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ABSTRACT

This paper shows that gradient boosting based on symmetric decision trees can be
equivalently reformulated as a kernel method that converges to the solution of a
certain Kernel Ridge Regression problem. Thus, we obtain the convergence to a
Gaussian Process’ posterior mean, which, in turn, allows us to easily transform
gradient boosting into a sampler from the posterior to provide better knowledge
uncertainty estimates through Monte-Carlo estimation of the posterior variance.
We show that the proposed sampler allows for better knowledge uncertainty esti-
mates leading to improved out-of-domain detection.

1 INTRODUCTION

Gradient boosting (Friedman, 2001) is a classic machine learning algorithm successfully used for
web search, recommendation systems, weather forecasting, and other problems (Roe et al., 2005;
Caruana & Niculescu-Mizil, 2006; Richardson et al., 2007; Wu et al., 2010; Burges, 2010; Zhang &
Haghani, 2015). In a nutshell, gradient boosting methods iteratively combine simple models (usually
decision trees), minimizing a given loss function. Despite the recent success of neural approaches in
various areas, gradient-boosted decision trees (GBDT) are still state-of-the-art algorithms for tabular
datasets containing heterogeneous features (Gorishniy et al., 2021; Katzir et al., 2021).

This paper aims at a better theoretical understanding of GBDT methods for regression problems
assuming the widely used RMSE loss function. First, we show that the gradient boosting with
regularization can be reformulated as an optimization problem in some Reproducing Kernel Hilbert
Space (RKHS) with implicitly defined kernel structure. After obtaining that connection between
GBDT and kernel methods, we introduce a technique for sampling from prior Gaussian process
distribution with the same kernel that defines RKHS so that the final output would converge to a
sample from the Gaussian process posterior. Without this technique, we can view the output of
GBDT as the mean function of the Gaussian process.

Importantly, our theoretical analysis assumes the regularized gradient boosting procedure (Algo-
rithm 2) without any simplifications — we only need decision trees to be symmetric (oblivious) and
properly randomized (Algorithm 1). These assumptions are non-restrictive and are satisfied in some
popular gradient boosting implementations, e.g., CatBoost (Prokhorenkova et al., 2018).

Our experiments confirm that the proposed sampler from the Gaussian process posterior outperforms
the previous approaches (Malinin et al., 2021) and gives better knowledge uncertainty estimates and
improved out-of-domain detection.

∗A major part of the work was done while working at Yandex Research.
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2 BACKGROUND

Assume that we are given a distribution % over X × Y , where X ⊂ Rd is called a feature space and
Y ⊂ R — a target space. Further assume that we are given a dataset z = {(xi, yi)}Ni=1 ⊂ X × Y
of size N ≥ 1 sampled i.i.d. from %. Let us denote by ρ(dx) =

∫
Y

d%(dx, dy). W.l.o.g., we also
assume that X = supp ρ =

{
x ∈ Rd : ∀ε > 0, ρ({x′ ∈ Rd : ‖x− x′‖Rd < ε}) > 0

}
which is a

closed subset of Rd. Moreover, for technical reasons, we assume that 1
2N

∑N
i=1 y

2
i ≤ R2 for some

constant R > 0 almost surely, which can always be enforced by clipping. Throughout the paper, we
also denote by xN and yN the matrix of all feature vectors and the vector of targets.

2.1 GRADIENT BOOSTED DECISION TREES

Given a loss function L : R2 → R, a classic gradient boosting algorithm (Friedman, 2001) iteratively
combines weak learners (usually decision trees) to reduce the average loss over the train set z:
L(f) = Ez[L(f(x), y)]. At each iteration τ , the model is updated as: fτ (x) = fτ−1(x) + εwτ (x),
where wτ (·) ∈ W is a weak learner chosen from some family of functionsW , and ε is a learning
rate. The weak learnerwτ is usually chosen to approximate the negative gradient of the loss function
−gτ (x, y) := −∂L(s,y)

∂s

∣∣
s=fτ−1(x)

:

wτ = arg min
w∈W

Ez

[(
− gτ (x, y)− w(x)

)2]
. (1)

The familyW usually consists of decision trees. In this case, the algorithm is called GBDT (Gradient
Boosted Decision Trees). A decision tree is a model that recursively partitions the feature space into
disjoint regions called leaves. Each leaf Rj of the tree is assigned to a value, which is the estimated
response y in the corresponding region. Thus, we can write w(x) =

∑d
j=1 θj1{x∈Rj}, so the

decision tree is a linear function of the leaf values θj .

A recent paper Ustimenko & Prokhorenkova (2021) proposes a modification of classic stochastic
gradient boosting (SGB) called Stochastic Gradient Langevin Boosting (SGLB). SGLB combines
gradient boosting with stochastic gradient Langevin dynamics to achieve global convergence even
for non-convex loss functions. As a result, the obtained algorithm provably converges to some
stationary distribution (invariant measure) concentrated near the global optimum of the loss function.
We mention this method because it samples from similar distribution as our method but with a
different kernel.

2.2 ESTIMATING UNCERTAINTY

In addition to the predictive quality, it is often important to detect when the system is uncertain
and can be mistaken. For this, different measures of uncertainty can be used. There are two main
sources of uncertainty: data uncertainty (a.k.a. aleatoric uncertainty) and knowledge uncertainty
(a.k.a. epistemic uncertainty). Data uncertainty arises due to the inherent complexity of the data,
such as additive noise or overlapping classes. For instance, if the target is distributed as y|x ∼
N (f(x), σ2(x)), then σ(x) reflects the level of data uncertainty. This uncertainty can be assessed if
the model is probabilistic.

Knowledge uncertainty arises when the model gets input from a region either sparsely covered by
or far from the training data. Since the model does not have enough data in this region, it will
likely make a mistake. A standard approach to estimating knowledge uncertainty is based on ensem-
bles (Gal, 2016; Malinin, 2019). Assume that we have trained an ensemble of several independent
models. If all the models understand an input (low knowledge uncertainty), they will give similar
predictions. However, for out-of-domain examples (high knowledge uncertainty), the models are
likely to provide diverse predictions. For regression tasks, one can obtain knowledge uncertainty by
measuring the variance of the predictions provided by multiple models (Malinin, 2019).

Such ensemble-based approaches are standard for neural networks (Lakshminarayanan et al., 2017).
Recently, ensembles were also tested for GBDT models (Malinin et al., 2021). The authors consider
two ways of generating ensembles: ensembles of independent SGB models and ensembles of inde-
pendent SGLB models. While empirically methods are very similar, SGLB has better theoretical
properties: the convergence of parameters to the stationary distribution allows one to sample models
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from a particular posterior distribution. One drawback of SGLB is that its convergence rate is un-
known, as the proof is asymptotic. However, the convergence rate can be upper bounded by that of
Stochastic Gradient Langevin Dynamics for log-concave functions, e.g., Zou et al. (2021), which is
not dimension-free. In contrast, our rate is dimension-free and scales linearly with inverse precision.

2.3 GAUSSIAN PROCESS INFERENCE

In this section, we briefly describe the basics of Bayesian inference with Gaussian processes that is
closely related to our analysis. A random variable f with values inL2(ρ) is said to be a Gaussian pro-
cess f ∼ GP

(
f0, σ

2K+δ2IdL2

)
with covariance defined via a kernelK(x, x′) = cov

(
f(x), f(x′)

)
and mean value f0 ∈ L2(ρ) iff ∀g ∈ L2(ρ) we have∫
X

f(x)g(x)ρ(dx) ∼ N
(∫

X

f0(x)g(x)ρ(dx), σ2

∫
X×X

g(x)K(x, x′)g(x′)ρ(dx)⊗ ρ(dx′) + δ2‖g‖2L2

)
.

A typical Gaussian Process setup is to assume that the target y|x is distributed as GP
(
0L2(ρ), σ

2K+

δ2IdL2

)
for some kernel function1 K(x, x′) with scales σ > 0 and δ > 0:

y|x = f(x), f ∼ GP(0L2(ρ), σ
2K + δ2IdL2).

The posterior distribution f(x)|x,xN ,yN is again a Gaussian Process GP(f∗, σ
2K̃+ δ2IdL2) with

mean and covariance given by (see Rasmussen & Williams (2006)):

fλ∗ (x) = K(x,xN )
(
K(xN ,xN ) + λIN

)−1
yN ,

K̃(x, x) = K(x, x)−K(x,xN ) ·
(
K(xN ,xN ) + λIN

)−1K(xN , x).

with λ = δ2

σ2 . To estimate the posterior mean fλ∗ (x) =
∫

R fp(f |x,xN ,yN ) df , we can use the
maximum a posteriori probability estimate (MAP) — the only solution for the following Kernel
Ridge Regression (KRR) problem:

L(f) =
1

2N

N∑
i=1

(
f(xi)− yi

)2
+

λ

2N
‖f‖2H → min

f∈H
,

where H = span
{
K(·, x)

∣∣x ∈ X} ⊂ L2(ρ) is the reproducing kernel Hilbert space (RKHS) for
the kernelK(·, ·) and L(f)→ minf∈H means that we are seeking minimizers of this function L(f).
We refer to Appendix D for the details on KRR and RKHS.

To solve the KRR problem, one can apply the gradient descent (GD) method in the functional space:

fτ+1 = (1− λε

N
)fτ − ε

1

N

N∑
i=1

(fτ (xi)− yi)Kxi , f0 = 0L2(ρ) , (2)

where ε > 0 is a learning rate.

Since this objective is strongly convex due to the regularization, the gradient descent rapidly con-
verges to the unique optimum:

fλ∗ = lim
τ→∞

fτ = K(·,xN )
(
K(xN ,xN ) + λIN

)−1
yN ,

see Appendices C and E for the details.

Gradient descent guides fτ to the posterior mean fλ∗ of the Gaussian Process with kernel σ2K +

δ2IdL2
. To obtain the posterior variance estimate K̃(x, x) for any x, one can use sampling and

introduce a source of randomness in the above iterative scheme as follows:

1. sample f init ∼ GP(0L2(ρ), σ
2K + δ2IdL2);

2. set new labels ynewN = yN − f init(xN );

3. fit GD fτ (·) on ynewN assuming F0(·) = 0L2(ρ);

4. output f init(·) + fτ (·) as final model.

1K(x, x′) is a kernel function if
[
K(xi, xj)

]N,N
i=1,j=1

≥ 0 for any N ≥ 1 and any xi ∈ X almost surely.
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This method is known as Sample-then-Optimize (Matthews et al., 2017) and is widely adopted for
Bayesian inference. As τ →∞, we get f init + f∞ distributed as a Gaussian Process posterior with
the desired mean and variance. Formally, the following result holds:

Lemma 2.1. f init + f∞ follows the Gaussian Process posterior GP(fλ∗ , σ
2K̃ + δ2IdL2) with:

fλ∗ (x) = K(x,xN )
(
K(xN ,xN ) + λIN

)−1
yN ,

K̃(x, x) = K(x, x)−K(x,xN )
(
K(xN ,xN ) + λIN

)−1K(xN , x) .

3 EVOLUTION OF GBDT IN RKHS

3.1 PRELIMINARIES

In our analysis, we assume that we are given a finite set V of weak learners used for the gradient
boosting.2 Each ν corresponds to a decision tree that defines a partition of the feature space into
disjoint regions (leaves). For each ν ∈ V , we denote the number of leaves in the tree by Lν ≥ 1.
Also, let φν : X → {0, 1}Lν be a mapping that maps x to the vector indicating its leaf index in
the tree ν. This mapping defines a decomposition of X into the disjoint union: X = ∪Lνj=1

{
x ∈

X
∣∣φ(j)
ν (x) = 1

}
. Having φν , we define a weak learner associated with it as x 7→ 〈θ, φν(x)〉RLν

for any choice of θ ∈ RLν which we refer to as ‘leaf values’. In other words, θ corresponds to
predictions assigned to each region of the space defined by ν.

Let us define a linear space F ⊂ L2(ρ) of all possible ensembles of trees from V:

F = span
{
φ(j)
ν (·) : X → {0, 1}

∣∣ν ∈ V, j ∈ {1, . . . , Lν}} .
We note that the space F can be data-dependent since V may depend on z, but we omit this depen-
dence in the notation for simplicity. Note that we do not take the closure w.r.t. the topology of L2(ρ)
since we assume that V is finite and therefore F is finite-dimensional and thus topologically closed.

3.2 GBDT ALGORITHM UNDER CONSIDERATION

Our theoretical analysis holds for classic GBDT algorithms discussed in Section 2.1 equipped with
regularization from Ustimenko & Prokhorenkova (2021). The only requirement we need is that the
procedure of choosing each new tree has to be properly randomized. Let us discuss a tree selection
algorithm that we assume in our analysis.

Each new tree approximates the gradients of the loss function with respect to the current predictions
of the model. Since we consider the RMSE loss function, the gradients are proportional to the
residuals rj = yj − f(xj), where f is the currently built model. The tree structure is defined by
the features and the corresponding thresholds used to split the space. The analysis in this paper
assumes the SampleTree procedure (see Algorithm 1), which is a classic approach equipped with
proper randomization. SampleTree builds an oblivious decision tree (Prokhorenkova et al., 2018),
i.e., all nodes at a given level share the same splitting criterion (feature and threshold).3 To limit
the number of candidate splits, each feature is quantized into n + 1 bins. In other words, for each
feature, we have n thresholds that can be chosen arbitrarily.4 The maximum tree depth is limited by
m. Recall that we denote the set of all possible tree structures by V .

We build the tree in a top-down greedy manner. At each step, we choose one split among all the
remaining candidates based on the following score defined for ν ∈ V and residuals r:

D(ν, r) :=
1

N

Lv∑
j=1

(∑N
i=1 φ

(j)
ν (xi) ri

)2

∑N
i=1 φ

(j)
ν (xi)

. (3)

2The finiteness of V is important for our analysis, and it usually holds in practice, see Section 3.2.
3In fact, the procedure can be extended to arbitrary trees, but this would over-complicate formulation of the

algorithm and would not change the space of tree ensembles as any non-symmetric tree can be represented as a
sum of symmetric ones.

4A standard approach is to quantize the feature such that all n + 1 buckets have approximately the same
number of training samples.
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Algorithm 1 SampleTree(r;m,n, β)

input: residuals r = (ri)
N
i=1

output: oblivious tree structure ν ∈ V
hyper-parameters: number of feature splits n,
max. tree depth m, random strength β ∈ [0,∞)
definitions:
S =

{
(j, k)

∣∣j ∈ {1, . . . , d}, k ∈ {1, . . . , n}} —
indices of all possible splits
instructions:
initialize i = 0, ν0 = ∅, S(0) = S
repeat

sample (ui(s))s∈S(i) ∼ U
(
[0, 1]nd−i

)
choose next split as {si+1} =

arg max
s∈S(i)

(
D
(
(νi, s), r

)
− β log(− log ui(s))

)
update tree: νi+1 = (νi, si+1)
update candidate splits: S(i+1) = S(i)\{si+1}

i = i+ 1
until i ≥ m or S(i) = ∅
return: νi

Algorithm 2 TrainGBDT(z; ε, T,m, n, β, λ)

input: dataset z = (xN ,yN )
hyper-parameters: learning rate ε > 0,
regularization λ > 0, iterations of boost-
ing T , parameters of SampleTree m,n, β

instructions:
initialize τ = 0, f0(·) = 0L2(ρ)

repeat
rτ = yN − fτ (xN ) — compute residu-
als
ντ = SampleTree(rτ ;m,n, β) — con-
struct a tree
θτ =

(∑N
i=1 φ

(j)
ντ

(xi)r
(i)
τ∑N

i=1 φ
(j)
ντ (xi)

)Lντ
j=1

— set val-

ues in leaves
fτ+1(·) = (1 − λε

N )fτ (·) +

ε
〈
φντ (·), θτ

〉
RLντ

— update model
τ = τ + 1

until τ ≥ T
return: fT (·)

In classic gradient boosting, one builds a tree recursively by choosing such split s that maximizes
the score D((νi, s), r) (Ibragimov & Gusev, 2019).5 Random noise is often added to the scores to
improve generalization. In SampleTree, we choose a split that maximizes

D
(
(νi, s), r

)
+ ε, where ε ∼ Gumbel(0, β) . (4)

Here β is random strength: β = 0 gives the standard greedy approach, while β → ∞ gives the
uniform distribution among all possible split candidates.

To sum up, SampleTree is a classic oblivious tree construction but with added random noise. We do
this to make the distribution of trees regular in a certain sense: roughly speaking, the distributions
should stabilize with iterations by converging to some fixed distribution.

Given the algorithm SampleTree, we describe the gradient boosting procedure assumed in our
analysis in Algorithm 2. It is a classic GBDT algorithm but with the update rule fτ+1(·) =
(1− λε/N) fτ (·) + εwτ (x). In other words, we shrink the model at each iteration, which serves
as regularization (Ustimenko & Prokhorenkova, 2021). Such shrinkage is available, e.g., in the
CatBoost library.

3.3 DISTRIBUTION OF TREES

The SampleTree algorithm induces a local family of distributions p(·|f, β) for each f ∈ F :

p(dν|f, β) = P
({

SampleTree
(
yN − f(xN );m,n, β

)
∈ dν

})
.

Remark 3.1. Lemma D.5 ensure that such distribution coincides with the one where we use f∗(xN )
instead of yN . This is due to the fact thatD

(
ν,yN −f(xN )

)
= D

(
ν, f∗−f(xN )

)
∀ν ∈ V, f ∈ F .

The following lemma describes the distribution p(dν|f, β), see Appendix F for the proof.
Lemma 3.2. (Probability of a tree)6

p(ν|f, β) =
∑
ς∈Pm

m∏
i=1

e
D(νς,i,r)

β∑
s∈S\νς,i−1

e
D((νς,i−1,s),r)

β

,

5Maximizing (3) is equivalent to minimizing the squared error between the residuals and the mean values
in the leaves.

6Note that for oblivious decision trees, changing the order of splits does not affect the obtained partition.
Hence, we assume that each tree is defined by an unordered set of splits.
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where the sum is over all permutations ς ∈ Pm, νς,i = (sς(1), . . . , sς(i)), and ν = (s1, . . . , sm).

Let us define the stationary distribution of trees as π(·) = limβ→∞ p(·|f, β). It follows from Re-
mark 3.1 that we also have π(·) = p(·|f∗, β).
Corollary 3.3. (Stationary distribution is the uniform distribution over tree structures)
We have π(dν) =

∣∣dν∣∣/(ndm), where
(
nd
m

)
= (nd)!

(nd−m)!m! .

3.4 RKHS STRUCTURE

In this section, we describe the evolution of GBDT in a certain Reproducing Kernel Hilbert Space
(RKHS). Even though the problem is finite dimensional, treating it as functional regression is more
beneficial as dimension of the ensembles space grows rapidly and therefore we want to obtain
dimension-free constants which is impossible if we treat it as finite dimensional optimization prob-
lem. Let us start with defining necessary kernels. For convenience, we also provide a diagram
illustrating the introduced kernels and relations between them in Appendix A.
Definition 3.4. A weak learner’s kernel kν(·, ·) is a kernel function associated with a tree structure
ν ∈ V which can be defined as:

kν(x, x′) =

Lν∑
j=1

w(j)
ν φ(j)

ν (x)φ(j)
ν (x′), where w(j)

ν =
N

max{N (j)
ν , 1}

, N (j)
ν =

N∑
i=1

φ(j)
ν (xi) .

This weak learner’s kernel is a building block for any other possible kernel in boosting and is used
to define the iterations of the boosting algorithm analytically.
Definition 3.5. We also define a greedy kernel of the gradient boosting algorithm as follows:

Kf (x, x′) =
∑
ν∈V

kν(x, x′)p(ν|f, β) .

This greedy kernel is a kernel that guides the GBDT iterations, i.e., we can think of each iteration
as SGD with a kernel from 3.5, and 3.4 is used as a stochastic gradient estimator of the Fréchet
derivative in RKHS defined by the kernel from 3.5.
Definition 3.6. Finally, there is a stationary kernel K(x, x′) that is independent from f :

K(x, x′) =
∑
ν∈V

kν(x, x′)π(ν) ,

which we call a prior kernel of the gradient boosting.

This kernel defines the limiting solution since the gradient projection on RKHS converges to zero,
and thus 3.5 converges to 3.6.

Note that F = span
{
K(·, x) | x ∈ X

}
. Having the space of functions F , we define RKHS

structureH =
(
F , 〈·, ·〉H

)
on it using a scalar product defined as

〈f,K(·, x)〉H = f(x).

Now, let us define the empirical error of a model f :

L(f, λ) =
1

2N
‖yN − f(xN )‖2RN +

λ

2N
‖f‖2H.

Then, we define V (f, λ) = L(f, λ)− inff ′∈F L(f ′, λ). Let us also define the following functions:
fλ∗ ∈ arg minf∈F V (f, λ) and

f∗ = lim
λ→0

fλ∗ ∈ arg min
f∈F

V (f), where V (f) = V (f, 0).

It is known that such f∗ exists and is unique since the set of all solutions is convex, and therefore
there is a unique minimizer of the norm ‖ · ‖H. Finally, the following lemma gives the formula of
the GBDT iteration in terms of kernels in Lemma 3.7 which will be useful in proving our results.
See Appendix D for the proofs.
Lemma 3.7. Iterations fτ of Gradient Boosting (Algorithm 2) can be written in the form:

fτ+1 = (1− λε

N
)fτ +

ε

N
kντ (·,xN )

[
f∗(xN )− fτ (xN )

]
, ντ ∼ p(ν|fτ , β) .
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3.5 KERNEL GRADIENT BOOSTING CONVERGENCE TO KRR

Consider the sequence {fτ}τ∈N generated by the gradient boosting algorithm. Its evolution is de-
scribed by Lemma 3.7. The following theorem estimates the expected (w.r.t. the randomness of tree
selection) empirical error of fT relative to the best possible ensemble. The full statement of the
theorem and its proof can be found in Appendix G.
Theorem 3.8. Assume that β, T1 are sufficiently large and ε is sufficiently small (see Appendix G).
Then, ∀T ≥ T1,

EV (fT , λ) ≤ O
(
e−O

(
ε(T−T1)

N

)
+
λ2ε

N2
+ ε+

λ

βN2

)
.

Corollary 3.9. (Convergence to the solution of the KRR problem) Under the assumptions of the
previous theorem, we have the following dimension-free bound:

E‖fT − fλ∗ ‖2L2
≤ O

(
e−O

(
ε(T−T1)

N

)
+
λ2ε

N
+Nε+

λ

βN

)
.

This bound is dimension-free thanks to functional treatment and exponentially decaying to small
value with iterations and therefore justifies the observed rapid convergence of gradient boosting
algorithms in practice even though dimension of spaceH is enormous.

4 GAUSSIAN INFERENCE

So far, the main result of the paper proved in Section 3.5 shows that Algorithm 2 solves the Kernel
Ridge Regression problem, which can be interpreted as learning Gaussian Process posterior mean fλ∗
under the assumption that f ∼ GP(0, σ2K+δ2IdL2

) where λ = σ2

δ2 . I.e., Algorithm 2 does not give
us the posterior variance. Still, as mentioned earlier, we can estimate the posterior variance through
Monte-Carlo sampling in a sample-then-optimize way. For that, we need to somehow sample from
the prior distribution GP(0, σ2K + δ2IdL2).

4.1 PRIOR SAMPLING

We introduce Algorithm 3 for sampling from
the prior distribution. SamplePrior generates an
ensemble of random trees (with random splits
and random values in leaves). Note that while
being random, the tree structure depends on the
dataset features xN since candidate splits are
based on xN .
We first note that the process hT (·) is centered
with covariance operator K:

EhT (x) = 0 ∀x ∈ X ,

EhT (x)hT (y) = K(x, y) ∀x, y ∈ X .
(5)

Then, we show that hT (·) converges to the
Gaussian Process in the limit.
Lemma 4.1. The following convergence holds
almost surely in x ∈ X:

hT (·) −−−−→
T→∞

GP
(
0L2(ρ),K

)
.

Algorithm 3 SamplePrior(T,m, n)

hyper-parameters: number of iterations T ,
parameters of SampleTree m,n
instructions:
initialize τ = 0, h0(x) = 0
repeat
ντ = SampleTree(0RN ;m,n, 1) — sample
random tree
θτ ∼ N

(
0RLντ ,diag

(
N

max{N(j)
ντ ,1}

: j ∈

{1, . . . , Lντ }
))

— generate random values
in leaves
hτ+1(·) = hτ (·) + 1√

T

〈
φντ (·), θτ

〉
RLντ

—
update model
τ = τ + 1

until τ ≥ T
return: hT (·)

4.2 POSTERIOR SAMPLING

Now we are ready to introduce Algorithm 4 for sampling from the posterior. The procedure is
simple: we first perform T0 iterations of SamplePrior to obtain a function hT0

(·) and then we train a
standard GBDT model fT1(·) approximating yN − σhT0(xN ) +N (0N , δ2IN ). Our final model is
σhT0(·) + fT1(·).
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(a) D (b) µ̃ (c) log σ̃

Figure 1: KGB on a synthetic dataset.

We further refer to this procedure as
SamplePosterior or KGB (Kernel Gra-
dient Boosting) for brevity. Denote

h∞ = lim
T0→∞

hT0
, f∞ = lim fT1

,

where the first limit is with respect to
the point-wise convergence of stochas-
tic processes and the second one with
respect to L2(ρ) convergence.
The following theorem shows that KGB
indeed samples from the desired poste-
rior. The proof directly follows from
Lemmas 4.1 and 2.1.

Algorithm 4 SamplePosterior(z; ε, T1, T0,m, n, β, σ, δ)

input: dataset z = (xN ,yN )
hyper-parameters: learning rate ε > 0, boosting iter-
ation T1, SamplePrior iterations T0, parameters of Sam-
pleTree m,n, β, kernel scale σ > 0 (default σ = 1),
noise scale δ > 0 (default: δ = 0.01)
instructions:
hT0(·) = SamplePrior(T0,m, n)
ynewN = yN − σhT0(xN ) +N (0N , δ2IN )

fT1
(·) = TrainGBDT

(
(xN ,y

new
N ); ε, T1,m, n, β,

δ2

σ2

)
return: σhT0

(·) + fT1
(·)

Theorem 4.2. In the limit, the output of Algorithm 4 follows the Gaussian process posterior:

σh∞(·) + f∞(·) +N (0, δ2) ∼ GP
(
f̃ , K̃

)
with mean f̃(x) = K(x,xN )

(
K(xN ,xN ) + λIN

)−1
yN and covariance K̃(x, x) = δ2 +

σ2
(
K(x, x)−K(x,xN )

(
K(xN ,xN ) + λIN

)−1K(xN , x)
)
.

5 EXPERIMENTS

This section empirically evaluates the proposed KGB algorithm and shows that it indeed allows for
better knowledge uncertainty estimates.

Synthetic experiment To illustrate the KGB algorithm in a controllable setting, we first conduct
a synthetic experiment. For this, we defined the feature distribution as uniform over D = {(x, y) ∈
[0, 1]2 : 1

10 ≤ (x− 1
2 )2 − (y − 1

2 )2 ≤ 1
4 ∧ (x ≤ 2

5 ∨ x ≥
3
5 ) ∧ (y ≤ 2

5 ∨ y ≥
3
5 )}. We sample 10K

points from U([0, 1]2) and take into the train set only those that fall into D. The target is defined
as f(x, y) = x + y. Figure 1(a) illustrates the training dataset colored with the target values. For
evaluation, we take the same 10K points without restricting them to D.

For KGB, we fix ε = 0.3, T0 = 100, T1 = 900, σ = 10−2, δ = 10−4 β = 0.1, m = 4, n = 64, and
sampled 100 KGB models. Figure 1(b) shows the estimated by Monte-Carlo posterior mean µ̃. On
Figure 1(c), we show log σ̃, where σ̃2 is the posterior variance estimated by Monte-Carlo. One can
see that the posterior variance is small in-domain and grows when we move outside the dataset D,
as desired.

Experiment on real datasets Uncertainty estimates for GBDTs have been previously analyzed
by Malinin et al. (2021). Our experiments on real datasets closely follow their setup, and we compare
the proposed KGB with SGB, SGLB, and their ensembles. For the experiments, we use several
standard regression datasets (Gal & Ghahramani, 2016). The implementation details can be found
in Appendix H. The code of our experiments can be found on GitHub.7

7https://github.com/TakeOver/Gradient-Boosting-Performs-Gaussian-Process-Inference
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Table 1: Predictive performance, RMSE

Dataset Single Ensemble
SGB SGLB KGB SGB SGLB KGB

Boston 3.06 3.12 2.81 3.04 3.10 2.82
Concrete 5.21 5.11 4.36 5.21 5.10 4.30
Energy 0.57 0.54 0.33 0.57 0.54 0.33
Kin8nm 0.14 0.14 0.11 0.14 0.14 0.10
Naval 0.00 0.00 0.00 0.00 0.00 0.00
Power 3.55 3.56 3.48 3.52 3.54 3.43
Protein 3.99 3.99 3.79 3.99 3.99 3.76
Wine 0.63 0.63 0.61 0.63 0.63 0.60
Yacht 0.82 0.84 0.52 0.83 0.84 0.50
Year 8.99 8.96 8.97 8.97 8.93 8.94

Table 2: Error and OOD detection

Dataset PRR AUC
SGB SGLB KGB SGB SGLB KGB

Boston 36 37 43 80 80 88
Concrete 29 29 37 92 92 93
Energy 36 31 60 100 100 99
Kin8nm 18 19 20 45 45 41
Naval 55 56 35 100 100 100
Power 8 9 31 72 73 76
Protein 30 29 35 99 99 100
Wine 25 19 37 74 72 87
Yacht 74 78 86 62 60 69
Year 30 30 32 67 57 71

We note that in our setup, we cannot compute likelihoods as kernel K is defined implicitly, and
its evaluation requires summing up among all possible trees structures number of which grows as
(nd)m which is unfeasible, not to mention the requirement to inverse the kernel which requires
O(N2+ω) operations which additionally rules out the applicability of classical Gaussian Processes
methods with our kernel. Therefore, a typical Bayesian setup is not applicable, and we resort to the
uncertainty estimation setup described in Malinin et al. (2021). Also, the intractability of the kernel
does not allow us to treat σ, δ in a fully Bayesian way, as it will require estimating the likelihood.
Therefore, we fix them as constants, but we note that this will not affect the evaluation metrics for
our setup as they are scale and translation invariant.

First, we compare KGB with SGLB since they both sample from similar posterior distributions.
Thus, this comparison allows us to find out which of the algorithms does a better sampling from the
posterior and thus provides us with more reliable estimates of knowledge uncertainty. Moreover, we
consider the SGB approach as the most “straightforward” way to generate an ensemble of models.

In Table 1, we compare the predictive performance of the methods. Interestingly, we obtain improve-
ments on almost all the datasets. Here we perform cross-validation to estimate statistical significance
with paired t-test and highlight the approaches that are insignificantly different from the best one
(p-value > 0.05). Then, we check whether uncertainty measured as the variance of the model’s pre-
dictions can be used to detect errors and out-of-domain inputs. Detecting errors can be evaluated via
the Prediction-Rejection Ratio (PRR) (Malinin, 2019; Malinin et al., 2020). PRR measures how well
uncertainty estimates correlate with errors and rank-order them. Out-of-domain (OOD) detection is
usually assessed via the area under the ROC curve (AUC-ROC) for the binary task of detecting
whether a sample is OOD (Hendrycks & Gimpel, 2017). For this, one needs an OOD test set. We
use the same OOD test sets (sampled from other datasets) as Malinin et al. (2021). The results of
this experiment are given in Table 2. We can see that the proposed method significantly outperforms
the baselines for out-of-domain detection. These improvements can be explained by the theoretical
soundness of KGB: convergence properties are theoretically grounded and non-asymptotic. In con-
trast, for SGB, there are no general results applicable in our setting, while for SGLB the guarantees
are asymptotic. In summary, these results show that our approach is superior to SGB and SGLB,
achieving smaller values of RMSE and having better knowledge uncertainty estimates.

6 CONCLUSION

This paper theoretically analyses the classic gradient boosting algorithm. In particular, we show that
GBDT converges to the solution of a certain Kernel Ridge Regression problem. We also introduce
a simple modification of the classic algorithm allowing one to sample from the Gaussian poste-
rior. The proposed method gives much better knowledge uncertainty estimates than the existing
approaches.

We highlight the following important directions for future research. First, to explore how one can
control the kernel and use it for better knowledge uncertainty estimates. Also, we do not analyze
generalization in the current work, which is another important research topic. Finally, we need to
establish universal approximation property which further justifies need for functional formalism.
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A NOTATION USED IN THE PAPER

For convenience, let us list some frequently used notation:

• X ⊂ Rd — feature space;
• d — dimension of feature vectors;
• Y ⊂ R — target space;
• ρ — distribution of features;
• N — number of samples;
• z = (xN ,yN ) — dataset;
• V — set of all possible tree structures;
• Lν : V → N — number of leaves for ν ∈ V;
• D(ν, r) — score used to choose a split (3);
• S — indices of all possible splits;
• n — number of borders in our implementation of SampleTree;
• m — depth of the tree in our implementation of SampleTree;
• β — random strength;
• ε — learning rate;
• λ — regularization;
• F — space of all possible ensembles of trees from V;
• φν : X → {0, 1}Lν — tree structure;

• φ(j)
ν — indicator of j-th leaf;

• V (f) — empirical error of a model f relative to the best possible f ′ ∈ F ;
• kν(·, ·) — single tree kernel;
• K(·, ·) — stationary kernel of the gradient boosting;
• p(·|f, β) — distribution of trees, f ∈ F ;
• π(·) = limβ→∞ p(·|f, β) = p(·|f∗, β) — stationary distribution of trees;
• σ — kernel scale.

The following diagram illustrates the kernels introduced in our paper:

Weak learner’ kernel kντ : X × X → R+ Σντ : F → F Σfτ : F → F

Iteration kernel Kfτ : X × X → R+ Stationary Kernel K : X × X → R+

H =
(
F , 〈·, ·〉H

)

acts as f 7→kντ f(xN )

expected value

expected valuefτ

τ→∞

used in dot product

B ADDITIONAL RELATED WORK

Let us briefly discuss some additional related work. Mondrian forest method (Balog et al., 2016)
and Generalized Random Forests (Athey et al., 2019), besides having links to the kernel methods,
in fact, have the underlying limiting RKHS space that is much smaller than the space of all possible
ensembles built on the same weak learners due to the independence of the trees that are added to
the ensemble. Therefore, there is an issue of high bias when comparing plain gradient boosting with
the plain random forest method. Also, these two methods are built from scratch to obtain an RKHS
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interpretation while we provide a link between the existing standard gradient boosting approaches
to the kernel methods, i.e., we do not create a novel gradient boosting algorithm but rather show that
the existing ones already have such a link to derive convergence rates and to exploit such linkage
to obtain formal Gaussian process interpretation of the gradient boosting learning to get uncertainty
estimates using well-established gradient boosting libraries.

Let us mention that there are approaches that study kernels induced by tree ensembles through
the perspective of Neural Tangent Kernel (Kanoh & Sugiyama, 2022), though this analysis is not
applicable for classical gradient boosting, while ours is.

Let us also briefly discuss the papers on Neural Tangent Kernel, e.g., Jacot et al. (2018); Li & Liang
(2018); Allen-Zhu et al. (2019); Du et al. (2019), that study deep learning convergence through the
perspective of kernel methods. Though such works share similarities with what we do, there are
fundamental differences. First, our work is not in the over-parametrization regime, i.e., our kernel
method correspondence works for tree ensembles with fixed parameters, but the correspondence
is achieved as the number of iterations goes to infinity. It is worth noting that the kernel method
perspective on deep learning basically establishes that each trained deep learning model is a sample
from Gaussian Process posterior (Lee et al., 2020; 2018; Yang, 2019; Cho & Saul, 2009), i.e., is
sample-then-optimize. For boosting, we achieve this only by introducing Algorithm 4 relying on
Algorithm 3, which in its essence, is random initialization for gradient boosting. The classic gradient
boosting (Algorithm 2) can be considered as the mean value of the Gaussian Process, which has no
analogs in the world of deep learning, and to achieve convergence to posterior mean there, one needs
to average among many trained models. This can be considered as an advantage of gradient boosting
over deep learning that we derive in our paper.

C CONVEX OPTIMIZATION IN FUNCTIONAL SPACES

In this section, we formulate basic definitions of differentiability in functional spaces and the theo-
rem on the convergence of gradient descent in functional spaces. For the proof of the theorem and
further details on convex optimization in functional space, the reader can consult Luenberger (1969).

We considerH to be a Hilbert space with some scalar product 〈·, ·〉H.
Definition C.1. We say that F : H → R is Fréchet differentiable if for any f ∈ H there exists a
bounded linear functional Lf : H → R such that ∀h ∈ H

F (f + h) = F (f) + Lf [h] + o(‖h‖) .
The value of Lf : H → R is denoted by DfF (f) and is called a Fréchet differential of F at point
f . So, Fréchet differential is a functional DfF : H → B(H,R), where B(X,Y ) denotes a normed
space of linear bounded functionals from X to Y .
Definition C.2. Let F : H → R be Fréchet differentiable with a Fréchet differential DfF (f)
that is a bounded linear functional. Then, by the Riesz theorem there exists a unique hf such that(
DfF (f)

)
[h] = 〈hf , h〉H ∀h ∈ H. We call such element a gradient of F inH at f ∈ H and denote

it by∇HF (f) = hf ∈ H.
Definition C.3. F : H → R is said to be twice Fréchet differentiable if DfF is Fréchet dif-
ferentiable, where the definition of Fréchet differential is analogous to Definition C.1 with the
only difference that DfF takes values in B(H,R). The second Fréchet differential is denoted
by D2

fF : H → B(H,B(H,R)). As there is an isomorphism between B(H,B(H,R)) and
B(H×H,R), we can consider the second Fréchet differential to take values in B(H×H,R).
Henceforth, we will not differentiate between B(H,B(H,R)) and B(H×H,R).
Definition C.4. A linear operator P : H ×H → R is said to be semi-positive definite (denoted by
P � 0) if ∀f ∈ H we have P (f, f) ≥ 0. P is said to be positive definite (P � 0) if ∀f ∈ H \ {0}
we have P (f, f) > 0.
Definition C.5. Given two linear operators P,G : H×H → R we write P � G if P −G � 0 and
P � G if P −G � 0.

Let I ∈ B(H×H,R) be a linear operator defined as I(g, h) = (g, h)H.
Theorem C.6. Let F be bounded below and twice Fréchet differentiable functional on a Hilbert
space H. Assume that D2

fF (f) satisfies 0 ≺ mI � D2
fF (f) � µI . Then the gradient descent
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scheme:
fk+1 = fk − ε∇HF (fk)

converges to f∗ that minimizes F.

Proof. For the proof see Luenberger (1969).

D KERNEL RIDGE REGRESSION AND RKHS

Definition D.1. K : X × X → R is called a kernel function if it is positive semi-definite, i.e.,
∀N ∈ N+ ∀xN ∈ XN : K(xN ,xN ) � 0.

Definition D.2. For any kernel function we can define a Reproducing Kernel Hilbert Space (RKHS)

H(K) = span
{
K(·, x)

∣∣x ∈ X}
with a scalar product such that

〈f,K(·, x)〉H(K) = f(x) .

Consider the following Kernel Ridge Regression problem:

V (f, λ) =
1

2N
‖yN − f(xN )‖2RN +

λ

2N
‖f‖2H(K) − min

f∈H(K)
V (f, λ)→ min

f∈H(K)

and the following Kernel Ridgeless Regression problem:

V (f) =
1

2N
‖yN − f(xN )‖2RN − min

f∈H(K)
V (f)→ min

f∈H(K)
.

Lemma D.3. minH(K) V (f, λ) has the only solution

fλ∗ = K(·,xN )(K(xN ,xN ) + λI)−1yN .

Proof. First, let us show that fλ∗ ∈ span
{
K(·, xi)

}
. Let H(K) = span

{
K(·, xi)

}
⊕

span
{
K(·, xi)

}⊥
and consider the projector P : H(K)→ H(K) onto the space span

{
K(·, xi)

}
.

It is easy to show that P (f)(xN ) = f(xN ) for any f ∈ H(K). Indeed,

(f − P (f))[xN ] = 〈f − P (f),K(·,xN )〉 = 0 .

If fλ∗ does not lie in span
{
K(·, xi)

}
, then ‖fλ∗ ‖H(K) > ‖P (fλ∗ )‖H(K) and V (P (fλ∗ ), λ) <

V (fλ∗ , λ). We get a contradiction with the minimality of fλ∗ .

Now, let us prove the existence of fλ∗ . Consider f = K(·,xN )c, where c ∈ RN . Then, we find the
optimal c by taking a derivative of V (f, λ) with respect to c and equating it to zero:

K(xN ,xN )(K(xN ,xN )c− yN ) + λK(xN ,xN )c = 0 .

Then,
cv = (K(xN ,xN ) + λI)−1(yN + v) ,

where v ∈ kerK(xN ,xN ). Note that all K(·,xN )cv are equal. Then, we have the only solution of
the KRR problem:

fλ∗ = K(·,xN )(K(xN ,xN ) + λI)−1yN .

Lemma D.4. minH(K) V (f) has the only solution in span
{
K(·,xi)

}
and it is the solution of min-

imum RKHS norm:
f∗ = K(·,xN )K(xN ,xN )†yN .
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Proof. Consider f = K(·,xN )c, where c ∈ RN . Now consider V (f) and differentiate it with
respect to c. If we equate the derivative to zero, we get:

1

N
K(xN ,xN )(K(xN ,xN )c− yN ) = 0 .

Then,K(xN ,xN )c−(yN +v) = 0 for some v ∈ kerK(xN ,xN ). Note that yN +kerK(xN ,xN )∩
ImK(xN ,xN ) 6= ∅. Then, for any v such that yN +v ∈ ImK(xN ,xN ) there exists a solution cv =
K(xN ,xN )†(yN + v) + kerK(xN ,xN ). This follows from the fact that K(xN ,xN )K(xN ,xN )†

is an orthoprojector onto ImK(xN ,xN ). Note that

f∗ = K(·,xN )(K(xN ,xN )†(yN + v) + kerK(xN ,xN )) = K(·,xN )K(xN ,xN )†yN .

Then, the existence and uniqueness of f∗ follow.

Now, consider a linear space F ⊂ L2(ρ) of all possible ensembles of trees from V:

F = span
{
φ(j)
ν (·) : X → {0, 1}

∣∣ν ∈ V, j ∈ {1, . . . , Lν}} .
Define the unique function:

{f∗} = lim
λ→0+

arg min
f∈F

V (f, λ) ⊂ arg min
f∈F

V (f).

Then following two lemmas hold:

Lemma D.5. 〈yN − f∗(xN ), f(xN )〉RN = 0 for any f ∈ F .

Proof. Assume that 〈yN − f∗(xN ), f(xN )〉RN 6= 0 for some f ∈ F . Then, for some f ∈ F ,
〈yN − f∗(xN ), f(xN )〉RN > 0. We have:

‖yN − (f∗ + αf)(xN )‖2RN
= ‖yN − f∗(xN )‖2RN − 2α〈yN − f∗(xN ), f(xN )〉RN + α2‖f(xN )‖2RN

< ‖yN − f∗(xN )‖2RN

for small enough α > 0, which contradicts with the definition of f∗.

Lemma D.6.
V (f, λ) =

1

2N
‖f∗(xN )− f(xN )‖2RN +

λ

2N
‖f‖2H − Cλ

where Cλ = inff∈F L(f, λ)− inff∈F L(f) ≥ 0.

Proof. We need to prove it only for V (f) without regularization as for regularized it follows imme-
diately (note that f∗ is minimizer of not regularized objective). By definition,

V (f) =
1

2N
‖yN − f(xN )‖2RN −

1

2N
‖yN − f∗(xN )‖2RN .

Now, let us prove that

‖yN − f(xN )‖2RN − ‖yN − f∗(xN )‖2RN − ‖f∗(xN )− f(xN )‖2RN = 0 .

Indeed,

‖yN − f(xN )‖2RN − ‖yN − f∗(xN )‖2RN − ‖f∗(xN )− f(xN )‖2RN
= −2〈f∗(xN ), f∗(xN )〉RN − 2〈yN , f(xN )− f∗(xN )〉RN + 2〈f∗(xN ), f(xN )〉RN

= −2〈yN − f∗(xN ), f(xN )− f∗(xN )〉RN = 0 ,

where the last equality follows from the previous lemma.

Lemma D.7. V (f, λ) = 1
2N ‖f

λ
∗ (xN )− f(xN )‖2RN + λ

2N ‖f
λ
∗ − f‖2H.
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Proof. fλ∗ is optimum for V (f, λ). Then Fréchet derivative at fλ∗ equals 0:

DfV (fλ∗ , λ) = 0.

Consider then writing:

V (f, λ) = V (fλ∗ , λ) +DfV (fλ∗ , λ)[f − fλ∗ ] +
1

2
D2
fV (fλ∗ , λ)[f − fλ∗ , f − fλ∗ ]

=
1

2N
‖fλ∗ (xN )− f(xN )‖2RN +

λ

2N
‖fλ∗ (xN )− f(xN )‖2RN .

The explicit formula for the Fréchet Derivative of V (f, λ) can be found in Appendix E.

E GAUSSIAN PROCESS INFERENCE

In this section, we prove Lemma 2.1 from Section 2.3 of the main text.

Firstly, consider the following regularized error functional:

V (f, λ) =
1

2N

N∑
i=1

(
f(xi)− yi

)2
+

λ

2N
‖f‖2H − min

f∈H(K)

( 1

2N

N∑
i=1

(
f(xi)− yi

)2
+

λ

2N
‖f‖2H

)
.

With this functional we can consider the following optimization problem:

min
f∈H(K)

V (f, λ),

which is called as Kernel Ridge Regression.

We will show that this functional satisfies the conditions needed for Theorem C.6. We will also
deduce the formula of the gradient of V in order to show that gradient descent takes the form (2).
Lemma E.1. V (f, λ) is Fréchet differentiable with the differential given by:

DfV (f, λ) =
λ

N
〈f, ·〉H(K) +

1

N

N∑
i=1

(
f(xi)− yi

)
evxi ,

where evxi : H(K) → R is a bounded linear functional such that evxi(f) = f(xi) =
(f,K(xi, ·))H(K).8

Proof. As Fréchet differential is linear, we only need to find Fréchet differential for (f(xi)− yi)2.

Note that (f(xi)− yi)2 is a composition of two functions:

F : H(K)→ R, F = evxi − yi ,

G : R→ R, G(x) = x2 .

The differential of the composition can be found as:

DfG(F (f)) =
∂

∂x
G(F (f))DfF (f) ,

DfG(F (f)) = 2(f(xi)− yi)evxi ,
where DfF (f) = evxi because

evxi(f + h)− yi = evxi(f)− yi + evxi(h) .

Lemma E.2. The gradient of V (f, λ), Riesz representative of the functional above, is given by:

∇fV (f, λ) =
λ

N
f +

1

N

N∑
i=1

(f(xi)− yi)Kxi .

8We further use the notation Kxi := K(·, xi).
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Proof. Follows from the previous lemma.

Lemma E.3. V (f, λ) is twice Fréchet differentiable with the differential given by:

D2
fV : H(K)→ B(H(K), B(H(K),R)) ,

D2
fV (f, λ)[h] =

λ

N
〈h, ·〉H(K) +

1

N

N∑
i=1

h(xi)evxi .

Proof. Due to the linearity of Fréchet differential and lemma E.1 we need to find only Fréchet
differential for (f(xi)− yi)evxi .
Consider S(f) = (f(xi) − yi)evxi . Then we need to find Vf ∈ B(H(K), B(H(K),R)) such that
S(f + h) = S(f) + Vf [h] + o(‖h‖).

It is easy to show that h 7→ h(xi)evxi ∈ B(H(K), B(H(K),R)) and S(f+h) = S(f)+h(xi)evxi .
Thus, we get that DfS(f)[h] = h(xi)evxi . From this the statement of the lemma follows.

Given all the above lemmas, as a corollary of Theorem C.6, we have the following.
Corollary E.4. Gradient descent, defined by the following iterative scheme

fτ+1 =
(
1− λε

N

)
fτ − ε

1

N

N∑
i=1

(fτ (xi)− yi)Kxi , f0 = 0L2(ρ)

converges to the optimum of V (f, λ). Thus,

fλ∗ = lim
τ→∞

fτ = K(·,xN )
(
K(xN ,xN ) + λIN

)−1

yN . (6)

Proof. By Lemma E.2, our update rule has the form

fτ+1 = fτ − ε∇HV (fτ , λ).

Then, we will find m,µ such that 0 ≺ mI � D2
fV (f, λ) � µI . By Lemma E.3,

D2
fV (f, λ)[g, h] =

λ

N
〈g, h〉H(K) +

1

N
g(xN )Th(xN ) .

Then, we can take m = λ
N . Let us also write

D2
fV (f, λ)[g, g] =

λ

N
‖g‖2H(K) +

1

N
‖g(xN )‖2 =

λ

N
‖g‖2H(K) +

1

N
‖〈g,K(·,xN )〉H(K)‖2 ≤ (

λ

N
+

1

N
max
x∈X
K(x, x))‖g‖2H(K).

Then, we can take µ = λ
N + 1

N maxx∈X K(x, x). By theorem C.6 and lemma D.3 the corollary
follows.

Lemma E.5. Consider the gradient descent:

fτ+1 =
(
1− λε

N

)
fτ − ε

1

N

N∑
i=1

(fτ (xi)− yi)Kxi ,

f0 = 0L2(ρ) ,

f∞ = lim
τ→∞

fτ

and the following randomization scheme:

1. sample f init ∼ GP(0L2(ρ), σ
2K + δ2IdL2

);

2. set new labels ynewN = yN − f init(xN );

3. fit GD fτ (·) on ynewN assuming f0(·) = 0L2(ρ);

4. output f̂(·) = f init(·) + f∞(·) as final model.
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Then, f̂ from the scheme above follows the Gaussian Process posterior with the following mean and
covariance:

Ef̂(x) = K(x,xN )
(
K(xN ,xN ) + λIN

)−1

yN ,

cov(f̂(x)) = δ2 + σ2
(
K(x, x)−K(x,xN )

(
K(xN ,xN ) + λIN

)−1

K(xN , x)
)
.

Proof.

f∞ = K(·,xN )
(
K(xN ,xN )+λIN

)−1

ynewN = K(·,xN )
(
K(xN ,xN )+λIN

)−1

(yN−f init(xN )) .

Let us find the distribution of f̂ at x ∈ Rn. It can be easily seen that:

Ef̂(x) = K(x,xN )
(
K(xN ,xN ) + λIN

)−1

yN .

Let us now calculate covariance:

covf̂(x) = E(f̂(x)− Ef̂(x))(f̂(x)− Ef̂(x))T

= E
(
f init(x)−K(x,xN )

(
K(xN ,xN ) + λIN

)−1

f init(xN )
)

·
(
f init(x)−K(x,xN )

(
K(xN ,xN ) + λIN

)−1

f init(xN )
)T

= Ef init(x)f init(x)T − Ef init(x)f init(xN )T
(
K(xN ,xN ) + λIN

)−1

K(xN , x)

−K(x,xN )
(
K(xN ,xN ) + λIN

)−1

Ef init(xN )f init(x)T

+K(x,xN )
(
K(xN ,xN ) + λIN

)−1

Ef init(xN )f init(xN )T
(
K(xN ,xN ) + λIN

)−1

K(xN , x)

= δ2 + σ2
(
K(x, x)− 2K(x,xN )(K(xN ,xN ) + λIN )−1K(xN , x)

)
+ σ2K(x,xN )(K(xN ,xN ) + λIN )−1K(xN , x)

)
= δ2 + σ2

(
K(x, x)−K(x,xN )(K(xN ,xN ) + λIN )−1K(xN , x)

)
,

which is exactly what we need.

F DISTRIBUTION OF TREES

Lemma F.1 (Lemma 3.2 in the main text).

p(ν|f, β) =
∑
ς∈Pm

m∏
i=1

e
D(νς,i,r)

β∑
s∈S\νς,i−1

e
D((νς,i−1,s),r)

β

,

where the sum is over all permutations ς ∈ Pm, νς,i = (sς(1), . . . , sς(i)), and ν = (s1, . . . , sm).

Proof. Let us fix some permutation ς ∈ Pm. W.l.o.g., let ς = idPm , i.e. ς(i) = i∀i. It remains
to derive the formula for the fixed permutation. The probability of adding the next split given the
previously build tree is:

P (νi−1 ∪ si|νi−1) =
e

1
βD(νi,r)∑

s∈S\νi−1
e

1
βD((νi−1,s),r)

,

which comes from (4) and the Gumbel-SoftMax trick. Then, we decompose the probability P (ν) of
a tree as:

P (ν) =

m∏
i=1

P (νi−1 ∪ si|νi−1) ,
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and so for the fixed permutation we have

P (ν) =

m∏
i=1

e
1
βD(νi,r)∑

s∈S\νi−1
e

1
βD((νi−1,s),r)

.

Then we sum over all permutations and the lemma follows.

Now, let us define the following value indicating how different are the distribution of trees for f and
f∗:

Γβ(f) = max

{
max
ν∈V

∣∣∣p(ν|f∗, β)

p(ν|f, β)

∣∣∣,max
ν∈V

∣∣∣ p(ν|f, β)

p(ν|f∗, β)

∣∣∣} .
Lemma F.2. The following bound relates the distributions.

Γβ(f) ≤ e
2mV (f)

β .

Proof. Consider π = p(·|f∗, β) and the following expression P (ν, ς):

P (ν, ς) :=

m∏
i=1

e
1
βD(νς,i,r)∑

s∈S\νς,i−1
e

1
βD((νς,i−1,s),r)

.

Then, ∑
ς∈Pm

P (ν, ς) ≤
∑
ς∈Pm

e
m
β D(ν,r)

m∏
i=1

1∑
s∈S\νς,i−1

1
≤ e

2mV (f)
β π(ν) .

where in second inequality we used D(ν, r) ≤ 2V (f) which straightly follows from the definition.

By noting that the probabilities remain the same if we shift D(·, r) ← D(·, r) − 2V (f) which
becomes everywhere non-positive and allows us to do the above trick once more but in reverse
manner: if we formally replace theD with such modified function and repeat the steps with reversing
the inequalities which is needed since the new function is everywhere negative then the lemma
follows.∑

ς∈Pm

P (ν, ς) ≥
∑
ς∈Pm

e
∑m
i=1

1
βD(νς,i,r)−mβ 2V (f)

m∏
i=1

1∑
s∈S\νi−1

1
≥ e−

2mV (f)
β π(ν) .

G PROOF OF THEOREM 3.8

G.1 RKHS STRUCTURE

In section 3.4 we defined RKHS structure on F as:

〈f,K(·, x)〉H(K) = f(x)

and we introduced the kernels kν ,Kf ,Kπ . Let us also define a kernel Kp(·, ·) =
∑
ν∈V kν(·, ·)p(ν)

for arbitrary distribution p on V . This way, taking p as δν(·), p(ν | f, β), π(·) we get Kp equal to
kν ,Kf , K, respectively.

For each kernel, we define the operator associated with it denoted similarly:

Kp : F → F ,

f 7→
∫
X

Kp(·, x)f(x)ρ(dx).

Lemma G.1. Consider two positive semidefinite operators on a finite dimensional vector space V :
A : V → V and B : V → V such that A � B. Then, ImA ≥ ImB.
Lemma G.2. Kp : F → F is invertible for p non-vanishing on V .
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Proof. Note that Im kν = span {φjν | j = 1, . . . , Lν} and p(ν)kν � Kp. Then, ImKp = F follows
from lemma G.1. Thus, Kp is invertible.

Lemma G.3. F = span
{
Kp(·, x) | x ∈ X

}
for p non-vanishing on V .

Proof. From lemma G.2, ImKp = F . From the definition of the operator, ImKp ⊂
span

{
Kp(·, x) | x ∈ X

}
. Then, the lemma follows.

Lemma G.4. For non-vanishing distribution p on V

〈Kpf, g〉H(Kp) = 〈f, g〉L2(ρ).

Proof. It is sufficient to check on the basis. So, we take g = Kp(·, x). Then,

〈Kpf,Kp(·, x)〉H(Kp) = Kp[f ](x) = 〈f,Kp(·, x)〉L2(ρ),

where the second equality holds by the definition of the operator Kp.

For a weak learner ν, we define a covariance operator:

Σν [f ] =
1

N
kν(·,xN )f(xN ), Σν : H → H .

Also, for an arbitrary probability distribution p over V , we denote Σp =
∑
ν∈V Σνp(ν). These

operators are typically referred to as covariance operators.

Let us formulate and prove several lemmas about the RKHS structure and operators Σ,Σf ,Σν .

Lemma G.5. (Courant-Fischer) Let A be an n × n real symmetric matrix and λ1 ≤ . . . ≤ λn its
eigenvalues. Then,

λk = min
dimU=k

max
x∈U

RA(x),

λk = max
dimU=n−k+1

min
x∈U

RA(x),

where RA(x) = 〈Ax,x〉
〈x,x〉 is the Rayleigh-Ritz quotient.

Lemma G.6. ρ(kν(xN ,xN )) = ‖kν(xN ,xN )‖ = N for any ν ∈ V .

Proof. It is easy to see that
kν(xN ,xN ) = ⊕Lνi=1w

(i)
ν 1Niν×Niν ,

where 1n×n is a matrix of size n× n consisting of ones. Then, we note that ‖1n×n‖ = n and now
the statement of the lemma follows.

Lemma G.7. (Covariation majorization) The following operator inequality holds for probability
distributions p, p′ over V , where p is arbitrary and p′ does not vanish at any ν ∈ V:

λmax(Σp) ≤ 1,

λmin(Σp′) ≥
1

N
.

Proof. Consider the following operators:

A : F → Rn, f 7→ f(xN ),

B : Rn → F , v 7→ Kp(·,xN )v.

Then, Σp = 1
NBA and KN = 1

NKp(xN ,xN ) = 1
NAB. As AB and BA have the same spectra,

we further study the spectrum of KN .

We have KN = 1
NKp(xN ,xN ) =

∑
ν∈V

1
N kν(xN ,xN )p(ν) and λmax(KN ) ≤ 1 follows from

lemma G.6. Then, λmax(Σp) ≤ 1 follows.

20



Published as a conference paper at ICLR 2023

Now we need to show that λmin(Σp′) ≥ 1
N . Consider the following formula:

Σp′ =
1

N

N∑
i=1

Kp′(·, xi)⊗H(Kp′ ) Kp′(·, xi) ,

Σp′ =
1

N

N∑
i=1

Kp′(xi, xi)
( Kp′(·, xi)√
Kp′(xi, xi)

⊗H(Kp′ )
Kp′(·, xi)√
Kp′(xi, xi)

)
,

where (a ⊗H(Kp′ ) b)[c] = 〈b, c〉H(Kp′ )a. If a = b and ‖a‖H(Kp′ ) = 1, then 1 and 0 are the only
eigenvalues of a⊗H(Kp′ ) a.

Denote by S = span{Kp′(·, xi) | i = 1, . . . , N} ⊂ H(Kp′) and m = dimS, n = dimH(Kp′).
Then,

λmin(Σp′) = λn−m+1(Σp′) = min
dimU=n−m+1

max
x∈U

RΣp′ (x),

where RΣp′ (x) =
(Σp′x,x)H(K

p′ )

(x,x)H(K
p′ )

. As dimU = n−m+ 1, then U ∩ S 6= ∅. Suppose Kp′(·, xi) ∈
U ∩ S, then

max
x∈U

RΣp′ (x) ≥ RΣp′ (
Kp′(·, xi)√
Kp′(xi, xi)

)
*
≥ Kp

′(xi, xi)

N
≥ 1

N
,

where (*) is fulfilled as a⊗H(Kp′ )a is a positive semidefinite operator and the last inequality follows
from Kp′(x, x) ≥ 1∀x ∈ X .

G.2 NORM MAJORIZATION

The following lemmas relate the norms L2,H,RN with respect to each other.9 Indeed, by these
lemmas we can consider the bound ‖ · ‖L2

. ‖ · ‖H ≤ ‖ · ‖RN . Further, in the main theorems we
will use these relations extensively.

Corollary G.8. ‖f(xN )‖ ≥ ‖f‖H for f ∈ span{K(·, xi) | i = 1, . . . , N}.

Proof.
1

N
‖f(xN )‖2 = 〈Σf, f〉H ≥

1

N
‖f‖2H

as Σ � 1
N I on span{K(·, xi) | i = 1, . . . , N}.

Lemma G.9. λmax(K) ≤ maxx∈X K(x, x).

Proof. Consider K as an operator on (F , L2(ρ)). We will prove that ‖K‖B((F,L2(ρ))) ≤
maxx∈X K(x, x) and the lemma will follow. Consider the inequality

K[f ](x) = 〈Kx, f〉L2 ≤ ‖Kx‖L2‖f‖L2 .

Then, ‖K[f ]‖L2
≤ maxx∈X ‖Kx‖L2

‖f‖L2
. Note also that K(x, x′) ≤ min(K(x, x),K(x′, x′))

which can be easily seen from the definition. Then, ‖Kx‖L2
≤ K(x, x) and the lemma follows.

Corollary G.10. (Expected squared norm majorization by RKHS norm) The following bound holds
∀f ∈ H:

‖f‖2L2(ρ) ≤ max
x∈X
K(x, x)‖f‖2H.

Proof. We have
λmax(K)‖f‖2H ≥ 〈Kf, f〉H = 〈f, f〉L2 = ‖f‖2L2

.

Then, from the previous lemma the bound holds.
9Note that ‖ · ‖RN indeed becomes a norm once we restrict our space to span{K(·, xi) | i = 1, . . . , N}.
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G.3 SYMMETRY OF OPERATORS

In this section, we establish symmetry of various operators with respect to the norms L2,H,RN .
These results are mainly required to claim that the spectral radii of these operators coincide with their
operator norms in various spaces: B(F , L2), B(H), B(span{K(·, xi) | i = 1, . . . , N}, ‖ · ‖RN ).
Though, we use symmetry of operators not only this way.

Lemma G.11. (Universal symmetry of covariance operators in H) The operator Σp for any p is
symmetric w.r.t. the dot product ofH(Kp′) for any non-singular p′.

Proof. First, let us prove the statement for non-singular distribution p. To see that, we consider the
following quantity:

〈Σpf, g〉H(Kp) =
1

N

N∑
i=1

〈Kp(·, xi), f〉H(Kp)〈Kp(·, xi), g〉H(Kp).

Then, we use the following trick: 〈Kp(·, xi), f〉H(Kp) = 〈Kp′K−1
p Kp(·, xi), f〉H(Kp′ ). It allows us

to rewrite:

〈Σpf, g〉H(Kp) =
1

N

N∑
i=1

〈Kp′K−1
p Kp(·, xi), f〉H(Kp′ )〈Kp′K

−1
p Kp(·, xi), g〉H(Kp′ ).

From this, it immediately follows:

Σp =
1

N

N∑
i=1

(
Kp′K−1

p Kp(·, xi)
)
⊗H(Kp′ )

(
Kp′K−1

p Kp(·, xi)
)
.

This shows that Σp is indeed symmetric w.r.t. the dot product of H(Kp′). Finally, we can use the
continuity argument, which we can use due to intrinsic finite dimension, to conclude that symmetry
must hold for arbitrary distributions, in particular for p = δν which corresponds to Σν .

Lemma G.12. (Universal symmetry of covariance operators in L2) The operator Σp for any p is
symmetric w.r.t. the dot product of L2.

Proof. We consider similarly the following quantity:

〈Σpf, g〉H(Kp) =
1

N

N∑
i=1

〈Kp(·, xi), f〉H(Kp)〈Kp(·, xi), g〉H(Kp).

Then, we use the following trick 〈Kp(·, xi), f〉H(Kp) = 〈K−1
p Kp(·, xi), f〉L2 . It allows us to rewrite:

〈Σpf, g〉H(Kp) =
1

N

N∑
i=1

〈K−1
p Kp(·, xi), f〉L2

〈K−1
p Kp(·, xi), g〉L2

.

From this, it immediately follows:

Σp =
1

N

N∑
i=1

(
K−1
p Kp(·, xi)

)
⊗L2

(
K−1
p Kp(·, xi)

)
Which shows that Σp is indeed symmetric w.r.t. the dot product of L2.

Lemma G.13. (Universal symmetry of kernel operators in H) The operator Kp for any p is sym-
metric w.r.t. the dot product ofH.

Proof. We consider decomposing Kp as:

〈Kpf, g〉L2 =

∫
X×X

Kp(x, y)f(x)g(y)ρ(dx)ρ(dy).
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Then, we use the following trick: f(x) = 〈K(·, x), f〉H. It allows us to rewrite:

〈Kpf, g〉L2 =

∫
X×X

Kp(x, y)〈K(·, x), f〉H〈K(·, y), g〉Hρ(dx)ρ(dy).

From this, it immediately follows:

Kp =

∫
X×X

Kp(x, y)
(
K(·, x)⊗H K(·, y)

)
ρ(dx)ρ(dy).

This shows thatKp is indeed symmetric w.r.t. the dot product ofH since bothK(·, x)⊗HK(·, y) and
K(·, y) ⊗H K(·, x) are present with the same weight Kp(x, y)ρ(dx)ρ(dy) = Kp(y, x)ρ(dy)ρ(dx).

G.4 ITERATIONS OF GRADIENT BOOSTING

Lemma G.14. For any ν ∈ V , we have kν(·,xN )[yN − f∗(xN )] = 0.

Proof. Follows from Lemma D.5.

Lemma G.15 (Lemma 3.7 in the main text). Iterations fτ of gradient boosting (Algorithm 2) can
be written in the form:

fτ+1 =

(
1− λε

N

)
fτ +

ε

N
kντ (·,xN )

[
yN − fτ (xN )

]
= (1− λε

N
)fτ +

ε

N
kντ (·,xN )

[
f∗(xN )− fτ (xN )

]
,

ντ ∼ p(ν|fτ , β) .

Proof. According to Algorithm 2:

fτ+1(·) =
(
1− λε

N

)
fτ (·) + ε

〈
φντ (·), θτ

〉
RLντ

for θτ =
(∑N

i=1 φ
(j)
ντ (xi)r

(i)
τ∑N

i=1 φ
(j)
ντ (xi)

)Lντ
j=1

.

Thus,

fτ+1 =
(
1− λε

N

)
fτ + ε

1

N

Lντ∑
j=1

ωjντφ
j
ντ

∑
i : φjντ (xi)=1

riτ .

Now note that kντ (·, xi) = ωjντφ
j
ντ (·), where j is such that φjντ (xi) = 1. From this the lemma

follows.

From Lemmas G.15, D.4, it is easy to show that fτ , f∗ ∈ span{K(·, xi) | i = 1, . . . , N}. Then,
hereafter we can use Corollary G.8 to boundH norm with RN norm.
Lemma G.16. The iterations of gradient boosting can be represented as:

ε−1E
(
fτ − fτ+1

)
| fτ = KfτD[fτ − f∗] +

λ

N
fτ ,

where D : F → F is bounded linear operator defined as Riesz representative with respect to L2

scalar product of such bilinear function 1
N f(xN )Th(xN ) = 〈Df, h〉L2

. Similar decomposition
holds for∇HV (f, λ) = KD[f − f∗] + λ

N f .

Proof. First, observe that Efτ+1 | fτ = fτ − ε∇V (fτ , λ) where gradient here is taken with respect
to H(Kfτ ). Keep in mind that in the definition of V (fτ , λ), the norm in the regularizer term is
taken with respect to H(Kfτ ) instead of H(K). Thus, we need only to prove that ∇HV (f, λ) =

KD[f − f∗] + λ
N f .

Consider Fréchet differential DfV (f)[h] = 1
N (f(xN )− f∗(xN ))Th(xN ) = 〈D[f − f∗], h〉L2

. By
Lemma G.4, we deduce

DfV (f)[h] =
1

N
(f(xN )− f∗(xN ))Th(xN ) = 〈KD[f − f∗], h〉H,

which implies∇V (f) = KD[f − f∗] and the lemma follows.
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G.5 MAIN LEMMAS

Lemma G.17. Let A,B ∈ B(H,H) be two PSD operators such that ξB −A and ξA−B are PSD
for some ξ ∈ (1,∞). Let g, h ∈ H be two arbitrary vectors and λ ∈ R++ be a constant. Then,

〈A[g] + λξh,B[g] + λh〉H ≥
1

2

(
ξ−1
∥∥A[g] + λξh

∥∥2

H − ξ(ξ
2 − 1)λ2‖h‖2H

)
.

Proof. Consider the following equality:

ξ〈ξ−1A[g] + λh,B[g] + λh〉H =
ξ

2

(∥∥ξ−1A[g] + λh
∥∥2

H +
∥∥B[g] + λh

∥∥2

H −
∥∥(B − ξ−1A)[g]

∥∥2

H

)
,

which is basically the classical decomposition of the dot product 〈x, y〉 = 1
2

(
‖x‖2 + ‖y‖2 − ‖x −

y‖2
)
. Then, we note that

(
1 − ξ−2

)
B −

(
B − ξ−1A

)
= ξ−2(ξA − B) is PSD by assumption and

since
(
B − ξ−1A

)
is PSD it implies that

(
1− ξ−2

)
B ≥

(
B − ξ−1A

)
, which implies:

〈A[g] + λξh,B[g] + λh〉H ≥
ξ

2

(∥∥ξ−1A[g] + λh
∥∥2

H +
∥∥B[g] + λh

∥∥2

H − (1− ξ−2)2
∥∥B[g]

∥∥2

H

)
.

Finally, note that ξ2

2−ξ−2 − 1 = ξ2(1−ξ−2)2

2−ξ−2 ≤ ξ2 − 1. Then, the result directly follows from the
following equality:∥∥B[g] + λh

∥∥2

H − (1− ξ−2)2
∥∥B[g]

∥∥2

H

=
∥∥ξ−1

√
2− ξ−2B[g] +

λ

ξ−1
√

2− ξ−2
h
∥∥2

H − λ
2
( ξ2

2− ξ−2
− 1
)∥∥h∥∥2

H.

Denote κ(A,B) = ‖IdH −BA−1‖B(H,H) = ‖(B −A)A−1‖B(H,H).

Lemma G.18. If ξ−1K � Kf � ξK for ξ > 1, then κ(K,Kf ) ≤ ξ − 1.

Proof. First, we note that both operators are symmetric semi-positive definite in L2. Now, let us
look at the Rayleigh quotient:

‖(K −Kf )K−1‖B(H,H) = max
f∈F\{0}

‖(K −Kf )K−1f‖H
‖f‖H

= max
f∈F\{0}

‖K− 1
2 (K −Kf )K− 1

2 f‖L2

‖f‖L2

.

In the last equality we used fact that K is symmetric positive definite and therefore K 1
2 is too and

hence we can substitute f ← K 1
2 f and use the explicit formula for the dot product in H via the

product in L2. Now we observe that

− (ξ − 1)IdL2
= K− 1

2 (K − ξK)K− 1
2 � K− 1

2 (K −Kf )K− 1
2

� K− 1
2 (K − ξ−1K)K− 1

2 = (1− ξ−1)IdL2
� (ξ − 1)IdL2

,

which implies that the spectral radius ρ(K− 1
2 (K − Kf )K− 1

2 ) is bounded by ξ − 1. Therefore, we
obtain:

max
f∈F\{0}

‖K− 1
2 (K −Kf )K− 1

2 f‖L2

‖f‖L2

= ρ(K− 1
2 (K −Kf )K− 1

2 ) ≤ ξ − 1.

Lemma G.19. Let A,B ∈ B(H,H). Then, the following inequality holds:

〈A[g] + λh,B[g] + λh〉H ≥
(1

2
− κ(A,B)

)∥∥A[g] + λh
∥∥2

H − κ
2(A,B)

λ2

2
‖h‖2H.
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Proof. Let us rewrite the left part as
〈A[g]+λh,B[g]+λh〉H = 〈A[g]+λh,

(
IdL2

+(BA−1−IdL2
)
)
(A[g]+λh)+λ(IdL2

−BA−1)h〉H
= ‖A[g]+λh‖2H−〈A[g]+λh, (IdL2−BA−1)(A[g]+λh)〉H+ 〈A[g]+λh, λ(IdL2−BA−1)h〉H.

Then, we use the equality 〈a, b〉 = 1
2

(
‖a‖2 + ‖b‖2 − ‖a− b‖2

)
. Also, we use

〈A[g] + λh, (IdL2 −BA−1)(A[g] + λh)〉H
≤ ‖A[g] + λh‖H‖(IdL2

−BA−1)(A[g] + λh)‖H
≤ κ(A,B)‖A[g] + λh‖2H

to obtain

〈A[g] + λh,B[g] + λh〉H ≥
(

3

2
− κ(A,B)

)
‖A[g] + λh‖2H

+
λ2

2
‖(IdL2 −BA−1)h‖2H −

1

2
‖(A[g] + λh)− λ(IdL2 −BA−1)h‖2H

≥
(

3

2
− κ(A,B)

)
‖A[g] + λh‖2H − ‖(A[g] + λh)‖2H −

λ2

2
‖(IdL2

−BA−1)h‖2H

≥
(

1

2
− κ(A,B)

)∥∥A[g] + λh
∥∥2

H − κ
2(A,B)

λ2

2
‖h‖2H.

The following lemma holds.
Lemma G.20. If ( λN + 1)ε < 1 and f0 = 0H, then ∀τ the following holds almost surely

‖fτ − f∗‖ ≤ ‖f∗‖
for norms ‖ · ‖L2 , ‖ · ‖H, and ‖ · ‖RN .

Proof. Note that

fτ+1 − f∗ =
(

IdL2
− λε

N
IdL2

− εΣντ
)[
fτ − f∗

]
− λε

N
f∗ .

Now observe that S :=
(

IdL2
− λε
N IdL2

−εΣντ
)

is symmetric with eigenvalues 0 < λi(S) ≤ 1− λε
N ,

therefore its operator norm in B(L2), B(H), and RN×N is less than 1− λε
N . Taking the norm of left

and right sides and using the sub-additivity of the norm, we obtain:

‖fτ+1 − f∗‖ ≤ (1− λε

N
)‖fτ − f∗‖+

λε

N
‖f∗‖ .

Since ‖f0 − f∗‖ = ‖f∗‖ that recurrent relation inductively yields the statement of the lemma.

Corollary G.21. Under the same conditions, ‖fτ‖ ≤ 2‖f∗‖.

G.6 MAIN THEOREMS

Let us denote R = ‖f∗‖RN . We argue that it is a constant value since the kernel H and f∗ are
convergent as N →∞ which makes it bounded by some constant with probability arbitrary close to

one. By Lemma F.2, Γβ(f) ≤ e
2mV (f)

β . Then, Γβ(fτ ) ≤ e
2m 1

2N
‖fτ−f∗‖2

RN
β ≤ e

mR2

Nβ and we denote

Mβ = e
mR2

Nβ > 1.

Theorem G.22. Consider an arbitrary ε, 0 < ε( λN + 1) < 1 and (1+Mβλ)
4MβN

≥ ε. The following
inequality holds:

EV (fT ) ≤ R2

2N
e
−

1+Mβλ

2MβN
Tε

+Mβλ
( 1

2N
+

4Mβ

1 +Mβλ
(M2

β − 1)
λ

N
+

4ε

1 +Mβλ

( 2λ

N2
+Mβ(1 +

2λ2

N2
)
))
R2.
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Proof. To prove the theorem, we will bound V (f) ≤ V (f,Mβλ)+ const. It will allow us to invoke
Lemma G.17. After that by using strong convexity we obtain a bound on EV (fτ ,Mβ) and then a
bound on EV (fτ ) will follow straightforwardly.

To get the result for V (fτ ,Mβλ), we expand V (fτ+1,Mβλ) by substituting the formula for fτ+1

and first dealing with the term V (fτ+1):

1

2N
‖fτ+1(xN )− f∗(xN )‖2RN =

1

2N
‖fτ (xN )− f∗(xN )‖2RN +

1

N
〈fτ+1(xN )

− fτ (xN ), fτ (xN )− f∗(xN )〉RN +
1

2N
‖fτ+1(xN )− fτ (xN )‖2RN

= V (fτ )− ε〈Σντ [fτ − f∗] +
λ

N
fτ ,KD[fτ − f∗]〉H +

ε2

2N
‖Σντ [fτ − f∗] +

λ

N
fτ‖2RN

≤ V (fτ )− ε〈Σντ [fτ − f∗] +
λ

N
fτ ,KD[fτ − f∗]〉H + 2ε2V (fτ ) +

λ2ε2

N3
‖fτ (xN )‖2RN ,

where we used the inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 and Lemma G.7 which allows us to bound
‖Σντ (fτ − f∗)‖RN ≤ ‖(fτ − f∗)‖RN . Then, we analyze the regularization:

λ

2N
Mβ‖fτ+1‖2H =

λ

2N
Mβ‖fτ‖2H + 〈fτ+1 − fτ ,

λ

N
Mβfτ 〉H +

λε2

2N
Mβ‖Σντ [fτ − f∗] +

λ

N
fτ‖2H

≤ λ

2N
Mβ‖fτ‖2H − ε〈

λ

N
Mβfτ ,Σντ [fτ − f∗] +

λ

N
fτ 〉H +

ε2λ

N
Mβ‖fτ − f∗‖2H +

ε2λ3

N3
Mβ‖fτ‖2H

≤ λ

2N
Mβ‖fτ‖2H − ε〈

λ

N
Mβfτ ,Σντ [fτ − f∗] +

λ

N
fτ 〉H +

ε2λ

N
Mβ(1 +

4λ2

N2
)‖f∗‖2H.

where in the first inequality we used ‖Σντ [fτ − f∗]‖H ≤ ‖fτ − f∗‖H which is due to Lemma G.7.
Summing up the expectations of those two expressions, we obtain:

EV (fτ+1,Mβλ) = EV (fτ+1) +
Mβλ

2N
E‖fτ+1‖2H − CMβλ

≤ EV (fτ )− εE〈Σfτ [fτ − f∗] +
λ

N
fτ ,KD[fτ − f∗] +

Mβλ

N
fτ 〉H + 2ε2EV (fτ )

+
λ2ε2

N3
E‖fτ (xN )‖2RN +

λ

2N
MβE‖fτ‖2H +

ε2λ

N
Mβ(1 +

4λ2

N2
)‖f∗‖2H − CMβλ

≤ (1 + 2ε2)
(
EV (fτ ) +

λ

2N
MβE‖fτ‖2H − CMβλ

)
− εE〈Σfτ [fτ − f∗] +

λ

N
fτ ,KD[fτ − f∗]

+
Mβλ

N
fτ 〉H +

λ2ε2

N3
E‖fτ (xN )‖2RN +

ε2λ

N
Mβ(1 +

4λ2

N2
)‖f∗‖2H + 2ε2CMβλ

≤ (1 + 2ε2)EV (fτ ,Mβλ)− εE〈KfτD[fτ − f∗]

+
λ

N
fτ ,KD[fτ − f∗] +

Mβλ

N
fτ 〉+

2ε2λ

N

( 2λ

N2
+Mβ(1 +

2λ2

N2
)
)
R2.

Here we used

Cλ = inf
f∈F

L(f, λ)− inf
f∈F

L(f) ≤ L(f∗, λ)− L(f∗) =
λ

2N
‖f∗‖2H ≤

λ

2N
R2.

Then, by applying Lemma G.16 for Σfτ = KfτD and applying Lemma G.17 with ξ = Mβ , A = K,
B = Kfτ , g = D[fτ − f∗], and h = fτ , we obtain the following bound:

− εE〈KfτD[fτ − f∗] +
λ

N
fτ ,KD[fτ − f∗] +

Mβλ

N
fτ 〉H

≤ − ε

2Mβ
E‖∇HV (fτ ,Mβλ)‖2H +

ε

2
Mβ(M2

β − 1)
λ2

N2
E‖fτ‖2H

≤ − ε

2Mβ
E‖∇HV (fτ ,Mβλ)‖2H + 2εMβ(M2

β − 1)
λ2

N2
R2.
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Then, by using Polyak-Łojasiewicz inequality 1
2‖∇V ‖H ≥ µV for µ-strongly convex function V

(restricted on span{K(·, xi) | i = 1, . . . , N}) with µ ≥ 1+Mβλ
N > 0, which is due to Corollary G.8,

we obtain:

− εE〈KfτD[fτ − f∗] +
λ

N
fτ ,KD[fτ − f∗] +

Mβλ

N
fτ 〉H

≤ −ελMβ + 1

MβN
EV (fτ ,Mβλ) + 2εMβ(M2

β − 1)
λ2

N2
R2.

Substituting it into the bound on V (fτ+1,Mβλ) gives:

EV (fτ+1,Mβλ)

≤
(
1− ε(1 +Mβλ

MβN
− 2ε)

)
V (fτ ,Mβλ) +

2ελ

N

(
Mβ(M2

β − 1)
λ

N
+ ε
( 2λ

N2
+Mβ(1 +

2λ2

N2
)
))
R2

≤
(
1− ε1 +Mβλ

2MβN

)
V (fτ ,Mβλ) +

2ελ

N

(
Mβ(M2

β − 1)
λ

N
+ ε
( 2λ

N2
+Mβ(1 +

2λ2

N2
)
))
R2,

which yields

EV (fT ,Mβλ) ≤ R2

2N
e
−

1+Mβλ

2MβN
Tε

+
4Mβλ

1 +Mβλ

(
Mβ(M2

β − 1)
λ

N
+ ε
( 2λ

N2
+Mβ(1 +

2λ2

N2
)
))
R2,

where we used the bound

V (f0,Mβλ) = V (0,Mβλ) =
1

2N
‖f∗(xN )‖2RN − CMβλ ≤

R2

2N
.

Next, we use the following inequality:

V (f) = L(f)−minL(f) ≤ L(f,Mβλ)−minL(f,Mβλ) + minL(f,Mβλ)−minL(f)

≤ V (f,Mβλ) + L(f∗,Mβλ)− L(f∗) = V (f,Mβλ) +
Mβλ

2N
R2,

which finally gives us the following bound on EV (fT ):

EV (fT ) ≤ R2

2N
e
−

1+Mβλ

2MβN
Tε

+Mβλ
( 1

2N
+

4Mβ

1 +Mβλ
(M2

β − 1)
λ

N
+

4ε

1 +Mβλ

( 2λ

N2
+Mβ(1 +

2λ2

N2
)
))
R2.

Theorem G.23. (Theorem 3.8 in the main text) Let C = Mβλ
(

1
2N +

4Mβ

1+Mβλ
(M2

β − 1) λN +

4ε
1+Mβλ

(
2λ
N2 + Mβ(1 + 2λ2

N2 )
))
R2. Assume that 0 < ε( λN + 1) < 1 and (1+Mβλ)

4MβN
≥ ε,

(1+λ)
8N ≥ ε, e

4mC
β ≤ 5

4 (this bound can be achieved by taking β arbitrary large) and define

T1 =
[

2MβN
ε(1+Mβλ) log R2

2CN

]
+ 1. Then ∀T ≥ T1 it holds that

EV (fT , λ) ≤ 2(C +
λ

N
R2)e−

1+λ
4N ε(T−T1) +

8λ

1 + λ

(λM2
β

N
+ ε
(
1 +

2λ(1 + λ)

N2

))
R2.

Proof. First, we apply the previous theorem to obtain a bound on V (fτ ) which we will use to claim
that the kernels Kfτ and K are close to each other in expectation. If we take

T1 =
[ 2MβN

ε(1 +Mβλ)
log

R2

2CN

]
+ 1 ,

then the following inequalities hold ∀τ ≥ T1:

EV (fτ ) ≤ 2C,
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EV (fτ , λ) ≤ 2(C +
λ

N
R2).

Then, analogously with the previous theorem, we estimate:

EV (fτ+1, λ) ≤ (1 + 2ε2)EV (fτ , λ)− εE〈KfτD[fτ − f∗]

+
λ

N
fτ ,KD[fτ − f∗] +

λ

N
fτ 〉+

2ε2λ

N

(
1 +

2λ(1 + λ)

N2

)
R2.

Further, we bound −εE〈KfτD[fτ − f∗] + λ
N fτ ,KD[fτ − f∗] + λ

N fτ 〉 by Lemma G.19, instead of
Lemma G.17, which we used in the previous theorem:

∀τ ≥ T1

− E〈KfτD[fτ − f∗] +
λ

N
fτ ,KD[fτ − f∗] +

λ

N
fτ 〉

≤ E

(
(e

2mV (fτ )
β − 1)− 1

2

)
‖∇HV (fτ , λ)‖2H + E(e

2mV (fτ )
β − 1)2 λ2

2N2
‖fτ‖2H

≤ 2

(
e

2mEV (fτ ,λ)
β − 3

2

)
1 + λ

N
EV (fτ , λ) +

2λ2M2
β

N2
R2

≤
(

2
1 + λ

N
e

4mC
β − 3

1 + λ

N

)
EV (fτ , λ) +

2λ2M2
β

N2
R2

≤
(

2
1 + λ

N
e

4mC
β − 3

1 + λ

N

)
EV (fτ , λ) +

2λ2M2
β

N2
R2

≤ −1 + λ

2N
EV (fτ , λ) +

2λ2M2
β

N2
R2.

Substituting this in the formula, we get:

∀τ ≥ T1

EV (fτ+1, λ) ≤
(

1− ε
(1 + λ

2N
− 2ε

))
EV (fτ , λ) +

2ελ

N

(λM2
β

N
+ ε
(
1 +

2λ(1 + λ)

N2

))
R2

≤ (1− ε1 + λ

4N
)EV (fτ , λ) +

2ελ

N

(λM2
β

N
+ ε
(
1 +

2λ(1 + λ)

N2

))
R2.

Iterating the bound yields

EV (fT , λ) ≤ EV (fT1
, λ)e−

1+λ
4N ε(T−T1) +

8λ

1 + λ

(λM2
β

N
+ ε
(
1 +

2λ(1 + λ)

N2

))
R2

≤ 2(C +
λ

N
R2)e−

1+λ
4N ε(T−T1) +

8λ

1 + λ

(λM2
β

N
+ ε
(
1 +

2λ(1 + λ)

N2

))
R2.

Corollary G.24. (Convergence to the solution of the KRR / Convergence to the Gaussian Process
posterior mean function). Under the assumptions of both previous theorems we have that:10

E‖fT − fλ∗ ‖2L2
≤ max

x∈X
K(x, x)

(
4N(C +

λ

N
R2)e−

1+λ
4N ε(T−T1)

+
16Nλ

1 + λ

(λM2
β

N
+ ε
(
1 +

2λ(1 + λ)

N2

))
R2
)
.

Proof. By Lemma D.7, V (f, λ) = 1
2N ‖f(xN ) − fλ∗ (xN )‖2RN + λ

2N ‖f − fλ∗ ‖2H. Then, by the
previous theorem, we get a bound on 1

2N E‖fT (xN )− fλ∗ (xN )‖2RN , and by Lemmas G.10 and G.8,
we majorize our L2 norm by RN norm. Lemma then follows.

10When N →∞, K converges to a certain kernel. Thus, maxx∈X K(x, x) can be estimated with a constant
with probability arbitrary close to one.
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Lemma G.25 (Lemma 4.1in the main text). The following convergence holds almost surely in x ∈
X:

hT (·) −−−−→
T→∞

GP
(
0L2(ρ),K

)
.

Proof. From (5), we have that the covariance of hT is K independently from T . Thus, it remains to
show that the limit is Gaussian almost surely which essentially holds due to the central limit theorem
almost surely in x ∈ X:

hT (x) =
1√
T

T∑
i=1

hT,i(x)→ N
(
0L2

,K(x, x)
)
,

where each individual tree hT,i is centered i.i.d. (with the same distribution as h1).

H IMPLEMENTATION DETAILS

In the experiments, we fix σ = 10−2 (scale of the kernel) and δ = 10−4 (scale of noise), which
theoretically can be taken arbitrarily. As a hyperparameter (that is estimated on the validation set),
we consider β ∈ {10−2, 10−1, 1}. We use the standard CatBoost library and add the Gumbel noise
term in selecting the trees for the “L2” scoring function, which is implemented in CatBoost out of
the box but is not used by SGB and SGLB since it is not the default one for the library. Moreover,
we do not consider subsampling of the data (as SGLB does also), and differently from SGB and
SGLB, we disable the “boost-from-average” option. Finally, we set l2−leaf−reg value to 0, as
SGLB does.
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