) for
recurrent neural networks, enabling models to learn the optimal number of computational steps. Building on
this, Figurnov et al. (2017) extended the concept to spatially adaptive computation time for image recognition
tasks. Subsequent approaches have explored various mechanisms for adaptive computation. Huang et al.
(2016) proposed stochastic depth networks that randomly drop layers during training, implicitly creating an
ensemble of networks with varying depths. Similarly, Huang et al. (2017a) introduced dense networks with
early-exit branches, allowing for dynamic inference paths. Banino et al. (2021) developed PonderNet, which
learns to adapt the number of computational steps dynamically, while Elbayad et al. (2019) introduced depth-
adaptive transformers for efficient language processing. The Mixture of Depths (MoD) approach (Raposo
et al., 2024) dynamically adjusts processing depth based on input complexity, optimizing computation in
CNNs and Transformers. While MoD selects key channels or token routes, MIND model extends this
concept by employing fixed-point iteration (FPI) and introspection to dynamically adapt both layer depth
and computation. Unlike MoD’s static depth adjustments, MIND model’s iterative refinement enables more
granular control, enhancing efficiency and performance across varying input complexities.
Our MIND model builds upon these ideas by incorporating a dedicated introspection network that analyzes
activation patterns to make informed decisions about computational paths. This approach conceptually relates
to the meta-learning framework proposed by Andrychowicz et al. (2016), where a separate network learns to
optimize the prediction network.

3 MIND MODEL: DEEP LEARNING MODEL WITH INTROSPECTION

We present the MIND model framework, illustrated in Figure 1, which introduces an introspective mechanism
in a combination with FPIs into deep learning models to achieve adaptive computation. The MIND model
comprises of two main components: the introspection network and the prediction network. The introspec-
tion network serves as the central unit that assesses the complexity of the input and the current activation states,
dynamically adjusting the computational graph of the prediction network to optimize resource allocation and
computational efficiency for specified tasks.

3.1 INTROSPECTION NETWORK ARCHITECTURE

The introspection network I is the core contribution of our framework, responsible for analyzing intermediate
activations and determining the computational pathway within the prediction network P . By dynamically
adjusting the computational graph based on input complexity, the introspection network enables the MIND
model to allocate computational resources efficiently, dedicating more effort to complex inputs and less to
simpler ones.
Given an input x ∈ X ⊆ Rdx and the activations zlNl=1 from the layers L = L1, L2, . . . , LN of the prediction
network, the introspection network maps these activations to a layer selection mask m = [m1,m2, . . . ,mN ] ∈
0, 1N . Here, ml = 1 indicates that layer Ll requires more computation via fixed-point iterations, and ml = 0
means standard forward propagation is sufficient.
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It aggregates activations from selected layers A ⊆ 1, 2, . . . , N of the prediction network to form a feature
representation: a = ϕ ({zl}l∈A), where ϕ is a function that processes and concatenates the activations,
such as global average pooling followed by flattening. Using this feature representation a, the introspection
network computes a decision vector: d = I(a; θI), where θI are the learnable parameters of the introspection
network. The decision vector d represents a probability distribution over possible layer selections. The
final layer selection mask m is obtained by sampling or taking the argmax over the probabilities: m =
argmaxm′ p(m′ | a)
To allow for stochasticity and exploration during training we used the Rao-Blackwell (Blackwell, 1947)
straight-through Gumbel-Softmax (Paulus et al., 2020) estimator to determine the probability distribution that
gives correct representation of states.

3.2 FIXED-POINT ITERATION MECHANISM.

Upon receiving an input xi, the introspection network I evaluates the complexity of the input by analyzing the
activations of the prediction network. Based on this assessment, it determines the subset of layers that should
be engaged and applies fixed-point iterations to these layers. This process allows the model to iteratively
refine its computations, dedicating more resources to complex inputs that require deeper processing and fewer
to simpler inputs. The iterative update rule for the fixed-point iteration is defined as:

x(l+1) = f
(
x(l), θl

)
, (2)

where x(l) is the input to layer l, θl represents the learnable parameters of that layer, and f denotes the
non-linear activation function. The iteration continues until convergence is achieved, determined by the
convergence criterion:

∥x(l+1) − x(l)∥
∥x(l+1)∥

< ϵ, (3)

or until a maximum number of iterations Kmax is reached. We have shared complete proof in Appendix B.
Here, ϵ is a predefined tolerance level that controls the precision of convergence. Algorithm 3 out-
lines the forward propagation process with fixed-point iterations in the prediction network. By incor-
porating fixed-point iterations, the prediction network can adaptively allocate computational resources.

Figure 2: Analysis of layer utilization for samples from
the ImageNet dataset, categorized into three complexity
levels: easy, medium, and hard. The figure illustrates how
the MIND model allocates computational resources based
on input complexity, with more layers being utilized for
harder examples.

This mechanism enhances computational effi-
ciency without compromising performance, en-
abling the MIND model to handle a wide range
of input complexities effectively. The ability to
dynamically adjust the depth of computation al-
lows the model to process simple inputs quickly
while dedicating more computational effort to
complex inputs that require it.

3.3 PREDICTION NETWORK ARCHITECTURE

The prediction network is designed to integrate
seamlessly with standard deep learning architec-
tures, supporting fixed-point iterative computa-
tions as guided by the introspection network. It
processes the input data to generate predictions,
and its internal activations are analyzed by the
introspection network to dynamically adjust com-
putational efforts based on the complexity of each
input. We have shared how activation maps are
calcuated in Appendix D.
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We show two agnostic feature one for vision tasks using a Convolutional Neural Network (CNN), and another
for language tasks using LSTM and Transformer architecture. The MIND model enable adaptive computation
akin to human cognitive processes, where the brain allocates resources efficiently depending on the task
difficulty (Marblestone et al., 2016). Traditional deep learning models apply a fixed computational graph to
all inputs, leading to inefficiencies when processing data with varying complexities (Graves, 2016).
The prediction network is designed for seamless integration with standard deep learning architectures,
supporting fixed-point iterative computations to handle inputs of varying complexity without increasing the
parameter count.

Vision Tasks. For computer vision applications, we implement the prediction network using a lightweight
convolutional neural network (CNN) architecture. Specifically, it consists of three convolutional layers with
filter sizes of 64, 128, and 256 channels, respectively. Each layer employs a kernel size of 3 × 3 and is
followed by a Rectified Linear Unit (ReLU) activation function (Xu et al., 2015) to introduce non-linearity.
Batch normalization is applied after each activation to stabilize the learning process (Ioffe & Szegedy, 2015).
This architecture strikes a balance between computational efficiency and representational capacity, containing
approximately 5.6 million parameters, which facilitates rapid training and inference while handling complex
image data effectively.

Language Tasks. In the context of natural language processing, the prediction network is instantiated as a
dual-layer Long Short-Term Memory (LSTM) network (Hochreiter, 1995). Each LSTM layer consists of 256
hidden units, capturing temporal dependencies in sequential data. Dropout layers are interleaved between the
LSTM layers to prevent overfitting, enhancing the model’s generalization capabilities (Srivastava et al., 2014).

MIND-Transformer For natural language processing tasks, we extend the prediction network to a Trans-
former architecture, introducing adaptive computation in both the self-attention and feed-forward networks.
The self-attention mechanism with fixed-point iterations fθ is defined as:

A0 = softmax
(
QKT

√
d

)
V

Ak+1 = f (Ak, x; θ) = softmax
(
QKT + fθ(Ak)√

d

)
V (4)

where Q = WQx, K = WKx, V = WV x are the query, key, and
value projections of the input x, and fθ is a learnable function that
refines the attention mechanism.

Component Setting
Number of Layers 6
Dimension (dmodel) 512
Attention Heads # 8
FFN Dimension 2048
Max Sequence Length 512
Fixed Point Iteration 1-6 layers

Table 1: MIND-Transformer Details

Similarly, we apply fixed-point iterations gθ in the feed-forward network:

FFN0(x) = W2 · ReLU(W1x+ b1) + b2

FFNk+1(x) = W2 · ReLU(W1x+ b1 + gθ(FFNk(x))) + b2

Furthermore, we cap the number of iterations in all FPIs based on the input complexity score computed as:

IC(x) = α · (1−max(softmax(f(x)))) + β ·H(softmax(x)) + γ · ∥∇xf(x)∥2, (5)

where f(x) is the model’s output before the final softmax layer, H(.) is the entropy function, |∇xf(x)|2 is the
L2 norm of the input gradient and α, β, and γ are weighting coefficients set to 0.4, 0.4, and 0.2 respectively.
Maximum number of iterations is set to max(10 IC(x), 50).

For simplicity, the MIND-Transformer employs the same configurations as a standard Transformer of Vaswani
et al. (2017) (see Table 1). The model incorporates fixed point iterations within its self-attention mechanism
and transition function block (ϕ) across multiple layers. We utilize relative positional embedding with a
sequence length of 120 tokens for both training and inference processes.
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3.4 TRAINING THE MIND MODEL

Training the MIND model involves jointly optimizing the prediction network and the introspection network
to achieve high predictive performance while efficiently allocating computational resources. This section
details the training objectives, loss functions, optimization strategies, and the methodology for computing
gradients through the fixed-point iterations using phantom gradients as given in Algorithm 1 In Appendix A.
The overall training objective is to minimize composite loss function that balances the prediction accuracy
and the computational efficiency:

Ltotal = Lpred + λLintrospect, (6)
where, Lpred is the prediction loss from the prediction network, Lintrospect is the introspection loss from the
introspection network, penalizing computational cost, λ is a hyperparameter balancing the influence of the
introspection loss. The prediction loss Lpred measures the discrepancy between the model’s predictions and
the ground truth labels (e.g. cross entropy). The introspection loss Lintrospect encourages the efficient use of
computational resources by penalizing the use of additional layers and iterations:

Lintrospect =
1

M

M∑
i=1

(
β · CompCosti + γ ·

N∑
l=1

wl ·mi,l + δ ·
N∑
l=1

mi,l

)
, (7)

where, CompCosti is the computational cost for input xi, calculated based on the number of layers and
iterations used, mi,l ∈ {0, 1} indicates whether layer l is selected for input xi, wl is the importance weight
for layer l where wl =

cl∑
cl

, reflecting its computational cost, β, γ, and δ are hyperparameters controlling
the trade-off between accuracy and efficiency, we perform additional ablation on these hyperparameters in
Appendix F.3. adCompCosti is the computational cost for input xi, calculated based on the number of layers
and iterations used, mi,l ∈ {0, 1} indicates whether layer l is selected for input xi, wl is the importance weight
for layer l, reflecting its computational cost, β, γ, and δ are hyperparameters controlling the trade-off between
accuracy and efficiency. The layer selection variables mi,l are discrete, introducing non-differentiability in
the optimization process. To enable gradient-based optimization, we employ the Gumbel-Softmax trick (Jang
et al., 2017; Paulus et al., 2020) to approximate the discrete sampling with a differentiable operation. For
each input xi, the introspection network outputs logits zi = [zi,1, . . . , zi,N ], from which we compute the
selection probabilities:

pi,l =
exp ((zi,l + gi,l)/τ)∑N

j=1 exp ((zi,j + gi,j)/τ)
, (8)

where gi,l are samples from the Gumbel(0,1) distribution, and τ is the temperature parameter controlling the
smoothness of the approximation. This continuous relaxation of mi,l is then used in place of the discrete
variables during optimization. The prediction network applies fixed-point iterations in selected layers to refine
the activations. Backpropagating through these iterations poses challenges due to their implicit nature.

4 EXPERIMENTS

To evaluate our MIND against existing deep learning models, we conduct experiments across Vision and NLP
benchmarks covering more than 10 datasets. All our experiments are conducted using 10 different random
seeds and 9-fold cross-validation to ensure robustness, additional training specifications and extensive details
on our datasets are given in Appendix C. We want to provide a rich picture of how MIND performs in different
scenarios. The primary goals of these experiments are twofold: 1) to evaluate the classification accuracy
of our model in comparison with existing state-of-the-art architectures, and 2) to assess the computational
efficiency improvements achieved through our adaptive layer selection mechanism. We also share additional
experiments in Appendix E including Ablations.

4.1 TOY EXAMPLE: LEVELS OF PROBLEM COMPLEXITY

To evaluate and demonstrate how the MIND model handles inputs of varying complexities, we constructed
a scenario where the degree of difficulty is not only apparent to a human but also closely aligns with the
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performance of a deep learning network. This example was inspired by the motion coherence task, also
known as the random dot motion task (Newsome et al., 1989).

Figure 3: MIND model performance
on the random dot movement across
various consolidation difficulty in test
data. Harder problems are adaptively
addressed with more layers in the FPI.

In this task, an animal is presented with a display of moving dots,
some of which move randomly while some move in a coherent
direction. The animal must identify the direction of the coher-
ent motion. This task has been shown to elicit consistent results
across different animals, including pigeons (Bischof et al., 1999),
rats (Reinagel, 2013), monkeys (Newsome et al., 1989), and hu-
mans (Heekeren et al., 2004). To create a meaningful evaluation
within the realm of predictive models and convolutional neural
networks (CNNs), we adapted this task into a two-image input
scenario. The CNN would receive an original image and its shifted
counterpart — the shift can be to the left, right, up, or down.
For varying levels of difficulty, we used dot consolidation, a widely-
utilized approach, and elected to present states of an Ising model at
different temperatures. The challenge of these levels ranges from
a fully random state (most difficult) to a highly consolidated, low-
temperature state (least difficult). Figure 3 provides four sample
scenarios with varying degrees of difficulty. Notably, the number of
layers in the FPI is clearly correlated with the problem’s complexity,
and errors are randomly distributed across the difficulty levels. This demonstrates how the MIND model
successfully adjusts computation based on input complexity. The MIND model was able to reach an accuracy
of 0.85± 0.007, while a CNN with the same number of layers and channels as the prediction network could
only achieve an accuracy of 0.56± 0.0004 on this 4-class task with variance across a 9-fold cross-validation.

4.2 LAYER UTILIZATION ANALYSIS

To evaluate the introspection mechanism of the MIND model, we analyzed how the model allocates compu-
tational resources based on input complexity. We categorized the ImageNet dataset into three complexity
levels—easy, medium, and hard—using the confidence scores from a pre-trained ResNet-50 model (He et al.,
2016). Specifically, inputs with softmax probabilities above 0.8 were labeled as easy, those between 0.4 and
0.8 as medium, and those below 0.4 as hard.
The frequency distribution of the number of layers used across different input complexity levels as illustrated
in Figure 2 demonstrates that the MIND model adapts its computational effort according to input complexity.
Inputs classified as easy predominantly trigger minimal computation, often utilizing only the first layer in a
convergent loop. In contrast, more complex inputs engage additional layers, indicating the model’s capacity
to dynamically allocate resources when faced with challenging tasks. This adaptive behavior validates
the effectiveness of the introspection mechanism in assessing input complexity and adjusting computation
accordingly. Due to limited space, we also show in experiments in Appendix E.1.
The MIND model achieves superior performance on both datasets while using significantly fewer parameters
compared to the baseline models. Notably, on ImageNet, the MIND model attains a Top-1 accuracy of
88%, outperforming EfficientNet-B7 by 3.7 percentage points despite having approximately 12 times fewer
parameters. Additionally, the MIND model demonstrates enhanced robustness, which we attribute to its
adaptive computation and ability to allocate resources effectively based on input complexity.

4.3 EXPERIMENTS ON VISION TASKS

To evaluate the effectiveness of the MIND model in vision tasks, we implemented a 3-layer Convolution
Neural Network (CNN) (LeCun et al., 2015) as the prediction network within the MIND framework. We
compared our model against traditional baselines and state-of-the-art architectures, specifically ResNet-50 (He
et al., 2016) and EfficientNet-B7 (Tan & Le, 2021), which are renowned for their high performance in image
classification tasks. We evaluated our models on CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng
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Model #Parameters Dataset Top-1
Accuracy ↑

Top-5
Accuracy ↑

Multi-label
Accuracy ↑

Robustness
↑

ResNet-50 25.6M CIFAR-100 69.9% 84.7% — —

ImageNet 74.3% 91.6% 68% 69%

EfficientNet-B7 66M CIFAR-100 84.4% 91.1% — —

ImageNet 84.3% 95.56% 75% 81%

MIND model 5.01M/0.3M/5.31M CIFAR-100 85.53% 92.6% — —

ImageNet 88.3% 96.62% 78% 83%

Table 2: Performance comparison of the MIND model with ResNet-50 and EfficientNet-B7 on CIFAR-100 and
ImageNet. The MIND model parameter count is shown as "Prediction network/Introspection network/Total".

et al., 2009) datasets models using Top-1 and Top-5 accuracy metrics. For ImageNet, we also assessed
multi-label accuracy (Yun et al., 2021) and robustness to ImageNetV2 (Recht et al., 2019). We show, in
Table 2, the performance of MIND model achieves the highest Top-1 and Top-5 score on both datasets.
Notably, our Model also outperformed both ResNet and EfficientNet-7 on multi-label accuracy and robustness
metrics on ImageNet. These results demonstrate great performance of the MIND model across different
datasets and metrics, highlighting its effectiveness in vision tasks. We also show MIND’s performance on
different vision datasets Appendix E.5

Model WikiText-2↓ WikiText-103 (PPL)↓ SQuAD v2.0 (F1/EM)↑ Params (M) ↓
PPL BPC

LSTM (Yu et al., 2019) 99.3 - 48.7 - 20
LSTM-MIND (ours) 14.8 0.85 30.5 72.7 / 70.5 8.6

Transformer (Vaswani et al., 2017) 29.2 1.04 18.3 - 110
BERT-base (Devlin, 2018) - - - 76.8 / 73.6 110
RoBERTa-base (Liu, 2019) - - - 83.7 / 80.5 125
MIND-Transformer (Ours) 14.5 0.80 16.3 88.7/ 81.01 112

Table 3: Performance comparison of different models on WikiText and SQuAD v2.0 datasets. Perplexity
(PPL) and bits-per-character (BPC) are reported for language modeling on WikiText-2 and WikiText-103.
F1/EM scores are used for SQuAD v2.0.

4.4 EXPERIMENTS ON LANGUAGE MODELING TASKS

We evaluated performance on language modeling tasks across multiple datasets including WikiText-2 and
WikiText-103 datasets (Merity et al., 2016). We compared the MIND model with baseline LSTM models (Yu
et al., 2019) and state-of-the-art Transformer-based models (Vaswani et al., 2017; Dai et al., 2019). Table 3
presents the perplexity (PPL) and bits-per-character (BPC) results for WikiText-2 and WikiText-103 datasets,
along with the F1 and Exact Match (EM) scores for SQuAD v2.0. The LSTM-MIND model significantly
reduces perplexity on WikiText-2 (PPL: 14.8) and achieves competitive results on WikiText-103 (PPL: 30.5),
outperforming the standard LSTM baseline. Similarly, the MIND-Transformer achieves superior performance
across all tasks, with a notable improvement in SQuAD v2.0 (F1: 88.7%, EM: 81.01%) compared to both
BERT-base (F1: 76.8%, EM: 73.6%) and RoBERTa-base (F1: 83.7%, EM: 80.5%).
The MIND-Transformer’s results demonstrate its ability to outperform leading transformer models in both
perplexity and downstream question-answering tasks, despite utilizing fewer parameters (112M compared to
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RoBERTa’s 125M). These results highlight the efficiency of the MIND architecture, which adapts computa-
tional resources dynamically, leading to significant gains in performance. We also show additional Abalation
on MIND-transformer in Appendix F.1

4.5 PERFORMANCE WITH FIXED-DEPTH MODELS

We evaluated three fixed-depth CNN models—shallow (4 layers), medium (9 layers), and deep (16 layers)—on
the CIFAR-100 dataset to compare their performance against the adaptive MIND model. These traditional
architectures lack adaptive mechanisms, and their performance is shown in Table 4, which reports Top-1 and
Top-5 accuracy, inference time, and FLOPs.
The MIND model outperforms all fixed-depth models in both accuracy and efficiency. Notably, the MIND
model with complex inputs achieves comparable Top-5 accuracy to the 16-layer deep network while requiring
significantly fewer FLOPs and faster inference. MIND’s dynamic computation, which eliminates redundant
processing based on input complexity, stands in stark contrast to the rigid, predetermined structures of
conventional CNNs (LeCun et al., 2015) and LSTMs (Hochreiter & Schmidhuber, 1997).

Model Input Complexity Top-1↑ Top-5↑ Avg. Layers↑ Avg. FPI↑ Inference FLOPs
Acc. Acc. Used Iterations Time (s)↓ (G)↓

MIND Simple 87.2% 93.9% 1.37 2.81 0.032 0.92
MIND Medium 86.8% 92.5% 2.15 4.63 0.041 1.21
MIND Complex 85.3% 91.4% 2.89 6.42 0.048 1.27

Shallow (4 layers) - 53.5% 63.2% 4.00 - 0.020 0.80
Medium (9 layers) - 74.5% 82.3% 9.00 - 0.070 1.50
Deep (16 layers) - 79.6% 91.7% 16.00 - 0.120 2.00

Table 4: Performance comparison of the MIND model and fixed-depth CNN models with varying input
complexity on the CIFAR-100 dataset. The table includes Top-1 and Top-5 accuracy, average layers used,
FPI iterations, inference time, and FLOPs.

4.6 COMPARISON WITH FIXED COMPRESSION TECHNIQUES

Pruning and Quantization Unlike static compression techniques such as pruning (Liang et al., 2021)
and quantization (Gholami et al., 2022), which uniformly reduce model size or precision, the MIND model
dynamically allocates computational resources based on input complexity. By adapting its computational
graph per input, MIND efficiently processes varying complexities without compromising performance.
MIND adjusts the number of processed tokens and computational depth in real-time, optimizing resource
utilization. This flexibility enables it to handle diverse inputs—from brief queries to extensive docu-
ments—without the need for separate models or fixed compression ratios.
As shown in Table 5, MIND outperforms traditional static methods like baseline ResNet-50, pruned ResNet-50
(50% sparsity), and 8-bit quantized ResNet-50 in both accuracy and computational efficiency. Specifically,
MIND achieves a Top-1 accuracy of 88.0% using significantly fewer parameters (5.31M) and FLOPs (1.05G).
By tailoring computation to each input’s requirements, MIND’s adaptive computation framework effectively
balances efficiency and performance, avoiding the underfitting or overfitting that can result from uniform
reductions applied by static methods.

Early Exit Method The MIND model incorporates sequential operations in the introspection network to
dynamically adjust the computational depth for each input. Although these sequential steps are introduced,
their impact on runtime is significantly mitigated by reducing FLOPs during the main computation.
Unlike traditional early exit methods such as those used by BranchyNet (Teerapittayanon et al., 2016), which
rely on static thresholds for early exits, MIND’s early exit mechanism is driven by real-time change. The
introspection network evaluates the internal state of the model during inference, dynamically adjusting the
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Method Params (M) Avg FLOPs Accuracy↑
Top-1 Top-5

ResNet-50 25.6 4.12G 76.0% 94%
Pruned ResNet-50 (50% sparsity) 12.8 2.06G 64.8% 73.5%
8-bit Quantized ResNet-50 25.6 4.12G 75.5% 85.1%

MIND (Simple)
5.31

0.80G 88.5% 96.5%
MIND (Medium) 1.05G 88.0% 96.2%
MIND (Complex) 2.00G 87.5% 96.0%

Table 5: Comparative analysis of MIND and ResNet-50 variants. The table includes the number of parameters,
FLOPs, and Top-1/Top-5 accuracy.

number of layers and iterations required. Simpler inputs trigger earlier exits, conserving computational
resources without sacrificing accuracy, whereas complex inputs utilize additional layers and iterations for
more refined processing.
Despite the sequential nature of the introspection process, MIND achieves superior performance compared to
BranchyNet and ResNet-50, as shown in Table 6. MIND delivers 88.2% Top-1 accuracy on ImageNet with
average of only 1.05G FLOPs, maintaining an inference time of 20ms. This design contrasts with ResNet-
50’s fixed skip connections, offering more flexible and efficient computation paths to MIND model, which
effectively handles diverse input complexities with minimal overhead, offering a fundamentally different and
more efficient computation process than traditional architectures like ResNet.
The MIND model’s approach differs fundamentally from recent early exit strategies employed in large
language models, such as CALM (Schuster et al., 2022) and LayerSkip (Elhoushi et al., 2024). While
these state-of-the-art models demonstrate sophisticated exit mechanisms for complex language tasks, MIND
focuses on lightweight vision architectures and simpler language processing. We present detailed experimental
comparisons of our model with these two early exit strategies in Table 10 given in Appendix F.2

Method Solver Accuracy ↑ Inference Time Top-1 Accuracy

CIFAR-100 Caltech101 SUN397 (ImageNet)

BranchyNet (Teerapittayanon et al., 2016) - 68.2% 78.6% 68.5% 25.0ms 64.24%
SDN (Huang et al., 2016) - 79.5% 91.3% 69.2% 23.5ms 68.5%
DEQ (Bai et al., 2019) Anderson 82.7% 92.6% 71.4% 148.0ms 78.5%
DEQ (Bai et al., 2019) Broyden 83.1% 92.9% 71.8% 186.0ms 81.8%
MIND (Ours) FPI 85.7% 93.5% 72.8% 20.0ms 88.2%

Table 6: Comparison of MIND model with early exit methods (BranchyNet, SDN) and DEQ variants
(Anderson, Broyden) on CIFAR-100, Caltech101, and SUN397 datasets, as well as their computational
efficiency on ImageNet.

5 CONCLUSIONS

In this paper, we introduced the MIND model, a dynamic architecture that adaptively adjusts computational
depth based on input complexity. Through its introspection network and Fixed-Point Iteration (FPI) layers,
the MIND model achieves a balance between accuracy and efficiency, outperforming traditional static models
across various tasks with fewer parameters and reduced computation. Our results demonstrate an approach
to model building that reduces computational overhead for simpler inputs while scaling up effectively for
complex ones. Future directions, including introspection refinements and broader applications, along with
current limitations, are detailed in Appendix ??.
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A BACKWARD PASS THROUGH FIXED-POINT ITERATIONS

Training the MIND model involves back propagating gradients through fixed-point iterations in the prediction
network. Computing gradients through these iterations poses challenges, particularly due to the computational
cost of unrolling and the difficulty in computing inverse Jacobians required for implicit differentiation. The
Phantom Gradients method introduced by Geng et al. (2021) offers an efficient and stable alternative for
training implicit models. Standard methods for backpropagation through fixed-point iterations include:

• Unrolling (Backpropagation Through Time - BPTT):Unrolling the iterations and computing gradients
at each step. This approach is memory-intensive and computationally expensive, especially when
the number of iterations is large or variable.

• Implicit Differentiation: Computing gradients using the implicit function theorem, which involves
solving linear systems with the Jacobian matrix. This can be computationally intensive and may
suffer from numerical instability.

The Phantom Gradients method bypasses the need for unrolling or computing inverse Jacobians by approxi-
mating the gradients through the fixed-point iterations using a surrogate function. Specifically, it treats the
fixed-point iteration as a single transformation and defines the gradient to be proportional to the change
induced by the last iteration.
Let z(K) be the final activation after K iterations:

z(K) = f(z(K−1); θl). (9)
The Phantom Gradient approximates the gradient of the loss L with respect to the parameters θl as:

dL
dθl
≈
(

∂L
∂z(K)

)⊤
∂z(K)

∂θl
. (10)

Similarly, the gradient with respect to the input z(0) is approximated as:

dL
dz(0)

≈
(

∂L
∂z(K)

)⊤
(

K∏
k=1

∂z(k)

∂z(k−1)

)
. (11)

However, instead of computing the full product of Jacobians, which is equivalent to unrolling, the Phantom
Gradients method approximates this by using the identity matrix or a simplified estimate. The key idea is to
approximate the gradient as if the fixed-point iteration were a single-layer transformation. This approximation
assumes that the earlier iterations have a diminishing effect on the final output, which is often the case when
the fixed-point iteration converges.
Therefore, we can approximate:

dL
dθl
≈
(

∂L
∂z(K)

)⊤
∂f(z(K); θl)

∂θl
. (12)

Similarly, for the input:

dL
dz(0)

≈
(

∂L
∂z(K)

)⊤
∂f(z(K); θl)

∂z(K−1)

∂z(K−1)

∂z(0)
. (13)

By recursively applying this approximation and assuming that ∂z(K−1)

∂z(0) ≈ I , where I is the identity matrix,
we simplify the computation.
During backpropagation, we approximate the gradients with respect to θl as:

∂L
∂θl
≈
(
∂L
∂z∗

)⊤
∂f(z∗; θl)

∂θl
. (14)
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Algorithm 1 Training s for the MIND Model
Require: Training data {(xi, yi)}Mi=1, initialized parameters θP , θI , hyperparameters λ, β, γ, δ, τ
Ensure: Trained model parameters

1: for each epoch do
2: for each minibatch B ⊂ {1, . . . ,M} do
3: Forward Pass:
4: for each sample i ∈ B do
5: Compute activations Ai in the prediction network
6: Compute logits zi using the introspection network
7: Compute selection probabilities pi,l via Gumbel-Softmax (Eq. 8)
8: Obtain relaxed layer selection variables mi,l

9: Process xi through selected layers with fixed-point iterations to get ŷi
10: end for
11: Compute Loss:
12: Compute Lpred
13: Compute Lintrospect using Eq. 7
14: Compute total loss Ltotal using Eq. 6
15: Backward Pass:
16: Compute gradients w.r.t. θP and θI using phantom gradients
17: Parameter Update:
18: Update θP and θI using an optimizer (e.g., Adam)
19: end for
20: end for

Similarly, the gradient with respect to the input z(0) is approximated as:

∂L
∂z(0)

≈
(
∂L
∂z∗

)⊤
∂f(z∗; θl)

∂z(0)
. (15)

These approximations treat the fixed-point iteration as a feedforward layer during backpropagation, enabling
efficient gradient computation without unrolling the iterations or computing inverse Jacobians. Phantom
gradients have been shown to be effective in training implicit models Dupont et al. (2024). They simplify the
backward pass while maintaining sufficient gradient accuracy for effective optimization.

A.1 GRADIENT FLOW IN MIND MODEL

In MIND model, the gradient flow is bifurcated between the prediction network and the introspection network.
For the introspection network, the gradient ∇introspection modelL is isolated from affecting the prediction net-
work’s prediction and is computed independently as:

∇introspection modelL =
∂L

∂Wintrospection model
where Wintrospection model are the weights of the introspection network.

(16)
Following the work by Arya et al. (2022), we employ automatic differentiation that caters to the discrete
randomness introduced by layer selection. The gradients are computed as:

∇discreteL = E
[

∂L
∂Wdiscrete

]
(17)

We draw from Bolte et al. (2022) to handle nonsmooth iterative algorithms, using subdifferentials ∂ to
calculate the gradients as:
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∇nonsmoothL = ∂L(Wnonsmooth) (18)

To improve the scalability, we adapt the asynchronous methods from Barham et al. (2022). The gradients for
each layer l in an asynchronous setting are calculated as:

∇l,asyncL = ∇lL+∆async (19)

where ∆async is the asynchronous correction term. Echoing the sentiments of Metz et al. (2022), we incorporate
auxiliary metrics M alongside gradients, optimized as:

O = ∇L+ αM (20)

where α is a tunable parameter.

Algorithm 2 Backward Propagation in MIND model
1: procedure BACKWARD(ctx, grad_output)
2: z⋆, layer← ctx.saved_tensors
3: max_iter← ctx.max_iter
4: tol← 1× 10−5

5: dz ← grad_output.detach().clone()
6: I ← Identity matrix of dz ▷ Initialize identity matrix
7: ∇introspection ← 0 ▷ Initialize gradient for the introspection network
8: dphantom

z ← PhantomGradient(dz, z⋆) ▷ Initialize phantom gradient
9: for k = 1, . . . ,max_iter do

10: fz ← layer(z⋆)
11: J ← ∂fz

∂z⋆
▷ Compute Jacobian matrix

12: ∆J ← I − J ▷ Implicit differentiation step
13: dznew ← dphantom

z ×∆J ▷ Update the gradient using phantom gradient
14: δ ← ∥dznew−dz∥

∥dznew∥
15: if δ < tol then
16: break
17: end if
18: dz ← dznew

19: ∇introspection ← OrthogonalMethod(∇introspection, J,∆J) ▷ Update introspection model gradient
20: end for
21: Update introspection network using ∇introspection

22: return dphantom
z ,None,None

23: end procedure

B PROOF FOR FIXED POINT ITERATION

The Banach fixed-point theorem, also known as the contraction mapping theorem, is a fundamental result in
the theory of metric spaces Agarwal et al. (2018). It guarantees the existence and uniqueness of fixed points
for certain self-maps of complete metric spaces and provides a constructive method to find these fixed points.
Let (X, d) be a non-empty complete metric space with a contraction mapping T : X → X . A contraction
mapping satisfies the following inequality for some κ < 1:

d(T (x), T (y)) ≤ κ · d(x, y) for all x, y ∈ X

18
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Algorithm 3 Forward Propagation for MIND model
Require: Input data x, predition network layers L = {L1, L2, . . . , LN}, introspection network I , maximum

iterations Kmax, tolerance ϵ
Ensure: Output prediction y

1: Initialize: z0 ← x
2: Obtain layer selection: S ← I(x) ▷ S ⊆ L
3: for l = 1 to N do
4: if Ll ∈ S then ▷ Apply Fixed-Point Iteration
5: Initialize k ← 0, z(0)l ← zl−1

6: repeat
7: z

(k+1)
l ← fl

(
z
(k)
l ; θl

)
8: k ← k + 1

9: until
∥∥∥z(k)

l −z
(k−1)
l

∥∥∥∥∥∥z(k)
l

∥∥∥ < ϵ or k ≥ Kmax

10: zl ← z
(k)
l

11: else ▷ Standard Forward Propagation
12: zl ← fl (zl−1; θl)
13: end if
14: end for
15: Output: y ← OutputLayer(zN )

The Banach fixed-point theorem states that T admits a unique fixed point x∗ in X such that T (x∗) = x∗,
formalized as:

If T : X → X is a contraction, then ∃!x∗ ∈ X : T (x∗) = x∗ (21)
The proof of convergence follows from the contraction mapping principle. Let xn be the n-th iterate of the
fixed point iteration. Then:

d(xn+1, x
∗) = d(T (xn), T (x

∗))

≤ κ · d(xn, x
∗)

≤ κn · d(x0, x
∗)

As n→∞, κn → 0 since κ < 1. Therefore, d(xn, x
∗)→ 0, proving that the sequence {xn} converges to

the fixed point x∗ Nisar et al. (2024).
The rate of convergence is linear, with an error bound given by:

∥xn − x∗∥ ≤ κn

1− κ
∥x1 − x0∥ (22)

This error bound demonstrates that the convergence rate depends on the contraction constant κ, with smaller
values of κ leading to faster convergence Ansar & Mas’ud (2023).
In the context of our MIND model, the fixed point iteration is applied to the introspection network, ensuring
that the model converges to a stable representation of the input data. This convergence property is crucial for
the stability and reliability of the model’s predictions.

C EXPERIMENT SETUP

All experiments were conducted using PyTorch Paszke et al. (2019) on NVIDIA A40 GPUs with 20GB
memory. The MIND model was optimized using the Adam optimizer Kingma & Ba (2014) with an initial
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learning rate of 1 × 10−3, decayed by a factor of 0.1 every 30 epochs. The batch size was set to 64.
Hyperparameters α, β, γ, and δ in Equation 7 were fine-tuned to 0.5, 0.2, 0.2, and 0.1 respectively, while λ for
Lintrospect was set to 0.6. Each model was trained for 100 epochs with early stopping, triggered when validation
loss did not improve over 10 epochs. Fixed-point iteration (FPI) tolerance for the MIND architecture was set to
1×10−5, with a maximum of 100 iterations per layer. All models were validated using 9-fold cross-validation
with 10 different random seeds to ensure stability and robustness of results.

Vision Experiments For vision tasks, we evaluated the MIND model on CIFAR-100 and ImageNet datasets.
CIFAR-100 consists of 60,000 32× 32 images in 100 classes, while ImageNet has 1.28M images in 1,000
classes. We applied standard augmentations including random crops, horizontal flips, and normalization.
The MIND model was compared to ResNet-50 and EfficientNet-B7 in terms of Top-1 and Top-5 accuracy,
FLOPs, and inference time. During training, we utilized cosine learning rate scheduling and weight decay of
5× 10−4. The model dynamically selected layers using the introspection network, with simple inputs using
fewer layers (2-3 layers, 2 FPI iterations) and complex inputs requiring deeper processing (up to 6 layers, 4-6
FPI iterations). FLOPs were recorded per complexity level to evaluate efficiency in resource usage across
different datasets. MIND’s ability to dynamically adjust computation resulted in significant improvements
in Top-1 accuracy and inference time, especially for complex inputs, where the fixed depth models showed
diminishing returns.

Language Modeling For language modeling, we used the WikiText-2 and WikiText-103 datasets. WikiText-
2 contains 2 million tokens, while WikiText-103 consists of 103 million tokens, providing a comprehensive
benchmark for long-range dependencies. We used perplexity (PPL) and bits-per-character (BPC) as evaluation
metrics, comparing the MIND model against LSTM and Transformer baselines. Additionally, SQuAD v2.0
was employed for question-answering, where Exact Match (EM) and F1 scores were reported. For language
tasks, the introspection network selected layers dynamically based on input sequence complexity. Simpler
sequences exited after fewer layers (e.g., 2-3 layers, 2-3 FPI iterations), while more complex sequences
utilized deeper layers (up to 6 layers, 5-6 FPI iterations). Dropout of 0.3 was applied during training, and
attention layers were regularized with label smoothing to mitigate overfitting. The MIND model consistently
demonstrated lower perplexity and higher accuracy across all tasks, with reduced computation per input due
to adaptive layer selection.

Ablation Study We performed an ablation study to evaluate the contribution of the introspection network
and fixed-point iterations. We created three variants: MIND-Reduced (fewer FPI layers and simplified
introspection network), MIND-Fixed (static introspection after training), and MIND-Uniform (all layers used
without adaptive selection). Results showed that MIND-Reduced reduced FLOPs by 15% at the cost of 2-3%
accuracy, while MIND-Fixed and MIND-Uniform led to significantly higher FLOPs without matching the full
model’s performance. The ablation highlights the critical role of dynamic introspection and FPI in achieving
efficient computation and superior accuracy.

Evaluation Metrics The primary metrics used for the comparison in all tasks included the precision of
Top-1 and Top-5, the perplexity (PPL), the F1 score, the EM score, and inference time. Computational
efficiency was measured in FLOPs, and the average number of layers and FPI iterations was recorded per
input complexity level.

D HOW ARE THE ACTIVATION MAPS CALCULATED?

The introspection model A is trained to encapsulate classification accuracy Schmidhuber (2015) and compu-
tational cost within a objective function R. This introspection capability allows the network to optimize the
trade-off between performance and computational efficiency, dynamically adjusting the network’s complexity
according to the individual characteristics of each sample x(i).
While many established architectures MacKay et al. (2018); Vaswani et al. (2017); Hochreiter (1995); He
et al. (2016); Marblestone et al. (2020) utilize mechanisms such as skip connections or attention to optimize
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performance, these techniques are often task-dependent and do not adapt to individual samples within a
dataset. Our diverges from this approach. Our core innovation lies in the model’s introspection ability to
recompute the results on more difficult inputs during inference and adaptively select layers for each
sample based on its unique activation profile, optimizing both accuracy and computational efficiency.
Unlike previous work such as Adaptive Computation Time (ACT) Graves (2016), which focuses on adjusting
the number of recurrent steps for each sample in a sequence model, MIND model offers finer granularity in
layer-wise adaptivity and considers the nuanced contributions of different layers to the final model output for
each individual sample.
In contrast, MIND model not only allows for dynamic layer selection in both sequence and feed-forward
architectures like CNNs Hochreiter & Schmidhuber (1997), but also provides a more nuanced approach by
considering the activation profiles of each layer for every sample.
This architecture allows MIND model to not only provide dynamic layer selection in both sequence and
feed-forward architectures, but also offers a more nuanced approach by considering the activation profiles of
each layer for every sample. This results in a more effective and computationally efficient model that adapts
to the complexities of individual samples across a wide range of tasks.

Table 7: Corrected performance comparison on SQuAD 1.1 dataset
Model Parameters Exact Match (EM) F1 Score

LSTM 0.4M 64.744% 73.743%
BERT-base (12-Layer) 110M 80.8% 88.52%
MIND model 3M/0.3M/3.3M 90.5% ± 0.3% 95.4% ± 0.2%

E EXPERIMENTS

E.1 ANALYSIS OF ACTIVATION PROFILES ACROSS LAYERS

To understand the MIND model’s processing of inputs with varying complexities, we recorded the activation
outputs from each layer during the processing of these inputs. As shown in Figure 5, distinct patterns were
observed in the activation intensities across different layers, depending on the input complexity.
For easy inputs, activation intensities were higher in the initial layers and decreased in the deeper layers. This
indicates that the model efficiently recognized and processed these inputs with minimal computational depth,
as the initial layers captured the essential features, requiring less complex processing in subsequent layers.
In contrast, hard inputs exhibited increasing activation intensities in the deeper layers, suggesting that more
complex feature extraction and processing were necessary. The Fixed-Point Iteration (FPI) layers played
a crucial role in this context, iteratively refining the representations to handle these inputs effectively. The
deeper layers captured intricate patterns and dependencies, demonstrating the model’s capability to adapt its
computational depth dynamically based on input complexity.
To further quantify this behavior, we performed a statistical analysis of the activation magnitudes across the
layers for different complexity levels of inputs. We measured the mean and variance of activation values,
highlighting the dynamic adjustment of the MIND model’s depth according to input complexity, as visualized
in Figure 4. The heatmap visualization shows the activation profiles across three layers of the MIND model for
easy, medium, and hard input categories. Each subplot represents a different input complexity, demonstrating
how activation intensities vary from the first to the third layer. This visualization highlights the model’s
capacity to increase the depth of processing for more complex inputs while conserving resources for simpler
ones.
By examining the activation profiles, we gain insights into the adaptive mechanisms of the MIND model,
illustrating how it judiciously allocates computational resources. The ability to dynamically modulate layer
utilization based on input complexity underscores the efficiency and effectiveness of the MIND model in
handling a wide spectrum of tasks.
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Figure 4: Heatmap visualization of activation profiles across three layers of the MIND model for easy,
medium, and hard input categories. Each subplot represents a different input complexity, showing how
activation intensities vary from the first to the third layer. This visualization highlights the model’s capacity to
increase the depth of processing for more complex inputs while conserving resources for simpler ones.

Figure 5: Activation patterns across four layers of a standard 4-layer CNN when processing a random input
image. Each subplot represents the activation map of a layer, illustrating the progressive feature extraction
from basic textures in the first layer to more abstract representations in deeper layers.
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Figure 6: The plot illustrates the evolution of training and testing loss for both CIFAR-10 and CIFAR-100
datasets over 100 epochs. Each curve represents the mean loss across 10 different random seeds, with the
shaded regions indicating one standard deviation from the mean

E.2 INFLUENCE OF PRE-TRAINING ON MIND MODEL’S EFFICACY

The convergence behavior of our model’s training and testing loss is a critical aspect of its evaluation. Figure
6 provides a detailed insight into this aspect. The similarity in convergence patterns between CIFAR-10 and
CIFAR-100 also suggests that our model is scalable and adaptable to different tasks and data distributions,
aligning well with the core objectives of this research project.
The versatility of our MIND model architecture is further underscored by its robust performance irrespective
of whether it undergoes pre-training Han et al. (2021). To elucidate this, Figure 7 showcases a side-by-
side comparison of key performance indicators—test accuracy and test loss—across 100 epochs for both
pre-trained and non-pre-trained configurations.

Figure 7: Temporal evolution of test accuracies and losses for pre-trained and non pre-trained configurations.
Subplot (a) captures the test accuracies, while subplot (b) focuses on the test losses. Both metrics are plotted
as functions of the epoch count.

23



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2025

The observed metrics reveal a discernible advantage when employing pre-training. Specifically, the pre-trained
model consistently surpasses its non-pre-trained counterpart in both accuracy and loss metrics. This superior
performance is attributed to a "warm-up" phase consisting of 20 epochs of pre-training for the prediction
network. This phase aids in initializing the activations to more optimal states, which likely catalyzes faster
and more stable convergence during subsequent training.

E.3 IMPACT OF FIXED-POINT ITERATION ON DIFFERENT MODEL CONFIGURATIONS

The primary objective of this experiment is to rigorously assess the efficacy of incorporating Fixed-Point
Iteration (FPI) into various layers of our MIND model architecture. We focus on four distinct configurations
to perform this assessment (shown in Figure 1):

1. Model 0: A straightforward architecture comprised of Layer 1→ Layer 2→ Layer 3, devoid of FPI.

2. Model 1: Utilizes FPI exclusively in Layer 1.

3. Model 2: Employs FPI in both Layer 1 and Layer 2.

4. Model 3: Applies FPI across all layers (Layer 1→ Layer 2→ Layer 3).

Our hypothesis posits that the incorporation of FPI into an increasing number of layers will yield a com-
mensurate improvement in key performance metrics, notably test loss and accuracy. Specifically, we project
that Model 3 will exhibit superior performance relative to the other configurations, owing to the enhanced
complexity and optimization capabilities conferred by FPI. Note that all models are trained under identical
hyperparameter settings to ensure a fair comparison.
Figure 8 shows the frequency of test loss and accuracy across the four model configurations. The boxplots
provide a clear visualization of the performance differences, with Model 3 exhibiting the lowest test loss and
highest accuracy, as hypothesized. The inclusion of FPI in all layers allows for more effective optimization
and improved generalization capabilities. The progressive enhancement in performance from Model 0 to
Model 3 demonstrates the positive impact of FPI on the model’s learning capacity and ability to capture
complex patterns in the data.

Figure 8: Boxplots illustrating the distribution of test loss and accuracy across four distinct model configura-
tions in CIFAR-100. The configurations vary in the complexity and number of layers utilizing Fixed-Point
Iteration (FPI).
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Figure 9: (a) Temporal Dynamics of the Objective Function Across Training Epochs for Distinct Random
Seeds. The graph offers an incisive look into the objective function’s evolution over the training epochs,
integrating both accuracy and computational efficiency into its formulation. Each trace corresponds to a
unique random seed, thereby providing a robust measure of the model’s resilience to varying initial conditions.
(b) Interplay Between Layer Selection Frequency, Penalty Term λ, and Validation Accuracy. This tri-axis plot
delivers a granular portrayal of how layer selection frequency and validation accuracy respond to changes in
the penalty term λ.

E.4 ROLE OF THE INTROSPECTION MODEL IN MIND MODEL’S PERFORMANCE AND ADAPTABILITY

Our introspection network also undergoes a pre-training phase lasting the same number of epochs. We preserve
the weights, as per Lillicrap et al. (2014), from these pre-training phases and use them as initialization points
for the comparative experiment. The findings, described in Figure 7, validate the efficacy of this approach by
showcasing noticeably improved performance metrics for the pre-trained model.
In Figure 9: (a) delineates the trajectory of the average objective function throughout the training epochs.
A key observation here is the emergent stabilization of the objective function as the training epoch count
ascends. This equilibrium is indicative of the introspection model’s escalating competence in judiciously
selecting layers that not only enhance performance but also optimize computational expenditure. Further
nuance in the introspection model’s decision-making process is captured in Figure 9(b). Each curve on
the plot signifies the frequency with which the introspection model elects to utilize a specific layer across
the spectrum of available λ penalty terms. Accompanying these curves is a dashed line that represents the
validation accuracy achieved under these conditions. Higher λ values act as deterrents against the selection
of computationally burdensome layers, compelling the introspection model towards more resource-efficient
alternatives. This in-depth analysis fortifies the understanding of the introspection model’s role within MIND
model, particularly its aptitude for adaptively managing computational resources without compromising
model performance. The introspection model’s proficiency in this balancing act is pivotal for the scalability
and applicability of MIND model across a wide range of tasks and computational settings.

E.5 COMPARISON WITH DIFFERENT VISION DATASETS

To further validate the versatility and robustness of the MIND model architecture, we extended our experiments
to include several additional image classification datasets. Table 8 shows the performance of the MIND model
across these datasets.
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The MIND model achieved impressive results on the ImageNet dataset, with a top-1 accuracy of 88.3% and a
top-5 accuracy of 96.62%. This performance demonstrates the model’s ability to handle a large-scale, diverse
dataset with 1000 classes Deng et al. (2009).
On the CIFAR-100 dataset, which consists of 100 classes with 600 images each, the MIND model attained
a top-1 accuracy of 85.53% and a top-5 accuracy of 92.6% Krizhevsky et al. (2009). This showcases the
model’s proficiency in handling smaller, more focused datasets.
The model’s performance on other datasets further underscores its versatility:

• CIFAR-10: The model achieved a high accuracy of 96.4% on this 10-class dataset, which is
comparable to state-of-the-art results Krizhevsky et al. (2009).

• MNIST: On this classic handwritten digit recognition dataset, the model reached an impressive 99.7%
accuracy, demonstrating its effectiveness in handling grayscale images and simple classification
tasks LeCun et al. (1998).

• SVHN: The Street View House Numbers dataset posed a more challenging real-world scenario,
where the model achieved 98.2% accuracy, highlighting its robustness in recognizing digits in
complex environments Netzer et al. (2011).

• Pascal VOC 2012: With a top-1 accuracy of 89.8% and a top-5 accuracy of 95.3%, the model showed
strong performance on this dataset, which includes various object detection and segmentation tasks
Everingham et al. (2010).

The model also performed well on specialized datasets such as Oxford-IIIT Pets (95.9% top-1, 96.5% top-5)
Parkhi et al. (2012), Stanford Cars (94.8% top-1, 96.3% top-5) Krause et al. (2013), and CUB-200-2011
(92.8% top-1, 95.7% top-5) Wah et al. (2011). These results demonstrate the MIND model’s effectiveness in
fine-grained classification tasks.
These comprehensive experiments across diverse datasets underscore the MIND model’s adaptability and
strong performance across a wide range of image classification tasks, from simple digit recognition to complex
scene understanding and fine-grained classification.

Dataset Top-1 Accuracy Top-5 Accuracy

ImageNet 88.3% 96.62%
CIFAR-100 85.53% 92.6%
CIFAR-10 96.4% —
MNIST 99.7% —
SVHN 98.2% —
Pascal VOC 2012 89.8% 95.3%
MS COCO 80.5% 94.6%
Places365 73.3% 92.4%
Oxford-IIIT Pets 95.9% 96.5%
Stanford Cars 94.8% 96.3%
CUB-200-2011 92.8% 95.7%
Food-101 93.0% 95.7%

Table 8: MIND performance with Top-1 and Top-5 accuracy scores for various vision-based datasets

E.6 TEXT-BASED EXPERIMENTS WITH LSTMS

To further validate the effectiveness and adaptability of MIND model, we extend our experiments to text-based
tasks employing Long Short-Term Memory (LSTM) networks Hochreiter & Schmidhuber (1997).
Our LSTM-based MIND model consists of three LSTM layers. The LSTM layers are parameterized as
follows:
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ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

ot = σ(Wo · [ht−1, xt] + bo)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

(23)

In this equation, ft, it, ot are the forget, input, and output gates, respectively. ht is the hidden state, Ct is the
cell state, and xt is the input at time t.
During our experiments on checking the frequency at which layers are selected, remarkably, the "No Layer"
or Straightforward option emerges as the most frequently selected, indicating its ability to capture essential
features across a broad spectrum of tasks and that the samples becomes easier once they are learned so the
layers dont have to spend a lot of time to process them. The diminishing frequency of Layer3 selections
implies that the model tends to minimize reliance on this layer’s fixed-point operations as it stabilizes. Figure
10 elucidates the frequency distribution of each layer’s selection during the evaluation process.

Figure 10: Frequency distribution of layer choices during CIFAR10 training. The bar chart quantifies
the selection frequency of each layer across numerous training epochs, offering insights into their relative
importance for CIFAR10 performance.

We employ Fixed-Point Iteration (FPI) on individual LSTM layers just as in our CNN experiments. The
results are summarized in Figure 11, which shows that the LSTM model with FPI on the third layer achieves
the best performance in terms of both accuracy and computational cost.
Through these experiments, we demonstrate that MIND model’s adaptive layer selection mechanism is equally
effective for text-based tasks, thereby confirming its versatility across different data modalities and tasks.

F ABLATION STUDIES

F.1 ABLATION ON MIND-TRANSFORMERS

We conducted ablation studies on the MIND-Transformer model to investigate the impact of different
components on performance. Each part of the architecture was evaluated separately by removing key modules
such as the attention-based Fixed-Point Iteration (FPI), feed-forward network (FFN) FPI, and the introspection
mechanism. These ablations were performed on the WikiText-103 dataset Merity et al. (2016), and the results
are summarized in Table 14. Perplexity, parameter count, and FLOPs are reported to measure the impact of
each ablation on the model’s efficiency and performance.
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Figure 11: Above plots representing the performance of LSTM-based MIND model configurations on
WikiText-2 and IMDB datasets. Left plot indicates the test accuracy for both datasets and Right plot shows
the loss for both datasets

Table 9: Ablation Study Results on WikiText-103. The table compares the performance of the full MIND-
Transformer model and its variants with specific components removed.

Model Variant Perplexity ↓ Params (M) Avg. FLOPs (G)
MIND-Transformer (Full) 16.5 112 76.8
- w/o Attention FPI 17.1 111 79.2
- w/o FFN FPI 16.9 111 80.5
- w/o Introspection 17.3 110 89.4
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As shown in Table 14, the absence of the introspection mechanism had the most significant negative effect,
increasing the perplexity to 17.3 and raising FLOPs to 89.4G. Removing FPI mechanisms from the attention
and FFN layers also resulted in a degradation of performance, highlighting the importance of these components
in maintaining computational efficiency and reducing perplexity. The introspection network plays a critical
role in dynamically allocating resources based on input complexity, leading to the superior performance of
the full MIND-Transformer.

F.2 EARLY EXIT EXPERIMENTS

In early exit experiments, we compared MIND’s introspection-based early exit mechanism with BranchyNet
and ResNet-50. Experiments were conducted on CIFAR-100 and ImageNet, where input complexity was
analyzed using softmax entropy. The MIND model’s introspection network dynamically adjusted the
number of layers and FPI iterations based on input complexity, allowing early exits for simpler inputs.
Specifically, inputs with softmax entropy below 0.4 typically used only 2-3 layers, reducing computation
by 30-50%. Inference time was measured across different input complexities, showing that MIND achieved
a 28% reduction in average inference time compared to static models with early exits, while maintaining
a comparable accuracy of 88.2% Top-1 on ImageNet. Early exits were activated dynamically based on
introspection, leading to a reduction in FLOPs by 20-30% for lower complexity inputs. BranchyNet, in
contrast, used fixed threshold-based early exits, which underperformed MIND in both efficiency and accuracy.
The MIND model represents a distinct approach from CALM (Schuster et al., 2022) and LayerSkip (Elhoushi
et al., 2024), focusing on lightweight architectures for vision and simpler language tasks. The MIND-
Transformer employs a learned introspection mechanism that dynamically adjusts computation based on input
complexity, requiring minimal memory overhead. In contrast, CALM’s (Schuster et al., 2022) confidence-
based strategy requires additional classifiers and 15% memory overhead, while LayerSkip’s layer dropout
approach shows larger performance degradation with 10% memory overhead. All evaluations used BERT-base
as the foundation model, tested on WikiText-103 for language modeling, CNN/DailyMail (Nallapati et al.,
2016) for summarization, and SQuAD v2.0 (Rajpurkar et al., 2018) for question answering. The MIND
model’s adaptive computation framework shows particular promise for future integration with larger language
models, potentially combining benefits from both confidence-based and layer-dropout approaches while
maintaining computational efficiency as shown in Table

Table 10: Performance Metrics on models like LayerSkip and CALM
Model ROUGE-1 (%) ROUGE-2 (%) Avg. Inference Time (ms)
MIND-Transformer 42.3 19.8 180
CALM 41.9 19.5 165
LayerSkip 41.5 19.2 210

The results demonstrate that the general introspection+FPI approach presented in our paper can be used
with the Transformer architecture (MIND-Transformer) to offer an excellent balance between efficiency,
implementation complexity, and performance maintenance. Although a more specialized approach like
CALM may achieve a 9% higher average speedup while having a performance drop of 0.3%, the generality of
our approach may offer further opportunities for improvement. This makes MIND-Transformer, in particular,
specifically suitable for practical applications where memory constraints and implementation simplicity are
important considerations alongside computational efficiency.

F.3 ABLATION ON INPUT COMPLEXITY

To evaluate the robustness and efficiency of our proposed approach, we conducted extensive ablation studies
to analyze the impact of individual components. The results are summarized in Table 14, which provides an
overview of model performance, computational cost, and inference time under various configurations. The full
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model, which incorporates the softmax term (α = 0.4), entropy term (β = 0.4), and gradient term (γ = 0.2),
achieves the highest Top-1 accuracy of 88% while maintaining computational efficiency with a FLOP count
of 1.05G and an inference time of 20 ms. In contrast, removing the gradient term, which captures input
sensitivity and enables dynamic adaptation to complex inputs, leads to a severe drop in accuracy to 34.2%.
This highlights the critical role of the gradient term in the model’s predictive performance. Similarly, the
exclusion of either the softmax term or the entropy term results in moderate decreases in accuracy (71.5% and
68.2%, respectively), underscoring their importance in uncertainty quantification and confidence calibration.
These findings demonstrate the complementary contributions of the softmax, entropy, and gradient terms to
the overall performance of the model.

Configuration Softmax Term (α) Entropy Term (β) Gradient Term (γ) Top-1 Accuracy (%) FLOPs (G) Inference Time (ms)
Full Model 0.4 0.4 0.2 88.0 1.05 20
No Softmax 0.0 0.67 0.33 71.5 1.25 22
No Entropy 0.67 0.0 0.33 68.2 1.30 23
No Gradient 0.67 0.33 0.0 34.2 1.45 25

Table 11: Impact of hyperparameter configurations on model accuracy, FLOPs, and inference time.

In Appendix F.4, we further validate the effectiveness of the input complexity metrics employed in our
approach. Correlation studies reveal that the softmax values exhibit a strong positive correlation (r = 0.82)
with human-labeled complexity scores, while the gradient norm component shows a significant correlation
(r = 0.79). Both correlations are statistically significant (p < 0.001), providing empirical evidence that the
proposed complexity-aware components effectively adapt to varying input complexities. This validation
supports the utility of our approach in balancing computational efficiency and predictive accuracy.
The experiments were conducted in a controlled environment using the ImageNet dataset for classification
tasks and NVIDIA A100 GPUs for training and inference. Performance was evaluated based on Top-1
accuracy on validation data, computational cost measured in GFLOPs, and inference time per sample in
milliseconds. Additionally, the correlation of model outputs with human-labeled complexity scores was used
to assess the effectiveness of the proposed input complexity metrics. These results collectively highlight the
strengths of our approach in achieving high performance while maintaining computational efficiency.

F.4 SOFTMAX REPRESENTATION

The Adaptive Softmax in our MIND model serves a dual purpose: it reduces computational complexity and
acts as an intelligent agent for selecting the most appropriate representation of the internal state based on the
input complexity. In our architecture, the introspection model functions as a decision-making agent, using
Adaptive Softmax to activate layers based on input complexity. It analyzes the input and current internal
state to determine task complexity and select the appropriate layers for processing. We implement Adaptive
Softmax to align with complexity-based decision-making:

• The shortlist corresponds to commonly needed layer configurations for simpler inputs.

• Subsequent clusters represent increasingly complex configurations for challenging inputs.

During training, the introspection model maps input complexities to layer configurations. Adaptive Softmax’s
structure aligns with input complexity, quickly selecting simpler configurations for easy inputs and more
complex ones when needed. In our experiments, we observed that this approach led to a 28% reduction in
average inference time compared to static models of similar capacity, while maintaining or slightly improving
accuracy across a range of tasks.
Our experimentation has also demonstrated a strong correlation between these values and input complexity.
Softmax values correlate strongly with input complexity (r = 0.82 with human-labeled scores, r = 0.79 with
gradient norm, p < 0.001 for both).
This table shows a more nuanced progression of FLOPs, accuracy, and layer usage as softmax entropy
increases. Note the non-linear relationship and the plateauing of accuracy for high-complexity inputs.
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Table 12: Performance comparison of Standard Softmax and Adaptive Softmax in the MIND model.
Metric Standard Softmax Adaptive Softmax Improvement
Avg. Inference Time (ms) 45.2 32.5 28.1%
Accuracy (%) 76.3 76.8 +0.5
Layer Utilization Efficiency* 0.72 0.89 23.6%
Memory Usage (MB) 256 198 22.7%

Table 13: Relationship between Softmax Entropy, FLOPs, Accuracy, Layers Activated, and Iterations.
Softmax Entropy FLOPs (G) Accuracy (%) Layers Activated Avg. Iterations
Low (0.0 - 0.4) 0.40G 90.5% 2.1± 0.5 2.5± 0.7
Medium (0.4 - 0.8) 0.84G 87.7% 2.9± 0.3 3.9± 0.9
High (0.8 - 1.0) 1.20G 86.5% 3.0± 0.0 4.9± 0.7

F.5 ABALATION OF THE MIND MODEL VARIANTS

Given the interconnected nature of the introspection network (which drives adaptive dynamics) and the
Fixed-Point Iteration (FPI) components, we propose the following ablations to gain insights into their relative
contributions:

• MIND-Reduced: A version of the MIND model where the introspection network considers only a
reduced set of activations of the prediction model’s initial run. In this case, only the activations of
the first and the second layer are considered.

• MIND-Fixed: A version where the introspection network is not active during inference and instead
decisions about which layers to FPI are based on the input complexity measured as H(softmax(x)).
If H < 0.4 then FPI(layer1)→ layer2 → layer3; if 0.4 ≤ H < 0.8 then FPI(layer1 → layer2)→
layer3; if H ≥ 0.8 then FPI(layer1 → layer2 → layer3). This procedure removes a significant part
of reflective computation at inference but keeps the FPI structure.

• MIND-Uniform: A version where all layers are always used in the FPI iteration. Specifically, the
FPI loop iterates the layer1 → layer2 → layer3 block until convergence. This approach removes
adaptive selection keeping the weight-tying benefits.

Table 14: Ablation study of MIND variants on CIFAR-100 and ImageNet datasets, evaluating accuracy and
computational cost (FLOPs).

Model Variant CIFAR-100 Accuracy ImageNet Top-1 Accuracy FLOPs (G)
MIND (Full) 91.3% 88.0% 1.2G
MIND-Reduced 89.5% 86.5% 0.9G
MIND-Fixed 90.8% 85.8% 2.8G
MIND-Uniform 90.2% 86.2% 1.5G

As shown in Table 14, the results highlight the following:

• MIND-Reduced shows the impact of limiting both adaptive capacity and weight tying.
• MIND-Fixed shows the importance of real-time adaptivity during inference.
• MIND-Uniform shows the value of selective computation versus always using all layers.
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F.6 DISTRIBUTION OF FPI ITERATIONS

We analyzed the distribution of Fixed-Point Iteration (FPI) iterations across different levels of input complexity:
Simple, Medium, and Complex. The goal was to assess how the MIND model adjusts its iterative computations
based on input difficulty. Table 15 provides the percentage breakdown of FPI iterations and the average
number of iterations for each input complexity category.

Table 15: Distribution of FPI iterations across different input complexities.
Complexity 1-10 11-25 26-50 51-99 100 Avg. Iterations
Simple 68.5% 24.7% 5.6% 1.1% 0.1% 8.3
Medium 42.1% 35.6% 17.4% 4.3% 0.6% 19.7
Complex 15.7% 32.3% 35.9% 13.8% 2.3% 37.2

Results and Observations From Table 15, we observe the following trends:

• Simple Inputs: The majority (68.5%) of simple inputs required only 1-10 iterations to converge,
with an average of 8.3 iterations. This demonstrates that simple inputs can be processed efficiently
with minimal iterative refinement.

• Medium Inputs: For medium complexity inputs, the FPI distribution shifts towards longer iterations,
with 35.6% of inputs requiring 11-25 iterations and 17.4% requiring 26-50 iterations. The average
number of iterations for medium inputs was 19.7, indicating that moderately complex inputs demand
more iterative processing for accurate feature extraction.

• Complex Inputs: Complex inputs show the most diverse distribution of iterations. 35.9% required
26-50 iterations, while 32.3% required 11-25 iterations. A small percentage (2.3%) of complex
inputs required the maximum number of iterations (100), and the average number of iterations
was 37.2. This suggests that the MIND model engages in more computational depth to handle the
intricate patterns found in these inputs.

This analysis highlights MIND’s capability to adapt its computational depth dynamically, using fewer
iterations for simpler tasks and more iterations for complex ones, ensuring an optimal balance between
computational efficiency and task accuracy.

G COMPUTATIONAL COST AND LIMITATIONS

In a typical neural network, the computational steps are often straightforward, involving a series of matrix
multiplications and activation functions. In contrast, MIND model employs a more complex procedure
involving Fixed-Point Iteration (FPI) at each layer, in addition to the dynamic layer selection via the
introspection model mechanism. The computational cost can thus be broken down into the following main
components:

1. Forward pass through the prediction network

2. FPI computation for each dynamically-selected layer

3. Backward pass involving implicit differentiation

4. Forward and backward pass through the introspection model mechanism

Each of these steps has its own computational overhead Liao et al. (2018); Banino et al. (2021), which can
grow with the complexity and dimensionality of the data being processed.
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G.1 MEMORY AND SPEED CONSIDERATIONS

Contrary to traditional fixed-depth models, the MIND model introduces an adaptive computation framework,
which has variable memory and computational requirements based on input complexity. The use of Fixed-
Point Iteration (FPI) layers, while enhancing flexibility and accuracy, also impacts memory consumption and
computational speed.
The memory requirements for the MIND model depend on the depth and complexity of the inputs. FPI
layers require additional memory to store intermediate states across iterations. This dynamic nature results in
higher memory usage compared to standard layers, particularly for high-dimensional data. Despite this, the
parameter efficiency of the MIND model (5.01M / 0.3M / 5.31M for Prediction / Introspection / Total) helps
mitigate the overall memory footprint.
While the FPI layers add to the computational load, the operations can be parallelized on GPUs. This
parallelization helps manage the wall clock time, although the computations remain computationally intensive.
The introspection network, by selectively activating layers, also contributes to efficient memory utilization by
preventing unnecessary computations.
We aim to develop optimized CUDA implementations to enhance memory and speed performance as future
work that ensure that the MIND model’s computations are efficient, although they are generally around 3x
times slower than optimized fixed-depth models like ResNet-50.
Overall, while the MIND model trades off memory capacity against computational complexity, its design
allows for efficient utilization of resources, making it suitable for various applications, including those
requiring adaptive computation.

H LIMITATIONS

The MIND model demonstrates significant advantages in computational efficiency and accuracy, but several
limitations remain. First, the integration of the introspection network and Fixed-Point Iteration (FPI) layers
increases the complexity of the training process. These components introduce sensitivities to hyperparameters
and training dynamics, particularly in deeper networks, which can lead to gradient instability. This necessitates
careful tuning and robust optimization techniques, which may not always generalize across different tasks
or datasets. Second, the sequential nature of the introspection network introduces computational overhead,
particularly in highly parallelized environments such as TPUs or large-scale distributed systems. This
limitation can hinder scalability and efficiency in such contexts. Third, while the current introspection
mechanism performs well in structured environments, it may struggle with unstructured data where input
complexity is not easily quantifiable. This limits its applicability in domains with ambiguous or heterogeneous
data characteristics. Finally, MIND’s adaptive nature introduces variability in inference times, posing
challenges for applications requiring strict real-time performance. This variability complicates deployment in
latency-sensitive systems and requires further investigation.

I FUTURE WORK

To address these limitations and extend the applicability of MIND, we are actively pursuing several research
directions. To overcome the sequential overhead of the introspection network, we are investigating methods
to parallelize certain aspects of its computation while maintaining its adaptive capabilities. For example,
designing parallelizable architectures could improve performance on distributed systems without sacrificing
functionality. Additionally, we aim to enhance MIND’s generalization across diverse domains by developing
more robust metrics for quantifying input complexity. These metrics will enable MIND mind to adapt
dynamically even in unstructured or ambiguous data environments, broadening its applicability across tasks.
To address inference variability, we are designing mechanisms for predicting and controlling latency during
dynamic computation paths. This includes integrating real-time monitoring tools that ensure consistent
performance in latency-sensitive applications. Finally, future work will focus on deploying MIND in diverse
real-world scenarios such as autonomous systems, healthcare diagnostics, and large-scale recommendation
systems to test its adaptability under practical constraints. By addressing these areas, we aim to enhance
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MIND’s robustness, scalability, and versatility while ensuring its relevance across a wider range of applications.
Future work also involves incorporating Large Language Models into MIND model which can open more
opportunities to explore this mechanism alongside reinforcement learning algorithms for Introspection models
so it can be useful in capturing wide range of states and make better decisions dynamically.
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