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Selecting controlled edges in edge-based pinning
control synchronization
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Extended Abstract
Network synchronization is a fundamental and pivotal issue in the field of network science,
which has garnered widespread attention across various disciplines, including physics, biology,
mathematics, and engineering. In recent years, an edge-based adaptive synchronization strategy
was proposed [1]. The goal is to improve synchronization through adaptively increasing the
edge weights. However, selecting controlled edges remains a challenge, as relying on classical
edge centrality metrics fails to achieve precise selection.

Consider an N-sized network dynamics given by [1]{
ξ̇i(t) = f (ξi(t))−σ ∑

N
j=1 li jξ j(t), i = 1,2, ...,N,

l̇i j(t) = l̇ ji(t) =−α(ξi −ξ j)
T (ξi −ξ j), (i, j) ∈ Ē,

(1)

where ξi(t) ∈ Rd is the state of the ith node, f ∈C[Rd,Rd] a smooth nonlinear function, σ the
constant coupling strength, L = (li j) the Laplacian matrix, α a positive constant representing
the control gain and Ē the controlled edge set. Suppose that the function f satisfies the QUAD
condition, which is a commonly adopted mild assumption. The synchronized state is steady if
there exists a positive constant ω such that

[IN ⊗ (U −aIn)]−σλ2(Lω

Ē )(IN ⊗ Id)< 0, (2)

where a> 0 and U is a diagonal matrix related to the QUAD condition. The weighted Laplacian
matrix Lω Ē is derived after weighting the edge set Ē with ω . Taking into account the influence
of the network topology, for the edge set Ē, higher value of λ2(Lω

Ē ) (known as the Fiedler value
[2]) in Eq. (2) indicate better control efficiency.

We have presented some conclusions to assist in selecting controlled edges, based on papers
published in 2023, 2024, and 2025.

(1) We have quantified the dynamical contribution value of each edge, defined as the sen-
sitivity of the Fiedler value to different edge weights. Higher sensitivity implies greater con-
tribution value, indicating superior performance in control processes. This value is eventually
expressed via the Fiedler vector as Iei j = (xi − x j)

2, where xp denotes the p-th component of
x2(L) (eigenvector of the Fiedler value). Interestingly, the “Pareto principle” has been observed
in the dynamical contribution of edges, with only a small portion of edges having a significant
impact on dynamics, as seen in Fig. 1. This implies that controlling a few critical edges suffices
to achieve control objectives.

(2) From a graph generation perspective, we demonstrate that cycle structures—a recently
emphasized edge combination [3]—enhance network synchronization. This confirms that cy-
cles are beneficial controlled structures. Furthermore, we have proposed a ranking index
Ici=∑(p,q)∈ci(xp − xq)

2 (accumulated contribution value of edges in a cycle) to measure the
importance of a cycle. The index guides the edge-based pinning control. The synchronization
process achieved by controlling the cycles c1, c3, and c6 are depicted in Fig. 2. It is found
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that the importance of c1, c3, and c6 decreases progressively, which aligns with the sequence in
which synchronization was achieved.
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Figure 1: “Pareto principle”. Distribution of dynamical contribution values of all edges across
varying probabilities p in random networks with 100 nodes, where each dot represents the
dynamical contribution value of edge ek numbered in ascending order.

Figure 2: Control synchronization. (a) A sample network with 6 cycles. Cycles are ranked as
c1,c2, ...,c6. (b) The norm of error e j(t) = ||ξ j(t)− s(t)||2,1 ≤ j ≤ 8 versus time t by respec-
tively controlling cycles c1, c3 and c6 in the network, where ξ j(t) and s(t) are the node state
and the synchronization state respectively. The average error is obtained after 50 simulations
by using initial state value range of [−25,25].
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