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ABSTRACT

Kolmogorov-Arnold Networks (KANs) have led to a significant breakthrough in
the foundational structures of machine learning by applying the Kolmogorov-
Arnold representation theorem. Through this approach, the target conditional dis-
tribution is expressed as the summation of multiple continuous univariate B-spline
functions. The unique and complex computational structure of B-splines makes it
hard to understand directly since the properties of each grid are not determined by
its own parameters but are also influenced by the parameters of adjacent grids. Be-
sides, it is challenging to trim and splice at components level under B-spline. To
address this issue, we analyze the structural configurations of Multi-Layer Percep-
trons (MLPs) and KANs, finding that MLP can be represented in a form conform-
ing to Kolmogorov-Arnold representation Theorem (KAT). Therefore, we propose
MLP style KAN framework Kolmogorov-Arnold Activation Network (KAAN),
which is more straightforward, flexible and transferable. To verify the flexibility
and transferability of our approach, we extend it to Convolutional Neural Network
(CNN). Also, we demonstrate that parameter sharing is beneficial not only for ef-
ficiency but also for effectiveness. KAAN shows better representation capacity
than MLP on several benchmarks. Furthermore, our experiment results lead us to
conclude that this method is feasible for integrating modern network approaches
such as CNNs.

1 INTRODUCTION

Recently, the newly released foundational framework Kolmogorov-Arnold Network (KAN)(Liu
et al. (2024b)), designed to replace Multi-Layer Perceptron(MLP), has garnered widespread dis-
cussion upon its release. KANs increase the expressive power and interpretability of the model by
using learnable univariate functions on the edges instead of fixed node activation functions. They
achieve this by parameterizing the activation functions with spline functions, thereby replacing the
linear weight matrices in MLPs. Compared to an earlier line of research, called Trainable Activation
Networks (TANs) or Learnable Activation Networks (LANs) (Apicella et al. (2021)) which provide
a unified trainable activation function for each layer, KAN not only moves the activation operation
to the edges of the neural network but also assigns a unique, independently parameterized activation
function to each edge. LAN involves assigning parameters to traditional activation functions, using
parameterized functions, or even replacing activation functions with neural networks, whereas KAN
provide each edge with independently trained B-spline as its activation.

Both KANs and LANs encounter challenges when compared to traditional MLPs. The additional
parameter dimensions introduced by LAN and KAN increase training difficulty, computational com-
plexity, and risk of overfitting, especially seriously when every activation of KAN is independent.
Since the unique computational approach of B-spline, in which outputs of B-spline are calculated
recursively relying on control points, empowers B-spline with coherence, any adjustment to an in-
ternal component affects grids nearby, complicating when adding or pruning components. Aside
from this inconvenience, this coherence and complex computation approach hinders humans from
understanding the properties of the activation relying solely on parameters.

To improve the straightforwardness and flexibility, we delve into the structural configurations of
MLPs and KANs, examining their correlation and underscoring the structural advantages of KANs.
By means of formal transformations, we ascertain that MLPs also comply with the Kolmogorov-
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Arnold Theorem (KAT), essentially functioning as one kind of KAN in both form and essence.
Building upon this transformation, we introduce the Kolmogorov-Arnold Activation Network
(KAAN), which is linear combination of activation functions. This network provides improved rep-
resentation capacity and a more straightforward, flexible, and transferable organization of activation
functions. In contemporary network architectures such as Convolutional Neural Networks (CNNs)
or Recurrent Neural Networks (RNNs), the topology of the computation graph often deviates from
that of the neurons, with the number of edges in the computation graph typically exceeding the
number of neuron edges. We contend that in KAN-type networks, edges should be related to neuron
edges rather than the edge of computation graph. Then, we extend KAAN into the field of CNN
utilizing this contender and the transferable nature of KAAN. Moreover, we endeavor to illustrate
the feasibility of integrating the KAN framework into CNNs.

The main contribution of this paper are summarized as follows. The first is to demonstrate that
MLP is a kind of generalized KAN. The second is to introduce KAAN, an straightforward, flexible
and transferable framework of KAN series. The last is to demonstrate the benefits for effectiveness
brought by parameter sharing and extend KAAN into the field of CNN.

The organization of the rest of this paper is as follows. In Section 2, we delve into recent research
on KANs and closely related LANs. In Section 3, we establish that MLPs can be viewed as a
special case of KANs in a broader context. In Section 4, we introduce KAAN and a convolutional
application of it. In Section 5, we provide experimental evidence to support the findings in Sections
3 and 4. Finally, in Section 6, we discuss the properties of our approach and potential future avenues
for research.

2 RELATED WORKS

Since the introduction of KAN, many studies have been conducted based on the KAN framework.
The most popular research area focuses on the application of this new structure to various problems.
Most studies follow the idea of KAN, utilizing its excellent representation and fitting capacities to
explore applications in physical (Peng et al. (2024), Kundu et al. (2024), Howard et al. (2024)), diag-
nostic (Yang et al. (2024)), human behavior study (Liu et al. (2024a)) or to address problems in graph
neural networks (De Carlo et al. (2024), Kiamari et al. (2024), Bresson et al. (2024)). Other studies
replace some components of traditional CNNs (Cheon (2024), Li et al. (2024), Bodner et al. (2024))
or RNNs (Xu et al. (2024b), Vaca-Rubio et al. (2024), Genet & Inzirillo (2024), Herbozo Contreras
et al. (2024)) with KAN layers to handle computer vision or time series problems.They focus on
how to use KAN, but do not address the computational and deployment difficulties associated with
it.

LAN is a line of research very similar to KAN. LAN replaces the activation functions in MLPs
with new complex parameterized functions (Yuen et al. (2021), Pratama & Kang (2021), Subra-
manian et al. (2024), Bodyanskiy & Kostiuk (2023)), parameterizing commonly used activation
functions (Apicella et al. (2019), Bingham & Miikkulainen (2022)) or even neural networks (Zhang
et al. (2022)). In LAN, commonly used learnable activation functions can be roughly divided into
polynomial activation functions (Chung et al. (2016), Goyal et al. (2019)), polynomial spline acti-
vation functions (Fakhoury et al. (2022), Ducotterd et al. (2024), Aziznejad & Unser (2019), Bohra
et al. (2020)), exponential family functions (Machacuay & Quinde (2024)), radial functions (Vieira
(2023), Machacuay & Quinde (2024)), periodic functions (Rußwurm et al. (2023)), and wavelet ba-
sis functions (De Silva et al. (2020)). These studies provide directions for the choice of activation
functions.

Since KAT does not impose restrictions on the nature of the continuous univariate functions used in
the model, any continuous univariate basis functions can be used. It is apparent that functions with
infinite discontinuities in the exponential family cannot be used. Besides, higher-order polynomial
activation functions have inherent limitations, being completely surpassed by B-splines. Hence,
besides polynomial spline functions, radial functions (Aghaei (2024), Abueidda et al. (2024), Li
(2024), Ta (2024)), Fourier functions (Xu et al. (2024a)), and some wavelet functions (Bozorgasl &
Chen (2024), Azam & Akhtar (2024), Seydi (2024)) are suitable for constructing neural networks
that comply with KAT constraints. Unfortunately, although the similarity between Universal Ap-
proximation Theorem(UAT) and KAT has been noted (Dhiman (2024)), the absence of a bridge
between MLP and KAN result in the non-existence of a general MLP-style KAN framework.
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In the following sections of this paper, KANs will be used to refer to all neural networks constructed
with layers that meet KAT constraints, rather than specifically referring to the standard case using
B-splines.

3 MLPS ARE KANS

In this section, we demonstrate that MLP represents a specific instance of KAN.

3.1 DECOMPOSING COMPUTATION IN KAN AND MLP

An MLP can be described as the composition of multiple Single Layer Perceptrons (SLPs), while the
ℓ-th SLP with parameter p(ℓ) can be described as the composition of a parameterized linear operator
L(ℓ)( · ; p(ℓ)) and a non-parameterized nonlinear activation σ(ℓ). Consequently, an MLP network can
be represented as:

F = (σ(n) ◦ L(n)) ◦ · · · ◦ (σ(2) ◦ L(2)) ◦ (σ(1) ◦ L(1)) (1)

Assume the input of the ℓ-th layer is x(ℓ) = (x
(ℓ)
1 , x

(ℓ)
2 , . . . , x

(ℓ)
i , . . . , x

(ℓ)
n ) , then the output of the

neuron y(ℓ) = (y
(ℓ)
1 , y

(ℓ)
2 , . . . , y

(ℓ)
j , . . . , y

(ℓ)
m ) can be computed as in Equation 2 and shown in Figure

1a.

y
(ℓ)
j = σ(ℓ)

(
n∑

i=1

w
(ℓ)
ji x

(ℓ)
i + b

(ℓ)
j

)
, j = 1, · · ·m (2)

Here, w(ℓ)
ji represents the element in the j-th row and i-th column of the weight matrix W (ℓ), and

b
(ℓ)
j denotes the j-th element of the bias vector b(ℓ). All of these weights are referred to as the

edges of the neural network. Since each neuron first applies a linear transformation to the input and
then passes the result through a nonlinear activation function, the activation function is typically
considered to be located at the node rather than on the edge.

(a) MLP (b) Reformed MLP (c) KAN style MLP (d) KAAN

Figure 1: Different Structures of Nodes and Edges

KAN retains the topological structure of the MLP, while introduces significant modifications at a
more detailed level. Firstly, KAN assigns trainable parameters to all activation functions, so each
activation function no longer possesses fixed characteristics. This type of network, where a learnable
activation function is shared across all neurons within each layer, is known as a LAN. Secondly,
unlike in MLPs where activation functions are applied to the neurons of each layer, KAN applies
the activation functions to the edges. In contrast to LANs, where the activation function parameters
are shared across each layer, a distinctive feature of KAN is that the activation functions on each
edge are independently trained, meaning each edge in a KAN has its unique activation function. The
neurons in KAN sum the outputs of all the activation functions on the edges.

Since KAN requires its basis functions to be univariate continuous functions, let ϕ(ℓ) denote any
parameterized univariate continuous function with parameters p(ℓ), which is B-spline function in

3
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standard KAN. Then, a generalized form of KAN neuron can be expressed as:

y
(ℓ)
j =

n∑
i=1

ϕ
(ℓ)
i,j (x

(ℓ)
i ; p(ℓ)) (3)

Next, we will demonstrate the uniformity in the forms of MLPs and this generalized KAN.

3.2 MLP IS GENERALIZED KAN

As in Equation 1, an MLP network comprises alternating parameterized linear transformations and
non-parametric nonlinear activations. Since the composition of operators follows the associative
property, we can rewrite Equation 1 into a new computational structure, which is equivalent in
nature but different in form, as follows:

F = σ(n) ◦ (L(n) ◦ σ(n−1)) ◦ · · · ◦ (L(2) ◦ σ(1)) ◦ L(1) (4)

In this new structure, the neural network consists of three parts: a linear transformation preprocess-
ing stage, several nonlinear processing layers composed of activation functions and linear transfor-
mations, and a post-processing layer with an activation function. Through this reassociation, the
computation sequence of parameterized nonlinear transformations in the network changes from a
linear-activation order to an activation-linear order. If we consider each node as merely performing
a summation operation, then an activation-weighting operation is applied to the output features of
the previous nodes, as shown in Figure 1b. As a result, the feedforward calculation of the ℓ-th layer
is as follows:

y
(ℓ)
j =

n∑
i=1

w
(ℓ)
ji σ

(ℓ−1)(x
(ℓ)
i ) + b

(ℓ)
j

=

n∑
i=1

ϕ
(ℓ)
i,j

(
x
(ℓ)
i ;w

(ℓ)
ji

)
+ b

(ℓ)
j

(5)

By defining the composition of these two operations as a single activation function,
i.e.,ϕ(ℓ)

i,j (x;w
(ℓ)
ji ) = w

(ℓ)
ji σ

(ℓ−1)(x
(ℓ)
i ), the operation on each edge transforms from a simple weight-

ing function to a parameterized nonlinear activation operation as shown in Figure 1c. Under the
premise that the activation function is restricted to a univariate continuous function (such as sig-
moid or ReLU), this layer satisfies the requirements of KAT, thus forming a generalized KAN layer.
Our recombination leverages the local structure σ ◦ L ◦ σ present in MLPs, where σ satisfies the
distributive and associative properties with respect to the multiplication of L. When this structure
was represented as (σ(ℓ) ◦ L(ℓ)) ◦ σ(ℓ−1) and σ(ℓ−1) is treated as part of the previous layer, this
structure forms an MLP layer. Conversely, when it is represented as σ(ℓ) ◦ (L(ℓ) ◦σ(ℓ−1)) and σ(ℓ) is
considered part of the next layer, this structure constitutes a KAN layer. Consequently, the MLP is
a special case of a generalized KAN. Although this model may differ in practice from many modern
network structures, such as CNNs, which do not follow the simple alternating pattern of linear and
activation layers, the performance difference of networks with different sequences is minimal, as we
will demonstrate in Section 5.1.

4 APPROACH

In this section, we introduce our network framework based on the idea that activation function could
be any univariate continuous function and extend this approach to CNNs.

4.1 KOLMOGOROV-ARNOLD ACTIVATION NETWORK

As mentioned above, both MLP and MLP-formed KAN consists of layers composed of two types
of operations: activation and linear transformations. By reversing the arrangement typically used
in MLP, each MLP layer is transformed into a KAN layer that adheres to the principles of KAT.

4
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Furthermore, by replacing the standard Tanh activation function commonly used in MLP with an
arbitrary parameterized function, each edge in the network can have a unique activation function.
If the activation function is defined as a linear combination of multiple parameterized nonlinear
functions, the definition of each edge becomes highly flexible and adaptable. When the neuron has
multiple parallel basis functions, let ϕi,j,t represent the t-th component of the activation on the i-
th input edge of the j-th neuron parameterized by pi,j,t. As shown in Figure 1d, the feedforward
function of the neuron is shown in the following equation:

yj =
∑
i

∑
t

wi,j,t · ϕi,j,t(xi; pi,j,t)

=
∑
t

∑
i

wi,j,t · ϕi,j,t(xi; pi,j,t)

=
∑
i,t

wi,j,t · ϕi,j,t(xi; pi,j,t)

(6)

Similar to KAN, our framework assigns each edge an activation function. But instead of B-spline,
each activation function is composed of a linear combination of multiple activation components and
aggregates the outputs of these activations at the node. Therefore, we refer it as Kolmogorov-Arnold
Activation Network (KAAN).

4.2 CONVOLUTIONAL KAAN

KAAN can not only be deployed in fully connected MLPs but can also be applied to modern neural
networks, such as RNNs, CNNs, and Transformers, which heavily reuse neurons and exhibit differ-
ences in feature map computations and neuron topologies. We use CNN as an example to construct
the Convolutional Kolmogorov-Arnold Activation Network (CKAAN).

When each activation exists on the edge of the neuron, for a convolutional layer with input x ∈
RH×W×Cin , output y ∈ RH′×W ′×Cout , where H and H ′ represent the height, W and W ′ represent
the width, and Cin and Couy represent the number of the channel respectively, the convolutional
kernel can be descript as a 5-dimensional tensor:

f ∈ RKH×KW×T×Cin×Cout (7)

where KH and KW represents the height and width of the convolution kernel respectively, and T
represent the number of activation components. The t-th component fi,j,t,ic,oc of the convolution
kernel at position (i, j), input channel ic, and output channel oc is described by a weight parame-
ter wi,j,t,ic,oc and a parameterizable activation function ϕi,j,t,ic,oc( · ; pi,j,t,ic,oc), where pi,j,t,ic,oc
represents its parameters. Thus, the output of each neuron is computed by the following formula:

yh′,w′,oc =

KH−1∑
i=0

KW−1∑
j=0

Cin−1∑
ic=0

T−1∑
ta=0

fi,j,t,ic,oc(xh′+i,w′+j,ic;wi,j,t,ic,oc, pi,j,t,ic,oc) (8)

where
fi,j,t,ic,oc( · ;wi,j,t,ic,oc, pi,j,t,ic,oc) = wi,j,t,ic,oc · ϕ( · ; pi,j,t,ic,oc) (9)

Here, yh′,w′,oc represents the value of the output tensor at position (h′, w′) for the oc-th channel,
and xh′+i,w′+j,ic represents the value of the input tensor at position (h′ + i, w′ + j) and channel ic.

Crucially, due to the different connection structures between feature maps and neurons, the inde-
pendence of activation in modern network architectures may exist at either the feature map level or
the neuron level. In CKAAN, the level of independence of the activation function is arranged at
the neuron level rather than the feature map level. We validate the rationale for this arrangement in
Section 5.1.

5
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5 EXPERIMENTS

In Section 3.2, we claim that even if modern network does not conform to the structure of alternating
linear and activation layers, changing the order of linear transformations and activations has little
effect on the performance of the network. In Section 4.2, we set the independence of the activation
function at the neuron level rather than at the feature map level. In this section, we verify these
correctness of the statements in Section 5.1, and validate the performance of KAAN and CKAAN
in Section 5.2.

In our experiment, apart from fixing the random seed for Toy dataset creation to the experiment ID
ranging from 0 to 99 in Section 5.1, no random seed is fixed for any other random generators. All
other aspects involving randomness, such as model parameter initialization and data input order,
introduce stochasticity.

Standard Computer Vision(CV) datasets are used to demonstrate that our method can be extended
to more complex network architectures beyond MLPs. Additionally, we incorporate a collection of
toy datasets to evaluate the representational capacities of KAANs, as well as a collection of tabular
task datasets specifically designed for KAN in Bench, to rigorously assess the performance of our
approach.

CV Datasets For the CV tasks, we utilize four well-established datasets: MNIST (LeCun et al.
(1998)), Fashion-MNIST (FMNIST)(Xiao et al. (2017)), CIFAR-10, and CIFAR-100 (Krizhevsky
et al. (2009)). CIFAR-10 and CIFAR-100 are two prominent datasets frequently employed in image
classification research, both developed by the Canadian Institute for Advanced Research (CIFAR).
Similarly, MNIST and FMNIST serve as benchmark datasets for image classification tasks.

Toy Datasets SciPy (Virtanen et al. (2020)) offers several commonly used tools for generating
synthetic datasets, and we select five of them: classification, moons, circles, blobs, and friedman1.

Tabular Benchmarks We use the collection of tabular benchmarks for KANs based on Poeta
et al. (2024). This collection includes 8 tabular classification tasks, say Breast Cancer Wisconsin
Diagnostic (BCWD)(Wolberg et al. (1993)), Spambase (Hopkins et al. (1999)), MAGIC Gamma
Telescope (MAGIC)(Bock (2004)), Adult (Becker & Kohavi (1996)), CDC Diabetes Health Indi-
cators (CDC), Dry Bean (dry (2020)), Statlog (Shuttle)(sta), and Poker Hand (Cattral & Oppacher
(2002)).

In the following sections, we employ various potentially useful basis functions for fitting, each with
distinct characteristics. Linear combinations of these basis functions can be used to construct ac-
tivation functions. The Gaussian function, described by its mean µ and standard deviation σ, is a
classic probability density function commonly used in statistics and signal processing. The Differ-
ence of Gaussians (DoG) function emphasizes edge features, often utilized in image processing and
edge detection tasks. Fourier functions, represented as combinations of sine and cosine functions,
are effective at capturing periodic features in data and widely used in signal and spectral analysis.
Polynomial functions, are useful for modeling complex nonlinear relationships and play a crucial
role in curve fitting, interpolation, and approximation problems. For the sake of training efficiency,
we use only a subset of the parameters of these basis functions as trainable parameters, while the
remaining parameters are predefined as hyperparameters . These basis functions are organized in
Table 1, where superscripts denote given hyperparameters, while parameters shown as inputs to the
functions represent the trainable parameters.

Table 1: Definitions of Basis Functions

Basis Function Definition

Gaussian f (σ)(x;µ) = 1
σ
√
2π

e−
(x−µ)2

2σ2

DoG f (σ)(x;µ) = − (x−µ)

σ3
√
2π

e−
(x−µ)2

2σ2

Fourier f (n)(x; an, bn) = an cos(nx) + bn sin(nx)
Polynomial f (n)(x; an) = anx

n
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In order to increase the representation range, the means of the Gaussian and DoG functions are
initialized to µ = −1, 0, 1, and to maintain training stability, the variance is freezed σ = 1. We only
select 4 lowest-frequency Fourier bases in order to avoid overfitting.

In this work, the polynomial activation functions include several configurations: a 4th-order poly-
nomial, a linear combination of four 4th-order polynomials, and a 16th-order polynomial. The
performance of KAAN with a 16th-order polynomial as the activation function is tested to highlight
the unique drawbacks of high-order polynomials, as discussed in Section2.

Additionally, we design the ParallelV1 activation function as a linear combination of ReLU, SiLU,
and Tanh activations. For comparative reference, we also consider the ParallelV2 activation func-
tion, which combines the ParallelV2 activation with the previously mentioned Gaussian, DoG, and
Fourier activations.

Table 2: Activation Functions and Their Definitions

Name Definition Abbreviation
Gaussian Linear combination of Gaussian basis functions based on µ = −1, 0, 1. G
DoG Linear combination of the derivatives of Gaussian functions. DoG
Fourier Using the 4 lowest-frequency Fourier basis functions. F
Poly4 Polynomial function with degree n = 4. P4
Poly4*4 Linear combination of 4 polynomial functions of degree n = 4. P4*4
Poly16 Polynomial function with degree n = 16. P16
ParallelV1 Linear combination of ReLU, SiLU, and Tanh. PV1
ParallelV2 Combination of Gaussian, DoG, Fourier, and ParallelV1. PV2

In the following experiments, we denote the KAAN or CKAAN models based on the model name
and the abbreviation of activation functions they utilize. For example, a KAAN with four degree
polynomial activation is denoted as KAAN P4, and a CKAAN with ParallelV1 activation is denoted
as CKAAN PV1.

5.1 VALIDATIONS

(a) Standard ResNet50 Residual

(b) BN-Act-Conv Residual

(c) Act-BN-Conv Residual

(d) Act-Conv-BN Residual

Figure 2: Re-arranged ResNet50 Residual Structures

In Section 3.2, we demonstrated through a simple form transformation that MLP also meets the
requirements of KAT. However, for modern architectures that do not adhere to the simple alternating
structure of linear layers and activation layers, the situation is not as straightforward. We claim that
by directly swapping the order in which activation and linear layers appear to meet the requirements

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

of KAT, the performance will not be affected. And, we conduct a validation base on ResNet50 (He
et al. (2016)). In the standard ResNet50 architecture, shown in Figure 2a, each residual unit follows
the following sequence of operations: the first layer is a 1 × 1 convolution followed by Batch
Normalization (BN) and ReLU activation; the second layer is a 3× 3 convolution again followed by
BN and ReLU activation; the third layer is another 1 × 1 convolution followed by BN, but without
activation function, as the activation function is applied after the skip connection. We swap the
order of CNN layers and activation layers to make it conform to the structure of the CKAAN, but
the presence of the BN layers interfered with our experiment. Therefore, we design three different
structures where activation comes before CNN, based on the position of BN layers: before activation
as in Figure 2b, between activation and convolution in Figure 2c, and after convolution in Figure 2d.
We test these four different structures on CV datasets.

As discussed in Section 4.2, the connection structures of feature maps and neurons are the same in
fully connected architectures, but not in modern architectures. Therefore, we add a set of experi-
ments to verify whether the independency of activation function is tied to the network topology of
neurons or the computational graph structure. We implement a residual block based on the standard
ResNet50 approach, where independence exists on feature maps.

Table 3: Accuracies of the standard ResNet-50, ResNet-50 with modified operation order, and the
ResNet-50 without parameter sharing

Dataset Standard BN-Act-Conv Act-BN-Conv Act-Conv-BN Independent

CIFAR100 67.43 67.06 66.93 68.54 43.03
CIFAR10 90.34 89.53 90.36 90.35 75.78
MNIST 99.38 99.50 99.42 99.49 99.22
F-MNIST 92.29 92.83 92.63 92.5 91.88

As shown in Table 3, when batch normalization is functioning effectively, changing the order of
convolution and activation operations does not degrade the performance of the network. However,
if the placement of batch normalization is suboptimal, applying activation before convolution may
result in a certain degree of performance loss. Furthermore, abandoning the parameter sharing which
is common in modern architectures would have a devastating impact on the model’s performance, as
demonstrated by the last column of Table 3. This contrasts with the common belief that parameter
sharing primarily improves computational efficiency (Li et al. (2021)).

5.2 EVALUATION OF KAANS

Single Layer Network To assess the fundamental representational capacity , we implement sev-
eral single layer models to be test including SLP with ReLU, SiLU and Tanh, single layer KAN, and
KAANs with different activations. In each training round, we use SciPy to create the Toy dataset,
and all models are trained and tested under the same conditions for 100 epochs. In classification,
blobs, circles and moons, the metric is accuracy, while in friedman1, it is Mean Squared Error(MSE).

The averages of all 100 rounds are shown in Table 4, where all the best results of each dataset belong
to KAANs. Although KAANs with different activation functions perform well, the optimal activa-
tion function varies across different tasks. Therefore, KAAN, demonstrates strong representation
capacity under single-layer configuration.

Multi-Layer Network To further evaluate the representational power of KAAN, we constructed
a deeper model. We modify the aforementioned single-layer structures into three-layer structures,
including one hidden layers. In each round, we train these models on tabular benchmarks for 550
epochs, with the best test accuracy for each model recorded.

The averages and standard deviations of all 10 rounds are shown in Table 5, indicating that KAANs
with different activations perform all well. KAAN with DoG does not obtain any optimum in Table
4, but here it achieve five optima. In the Poly16 model, gradient explosion leading to NaN loss often
occurs within 400 epochs, resulting in training failure. This aligns with our claim in Section 2, that
higher-order polynomials are not suitable activation functions in more complex neural networks.The
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Table 4: Accuracies/MSE of MLPs, Single Layer KAN and Single Layer KAANs

Model classification(Acc) blobs(Acc) circles(Acc) moons(Acc) friedman1(MSE)

KAN 98.58 83.67 99.00 94.81 19.21
SLP tanh 98.85 88.23 49.46 71.13 9.79
SLP relu 98.85 86.65 51.00 70.50 12.87
SLP silu 98.84 86.28 49.44 85.81 10.38
KAAN PV1 99.02 89.53 89.27 89.44 3.10
KAAN PV2 99.08 90.06 99.12 99.89 1.94
KAAN F 99.06 90.08 99.11 99.60 1.91
KAAN P4 99.06 89.58 98.42 91.34 1.99
KAAN P16 99.07 89.70 98.43 91.79 2.73
KAAN P4*4 99.08 89.94 99.01 97.56 2.02
KAAN G 99.05 89.97 99.17 88.43 1.93
KAAN DoG 99.07 90.01 99.17 99.63 1.93

Table 5: Accuracies of MLPs, Multi Layer KAN and Multi Layer KAANs

Model BCWD Spambase Dry Bean Adult MAGIC Statlog CDC Poker Hand
KAN 71.93 94.67 / 76.20 64.68 99.31 84.66 56.84
MLP tanh 97.81 93.97 93.09 85.90 86.34 99.90 85.13 62.72
MLP relu 98.68 94.02 93.22 85.94 86.28 99.85 85.00 55.11
MLP silu 96.49 94.13 93.22 85.66 87.00 99.87 85.10 55.42
KAAN Pv1 97.37 94.46 93.37 86.14 88.56 99.96 84.98 60.63
KAAN PV2 97.37 95.05 93.44 86.11 88.41 99.96 85.03 58.39
KAAN F 98.25 94.89 93.09 85.85 88.17 99.90 85.08 69.12
KAAN P4 96.05 94.78 93.96 86.20 87.67 99.84 85.08 62.09
KAAN P4*4 96.93 94.24 93.33 86.17 87.80 99.81 84.98 61.72
KAAN P16 98.68 / / / / / / /
KAAN G 97.37 94.67 92.65 86.05 88.47 99.89 84.96 58.85
KAAN DoG 97.37 95.54 93.31 86.31 88.76 99.97 85.17 63.04

The notation ‘/’ denotes that this model fails in all rounds of training on this dataset.

performance of KAN in Table 4 and Table 5 also aligns with the statement that KAN exhibits weak
performance in complex tasks (Le et al. (2024)).

Convolutional KAAN In Section 4, we discuss the application of KAAN within contemporary
neural network architectures, with a focus on its implementation in convolutional neural networks
(CNNs). In Section 5.1, we validate four different CKAAN structures utilizing ReLU activation
and show the results in the last four columns of Table 3. To further evaluate this methodology on
more activations, we construct a CKAAN-enhanced ResNet50 by replacing the second convolu-
tional layer and the corresponding activation layer with a CKAAN layer. We conduct experiments
on the CIFAR100 dataset, ensuring that all experimental settings remained consistent with the base-
line. The performance of CKAAN-PV1 and CKAAN-PV2 was then compared against the standard
ResNet50.

The experiment follows a two-stage training process. The first training phase of the model is a 10-
epoch warming-up with learning rate 1e − 5. Then we train models for 90 epochs using learning
rate 1e− 4.

Table 6: Accuracies of CKAANs and Standard ResNet50

Standard ResNet50 CKAAN PV1 CKAAN PV2
CIFAR100 66.80 69.62 59.02
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As shown in Table 6, CKAAN achieved the best performance. It is also evident that ParallelV1,
which uses fewer activation components, significantly outperforms ParallelV2 in this experimental
setup. This could be due to the excessive fitting components in ParallelV2 or the potential conflicts
between some of these components.

6 DISCUSSION AND CONCLUSION

By delving into the similarity of KAN and MLP, we propose KAAN where activation is a linear
combination of any univariate and continuous basis components. From a structural perspective, our
approach is evidently morestraightforward, flexible, and easy to apply to modern well-established
networks than KAN with B-splines. In terms of straightforwardness, the B-spline method relies on
control points for adjustments, but changes to each point often affect two grids, making local adjust-
ments complex and difficult to understand. In contrast, our method employs a linear combination
of multiple independent fitting components. This allows us to clearly understand the contribution of
each component and straightforward control the overall outcome. Regarding flexibility, B-splines
rely on pre-set control points and generate curves through recursive calculations. Our approach
consists of multiple independent components, allowing us to adjust each component individually
without affecting the overall structure. Additionally, we can flexibly add or prune components as
needed, enabling precise control over both local and global structure, which significantly enhances
the adaptability and scalability of the model. With respect to transferability, KAAN essentially only
swaps the execution order of linear transformation and activation function of the network, yet this
achieves the effect of splitting a neuron’s edge into multiple parts. For all methods that use neurons,
KAAN can directly replace the edges in their neural networks.

As we discussed in Section 5, the optimal activation varies in different tasks. We have only tested
a few of the commonly used basis functions that have been employed in fitting tasks and LANs.
Although these basis functions are relatively representative, the proportion we tested is insignificant
compared to the vast group of basis functions used in fitting tasks. Therefore, we believe that
researchers still need to further explore the possibilities of basis functions.
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