
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

KAAN: KOLMOGOROV-ARNOLD ACTIVATION NET-
WORK — A FLEXIBLE ACTIVATION ENHANCED KAN

Anonymous authors
Paper under double-blind review

ABSTRACT

Kolmogorov-Arnold Networks (KANs) have led to a significant breakthrough in
the foundational structures of machine learning by applying the Kolmogorov-
Arnold representation theorem. Through this approach, the target conditional dis-
tribution is expressed as the summation of multiple continuous univariate B-spline
functions. The unique and complex computational structure of B-splines makes it
hard to understand directly since the properties of each grid are not determined by
its own parameters but are also influenced by the parameters of adjacent grids. Be-
sides, it is challenging to trim and splice at components level under B-spline. To
address this issue, we analyze the structural configurations of Multi-Layer Percep-
trons (MLPs) and KANs, finding that MLP can be represented in a form conform-
ing to Kolmogorov-Arnold representation Theorem (KAT). Therefore, we propose
MLP style KAN framework Kolmogorov-Arnold Activation Network (KAAN),
which is more straightforward, flexible and transferable. To verify the flexibility
and transferability of our approach, we extend it to Convolutional Neural Network
(CNN). Also, we demonstrate that parameter sharing is beneficial not only for ef-
ficiency but also for effectiveness. KAAN shows better representation capacity
than MLP on several benchmarks. Furthermore, our experiment results lead us to
conclude that this method is feasible for integrating modern network approaches
such as CNNs.

1 INTRODUCTION

Recently, the newly released foundational framework Kolmogorov-Arnold Network (KAN)(Liu
et al. (2024b)), designed to replace Multi-Layer Perceptron(MLP), has garnered widespread dis-
cussion upon its release. KANs increase the expressive power and interpretability of the model by
using learnable univariate functions on the edges instead of fixed node activation functions. They
achieve this by parameterizing the activation functions with spline functions, thereby replacing the
linear weight matrices in MLPs. Compared to an earlier line of research, called Trainable Activation
Networks (TANs) or Learnable Activation Networks (LANs) (Apicella et al. (2021)) which provide
a unified trainable activation function for each layer, KAN not only moves the activation operation
to the edges of the neural network but also assigns a unique, independently parameterized activation
function to each edge. LAN involves assigning parameters to traditional activation functions, using
parameterized functions, or even replacing activation functions with neural networks, whereas KAN
provide each edge with independently trained B-spline as its activation.

Both KANs and LANs encounter challenges when compared to traditional MLPs. The additional
parameter dimensions introduced by LAN and KAN increase training difficulty, computational com-
plexity, and risk of overfitting, especially seriously when every activation of KAN is independent.
Since the unique computational approach of B-spline, in which outputs of B-spline are calculated
recursively relying on control points, empowers B-spline with coherence, any adjustment to an in-
ternal component affects grids nearby, complicating when adding or pruning components. Aside
from this inconvenience, this coherence and complex computation approach hinders humans from
understanding the properties of the activation relying solely on parameters.

To improve the straightforwardness and flexibility, we delve into the structural configurations of
MLPs and KANs, examining their correlation and underscoring the structural advantages of KANs.
By means of formal transformations, we ascertain that MLPs also comply with the Kolmogorov-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Arnold Theorem (KAT), essentially functioning as one kind of KAN in both form and essence.
Building upon this transformation, we introduce the Kolmogorov-Arnold Activation Network
(KAAN), which is linear combination of activation functions. This network provides improved rep-
resentation capacity and a more straightforward, flexible, and transferable organization of activation
functions. In contemporary network architectures such as Convolutional Neural Networks (CNNs)
or Recurrent Neural Networks (RNNs), the topology of the computation graph often deviates from
that of the neurons, with the number of edges in the computation graph typically exceeding the
number of neuron edges. We contend that in KAN-type networks, edges should be related to neuron
edges rather than the edge of computation graph. Then, we extend KAAN into the field of CNN
utilizing this contender and the transferable nature of KAAN. Moreover, we endeavor to illustrate
the feasibility of integrating the KAN framework into CNNs.

The main contribution of this paper are summarized as follows. The first is to demonstrate that
MLP is a kind of generalized KAN. The second is to introduce KAAN, an straightforward, flexible
and transferable framework of KAN series. The last is to demonstrate the benefits for effectiveness
brought by parameter sharing and extend KAAN into the field of CNN.

The organization of the rest of this paper is as follows. In Section 2, we delve into recent research
on KANs and closely related LANs. In Section 3, we establish that MLPs can be viewed as a
special case of KANs in a broader context. In Section 4, we introduce KAAN and a convolutional
application of it. In Section 5, we provide experimental evidence to support the findings in Sections
3 and 4. Finally, in Section 6, we discuss the properties of our approach and potential future avenues
for research.

2 RELATED WORKS

Since the introduction of KAN, many studies have been conducted based on the KAN framework.
The most popular research area focuses on the application of this new structure to various problems.
Most studies follow the idea of KAN, utilizing its excellent representation and fitting capacities to
explore applications in physical (Peng et al. (2024), Kundu et al. (2024), Howard et al. (2024)), diag-
nostic (Yang et al. (2024)), human behavior study (Liu et al. (2024a)) or to address problems in graph
neural networks (De Carlo et al. (2024), Kiamari et al. (2024), Bresson et al. (2024)). Other studies
replace some components of traditional CNNs (Cheon (2024), Li et al. (2024), Bodner et al. (2024))
or RNNs (Xu et al. (2024b), Vaca-Rubio et al. (2024), Genet & Inzirillo (2024), Herbozo Contreras
et al. (2024)) with KAN layers to handle computer vision or time series problems.They focus on
how to use KAN, but do not address the computational and deployment difficulties associated with
it.

LAN is a line of research very similar to KAN. LAN replaces the activation functions in MLPs
with new complex parameterized functions (Yuen et al. (2021), Pratama & Kang (2021), Subra-
manian et al. (2024), Bodyanskiy & Kostiuk (2023)), parameterizing commonly used activation
functions (Apicella et al. (2019), Bingham & Miikkulainen (2022)) or even neural networks (Zhang
et al. (2022)). In LAN, commonly used learnable activation functions can be roughly divided into
polynomial activation functions (Chung et al. (2016), Goyal et al. (2019)), polynomial spline acti-
vation functions (Fakhoury et al. (2022), Ducotterd et al. (2024), Aziznejad & Unser (2019), Bohra
et al. (2020)), exponential family functions (Machacuay & Quinde (2024)), radial functions (Vieira
(2023), Machacuay & Quinde (2024)), periodic functions (Rußwurm et al. (2023)), and wavelet ba-
sis functions (De Silva et al. (2020)). These studies provide directions for the choice of activation
functions.

Since KAT does not impose restrictions on the nature of the continuous univariate functions used in
the model, any continuous univariate basis functions can be used. It is apparent that functions with
infinite discontinuities in the exponential family cannot be used. Besides, higher-order polynomial
activation functions have inherent limitations, being completely surpassed by B-splines. Hence,
besides polynomial spline functions, radial functions (Aghaei (2024), Abueidda et al. (2024), Li
(2024), Ta (2024)), Fourier functions (Xu et al. (2024a)), and some wavelet functions (Bozorgasl &
Chen (2024), Azam & Akhtar (2024), Seydi (2024)) are suitable for constructing neural networks
that comply with KAT constraints. Unfortunately, although the similarity between Universal Ap-
proximation Theorem(UAT) and KAT has been noted (Dhiman (2024)), the absence of a bridge
between MLP and KAN result in the non-existence of a general MLP-style KAN framework.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In the following sections of this paper, KANs will be used to refer to all neural networks constructed
with layers that meet KAT constraints, rather than specifically referring to the standard case using
B-splines.

3 MLPS ARE KANS

In this section, we demonstrate that MLP represents a specific instance of KAN.

3.1 DECOMPOSING COMPUTATION IN KAN AND MLP

An MLP can be described as the composition of multiple Single Layer Perceptrons (SLPs), while the
ℓ-th SLP with parameter p(ℓ) can be described as the composition of a parameterized linear operator
L(ℓ)(· ; p(ℓ)) and a non-parameterized nonlinear activation σ(ℓ). Consequently, an MLP network can
be represented as:

F = (σ(n) ◦ L(n)) ◦ · · · ◦ (σ(2) ◦ L(2)) ◦ (σ(1) ◦ L(1)) (1)

Assume the input of the ℓ-th layer is x(ℓ) = (x
(ℓ)
1 , x

(ℓ)
2 , . . . , x

(ℓ)
i , . . . , x

(ℓ)
n) , then the output of the

neuron y(ℓ) = (y
(ℓ)
1 , y

(ℓ)
2 , . . . , y

(ℓ)
j , . . . , y

(ℓ)
m) can be computed as in Equation 2 and shown in Figure

1a.

y
(ℓ)
j = σ(ℓ)

(
n∑

i=1

w
(ℓ)
ji x

(ℓ)
i + b

(ℓ)
j

)
, j = 1, · · ·m (2)

Here, w(ℓ)
ji represents the element in the j-th row and i-th column of the weight matrix W (ℓ), and

b
(ℓ)
j denotes the j-th element of the bias vector b(ℓ). All of these weights are referred to as the

edges of the neural network. Since each neuron first applies a linear transformation to the input and
then passes the result through a nonlinear activation function, the activation function is typically
considered to be located at the node rather than on the edge.

(a) MLP (b) Reformed MLP (c) KAN style MLP (d) KAAN

Figure 1: Different Structures of Nodes and Edges

KAN retains the topological structure of the MLP, while introduces significant modifications at a
more detailed level. Firstly, KAN assigns trainable parameters to all activation functions, so each
activation function no longer possesses fixed characteristics. This type of network, where a learnable
activation function is shared across all neurons within each layer, is known as a LAN. Secondly,
unlike in MLPs where activation functions are applied to the neurons of each layer, KAN applies
the activation functions to the edges. In contrast to LANs, where the activation function parameters
are shared across each layer, a distinctive feature of KAN is that the activation functions on each
edge are independently trained, meaning each edge in a KAN has its unique activation function. The
neurons in KAN sum the outputs of all the activation functions on the edges.

Since KAN requires its basis functions to be univariate continuous functions, let ϕ(ℓ) denote any
parameterized univariate continuous function with parameters p(ℓ), which is B-spline function in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

standard KAN. Then, a generalized form of KAN neuron can be expressed as:

y
(ℓ)
j =

n∑
i=1

ϕ
(ℓ)
i,j (x

(ℓ)
i ; p(ℓ)) (3)

Next, we will demonstrate the uniformity in the forms of MLPs and this generalized KAN.

3.2 MLP IS GENERALIZED KAN

As in Equation 1, an MLP network comprises alternating parameterized linear transformations and
non-parametric nonlinear activations. Since the composition of operators follows the associative
property, we can rewrite Equation 1 into a new computational structure, which is equivalent in
nature but different in form, as follows:

F = σ(n) ◦ (L(n) ◦ σ(n−1)) ◦ · · · ◦ (L(2) ◦ σ(1)) ◦ L(1) (4)

In this new structure, the neural network consists of three parts: a linear transformation preprocess-
ing stage, several nonlinear processing layers composed of activation functions and linear transfor-
mations, and a post-processing layer with an activation function. Through this reassociation, the
computation sequence of parameterized nonlinear transformations in the network changes from a
linear-activation order to an activation-linear order. If we consider each node as merely performing
a summation operation, then an activation-weighting operation is applied to the output features of
the previous nodes, as shown in Figure 1b. As a result, the feedforward calculation of the ℓ-th layer
is as follows:

y
(ℓ)
j =

n∑
i=1

w
(ℓ)
ji σ

(ℓ−1)(x
(ℓ)
i) + b

(ℓ)
j

=

n∑
i=1

ϕ
(ℓ)
i,j

(
x
(ℓ)
i ;w

(ℓ)
ji

)
+ b

(ℓ)
j

(5)

By defining the composition of these two operations as a single activation function,
i.e.,ϕ(ℓ)

i,j (x;w
(ℓ)
ji) = w

(ℓ)
ji σ

(ℓ−1)(x
(ℓ)
i), the operation on each edge transforms from a simple weight-

ing function to a parameterized nonlinear activation operation as shown in Figure 1c. Under the
premise that the activation function is restricted to a univariate continuous function (such as sig-
moid or ReLU), this layer satisfies the requirements of KAT, thus forming a generalized KAN layer.
Our recombination leverages the local structure σ ◦ L ◦ σ present in MLPs, where σ satisfies the
distributive and associative properties with respect to the multiplication of L. When this structure
was represented as (σ(ℓ) ◦ L(ℓ)) ◦ σ(ℓ−1) and σ(ℓ−1) is treated as part of the previous layer, this
structure forms an MLP layer. Conversely, when it is represented as σ(ℓ) ◦ (L(ℓ) ◦σ(ℓ−1)) and σ(ℓ) is
considered part of the next layer, this structure constitutes a KAN layer. Consequently, the MLP is
a special case of a generalized KAN. Although this model may differ in practice from many modern
network structures, such as CNNs, which do not follow the simple alternating pattern of linear and
activation layers, the performance difference of networks with different sequences is minimal, as we
will demonstrate in Section 5.1.

4 APPROACH

In this section, we introduce our network framework based on the idea that activation function could
be any univariate continuous function and extend this approach to CNNs.

4.1 KOLMOGOROV-ARNOLD ACTIVATION NETWORK

As mentioned above, both MLP and MLP-formed KAN consists of layers composed of two types
of operations: activation and linear transformations. By reversing the arrangement typically used
in MLP, each MLP layer is transformed into a KAN layer that adheres to the principles of KAT.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Furthermore, by replacing the standard Tanh activation function commonly used in MLP with an
arbitrary parameterized function, each edge in the network can have a unique activation function.
If the activation function is defined as a linear combination of multiple parameterized nonlinear
functions, the definition of each edge becomes highly flexible and adaptable. When the neuron has
multiple parallel basis functions, let ϕi,j,t represent the t-th component of the activation on the i-
th input edge of the j-th neuron parameterized by pi,j,t. As shown in Figure 1d, the feedforward
function of the neuron is shown in the following equation:

yj =
∑
i

∑
t

wi,j,t · ϕi,j,t(xi; pi,j,t)

=
∑
t

∑
i

wi,j,t · ϕi,j,t(xi; pi,j,t)

=
∑
i,t

wi,j,t · ϕi,j,t(xi; pi,j,t)

(6)

Similar to KAN, our framework assigns each edge an activation function. But instead of B-spline,
each activation function is composed of a linear combination of multiple activation components and
aggregates the outputs of these activations at the node. Therefore, we refer it as Kolmogorov-Arnold
Activation Network (KAAN).

4.2 CONVOLUTIONAL KAAN

KAAN can not only be deployed in fully connected MLPs but can also be applied to modern neural
networks, such as RNNs, CNNs, and Transformers, which heavily reuse neurons and exhibit differ-
ences in feature map computations and neuron topologies. We use CNN as an example to construct
the Convolutional Kolmogorov-Arnold Activation Network (CKAAN).

When each activation exists on the edge of the neuron, for a convolutional layer with input x ∈
RH×W×Cin , output y ∈ RH′×W ′×Cout , where H and H ′ represent the height, W and W ′ represent
the width, and Cin and Couy represent the number of the channel respectively, the convolutional
kernel can be descript as a 5-dimensional tensor:

f ∈ RKH×KW×T×Cin×Cout (7)

where KH and KW represents the height and width of the convolution kernel respectively, and T
represent the number of activation components. The t-th component fi,j,t,ic,oc of the convolution
kernel at position (i, j), input channel ic, and output channel oc is described by a weight parame-
ter wi,j,t,ic,oc and a parameterizable activation function ϕi,j,t,ic,oc(· ; pi,j,t,ic,oc), where pi,j,t,ic,oc
represents its parameters. Thus, the output of each neuron is computed by the following formula:

yh′,w′,oc =

KH−1∑
i=0

KW−1∑
j=0

Cin−1∑
ic=0

T−1∑
ta=0

fi,j,t,ic,oc(xh′+i,w′+j,ic;wi,j,t,ic,oc, pi,j,t,ic,oc) (8)

where
fi,j,t,ic,oc(· ;wi,j,t,ic,oc, pi,j,t,ic,oc) = wi,j,t,ic,oc · ϕ(· ; pi,j,t,ic,oc) (9)

Here, yh′,w′,oc represents the value of the output tensor at position (h′, w′) for the oc-th channel,
and xh′+i,w′+j,ic represents the value of the input tensor at position (h′ + i, w′ + j) and channel ic.

Crucially, due to the different connection structures between feature maps and neurons, the inde-
pendence of activation in modern network architectures may exist at either the feature map level or
the neuron level. In CKAAN, the level of independence of the activation function is arranged at
the neuron level rather than the feature map level. We validate the rationale for this arrangement in
Section 5.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

In Section 3.2, we claim that even if modern network does not conform to the structure of alternating
linear and activation layers, changing the order of linear transformations and activations has little
effect on the performance of the network. In Section 4.2, we set the independence of the activation
function at the neuron level rather than at the feature map level. In this section, we verify these
correctness of the statements in Section 5.1, and validate the performance of KAAN and CKAAN
in Section 5.2.

In our experiment, apart from fixing the random seed for Toy dataset creation to the experiment ID
ranging from 0 to 99 in Section 5.1, no random seed is fixed for any other random generators. All
other aspects involving randomness, such as model parameter initialization and data input order,
introduce stochasticity.

Standard Computer Vision(CV) datasets are used to demonstrate that our method can be extended
to more complex network architectures beyond MLPs. Additionally, we incorporate a collection of
toy datasets to evaluate the representational capacities of KAANs, as well as a collection of tabular
task datasets specifically designed for KAN in Bench, to rigorously assess the performance of our
approach.

CV Datasets For the CV tasks, we utilize four well-established datasets: MNIST (LeCun et al.
(1998)), Fashion-MNIST (FMNIST)(Xiao et al. (2017)), CIFAR-10, and CIFAR-100 (Krizhevsky
et al. (2009)). CIFAR-10 and CIFAR-100 are two prominent datasets frequently employed in image
classification research, both developed by the Canadian Institute for Advanced Research (CIFAR).
Similarly, MNIST and FMNIST serve as benchmark datasets for image classification tasks.

Toy Datasets SciPy (Virtanen et al. (2020)) offers several commonly used tools for generating
synthetic datasets, and we select five of them: classification, moons, circles, blobs, and friedman1.

Tabular Benchmarks We use the collection of tabular benchmarks for KANs based on Poeta
et al. (2024). This collection includes 8 tabular classification tasks, say Breast Cancer Wisconsin
Diagnostic (BCWD)(Wolberg et al. (1993)), Spambase (Hopkins et al. (1999)), MAGIC Gamma
Telescope (MAGIC)(Bock (2004)), Adult (Becker & Kohavi (1996)), CDC Diabetes Health Indi-
cators (CDC), Dry Bean (dry (2020)), Statlog (Shuttle)(sta), and Poker Hand (Cattral & Oppacher
(2002)).

In the following sections, we employ various potentially useful basis functions for fitting, each with
distinct characteristics. Linear combinations of these basis functions can be used to construct ac-
tivation functions. The Gaussian function, described by its mean µ and standard deviation σ, is a
classic probability density function commonly used in statistics and signal processing. The Differ-
ence of Gaussians (DoG) function emphasizes edge features, often utilized in image processing and
edge detection tasks. Fourier functions, represented as combinations of sine and cosine functions,
are effective at capturing periodic features in data and widely used in signal and spectral analysis.
Polynomial functions, are useful for modeling complex nonlinear relationships and play a crucial
role in curve fitting, interpolation, and approximation problems. For the sake of training efficiency,
we use only a subset of the parameters of these basis functions as trainable parameters, while the
remaining parameters are predefined as hyperparameters . These basis functions are organized in
Table 1, where superscripts denote given hyperparameters, while parameters shown as inputs to the
functions represent the trainable parameters.

Table 1: Definitions of Basis Functions

Basis Function Definition

Gaussian f (σ)(x;µ) = 1
σ
√
2π

e−
(x−µ)2

2σ2

DoG f (σ)(x;µ) = − (x−µ)

σ3
√
2π

e−
(x−µ)2

2σ2

Fourier f (n)(x; an, bn) = an cos(nx) + bn sin(nx)
Polynomial f (n)(x; an) = anx

n

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In order to increase the representation range, the means of the Gaussian and DoG functions are
initialized to µ = −1, 0, 1, and to maintain training stability, the variance is freezed σ = 1. We only
select 4 lowest-frequency Fourier bases in order to avoid overfitting.

In this work, the polynomial activation functions include several configurations: a 4th-order poly-
nomial, a linear combination of four 4th-order polynomials, and a 16th-order polynomial. The
performance of KAAN with a 16th-order polynomial as the activation function is tested to highlight
the unique drawbacks of high-order polynomials, as discussed in Section2.

Additionally, we design the ParallelV1 activation function as a linear combination of ReLU, SiLU,
and Tanh activations. For comparative reference, we also consider the ParallelV2 activation func-
tion, which combines the ParallelV2 activation with the previously mentioned Gaussian, DoG, and
Fourier activations.

Table 2: Activation Functions and Their Definitions

Name Definition Abbreviation
Gaussian Linear combination of Gaussian basis functions based on µ = −1, 0, 1. G
DoG Linear combination of the derivatives of Gaussian functions. DoG
Fourier Using the 4 lowest-frequency Fourier basis functions. F
Poly4 Polynomial function with degree n = 4. P4
Poly4*4 Linear combination of 4 polynomial functions of degree n = 4. P4*4
Poly16 Polynomial function with degree n = 16. P16
ParallelV1 Linear combination of ReLU, SiLU, and Tanh. PV1
ParallelV2 Combination of Gaussian, DoG, Fourier, and ParallelV1. PV2

In the following experiments, we denote the KAAN or CKAAN models based on the model name
and the abbreviation of activation functions they utilize. For example, a KAAN with four degree
polynomial activation is denoted as KAAN P4, and a CKAAN with ParallelV1 activation is denoted
as CKAAN PV1.

5.1 VALIDATIONS

(a) Standard ResNet50 Residual

(b) BN-Act-Conv Residual

(c) Act-BN-Conv Residual

(d) Act-Conv-BN Residual

Figure 2: Re-arranged ResNet50 Residual Structures

In Section 3.2, we demonstrated through a simple form transformation that MLP also meets the
requirements of KAT. However, for modern architectures that do not adhere to the simple alternating
structure of linear layers and activation layers, the situation is not as straightforward. We claim that
by directly swapping the order in which activation and linear layers appear to meet the requirements

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

of KAT, the performance will not be affected. And, we conduct a validation base on ResNet50 (He
et al. (2016)). In the standard ResNet50 architecture, shown in Figure 2a, each residual unit follows
the following sequence of operations: the first layer is a 1 × 1 convolution followed by Batch
Normalization (BN) and ReLU activation; the second layer is a 3× 3 convolution again followed by
BN and ReLU activation; the third layer is another 1 × 1 convolution followed by BN, but without
activation function, as the activation function is applied after the skip connection. We swap the
order of CNN layers and activation layers to make it conform to the structure of the CKAAN, but
the presence of the BN layers interfered with our experiment. Therefore, we design three different
structures where activation comes before CNN, based on the position of BN layers: before activation
as in Figure 2b, between activation and convolution in Figure 2c, and after convolution in Figure 2d.
We test these four different structures on CV datasets.

As discussed in Section 4.2, the connection structures of feature maps and neurons are the same in
fully connected architectures, but not in modern architectures. Therefore, we add a set of experi-
ments to verify whether the independency of activation function is tied to the network topology of
neurons or the computational graph structure. We implement a residual block based on the standard
ResNet50 approach, where independence exists on feature maps.

Table 3: Accuracies of the standard ResNet-50, ResNet-50 with modified operation order, and the
ResNet-50 without parameter sharing

Dataset Standard BN-Act-Conv Act-BN-Conv Act-Conv-BN Independent

CIFAR100 67.43 67.06 66.93 68.54 43.03
CIFAR10 90.34 89.53 90.36 90.35 75.78
MNIST 99.38 99.50 99.42 99.49 99.22
F-MNIST 92.29 92.83 92.63 92.5 91.88

As shown in Table 3, when batch normalization is functioning effectively, changing the order of
convolution and activation operations does not degrade the performance of the network. However,
if the placement of batch normalization is suboptimal, applying activation before convolution may
result in a certain degree of performance loss. Furthermore, abandoning the parameter sharing which
is common in modern architectures would have a devastating impact on the model’s performance, as
demonstrated by the last column of Table 3. This contrasts with the common belief that parameter
sharing primarily improves computational efficiency (Li et al. (2021)).

5.2 EVALUATION OF KAANS

Single Layer Network To assess the fundamental representational capacity , we implement sev-
eral single layer models to be test including SLP with ReLU, SiLU and Tanh, single layer KAN, and
KAANs with different activations. In each training round, we use SciPy to create the Toy dataset,
and all models are trained and tested under the same conditions for 100 epochs. In classification,
blobs, circles and moons, the metric is accuracy, while in friedman1, it is Mean Squared Error(MSE).

The averages of all 100 rounds are shown in Table 4, where all the best results of each dataset belong
to KAANs. Although KAANs with different activation functions perform well, the optimal activa-
tion function varies across different tasks. Therefore, KAAN, demonstrates strong representation
capacity under single-layer configuration.

Multi-Layer Network To further evaluate the representational power of KAAN, we constructed
a deeper model. We modify the aforementioned single-layer structures into three-layer structures,
including one hidden layers. In each round, we train these models on tabular benchmarks for 550
epochs, with the best test accuracy for each model recorded.

The averages and standard deviations of all 10 rounds are shown in Table 5, indicating that KAANs
with different activations perform all well. KAAN with DoG does not obtain any optimum in Table
4, but here it achieve five optima. In the Poly16 model, gradient explosion leading to NaN loss often
occurs within 400 epochs, resulting in training failure. This aligns with our claim in Section 2, that
higher-order polynomials are not suitable activation functions in more complex neural networks.The

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Accuracies/MSE of MLPs, Single Layer KAN and Single Layer KAANs

Model classification(Acc) blobs(Acc) circles(Acc) moons(Acc) friedman1(MSE)

KAN 98.58 83.67 99.00 94.81 19.21
SLP tanh 98.85 88.23 49.46 71.13 9.79
SLP relu 98.85 86.65 51.00 70.50 12.87
SLP silu 98.84 86.28 49.44 85.81 10.38
KAAN PV1 99.02 89.53 89.27 89.44 3.10
KAAN PV2 99.08 90.06 99.12 99.89 1.94
KAAN F 99.06 90.08 99.11 99.60 1.91
KAAN P4 99.06 89.58 98.42 91.34 1.99
KAAN P16 99.07 89.70 98.43 91.79 2.73
KAAN P4*4 99.08 89.94 99.01 97.56 2.02
KAAN G 99.05 89.97 99.17 88.43 1.93
KAAN DoG 99.07 90.01 99.17 99.63 1.93

Table 5: Accuracies of MLPs, Multi Layer KAN and Multi Layer KAANs

Model BCWD Spambase Dry Bean Adult MAGIC Statlog CDC Poker Hand
KAN 71.93 94.67 / 76.20 64.68 99.31 84.66 56.84
MLP tanh 97.81 93.97 93.09 85.90 86.34 99.90 85.13 62.72
MLP relu 98.68 94.02 93.22 85.94 86.28 99.85 85.00 55.11
MLP silu 96.49 94.13 93.22 85.66 87.00 99.87 85.10 55.42
KAAN Pv1 97.37 94.46 93.37 86.14 88.56 99.96 84.98 60.63
KAAN PV2 97.37 95.05 93.44 86.11 88.41 99.96 85.03 58.39
KAAN F 98.25 94.89 93.09 85.85 88.17 99.90 85.08 69.12
KAAN P4 96.05 94.78 93.96 86.20 87.67 99.84 85.08 62.09
KAAN P4*4 96.93 94.24 93.33 86.17 87.80 99.81 84.98 61.72
KAAN P16 98.68 / / / / / / /
KAAN G 97.37 94.67 92.65 86.05 88.47 99.89 84.96 58.85
KAAN DoG 97.37 95.54 93.31 86.31 88.76 99.97 85.17 63.04

The notation ‘/’ denotes that this model fails in all rounds of training on this dataset.

performance of KAN in Table 4 and Table 5 also aligns with the statement that KAN exhibits weak
performance in complex tasks (Le et al. (2024)).

Convolutional KAAN In Section 4, we discuss the application of KAAN within contemporary
neural network architectures, with a focus on its implementation in convolutional neural networks
(CNNs). In Section 5.1, we validate four different CKAAN structures utilizing ReLU activation
and show the results in the last four columns of Table 3. To further evaluate this methodology on
more activations, we construct a CKAAN-enhanced ResNet50 by replacing the second convolu-
tional layer and the corresponding activation layer with a CKAAN layer. We conduct experiments
on the CIFAR100 dataset, ensuring that all experimental settings remained consistent with the base-
line. The performance of CKAAN-PV1 and CKAAN-PV2 was then compared against the standard
ResNet50.

The experiment follows a two-stage training process. The first training phase of the model is a 10-
epoch warming-up with learning rate 1e − 5. Then we train models for 90 epochs using learning
rate 1e− 4.

Table 6: Accuracies of CKAANs and Standard ResNet50

Standard ResNet50 CKAAN PV1 CKAAN PV2
CIFAR100 66.80 69.62 59.02

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

As shown in Table 6, CKAAN achieved the best performance. It is also evident that ParallelV1,
which uses fewer activation components, significantly outperforms ParallelV2 in this experimental
setup. This could be due to the excessive fitting components in ParallelV2 or the potential conflicts
between some of these components.

6 DISCUSSION AND CONCLUSION

By delving into the similarity of KAN and MLP, we propose KAAN where activation is a linear
combination of any univariate and continuous basis components. From a structural perspective, our
approach is evidently morestraightforward, flexible, and easy to apply to modern well-established
networks than KAN with B-splines. In terms of straightforwardness, the B-spline method relies on
control points for adjustments, but changes to each point often affect two grids, making local adjust-
ments complex and difficult to understand. In contrast, our method employs a linear combination
of multiple independent fitting components. This allows us to clearly understand the contribution of
each component and straightforward control the overall outcome. Regarding flexibility, B-splines
rely on pre-set control points and generate curves through recursive calculations. Our approach
consists of multiple independent components, allowing us to adjust each component individually
without affecting the overall structure. Additionally, we can flexibly add or prune components as
needed, enabling precise control over both local and global structure, which significantly enhances
the adaptability and scalability of the model. With respect to transferability, KAAN essentially only
swaps the execution order of linear transformation and activation function of the network, yet this
achieves the effect of splitting a neuron’s edge into multiple parts. For all methods that use neurons,
KAAN can directly replace the edges in their neural networks.

As we discussed in Section 5, the optimal activation varies in different tasks. We have only tested
a few of the commonly used basis functions that have been employed in fitting tasks and LANs.
Although these basis functions are relatively representative, the proportion we tested is insignificant
compared to the vast group of basis functions used in fitting tasks. Therefore, we believe that
researchers still need to further explore the possibilities of basis functions.

REFERENCES

Statlog (Shuttle). UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5WS31.

Dry Bean. UCI Machine Learning Repository, 2020. DOI: https://doi.org/10.24432/C50S4B.

Diab W Abueidda, Panos Pantidis, and Mostafa E Mobasher. Deepokan: Deep operator network
based on kolmogorov arnold networks for mechanics problems. arXiv preprint arXiv:2405.19143,
2024.

Alireza Afzal Aghaei. rkan: Rational kolmogorov-arnold networks. arXiv preprint
arXiv:2406.14495, 2024.

Andrea Apicella, Francesco Isgro, and Roberto Prevete. A simple and efficient architecture for
trainable activation functions. Neurocomputing, 370:1–15, 2019.

Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, and Roberto Prevete. A survey on
modern trainable activation functions. Neural Networks, 138:14–32, 2021.

Basim Azam and Naveed Akhtar. Suitability of kans for computer vision: A preliminary investiga-
tion. arXiv preprint arXiv:2406.09087, 2024.

Shayan Aziznejad and Michael Unser. Deep spline networks with control of lipschitz regularity. In
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3242–3246. IEEE, 2019.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Garrett Bingham and Risto Miikkulainen. Discovering parametric activation functions. Neural
Networks, 148:48–65, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

R. Bock. MAGIC Gamma Telescope. UCI Machine Learning Repository, 2004. DOI:
https://doi.org/10.24432/C52C8B.

Alexander Dylan Bodner, Antonio Santiago Tepsich, Jack Natan Spolski, and Santiago Pourteau.
Convolutional kolmogorov-arnold networks. arXiv preprint arXiv:2406.13155, 2024.

YEVGENIY Bodyanskiy and SERHII Kostiuk. Learnable extended activation function for deep
neural networks. International Journal of Computing (Oct. 2023), pp. 311–318, 2023.

Pakshal Bohra, Joaquim Campos, Harshit Gupta, Shayan Aziznejad, and Michael Unser. Learning
activation functions in deep (spline) neural networks. IEEE Open Journal of Signal Processing,
1:295–309, 2020.

Zavareh Bozorgasl and Hao Chen. Wav-kan: Wavelet kolmogorov-arnold networks. arXiv preprint
arXiv:2405.12832, 2024.

Roman Bresson, Giannis Nikolentzos, George Panagopoulos, Michail Chatzianastasis, Jun Pang,
and Michalis Vazirgiannis. Kagnns: Kolmogorov-arnold networks meet graph learning. arXiv
preprint arXiv:2406.18380, 2024.

Robert Cattral and Franz Oppacher. Poker Hand. UCI Machine Learning Repository, 2002. DOI:
https://doi.org/10.24432/C5KW38.

Minjong Cheon. Kolmogorov-arnold network for satellite image classification in remote sensing.
arXiv preprint arXiv:2406.00600, 2024.

Hoon Chung, Sung Joo Lee, and Jeon Gue Park. Deep neural network using trainable activation
functions. In 2016 International Joint Conference on Neural Networks (IJCNN), pp. 348–352.
IEEE, 2016.

Gianluca De Carlo, Andrea Mastropietro, and Aris Anagnostopoulos. Kolmogorov-arnold graph
neural networks. arXiv preprint arXiv:2406.18354, 2024.

DDN De Silva, HWMK Vithanage, KSD Fernando, and I Thilini S Piyatilake. Multi-path learnable
wavelet neural network for image classification. In Twelfth International Conference on Machine
Vision (ICMV 2019), volume 11433, pp. 459–467. SPIE, 2020.

Vikas Dhiman. Kan: Kolmogorov–arnold networks: A review. 2024. URL https://
vikasdhiman.info/reviews/KAN_a_review.pdf.

Stanislas Ducotterd, Alexis Goujon, Pakshal Bohra, Dimitris Perdios, Sebastian Neumayer, and
Michael Unser. Improving lipschitz-constrained neural networks by learning activation functions.
Journal of Machine Learning Research, 25(65):1–30, 2024.

Daniele Fakhoury, Emanuele Fakhoury, and Hendrik Speleers. Exsplinet: An interpretable and
expressive spline-based neural network. Neural Networks, 152:332–346, 2022.

Remi Genet and Hugo Inzirillo. A temporal kolmogorov-arnold transformer for time series fore-
casting. arXiv preprint arXiv:2406.02486, 2024.

Mohit Goyal, Rajan Goyal, and Brejesh Lall. Learning activation functions: A new paradigm for
understanding neural networks. arXiv preprint arXiv:1906.09529, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Luis Fernando Herbozo Contreras, Jiashuo Cui, Leping Yu, Zhaojing Huang, Armin Nikpour, and
Omid Kavehei. Kan-eeg: Towards replacing backbone-mlp for an effective seizure detection
system. medRxiv, 2024. doi: 10.1101/2024.06.05.24308471. URL https://www.medrxiv.
org/content/early/2024/06/09/2024.06.05.24308471.

Mark Hopkins, Erik Reeber, George Forman, and Jaap Suermondt. Spambase. UCI Machine Learn-
ing Repository, 1999. DOI: https://doi.org/10.24432/C53G6X.

11

https://vikasdhiman.info/reviews/KAN_a_review.pdf
https://vikasdhiman.info/reviews/KAN_a_review.pdf
https://www.medrxiv.org/content/early/2024/06/09/2024.06.05.24308471
https://www.medrxiv.org/content/early/2024/06/09/2024.06.05.24308471

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Amanda A Howard, Bruno Jacob, Sarah H Murphy, Alexander Heinlein, and Panos Stinis. Finite
basis kolmogorov-arnold networks: domain decomposition for data-driven and physics-informed
problems. arXiv preprint arXiv:2406.19662, 2024.

Mehrdad Kiamari, Mohammad Kiamari, and Bhaskar Krishnamachari. Gkan: Graph kolmogorov-
arnold networks. arXiv preprint arXiv:2406.06470, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

Akash Kundu, Aritra Sarkar, and Abhishek Sadhu. Kanqas: Kolmogorov arnold network for quan-
tum architecture search. arXiv preprint arXiv:2406.17630, 2024.

Tran Xuan Hieu Le, Thi Diem Tran, Hoai Luan Pham, Vu Trung Duong Le, Tuan Hai Vu, Van Tinh
Nguyen, Yasuhiko Nakashima, et al. Exploring the limitations of kolmogorov-arnold networks
in classification: Insights to software training and hardware implementation. arXiv preprint
arXiv:2407.17790, 2024.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Chenxin Li, Xinyu Liu, Wuyang Li, Cheng Wang, Hengyu Liu, and Yixuan Yuan. U-kan
makes strong backbone for medical image segmentation and generation. arXiv preprint
arXiv:2406.02918, 2024.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neu-
ral networks: analysis, applications, and prospects. IEEE transactions on neural networks and
learning systems, 33(12):6999–7019, 2021.

Ziyao Li. Kolmogorov-arnold networks are radial basis function networks. arXiv preprint
arXiv:2405.06721, 2024.

Mengxi Liu, Sizhen Bian, Bo Zhou, and Paul Lukowicz. ikan: Global incremental learning with kan
for human activity recognition across heterogeneous datasets. arXiv preprint arXiv:2406.01646,
2024a.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024b.

Javier Machacuay and Mario Quinde. Trainable gaussian-based activation functions for sensor-
based human activity recognition. Journal of Reliable Intelligent Environments, pp. 1–20, 2024.

Yanhong Peng, Miao He, Fangchao Hu, Zebing Mao, Xia Huang, and Jun Ding. Predictive modeling
of flexible ehd pumps using kolmogorov-arnold networks. arXiv preprint arXiv:2405.07488,
2024.

Eleonora Poeta, Flavio Giobergia, Eliana Pastor, Tania Cerquitelli, and Elena Baralis. A bench-
marking study of kolmogorov-arnold networks on tabular data. arXiv preprint arXiv:2406.14529,
2024.

Kevin Pratama and Dae-Ki Kang. Trainable activation function with differentiable negative side and
adaptable rectified point. Applied Intelligence, 51(3):1784–1801, 2021.

Marc Rußwurm, Konstantin Klemmer, Esther Rolf, Robin Zbinden, and Devis Tuia. Geographic lo-
cation encoding with spherical harmonics and sinusoidal representation networks. arXiv preprint
arXiv:2310.06743, 2023.

Seyd Teymoor Seydi. Unveiling the power of wavelets: A wavelet-based kolmogorov-arnold net-
work for hyperspectral image classification. arXiv preprint arXiv:2406.07869, 2024.

Barathi Subramanian, Rathinaraja Jeyaraj, Rakhmonov Akhrorjon Akhmadjon Ugli, and Jeonghong
Kim. Apalu: A trainable, adaptive activation function for deep learning networks. arXiv preprint
arXiv:2402.08244, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hoang-Thang Ta. Bsrbf-kan: A combination of b-splines and radial basic functions in kolmogorov-
arnold networks. arXiv preprint arXiv:2406.11173, 2024.

Cristian J Vaca-Rubio, Luis Blanco, Roberto Pereira, and Màrius Caus. Kolmogorov-arnold net-
works (kans) for time series analysis. arXiv preprint arXiv:2405.08790, 2024.

Nelson Vieira. Quaternionic convolutional neural networks with trainable bessel activation func-
tions. Complex Analysis and Operator Theory, 17(6):82, 2023.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast Cancer Wisconsin (Diag-
nostic). UCI Machine Learning Repository, 1993. DOI: https://doi.org/10.24432/C5DW2B.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jinfeng Xu, Zheyu Chen, Jinze Li, Shuo Yang, Wei Wang, Xiping Hu, and Edith C-H Ngai.
Fourierkan-gcf: Fourier kolmogorov-arnold network–an effective and efficient feature transfor-
mation for graph collaborative filtering. arXiv preprint arXiv:2406.01034, 2024a.

Kunpeng Xu, Lifei Chen, and Shengrui Wang. Kolmogorov-arnold networks for time series: Bridg-
ing predictive power and interpretability. arXiv preprint arXiv:2406.02496, 2024b.

Shangshang Yang, Linrui Qin, and Xiaoshan Yu. Endowing interpretability for neural cognitive
diagnosis by efficient kolmogorov-arnold networks. arXiv preprint arXiv:2405.14399, 2024.

Brosnan Yuen, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. Universal activation function for ma-
chine learning. Scientific reports, 11(1):18757, 2021.

Shijun Zhang, Zuowei Shen, and Haizhao Yang. Neural network architecture beyond width and
depth. Advances in Neural Information Processing Systems, 35:5669–5681, 2022.

13

	Introduction
	Related Works
	MLPs are KANs
	Decomposing Computation in KAN and MLP
	MLP is Generalized KAN

	Approach
	Kolmogorov-Arnold Activation Network
	Convolutional KAAN

	Experiments
	Validations
	Evaluation of KAANs

	Discussion and Conclusion

