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Abstract

Contrastive vision-language models excel in zero-shot im-
age recognition but face challenges in few-shot scenarios
due to computationally intensive offline fine-tuning using
prompt learning, which risks overfitting. To overcome these
limitations, we propose Attn-Adapter, a novel online few-
shot learning framework that enhances CLIP’s adaptability
via a dual attention mechanism. Our design incorporates
dataset-specific information through two components: the
Memory Attn-Adapter, which refines category embeddings
using support examples, and the Local-Global Attn-Adapter,
which enriches image embeddings by integrating local and
global features. This architecture enables dynamic adapta-
tion from a few labeled samples without retraining the base
model. Attn-Adapter outperforms state-of-the-art methods in
cross-category and cross-dataset generalization, maintain-
ing efficient inference and scaling across CLIP backbones.

1. Introduction
Vision-language models (VLMs) unify visual and textual
understanding for multimodal tasks. CLIP [25], a promi-
nent example, enables zero-shot image recognition via large-
scale contrastive learning between images and text. This
allows CLIP to generalize across diverse visual concepts
without category-specific supervision. However, many real-
world tasks in medical imaging or robotics, require domain
adaptation with limited labeled data [18, 19, 21]. Few-shot
learning addresses this by adapting models to novel classes
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with minimal supervision. Offline methods like CoOp [35],
CoCoOp [34], ProMIM [1] and CLIP-Adapter [7] fine-tune
prompts or models using support data, but they are compute
intensive and prone to overfitting. Online methods such as
Tip-Adapter [33], Proto-CLIP [23], and Meta-Adapter [26]
avoid full fine-tuning by via support features. Meta-Adapter
improves generalization using a lightweight residual adapter,
but still struggles to capture dataset-specific nuances due to
reliance on zero-shot CLIP features [20].

To address these challenges, we propose Attn-Adapter,
a novel online few-shot learner for vision-language models
that leverages attention mechanisms to dynamically refine
both category and image embeddings. Our approach intro-
duces two key components: (1) a Memory Attn-Adapter that
applies cross-attention to refine category embeddings using
support embeddings as keys and values, and (2) a Local-
Global Attn-Adapter that enhances image embeddings by
integrating local and global features through attention mecha-
nisms. Unlike previous methods that only fine-tune the affin-
ity matrix from few-shot support samples, Attn-Adapter im-
poses dataset-specific information during fine-tuning through
its dual attention mechanism, enabling more effective gener-
alization across diverse datasets and tasks. Our contributions
can be summarized as follows:

• We propose Attn-Adapter, a lightweight online few-shot
learner that leverages attention mechanisms to dynamically
refine CLIP features guided by few-shot samples.

• We introduce a novel dual attention architecture consisting
of Memory Attn-Adapter and Local-Global Attn-Adapter,
which effectively captures dataset-specific information and
enhances both category and image embeddings.

• Extensive experiments show that Attn-Adapter outper-
forms SOTA online methods across different configura-



tions while maintaining higher inference speed.

2. Related Work

2.1. Few-Shot Learning
Offline methods Prompt learning is a popular offline strat-
egy. CoOp [35] optimizes learnable prompt vectors for CLIP,
improving dataset-specific performance. CoCoOp [34] en-
hances generalization by conditioning prompts on image
features. CLIP-Adapter [7] uses lightweight adapters for
feature-level adaptation. However, these methods are com-
putationally expensive, prone to overfitting, and require re-
training for new tasks, limiting their practicality.

Online methods Online methods [22, 23, 26, 33] enable
adaptation without backbone updates. Tip-Adapter [33]
uses a training-free cache-based approach for efficient in-
ference but requires dataset-specific hyperparameter tuning.
Meta-Adapter [26] improves robustness with gated attention
trained through meta-learning, though it relies on static CLIP
features. Proto-CLIP [23] aligns image-text prototypes but
lacks flexibility due to per-dataset optimization.

2.2. Attention Mechanisms in VLMs
Attention mechanisms are central to VLMs, enabling fo-
cus on relevant input features. They operate via self-
attention within modalities and cross-attention across modal-
ities. Transformer-based VLMs, like CLIP, use multi-head
self-attention to model relationships within image patches
or text tokens. Cross-attention, as in LXMERT [28] and
ViLBERT [15], aligns visual and textual features for mul-
timodal reasoning. Recent advances, such as Gallop [13],
enhance few-shot learning by using attention to integrate
local and global visual features in prompt learning. Our
proposed Attn-Adapter leverages attention to dynamically
refine category and image embeddings with dataset-specific
cues for online few-shot learning.

3. Methodology

3.1. Revisiting CLIP, Tip- and Meta-Adapter
CLIP [25] achieves strong zero-shot performance by con-
trastively training on large-scale noisy image-text pairs [5, 8].
For zero-shot classification, CLIP computes cosine similar-
ities between an image feature f ∈ RD×1 and a set of
text-derived class embeddings {wi}Ni=1, where wi ∈ RD×1

and N is the number of classes. Text features are generated
from templates like “a photo of [CLS]”. The predicted logits
of the given image, y, belonging to the i-th class can be
formulated as:

logits(yc = i) =
w⊤

i f

∥wi∥ ∥f∥
, (1)

Tip-Adapter [33] proposes an online method for few-shot
adaptation using a simple modulation function with two
hyper-parameters, α and β, and stochastic hyper-parameter
search technique. Given support images x = {xi}Ni=1 from
N classes with K shots each, the predicted logits are:

logits(yc = i|x, α, β) =
w⊤

i f

∥wi∥ ∥f∥
+α · exp(−β(1−

F⊤
j f

∥Fj∥ ∥f∥
))Lj

(2)
Here, Fi ∈ RD×K represents the embeddings of few-shot
support samples, while Li ∈ RN×K denotes the correspond-
ing one-hot labels for the i-th class. While effective, Tip-
Adapter relies on dataset-specific hyper-parameter tuning,
limiting generalization.

Meta-Adapter [26] improves Tip-Adapter’s poor general-
ization with a lightweight residual adapter that refines CLIP
features using few-shot samples, replacing Tip-Adapter’s
manual modulation. However, its reliance on zero-shot CLIP
features limits dataset-specific adaptability, reducing perfor-
mance on diverse tasks. Incorporating such information
during training could enhance adaptability.

3.2. Attn-Adapter
In contrast with previous methods [26, 33], which only fine-
tuned the affinity matrix from few-shot support samples,
Attn-Adapter proposes a new update strategy to fully lever-
age the trainable framework. As shown in Figure 1, we
first extract support and category embeddings using CLIP
encoders. Afterward, two proposed adapters process few-
shot and test samples separately. The Memory Attn-Adapter
refines category embeddings by applying them as queries
over support embeddings with multi-head attention. For test
samples, global and local features (g, l) are passed through
the Local-Global Attn-Adapter to obtain refined image em-
beddings f . The final logits are computed as:

logits(yc = i|x) = ŵ⊤
i f

∥ŵi∥ ∥f∥
, (3)

where ŵ = Memory Attn-Adapter(w,F) and
f = Local-Global Attn-Adapter(g, f). The ŵ and f are the
refined category embeddings and image embeddings.

3.2.1. Memory Attn-Adapter
In the Memory Attn-Adapter, the introduced approach dy-
namically combines the support embeddings based on the
relation between categories and few-shot images. This ap-
proach employs a cross-attention mechanism:

F̂ = F⊤σ(MLPK(F)MLPQ(w)
⊤/

√
D), (4)

where MLPK and MLPQ denote the MLP layers for key
and query. The softmax is represented by σ, D is the scaling
factor, and F̂ stands for the aggregated support embeddings.
Analogous to non-local filters, the Memory Attn-Adapter
can ignore certain outlier samples while focusing more on
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Figure 1. Illustration of the Attn-Adapter model, which utilizes a trainable network with two attention-based components to adjust the
category embeddings using few-shot images as guidance.

samples closely aligned with the category description [32],
thus achieving robust feature representations.

Moreover, the significance of textual and visual elements
for few-shot learning can differ significantly across various
data distributions [7]. To address this, we introduce a learn-
able projector p designed to dynamically adjust the balance
between category embeddings and combined support em-
beddings. As a result, the enhanced category embedding
is derived as follows: ŵ = w + p(w)⊙ F̂, where ⊙ repre-
sents the Hadamard product. By training with the few-shot
samples, p can tailor the proportion based on the category
descriptions, which allows our method to successfully merge
few-shot learning with zero-shot knowledge.

3.2.2. Local-Global Attn-Adapter
Inspired by LoCoOp [17] and Gallop [13] in using the local
features to enhance the global features in prompt learning,
the Memory Attn-Adapter aggregates the local and global
features to generate image embeddings f , this f is then used
to update the support embeddings. Here, we also use the
cross-attention mechanism with the global features as query,
and the local features as key and value.

l̂ = l⊤σ(MLPK(l)MLPQ(g)⊤/
√
D), (5)

where MLPK and MLPQ denote the MLP layers for key
and query. The enhanced embedding is derived as follows:

f = g + p(g)⊙ l̂, (6)

where ⊙ represents the Hadamard product.
In contrast to the typical transformer encoder [29], our

strategy incorporates Multilayer Perceptron (MLP) layers
solely for the query and key components, thus the zero-shot
value is unchanged.

3.2.3. Training Objectives
The objective function is a weighted combination of con-
trastive loss Lce and regularization loss Ll2:

L = Lce + λLl2,

where

Lce = −
∑
x∈X

log

(
exp(d(x, ŵy)/τ)∑Nc

i=1 exp(d(x, ŵi)/τ)

)
, (7)

Ll2 = ∥f − g∥22 (8)

here d(·, ·) is cosine similarity, and τ is the temperature.

4. Experiments
We evaluate Attn-Adapter on two tasks: cross-dataset gen-
eralization and cross-category, comparing it with Zero-shot
(ZS) CLIP [25], Tip-Adapter [33], and Meta-Adapter [26].

Datasets For cross-category generalization, we use
eight classification benchmarks: ImageNet [3], FGV-
CAircraft [16], OxfordPets [24] (Pets), SUN397 [31],



Table 1. Comparison of cross-dataset generalization based on ImageNet [3] pre-training. The Tip-Adapter, Meta-Adapter, and Attn-Adapter
are fine-tuned on ImageNet and frozen for other datasets. ∆ reflects the improvement against the latest SOTA.

Method FGVC Pets SUN397 UCF101 Caltech101 DTD EuroSAT Food101 Cars Flowers Avg. ∆

Zero-shot CLIP 0.42 56.25 28.96 21.05 60.62 10.00 4.17 77.40 55.70 66.00 38.06 -

Tip-Adapter* 13.96 68.75 45.16 40.09 68.33 42.92 56.25 79.50 75.20 94.90 58.51 -
Tip-Adapter 13.96 67.19 43.80 39.47 67.08 40.00 56.25 77.80 66.70 89.90 56.22 -

Meta-Adapter* 19.58 72.66 51.25 52.28 71.46 49.17 64.58 81.33 78.15 95.12 63.56 -
Meta-Adapter 15.21 72.66 48.54 47.54 67.92 48.33 62.50 79.00 67.30 93.50 60.25 -

Attn-Adapter* 31.25 74.22 62.66 55.44 75.00 60.83 79.19 84.21 78.68 95.65 69.71 +6.15
Attn-Adapter 22.92 73.97 55.02 49.93 68.33 50.67 66.25 83.12 73.51 95.13 63.89 +3.64
* indicates individually searching hyper-parameters or training for each evaluation dataset.

UCF101 [27], Caltech101 [6], DTD [2], and EuroSAT [10].
Following [26], categories are split into base (easy) and novel
(hard) sets using zero-shot CLIP accuracy to simulate a chal-
lenging setup. For cross-dataset generalization, we further
evaluate on ImageNet [3] and its variants: ImageNet-A [12],
-R [11], -Sketch [30], and -V2 [3].

Implementation details We use ResNet-50 [9] and ViT-
B/16 [4] as CLIP backbones. Following prior work [25, 33],
we apply prompt ensembling with seven templates. We
strictly adhere the training settings in Meta-Adapter [26] in-
cluding batch size, AdamW [14] optimizer, cosine schedule,
and number of epochs on the base dataset.

Table 2. Quantitative results of domain generalization experiments
between Tip-Adapter, Meta-Adapter, and Attn-Adapter. The data
in parentheses records the changes brought by comparing with
Zero-shot CLIP. Adpt stands for Adapter.

Backbone Model
Target Datasets

IN-A IN-R IN-S IN-V2 Avg

RN-50

ZS CLIP 23.88 60.54 35.45 53.25 43.28
Tip-Adpt 23.25 58.73 34.77 - -
Meta-Adpt 23.71 59.96 35.54 - -
Attn-Adpt 37.61 60.14 47.88 65.47 52.78

ViT-B/16

ZS CLIP 50.65 77.82 48.42 62.30 59.80
Tip-Adpt 49.89 76.94 48.13 - -
Meta-Adpt 51.12 77.54 48.76 - -
Attn-Adpt 62.52 78.71 59.70 73.91 68.71

4.1. Cross-Dataset Generalization
We evaluate cross-dataset generalization by training on Im-
ageNet and testing on other datasets in a zero-shot manner
under a 16-shot setup with frozen parameters. Table 1 shows
that Attn-Adapter outperforms other baseline methods in all
datasets with an average gain of 3.64%. In terms of training
time, it matches Meta-Adapter’s efficiency while surpassing
online methods, as shown in Supplementary Material.

We evaluated domain generalization using models trained
on ImageNet, tested on ImageNet-A [12], -R [11], -
Sketch [30], and -V2, following [34]. Tip-Adapter, with
ImageNet-tuned α and β, underperforms Zero-shot CLIP
due to overfitting (e.g., -1.81% on ImageNet-R with RN-
50). Meta-Adapter slightly improves over Zero-shot CLIP
on some variants. Attn-Adapter consistently outperforms
baselines, with 10%+ gains on ImageNet-A and -Sketch, and
12%+ on ImageNet-V2, demonstrating superior adaptability
to distribution shifts for real-world applications.

Table 3. Quantitative results of in-domain generalization settings on
OxfordPets, UCF101, Caltech101 (Caltech), DTD, and FGVCAir-
craft (FGCV) datasets between Attn-Adapter and other methods.

Model
ImageNet Pets SUN397 EuroSAT

Base Novel Base Novel Base Novel Base Novel

ZS CLIP 71.81 32.89 92.89 56.25 71.28 28.96 48.21 4.17
Tip-Adpt 74.16 36.51 94.83 68.75 73.04 45.16 83.04 56.25
Meta-Adpt 66.08 40.19 92.03 72.66 72.95 51.25 68.75 64.58

Attn-Adpt 87.35 54.99 92.67 74.22 77.89 62.66 83.93 79.19

Model
UCF101 Caltech DTD FGVC

Base Novel Base Novel Base Novel Base Novel

ZS CLIP 79.42 21.05 93.39 60.62 59.38 10.00 23.84 0.42
Tip-Adpt 85.17 40.09 95.09 68.33 68.36 42.92 30.27 13.96
Meta-Adpt 82.44 52.28 93.39 71.46 64.26 49.17 27.32 19.58

Attn-Adpt 85.36 55.44 94.73 75.00 68.36 60.83 31.70 31.25

4.2. Cross-Category Generalization
As shown in Table 3, Tip-Adapter excels on base datasets
(e.g., 94.83% OxfordPets, 95.09% Caltech101) but strug-
gles on novel categories (e.g., 40.09% UCF101). Con-
versely, Attn-Adapter outperforms baselines on both, achiev-
ing 87.35% ImageNet, 83.93% EuroSAT (base), and 79.19%
EuroSAT, 62.66% SUN397 (novel). Its attention-based



mechanism dynamically refines embeddings, integrating
global and local features for robust generalization. Please
refer to Supplementary Material for more evaluation.
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6. Conclusion
We present Attn-Adapter, a lightweight online few-shot learn-
ing framework enhancing vision-language models utilizing
two trainable modules: Memory Attn-Adapter and Local-
Global Attn-Adapter. These components refine category and
image embeddings using minimal labeled examples with-
out backbone updates by injecting dataset-specific induc-
tive bias during inference. Evaluated on cross-category and
cross-dataset generalization, Attn-Adapter outperforms prior
methods across image classification benchmarks with low
inference cost, generalizing well across backbones (ResNet,
ViT). Furthermore, Attn-Adapter generalizes well across
backbones (e.g., ResNet, ViT) and is particularly effective
in low-shot and domain-shift settings. In future work, we
plan to extend Attn-Adapter to more complex downstream
tasks such as open-vocabulary object detection and semantic
segmentation, further validating its generality and flexibility
in broader vision-language applications.
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