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Reproducibility Summary1

Scope of Reproducibility. The main objective of this work is to confirm the effectiveness of2

FixMatch (Sohn et al. [2020]), which combines pseudo labelling and consistency regularization in3

semi-supervised learning (SSL) tasks, by achieving similar results on CIFAR-10 and demonstrating4

the key success of FixMatch via ablation studies. Furthermore, we also investigated the the existence5

of confirmation errors in FixMatch by reconstructing the batch structure during the training process.6

Methodology. All the experiments in this work were conducted on CIFAR-10 using the same7

network architecture, Wide ResNet28-2. A single V100 is used for each experiment with an average8

training time of 70 hours. We re-implemented FixMatch mainly based on the paper using Pytorch and9

refer to the official implementation (in Tensorflow) for details and replicated similar results shown10

in the second-last row of Table 2 of column CIFAR-10 in Sohn et al. [2020]. Ablation studies were11

focused on two key factors of FixMatch, ratio of unlabeled data and confidence threshold, as shown12

in Figure 3 (a) & (b) in Sohn et al. [2020].13

Results. Compared with the average error rate reported in Table 2 in Sohn et al. [2020], our14

implementation achieves similar error rates by 3.77 lower on CIFAR-10 with 40 labels, 0.22 higher15

on CIFAR-10 with 250 labels, and 0.1 higher on CIFAR-10 with 4000 labels. Thus it is supported16

that FixMatch outperforms semi-superivesed learning benchmarks. And the results of ablation studies17

exhibit almost the same trends as Figure 3 (a) & (b) show in the paper, which demonstrated that the18

author’s choices with respect to those ablations were experimentally sound. We also confirmed the19

existence of confirmation errors in pseudo labels by checking the confusion matrix of the prediction20

of unlabeled data in different training stages.21

What was easy. It is generally easy to re-implement FixMatch given all the experimental settings22

in the paper, with key parameters clearly stated in each experimental section and detailed lists of23

hyperparameters in appendix. Compared with CTAugment, RandAugment is relatively easy to24

implement since it requires no parameters tuning during training and coefficients representing the25

severity of all distortions are given in appendix. Besides, it converges faster than CTAugment.26

What was difficult. The official implementation is complicated thus not easy to follow. And there27

are some details missing in the paper compared to the code: 1. the official implementation actually28

use leaky ReLU instead of ReLU for ResNet; 2. Exponential moving average is only mentioned for29

experiments on ImageNet but actually also used on CIFAR-10; 3. the details on how to update the30

weights of the magnitude bins of CTAugment are not given in the paper, and our implementation31

achieves a slightly worse results than the average error rate reported (1.14 higher with 250 labels).32

Communication with original authors. All the confused parts mentioned in the previous section33

are clarified by the original authors via email and in the issues of their Github repository.34

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



Abstract

FixMatch is a semi-supervised learning method, which achieves comparable results35

with fully supervised learning by leveraging a limited number of labeled data36

(pseudo labelling technique) and taking a good use of the unlabeled data (consis-37

tency regularization ). In this work, we reimplement FixMatch and achieve rea-38

sonably comparable performance with the official implementation, which supports39

that FixMatch outperforms semi-superivesed learning benchmarks and demon-40

strates that the author’s choices with respect to those ablations were experimentally41

sound. Next, we investigate the existence of a major problem of FixMatch, con-42

firmation errors, by reconstructing the batch structure during the training process.43

It reveals existing confirmation errors, especially the ones caused by asymmet-44

ric noise in pseudo labels. To deal with the problem, we apply equal-frequency45

and confidence entropy regularization to the labeled data and add them in the46

loss function. Our experimental results on CIFAR-10 show that using either of47

the entropy regularization in the loss function can reduce the asymmetric noise48

in pseudo labels and improve the performance of FixMatch in the presence of49

(pseudo) labels containing (asymmetric) noise. Our code is available at the url:50

https://github.com/Celiali/FixMatch.51

1 Introduction52

Ghahramani [2020] summarized the reasons for the success of deep learning in his talk given as the53

chief scientist in Uber. Firstly, with the availability of large datasets, large models can work well.54

Secondly, training such large models with stochastic descent works surprisingly well. Moreover,55

staying close to identity (such as ReLU) makes it stable to be trained. The automate differentiation56

and a large number of open source softwares make it scale well. Therefore, we can see deep learning57

in many applications, such as computer vision, natural language processing, bioinformatics, etc.58

However, it is not always the case where a huge number of labeled data are available. In some59

areas, it is difficult, expensive, or even impossible to have a large labeled dataset, such as medical60

images [Kuznetsova et al., 2018]. In this case, it can be difficult to train a Deep Neural Network61

(DNN) from scratch with the limited labeled data. Luckily, Tajbakhsh et al. [2016] shows that a62

DNN trained based on a pre-trained DNN, fine-tuning, can outperform the one trained from scratch.63

Moreover, Semi-Supervised Learning (SSL) is also a common method to deal with the scarcity and64

often high acquisition cost of labelled data [von Kügelgen et al., 2020]. SSL efficiently leverages65

labeled data and the relation with unlabeled data to train a DNN. Among SSL methods, there is a66

class of "match"-based methods, such as FixMatch [Sohn et al., 2020], MixMatch [Berthelot et al.,67

2019], ReMixMatch [Kurakin et al., 2020] and DivideMatch [Li et al., 2020]. These methods utilize68

the consistency regularization, pseudo-labelling and ensembling methods to boost the performance69

with the use of unlabeled data. In fact, they are leveraging prior knowledge to regularize the training70

of DNNs. In this project, we focus on reproducing and investigating one of such methods, FixMatch71

[Sohn et al., 2020].72

Nevertheless, SSL is still facing many challenges in theory and in practice. Ben-David et al. show that73

“as long as one does not make any assumptions about the behavior of the labels, SSL cannot help much74

over algorithms that ignore the unlabeled data.” Moreover, SSL can actually degrade performance if75

certain assumptions are not met [Chapelle et al., 2010]. In this line of works, Schölkopf et al. [2012]76

consider the problem from a causal modeling perspective and conclude that in fact SSL is impossible77

when predicting a target variable from its causes (causal learning) but possible from anti-causal78

learning. Recently, the relation of causality and semi-supervised learning is further explored in [von79

Kügelgen et al., 2020], i.e., predicting a target variable from both causes and effects at the same80

time. Moreover, in the light of consistency regularization and pseudo-labelling, a significant issue of81

the "Match"-based methods is confirmation error. It happens especially when noisy samples are in82

the labeled set. A DNN can keep having lower loss by fitting the noise and be further maintained83

after training with the wrong pseudo labels of unlabeled data , which keeps the errors in the model84

and limits its generalization and performance [Tarvainen and Valpola]. This problem becomes more85

serious in the presence of asymmetric noise in the training labels, which roughly speaking tends to86

label a class of data as another specific class.87
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Therefore, in this work, we are not only reimplementing FixMatch, but also investigating whether the88

pseudo labels made by the DNN contain harmful noise leading to confirmation errors. First, we89

design a stable and reliable method to examine the existence of confirmation errors and noisy pseudo90

labels by reconstructing the batch structure. Secondly, we find methods to deal with (asymmetric)91

noise in (pseudo) labels of the training dataset. We reconstruct the batch structure and add an92

equal-frequency entropy regularization on labeled data to the loss function of FixMatch. Moreover,93

we also use a confidence entropy regularization on labeled data to avoid the over-confident prediction.94

It turns out that both entropy regularization is helpful for dealing with the noisy (pseudo) labels (even95

for the asymmetric noise) and confirmation errors. Our experimental results show that96

97 1. our implementation can achieve almost the same performance even better for low-label98

regimes.99

2. there exists asymmetric noise in the pseudo labels leading to confirmation errors. With such100

pseudo labels, the model is biased which in turn leads to more asymmetric noise in pseudo101

labels.102

3. FixMatch with equal-frequency entropy regularization and FixMatch with confidence en-103

tropy regularization can reduce (asymmetric) noise in the pseudo labels and perform better104

than the baseline FixMatch in the presence of asymmetric noise in (pseudo) labels .105

2 Related work106

As introduced in Sec. 1, confirmation error is a serious issue of "Match"-based SSL methods and our107

study is mainly about the confirmation error and FixMatch in the presence of noisy (pseudo) labels.108

Therefore, here we mainly introduce the noisy labeling and some related works for dealing with the109

noisy label and confirmation error in SSL.110

Noisy labeling and noise-robust loss. Suppose a dataset D = {(xi, yi)}ni=1 where yi is given by111

noisy labeling. To model noisy labeling process, we have p(yi|ỹi) where ỹi is the ground truth label112

under the assumption that the noise label is conditionally independent from the input data given the113

ground-true label; formally, p(yi = k|xi, ỹi = j) = p(yi = k|ỹi = j) = ηkj . In general, such noise114

is called class dependent, which is also named as the asymmetric noise[Zhang and Sabuncu, 2018].115

In contrary, when ηkj = η, it is called symmetric noise. Under the symmetric noise assumption,116

Ghosh et al. [2015] studied the functional form of loss function and concluded that by using the117

symmetric loss function, one can get a global optima such that the learned model is noise tolerant.118

For example, the MAE loss function is a symmetric function while the cross entropy loss function119

is not. However, using MAE loss function has poor accuracy performance on classification tasks120

compared with the cross entropy loss function [Zhang and Sabuncu, 2018]. One can convince121

oneself with Eqn. (5) in [Zhang and Sabuncu, 2018], i.e., the cross entropy loss function enables122

the optimization process weighting the sample importance while the MAE loss function considers123

samples equally. Furthermore, Zhang and Sabuncu [2018] combine MAE and cross entropy loss124

functions with L’Hôpital’s rule, i.e.,125

Lq(f(x), j) =
(1− fj(x)q)

q
, (1)

where f(x) is the model, j indexes the class, and fj(x) is the softmax output of j. Interestingly,126

when q = 1 , Lq(f(x), j) is a MAE loss function; while limq→0 Lq(f(x), j) is a cross entropy loss.127

Therefore, one can manipulate trade off by selecting a good hyper-parameter q. Furthermore, it128

also introduces a better loss function, the truncated Lq(f(x), j), which is essentially a practically129

improved version of Lq(f(x), j). However, in theory the proposed method is based on the symmetric130

noise assumption [Zhang and Sabuncu, 2018], which can be quite easy to be violated. This is a131

trade-off between using a stricter assumption and estimating noisy labelling mechanisms [Patrini132

et al., 2017] (which is a challenge).133

SSL for noisy labeling and a potential solution for asymmetric noise. Li et al. [2020] consider134

the noisy label problem as a semi-supervised learning problem by finding the similarity of unlabeled135

samples in semi-supervised learning and noisy labels. Suppose that we can successfully separate the136

noisy and clean samples, we can treat the noisy ones as unlabeled data in semi-supervised learning,137

and then leverage the success of semi-supervised learning to tackle the noisy labeling problem.138
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Firstly, by observing that the loss of clean samples tends to be lower than the noisy ones [Arazo et al.,139

2019], Li et al. [2020] fit a Gaussian Mixture Model for the two components, the noisy group and140

the clean one. Then given a loss, it can be inferred whether the sample is a noisy one or a clean141

one. Consequently, following the mentioned idea, semi-supervised learning methods are applied142

to such a separated dataset. Moreover, Li et al. [2020] consider the influence of asymmetric noise143

in the supervised learning phase. Because the bias introduced by the asymmetric noise can lead144

to severe consequences (confirmation errors). [Li et al., 2020] added a negative entropy penalty145

term −H =
∑
j fj(x) log fj(x) for an input x in the cross-entropy loss function at the beginning146

of training to avoid over-confident prediction, which works well emperically. To further reduce147

the influence of the confirmation error introduced by the symmetric noise, it uses the MixMatch148

[Berthelot et al., 2019] procedure to train two independent DNNs and attractively exchange datasets149

with each other for filtering errors made by the other one. This is actually an ensemble method, which150

reduces the random noise in the prediction, especially in the presence of symmetric labelling noise.151

Model bias in SSL. Kurakin et al. [2020] propose a distribution alignment method utilizing a152

principle introduced by Bridle et al. [1992]. It formulates an ideal classifier which maximizes the153

mutual information of model inputs and model outputs. Furthermore, it argues that the second term154

of mutual information encourages a model to output with low entropy and high confidence, while155

another one encourages equal frequency across the entire training set as shown in156

I(y;x) =

∫∫
log

p(y, x)

p(y)p(x)
dydx

= H[E[p(y | x; θ)]]− Ex[H[p(y | x; θ)]], (2)

where θ is the model parameters. As what Kurakin et al. [2020] said, when the marginal distribution157

of a training dataset labels is not uniformly distributed, it is not proper to regularize the frequency. In158

our work, to deal with such case, we augment the training dataset and make the labels of labeled data159

in each batches to be uniformly distributed.160

3 Methods161

3.1 FixMatch162

As one of the SSL methods, FixMatch [Sohn et al., 2020] leverages labeled data and introduces prior163

knowledge about unlabeled data in the training process. For labeled data, FixMatch simply uses the164

cross entropy loss function for a batch,165

ls =
1

B

B∑
b=1

H(yb, f(α(xb))), (3)

where B is the number of labeled data in a batch, xb is a labeled sample, yb is the label, and α(·) is166

weak augmentation. However, due to limited number of labeled samples, the performance of such167

DNN is not ideal. Therefore, the question is how to make a good use of the sufficient unlabeled data168

to improve the performance? Ideally, the performance can be close to the DNN trained with the fully169

labeled dataset.170

FixMatch considers the consistency of model prediction on the unlabeled data with weak and strong171

augmentation (the augmentation methods are introduced in Sec. 4). It first uses the model to predict172

pseudo labels for unlabeled data and then compute the loss of unlabeled data with the pseudo labels173

and the consistency regularization. The loss function for the unlabeled samples ub is174

lu =
1

µB

µB∑
b=1

1(max(f(α(ub))) ≥ τ)H(ŷb, f(A(ub))), (4)

where µB is the number of unlabeled data in a batch, ŷb := argmaxy p(y|α(ub); θf ) is the pseudo175

label of ub, θf is the neural network parameters of function f , and A(·) is the strong augmentation.176

Note that to make pseudo labels reliable to be used, FixMatch considers the pseudo labels in the loss177

function only if the prediction has a higher probability than τ . Next, together with the cross entropy178

loss of labeled data, the loss function of FixMatch is ls + λulu.179
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3.2 Investigation of noisy (pseudo) labels and confirmation errors of FixMatch180

Nosiy pseudo labels and confirmation errors in FixMatch. A main issue of "Match"-based SSL181

methods is confirmation errors. Since FixMatch is trained on batches with both labeled and unlabeled182

data, it is very likely to make prediction errors at the beginning of the training. When the model183

makes wrong predictions of labeled data, since we have their ground-truth labels, the model can184

become better with the loss for labeled data. But when it comes to unlabeled samples, since we don’t185

have the ground-truth labels, the model uses the confident pseudo labels as the labels for training.186

In this case, if the pseudo-labels are noisy, the model can fit such errors and become biased. In187

the next batch, it can generate more wrong pseudo-labels with higher confidence. Moreover, the188

consistency regularization can keep reinforcing the model to fit such wrongly labeled data. Finally, it189

demonstrates a biased model with a poor performance on generalization and robustness. Therefore,190

noise in the pseudo labels can lead to confirmation errors in FixMatch.191

Both asymmetric noise and symmetric noise in pseudo labels can lead to confirmation errors, but in192

general asymmetric noise is more harmful and harder to deal with. For example, to reduce the impact193

of symmetric noise and get an unbiased model, one can use ensembling methods like [Li et al., 2020]194

to train multiple DNNs at the same time; however, this can fail in the presence of asymmetric noise.195

In this work, we focus on asymmetric noise and one can simply extend the method to deal with the196

influence of symmetric noise with ensemble methods.197

Investigation with class-balanced batches. To check whether there exist confirmation errors, we198

need to check that during the training process errors are reinforced by the model. Moreover, to199

see the asymmetric noise in the pseudo labels, we need to check that in the training phase whether200

FixMatch predicts a certain class of unlabeled data into certain other classes. Thus, these require us201

to investigate the performance of FixMatch at each batch and check the pseudo labelling performance202

regarding asymmetric noise in the pseudo labels. However, in [Sohn et al., 2020], a batch is not203

necessary to contain all the classes of training dataset and it can contain different classes with different204

numbers. Therefore, the performance of pseudo labelling regarding asymmetric noise inherits the205

randomness of batch composition, which makes the investigation conclusion unreliable.206

To deal with this issue, we reconstructed the batch structure which requires each batch to contain an207

equal number of images for all the classes on both labeled and unlabeled data, called Balanced-Class208

(BC) batches. With such batches, we can fairly check the performance of pseudo labelling in each209

batch how many errors are made when the model predicts each class and whether it tends to label210

a class as other certain classes causing asymmetric noise. Note that without further introducing211

regularization, BC batches on their own cannot improve the performance of FixMatch, which has212

indistinguishable results without BC as shown in Sec. 5.3.213

Furthermore, we leverage the reconstructed batch structure to regularize the training process for214

reducing the noise in pseudo labels and improving the performance. With the reconstructed batches,215

we know that the class of labeled data1 is uniformly distributed, thus we can regularize the output216

of labeled data with the negative entropy loss of the prediction frequency. In this way we force the217

output of labeled data to be uniformly distributed. Potentially this can regularize the asymmetric noise218

in the labeled data because the output class distribution is not likely to be uniformly distributed in the219

presence of asymmetric noise. Consequently, it can reduce the asymmetric noise in pseudo labels220

because the prediction on both labeled and unlabeled data uses the same network which is unlikely to221

have different prediction behavior. Therefore, we add an equal-frequency entropy regularization to222

the loss function, which is223

l′ = l′s + λulu, (5)
l′s = ls − λefH(Exb

[f(α(xb))])

= ls + λef

c∑
j=1

{( 1
B

B∑
b=1

fj(α(xb))) log(
1

B

B∑
b=1

fj(α(xb)))},

1In fact, the class of both labeled and unlabeled data are equally distributed in reconstructed batches, but
it is unrealistic to use the prior knowledge about labels of unlabeled data. Although it is fine for "debugging"
the training behavior of FixMatch, when aiming at improving the performance of FixMatch, we cannot use the
information about labels of unlabeled data, because it is very likely to have unbalanced classes of unlabeled data
in practice. Then it makes no sense to regularize the outputs of unlabeled data in the training phase.
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where c is the number of classes and λef is a hyperparameter. We also consider the confidence224

entropy loss regularization which can avoid over-confident prediction,225

l′′s = ls − λceExb
[H(f(α(xb)))]

= ls + λce
1

B

B∑
b=1

{
c∑
j=1

fj(α(xb)) log(fj(α(xb))},

l′′ = l′′s + λulu. (6)

Note that since the loss function (6) aims for avoiding over-confident predictions, it seems to be fine
to regularize the unlabeled data as well. However, we cannot do that for the same reason as the loss
function (5) which has been discussed in the footnote. Because −H(·) is a convex function, we have
the Jensen’s inequality

−H(Exb
[f(α(xb))]) ≤ −Exb

[H(f(α(xb)))].

In other words, confidence entropy regularization can implicitly regularize the equal frequency of the226

data labels. Therefore, with the same reason, we should only apply it to the labeled data of which227

label distribution is under our control with augmentation.228

4 Data Preprocessing and Augmentation229

FixMatch requires a weak augmentation α(·) and a strong augmentation A(·). For the weak augmen-230

tation, we randomly flip an image with probability 0.5 as [Sohn et al., 2020] and translate an image231

up to 12.5% with probability 0.5 2. For the strong augmentation, FixMatch uses either RandAugment232

(RA) [Cubuk et al., 2020] or CTAugment [Kurakin et al., 2020] for their experiments. However, we233

use RA for our experiments with the maximum magnitude 10 (same as the official experiment setup)234

and 2 randomly selected operations per image.235

Due to the limitation of computational resources, we examine the reproducibility of [Sohn et al.,236

2020] on the dataset CIFAR-10 [Krizhevsky et al., 2009]. In CIFAR-10, there are 50000 training237

data and 10000 testing data. We take 5000 training data as the validation dataset. Then we use the238

remaining training dataset to make labeled and unlabeled datasets and augment both datasets into the239

same target number as in [Sohn et al., 2020]. After augmentation, we have 213 labeled images and240

213 × 7 unlabeled images for the CIFAR-10 training dataset.241

5 Experiment242

In the reproducibility experiments, we re-implement FixMatch from scratch using PyTorch and243

reproduce the essential experiments in the original paper with the similar results. We use the244

hyperparameters (λu = 1, η = 0.03, β = 0.9, τ = 0.95, µ = 7, B = 64, K = 220) given by245

[Sohn et al., 2020] and focus on reproducing the performance on CIFAR-10 (Sec. 4.1 of [Sohn et al.,246

2020]) and barely supervised learning experiments (Sec. 4.4 of [Sohn et al., 2020]). Besides the early247

introduced hyper-parameters, we use SGD with β = 0.9 for training the model, and the learning248

rate is decay with η cos( 7πk
16K ), where K is the total time step and k is the current time step. Each249

experiment takes around 68 hours on a single V100. And all the error rates is generated from EMA250

(exponential moving average) of models in the SGD training trajectory.251

Then, we investigate confirmation errors of "Match"-based SSL methods to see whether there exists252

such error and asymmetric noise of pseudo labels in FixMatch with the official experiment setup, i.e.253

unbalanced batches, in [Sohn et al., 2020]. Next, we examine the existence of confirmation errors254

and asymmetric noise for FixMatch again in a more reliable way using re-constructed batches as255

introduced in Sec. 3. Furthermore, we respectively add the equal-frequency entropy regularization256

and confidence entropy regularization on the labeled training data in the loss function and compare257

with the baseline FixMatch without entropy regularization on the BC batches. Finally, we add258

asymmetric noise to the labeled data in the training dataset and compare the performance of baseline259

FixMatch and FixMatch with different entropy regularization.260

2Here, [Sohn et al., 2020] didn’t indicate what probability they use for the translation.
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5.1 Reproducibility261

CIFAR-10. We reproduced the experiments on CIFAR-10 with 40, 250, 4000 labeled data and262

5000 validation samples as the official implementation of FixMatch3. But due to the limitation of263

computational resources, we didn’t reproduce 5 "folds". Thus, our result based on 1 fold doesn’t have264

the standard deviation. Our model uses the Wide ResNet-28-2 [Zagoruyko and Komodakis, 2016]265

with leaky ReLU activation function. Our results are shown in Table 1 which is comparable to the266

performance in [Sohn et al., 2020].267

Table 1: Error rates for CIFAR-10 on test data. FixMatch (RA) uses RandAugment [Cubuk et al.,
2020]. BC means that the experiment uses balanced-class batches as introduced in Sec. 3. We use the
experiment with BC and RA as a comparison baseline results for the investigation in Sec. 5.3.

CIFAR-10
Method 40 labels 250 labels 4000 labels

Official FixMatch (RA) 13.81± 3.37 5.07± 0.65 4.26± 0.05
Ours (RA) 10.04 5.29 4.36

Barely supervised learning. We also reproduce the one example per class experiment. [Sohn268

et al., 2020] hypothesize that the repressiveness of the chosen labeled data influences the results269

significantly. Since there are only one/few samples per class, this hypothesis is reasonable intuitively.270

Then, Sohn et al. [2020] categorized the training dataset into eight levels of “prototypicality”, i.e.,271

representative of the underlying class and then ordered the training samples by their “prototypicality”.272

With the same hyperparameters, the model is trained with 10 provided most representative labeled273

data under Random Augment. The accuracy is 84.41% compared with the official implementation: a274

median of 78% accuracy and a maximum of 84% accuracy.275

5.2 Ablation studies276

The ablation studies are based on FixMatch with 250 labels using CTAugment.277

Study for Confidence threshold. We performance the ablation studies for confidence threshold.278

Due to the limited computation resource, we hypothesize that experiments with lower confidence279

threshold will achieve worse performance and explore more values around the optimal value of280

confidence threshold, 0.95 chosen by the authors. Thus our examined threshold value is between281

0.7 to 0.98. As shown in Figure1 (c), the error rate is between 6.54% and 6.19% and the highest282

performance is under the threshold 0.98.283

Ratio of unlabeled data. We perform FixMatch under different ratios of unlabeled data. Figure1284

(d) shows the error rate which is decreasing when the ratio of unlabeled data is higher. A significant285

increase of the accuracy happens using a large number of unlabeled data. The results show the286

consistency with the finding in the original paper.287

5.3 Investigation on confirmation errors and asymmetric noisy (pseudo) labels288

In this section, we show the investigation on confirmation errors and asymmetric noise in labels and289

pseudo labels and whether the entropy regularization in loss functions (5) and (6) can deal with them290

and improve the performance of FixMatch. The training dataset contains 150 labeled data before291

augmentation and each BC batch in the training phase contains images with uniformly distributed292

classes.293

Existence of asymmetric noise and confirmation errors in pseudo labels. We examine the294

existence of asymmetric noise in pseudo labels by checking the confusion matrix of the prediction295

of unlabeled data in different batches. Top figures of Figure 2 show the confusion matrices in the296

experiments without using BC batches. We find that asymmetric noise appears in a random manner,297

which is as our expectation as analyzed in Sec. 3. The stochastic behavior is inherited from the298

3The official implementation: https://github.com/google-research/fixmatch. From the repro-
ducibility and readability, the official code is not a valid submission.
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Figure 1: Plots of various ablation studies on FixMatch compared with those reported in the paper.
(a) Varying the confidence threshold for pseudo-labels in the original paper. (b) Varying the ratio of
unlabled data (µ) in the original paper. (c)Varying the confidence threshold for pseudo-labels based
on our implementation. (d) Varying the ratio of unlabled data (µ) based on our implementation.

randomness of batch composition. Next, we evaluate the asymmetric noise with BC batches, which299

is a more reliable way as mentioned in Sec. 3. We found that there exists consistent asymmetric300

noise, which leads to the confirmation errors, i.e., the model always tends to wrongly predict certain301

images into certain classes as shown in bottom figures of Figure 2. Moreover, the accuracy of our302

implementation is 93.6% without BC batches and 93.8% with BC batches, which shows that using303

BC batches has rarely influence on the model performance compared with the one without BC304

batches.305

Figure 2: Confusion matrices of the confident prediction on unlabeled data with different batch
structures. Confusion matrices are plotted every 100 training steps in the 1st epoch (1024 steps). The
top matrices are from the experiments without BC, and the bottom matrices are the ones with BC.
The red areas represent the asymmetric noise in the pseudo labels. The bottom matrices have a stable
and smooth transition while the top matrices have a fluctuating transition in the red areas. The yellow
color represents larger value and the darker green color represents smaller values.

Equal-frequency and confidence entropy regularization on the labeled data. Due to limitation306

of the computational resources, we didn’t explicitly run grid search for the hyperparameters in the307

Equal-Frequency (EF) loss function (5) and Confidence-Entropy (CE) loss function (6). Instead,308

we found that for the baseline method the training loss is around 0.2. We then compute the equal-309
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frequency entropy loss for the ideal scenario, equal frequency for all classes, which is 0.1× ln 0.1 ≈ 2.310

We decide to try the hyperparameter λce, λef ≤ 0.1 to avoid making the entropy regularization loss311

dominate the loss value. Then, we do a hyper-parameter search for the loss function (5) and (6). For312

all experiments in this experiment, we used cosine function decay for the parameters λce and λeq,313

which starts with value 1 and ends with value 0 in the training phase. We find that using the loss314

function (6) can achieve a better accuracy performance 94.01%. Moreover, as an advantage, using the315

confidence entropy regularization can reduce the asymmetric noise as shown in the bottom confusion316

matrices of Figure 3. As for the equal-frequency entropy regularization, it has a better accuracy,317

93.85%. Moreover, the equal-frequency entropy regularization can penalize the asymmetric noise,318

which may transform it into symmetric noise as shown in the middle confusion matrices of Figure 3.319

Note that there are plenty of ways to deal with symmetric noise, which is much easier to handle.320

Table 2: Error rates on testing data using the loss function (5) and (6). The experiments use 150
labeled data and CTA for training. The first column is the results without BC batch and the second
column is the baseline result without using EF or CE regularization.

Entropy regularization noBC+Null BC+Null BC+CE BC+EF
λce/λef 0 0 0.1 0.1

Error rate 6.4 6.2 5.99 6.15

Figure 3: Confusion matrices of the confident prediction on unlabeled data with BC batches using loss
functions (4) without entropy regularization at top, (5) with equal-frequencey entropy regularization
in the middle, and (6) with confidence entropy regularization at bottom. Confusion matrices
are plotted every 100 training steps in the 1st epoch (1024 steps). The red areas represent the
asymmetric/symmetric noise in the pseudo labels. The yellow color represents larger value and the
darker green color represents smaller values.

Equal-frequency and confidence entropy regularization on the labeled data containing asym-321

metric noise. In this experiment, we use RA data augmentation and manually add asymmetric322

noise to the labeled data in the training dataset to compare how FixMatch with different loss functions323

performs in the presence of asymmetric noise in the labeled data. We respectively select 3 images324

from class 0 and class 1 in the validation dataset. Then, for the labeled data in the training dataset,325

we keep the labels unchanged and replace 3 images in class 2 with the 3 images in class 0. Similarly326

we replace 3 images in class 3 with the 3 images in class 1. In this way, the only difference with327

the previous experiments in this section is that our final validation dataset has 4994 images and the328

labeled data in the training dataset contain asymmetric noise. Table 3 shows error rates on 6 runs with329

different random seeds. In the presence of asymmetric noise in labeled training data, all proposed330

methods perform better than the baseline method, in which FixMatch with BC batches decreases the331

average error rate from 8.6 to 7.37, and the combination of confidence-entropy regularization and BC332

batches further lowers the error rate to 6.98.333

6 Challenges334

It is not clear how many steps are there in each epoch. First the paper only states the total steps335

K = 220 and the composition of one batch (B labeled samples and µB unlabeled samples). And the336

official code indicates there are 216 labeled images observed by the model per epoch and a total of337
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Table 3: Error rates of FixMatch methods in the presence of asymmetric noise in labeled training data
augmented by RA: The baseline method (λ = 0); The method (λ = 0) with BC batches; the method
with confidence-entropy regularization (λce = 0.1) and BC batches; the method with equal-frequency
regularization (λef = 0.1) and BC batches.

λ = 0(noBC) λ = 0(BC) λef = 0.1(BC) λce = 0.1(BC)
Error rates on test data 8.6± 2.81 7.37± 2.05 7.95± 2.2 6.98 ± 1.83

226 images observed which suggests that there are 212 updates per epoch and 219 updates in total.338

And this is not consistent with the total update steps K stated in the paper. When performing weak339

augmentations to the input data, the probability for randomly translating images is not specified. And340

it also remains unclear the ‘5 different folds’ mentioned in the paper, we are guessing it is a kind of341

cross validation while there is not too much evidence supporting this neither in the paper nor in the342

official code.343

The paper doesn’t contain sufficient details to reproduce all the experiments. Thus, it is necessary to344

look for details about reproducing the experiments in the official code. We have not optimized or345

tuned the hyperparameters, and all the hyperparameters are the same as those mentioned in the paper.346

Compared to the average error rates in the original paper, the reproduced results have a reasonable347

good performance on a larger number of labeled data (4000/250 labels) and better but also reasonable348

performance on fewer labeled data (40/10 labels) since the variance of error rates over 5 different349

folds for CIFAR-10 with 40 labels is 3.35%. Moreover, to compare with the results of ablation studies350

in the original paper, we also implement CTAugment, which supports a learnable magnitude. While351

we failed to confirm the result that CTAugment behaves better than RandAugment on CIFAR-10. We352

hypothetically guess this is because it could affect the consistency regularization because of different353

levels of distortions controlled by magnitude.354

7 Conclusion355

In this work, we study and reimplement FixMatch from scratch. We reproduced essential experiments,356

included the model performance on CIFAR 10, barely supervised learning, and ablation studies.357

Experimental results show that our implementation achieves similar performance as the original358

FixMatch results, which supports that FixMatch outperforms semi-superivesed learning benchmarks359

and that the author’s choices with respect to those ablations were experimentally sound. We also360

confirmed the existence of confirmation errors in pseudo labels by checking the prediction confusion361

matrix of unlabeled data in different training stages. We adapted the training batch structure to be362

composed of equal number of images in each class, which enable us to stably and reliably check the363

the asymmetric noise in the training phase. Based on the reconstructed batch structure, we used the364

equal-frequency and confidence entropy regularization in the loss function, and theoretically show365

their relation. The experiments indicate that these entropy regularization can reduce the asymmetric366

noise in pseudo labels and improves the performance of FixMatch in the presence of training labels367

with asymmetric noise.368

8 Ethical consideration369

The bias in the collected dataset is a serious problem when applying machine learning methods to370

the real-world scenarios. For example, applying machine learning methods to making automated371

decision-making systems for criminal prediction, university admission or recruitment. In these cases,372

we may very likely collect a dataset containing certain bias due to the historical reason or selection373

bias in the data collection process. If a model cannot deal with such bias in the dataset, it may inherit374

in the model by focusing on the unrelated or wrong relations in the dataset. Consequently, the model375

can make biased decision which can disadvantage a certain group of people and may even diminish376

this group in the society.377

Unfortunately, FixMatch cannot only be influenced by the noise in the label of a training dataset, but378

also it can make confirmation errors causing a biased model even when the dataset itself is unbiased.379

To deal with such issue, this work focuses on the asymmetric noise in the data labels and pseudo380
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labels, which can lead to severe confirmation error and the biased model. And then, we applied381

different methods to reduce such noise in pseudo labels and reduce its impact on the model.382
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