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ABSTRACT

Solving time-dependent Partial Differential Equations (PDEs) is one of the most
critical problems in computational science. While Physics-Informed Neural Net-
works (PINNs) offer a promising framework for approximating PDE solutions,
their accuracy and training speed are limited by two core barriers: gradient-descent-
based iterative optimization over complex loss landscapes and non-causal treatment
of time as an extra spatial dimension. We present Frozen-PINN, a novel PINN
based on the principle of space-time separation that leverages random features
instead of training with gradient descent, and incorporates temporal causality by
construction. On nine PDE benchmarks, including challenges like extreme ad-
vection speeds, shocks, and high-dimensionality, Frozen-PINNs achieve superior
training efficiency and accuracy over state-of-the-art PINNs, often by several orders
of magnitude. Our work addresses longstanding training and accuracy bottlenecks
of PINNs, delivering quickly trainable, highly accurate, and inherently causal
PDE solvers, a combination that prior methods could not realize. Our approach
challenges the reliance of PINNs on stochastic gradient-descent-based methods and
specialized hardware, leading to a paradigm shift in PINN training and providing a
challenging benchmark for the community.

1 INTRODUCTION

Partial Differential Equations (PDEs) provide a unifying framework for modeling complex dynamical
systems across physics, biology, and engineering, yet developing efficient methods to solve them
remains a longstanding challenge (Farlow, 1993). Deep neural networks have recently shown
significant promise for approximating solutions of PDEs because of the mesh-free construction of
basis functions, high expressivity of neural networks (Rudi & Rosasco, 2021), their ability to represent
functions in high dimensions (E, 2020; Wu & Long, 2022; Han et al., 2018), and powerful software
for automatic differentiation (e.g., Pytorch (Paszke et al., 2017), TensorFlow (Abadi et al., 2015),
DeepXDE (Lu et al., 2021b)). Earlier work on solving PDEs using neural networks (Dissanayake &
Phan-Thien, 1994; Lagaris et al., 1998) was recently popularized in the form of Physics-informed
neural networks (PINNs) (Raissi et al., 2019; Karniadakis et al., 2021; Sirignano & Spiliopoulos,
2018). PINNs incorporate physical constraints by minimizing a loss function involving the PDE,
boundary condition, and initial condition residuals during training. Despite their promise, we identify
two root causes limiting the performance of PINNs in terms of accuracy and training time.

1. Inherent challenges posed by the PINN optimization problem: Many studies (Wang et al.,
2021; 2022) show that even in very simple settings, the PINN loss is quite challenging to minimize
using iterative gradient-descent-based optimization methods leveraging the classical back-propagation
algorithm (Rumelhart et al., 1986). Krishnapriyan et al. (2021) show that incorporating PDE-based
soft constraints into the PINN loss function yields a highly nontrivial loss landscape, rendering
optimization particularly challenging. Wang et al. (2022) analyze PINN training dynamics via the
Neural Tangent Kernel (NTK) and highlight issues with spectral bias and different convergence rates
across different loss components. Rathore et al. (2024) show that differential operators in the PDE
residual loss induce “ill-conditioning”, characterized by steep and shallow gradients in different
directions near the optimum, complicating the optimization.

Efforts to improve PINN training, such as balancing loss terms (Yao et al., 2023), effective regulariza-
tion (Lu et al., 2021c; Yu et al., 2022), architectural innovations (Wang et al., 2024b), and improved
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optimizers (Müller & Zeinhofer, 2023; Liu et al., 2024), have been explored. We assert that such
approaches address the symptoms rather than the root cause that makes training PINNs extremely
challenging: the PINN optimization problem is high-dimensional (large number of trainable parame-
ters), multi-objective (simultaneous minimization of PDE, and initial and boundary condition losses),
and non-convex, with inherently conflicting loss terms (Liu et al., 2024) and further complicated by
treating time as an additional dimension in space.

2. Non-causal treatment of time as an extra spatial dimension: The temporal structure of initial
value PDEs is inherently Markovian as the solution at each subsequent time step depends solely on
the solution at the preceding time step. Most PINN-based approaches fail to incorporate temporal
causality explicitly, and time is treated as an extra dimension in the input layer. This leads to
neural bases spanning the entire space-time domain, exacerbating the optimization. Such approaches
struggle to capture high-frequency temporal dynamics (Krishnapriyan et al., 2021), and solving PDEs
over a long time horizon, without resorting to domain decomposition techniques (Meng et al., 2020).

Previous studies have sought to enforce temporal causality by progressively penalizing residuals
in time (Wang et al., 2024d), training distinct models across disjoint intervals with integral-form
losses within each interval (Jung et al., 2024), or applying implicit time-differencing with transfer
learning to sequentially update PINNs on each interval (Li et al., 2024). Nonetheless, such approaches
are difficult to implement, require precise tuning of temporal windows and weight scheduling, and
remain computationally demanding (Kim & Son, 2025; Li et al., 2024; Penwarden et al., 2023). See
Appendix A for an extended literature review and Appendix B.1 for a detailed discussion on PINNs.

Time-dependent 
output layer 
coefficients

Time

(1) Space-time separation

(2) Decouple the PINN loss and 
optimize each term separately

Space Frozen-PINN solution

Basis functions in 
space: sampled and 

frozen  

Total loss: 

Classical 
ODE solvers 
with step-size 

control

Impose hard 

constraints

Solve a least 

squares problem 

.

Figure 1: Core ideas of Frozen-PINNs: (1) Space–time separation: For x ∈ Rd, spatial bases
ϕi = σ(wi · x + bi) with σ = tanh, wi ∈ Rd, bi ∈ R are sampled and frozen (shown for d = 1);
output layer parameters ci(t) are evolved via ODEs. Each pair (ϕi, ci) is color-matched. (2) Loss
decoupling: PDE, boundary, and initial condition losses LPDE, LBC, LIC are optimized independently.

To address the root causes of accuracy and training bottlenecks of PINNs rather than the symptoms,
we investigate: How can the PINN optimization problem be simplified while enforcing temporal
causality for time-dependent PDEs? We propose “Frozen-PINN” based on space-time separation —a
novel approach that simplifies the PINN optimization problem and enforces temporal causality by
construction. We achieve this by: (a) sampling and freezing space-dependent hidden layer parameters
to reduce the dimensionality, (b) decoupling the PINN loss and optimizing each term separately, and
(c) computing time-dependent output layer parameters using least squares and adaptive Ordinary
Differential Equation (ODE) solvers, replacing gradient-descent-based training (see Figure 1). In
Figure 8, we contrast Frozen-PINNs with classical PINNs. Our key contributions are:

1. Training algorithm: Frozen-PINNs break the longstanding training and accuracy bottle-
necks of PINNs, making PINNs rapidly trainable, temporally causal, and highly accurate, a
combination realized for the first time, defining a new state-of-the-art, to our knowledge.

2. Extensive empirical evaluation: Across nine challenging PDE benchmarks and rigorous
ablation studies, we show that Frozen-PINNs achieve up to 4-5 orders of magnitude faster
training than state-of-the-art (SOTA) PINNs, attain high-precision accuracies that are com-
parable to efficient mesh-based methods in low dimensions, which most SOTA neural PDE
solvers fail to match, and scale efficiently to high-dimensional problems where mesh-based
solvers fail.
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3. Adaptive solution-driven network parameters: We use solution data from previous
time-steps to compute efficient neural network parameters. This extends previous work on
random feature methods (Bolager et al., 2023) for self-supervised PDE learning tasks.

4. Model compression: We introduce an SVD layer that reduces the number of neurons in the
last hidden layer of the network by up to 20 times and speeds up training up to 75 times.

2 SOLVING TIME-DEPENDENT PDES USING FROZEN-PINNS

In this section, we discuss the theoretical details of Frozen-PINNs.

2.1 FROZEN-PINN ANSATZ

In this work, we consider time-dependent PDEs on domain Ω ⊂ Rd for space dimension d with
boundary ∂Ω, seeking solutions u : Ω × R → R of PDEs defined by linear operators L and B
that only involve derivative operators in space, forcing f : Ω → R, boundary g : ∂Ω → R, initial
condition u0 : Ω → R, and a nonlinear operator γN for γ ∈ R (γ = 0 for linear PDEs):

ut(x, t) + Lu(x, t) + γN (u)(x, t) = f(x), x ∈ Ω, t ∈ [0, T ], (1a)

where ut denotes the time derivative of u, with boundary and initial conditions given by

Bu(x, t) = g(x), x ∈ ∂Ω, t ∈ [0, T ], and, u(x, 0) = u0(x), x ∈ Ω, (1b)

respectively. We parameterize the approximation of the solution to the PDE (Equation (1)) with a
Frozen-PINN having a single hidden layer with M neurons and activation function σ = tanh as

û(x, t) = C(t)[Φ(x),1] = c(t)σ(Wx⊤ + b) + c0(t). (2)

Here, c(t) ∈ R1×M and c0(t) ∈ R are time-dependent parameters, W ∈ RM×d and b ∈ RM×1 are
space-independent parameters, and C := [c, c0] ∈ R1×(M+1). The activation functions are stacked
in Φ = [ϕ1, . . . , ϕM ], where ϕm(x) = σ(wmx⊤ + bm). Note that our approach does not require the
PDE solution to be separable in space and time. We next discuss how to sample parameters W and b.

2.2 COMPUTING HIDDEN LAYER PARAMETERS WITHOUT GRADIENT DESCENT

We sample space-dependent hidden layer parameters in Frozen-PINNs using either ELM or SWIM.
Hidden layer parameters are frozen (kept independent of time) after sampling (except Section 3.4).

ELM (Data-agnostic): In the Extreme Learning Machine (ELM) approach (Huang et al., 2006), the
weights are sampled from a Gaussian distribution, and biases are sampled from a uniform distribution
in [−η, η] for each hidden layer, where η is a hyper-parameter.

SWIM (Data-dependent): The Sample Where It Matters (SWIM) approach follows Bolager et al.
(2023) and samples weights and biases using a data-dependent distribution. Each pair (wm, bm) is
computed using two collocation points x(1), x(2) ∈ Ω: wm = s1

x(2)−x(1)

∥x(2)−x(1)∥2 , bm = −⟨wm, x(1)⟩+
s2, where s1, s2 ∈ R depend on the activation function. In the unsupervised setting, one can choose
pairs of collocation points from a uniform distribution over all possible pairs of collocation points,
which is the default setting in this paper, as we do not know the solution of the PDE beforehand.
In the supervised setting (Section 3.4, Section 3.7), collocation pairs (x(1), x(2)) are sampled with

Data-driven sampling Data-agnostic sampling

Figure 2: Sampling in Frozen-PINNs: (Left): SWIM (data-driven, places bases with steep gradients
near regions with shocks) vs. (Right): ELM (data-agnostic, no control over basis placement).
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density ∥f(x(2)) − f(x(1))∥/∥x(2) − x(1)∥. Neuron weights and biases are set so that the tanh
output is −0.5 at x(1) and +0.5 at x(2), ensuring centers of activations tanh lie inside the domain
and are aligned with the direction x(1)→x(2), unlike ELM. The suitability of each of the proposed
approaches depends on the true PDE solution’s gradient distribution. See Appendix B.2.1 for details.
In Figure 2, we illustrate the difference between the basis functions sampled with ELM and SWIM.

2.3 SOLVING TIME-DEPENDENT PDES USING FROZEN-PINNS BY SEPARATION OF VARIABLES

We now discuss the computation of time-dependent output layer parameters c(t). We insert the
ansatz (Equation (2)) into the PDE Equation (1a), reformulating it as an ODE for c(t), preserving the
inherent causal structure of time-dependent PDEs, thereby enforcing temporal causality by design.
We assemble Nc collocation points in X ∈ RNc×d, sample weights and biases of M neurons,
compute hidden layer output Φ(X), and obtain the ODE

Ct(t) = R(X,C(t))[Φ(X),1]+, where

R(X,C(t)) = −C(t)L[Φ(X),1]− γN (C(t)[Φ(X),1]) + [f(X)]⊤,
(3)

where [Φ(X),1] ∈ R(M+1)×Nc and the pseudo-inverse is denoted by ·+. The initial condition is
computed via a least squares solution: C(0) = u(X, 0)⊤[Φ(X),1]+, which decouples the initial
condition loss from PDE and boundary losses, simplifying the optimization problem. We compute
C(t) via ODE solvers with step-size control (e.g., RK45 (Dormand & Prince, 1980), LSODA (Petzold,
1983)) instead of gradient descent, and interpolate solutions at test points. See Appendix B.2.2,
Appendix B.2.3 for detailed derivations of PDE-to-ODE reformulations for all PDEs considered here.

2.4 APPROACHES FOR SATISFYING BOUNDARY CONDITIONS FOR FROZEN-PINNS

We propose two different strategies to satisfy boundary conditions for Frozen-PINNs: the first utilizes
a boundary-compliant layer, and the second augments the reformulated ODE.

Boundary-compliant layer: Certain boundary conditions can be enforced via a linear map A ∈
RMb×Ms (Ms := M ) applied after the sampled hidden layer, forming a boundary-compliant layer
(see Figure 3). Defining ΦA := [AΦ,1] and C(t) ∈ R1×(Mb+1), we rewrite Equation (3) to

Ct(t) = R(X,C(t))ΦA(X)+, where

R(X,C(t)) = −C(t)LΦA(X)− γN (C(t)ΦA(X)) + [f(X)]⊤.
(4)

Boundary conditions defined by B and g determine the construction of A; see Appendix B.2.4 for
details. With a boundary-compliant layer, boundary conditions are satisfied by construction, fully
decoupling the PINN loss so that the ODE solver minimizes only the PDE residual. The rationale for
outer basis functions is discussed in Appendix B.2.1.

Augmented ODE: This strategy eliminates the need for a boundary-compliant layer by augmenting
the ODE with a correction term enforcing boundary conditions. For Dirichlet boundary condition
u(x) = g(x), we add ût(x) = −κ(û(x)− g(x)) for x ∈ ∂Ω and solve the augmented system:

Ct(t) = [R(X,C(t)),−κ(C(t)ΦA(Xb)−g(Xb)
⊤)]︸ ︷︷ ︸

∈R1×(Nc+Nb)

ΦA([X,Xb])
+︸ ︷︷ ︸

∈R(Nc+Nb)×(Mb+1)

, (5)

where κ > 0 is a fixed parameter, X are the Nc collocation points and Xb ∈ RNb×d is a collection of
Nb points on the boundary ∂Ω. For consistency of notation, we set A = I in Equation (4) when using
the augmented ODE. In practice, we skip the boundary-compliant layer if we adopt this approach.
The intuition behind this technique is that the augmented ODE (Equation (5)) corrects the solution
by steering û(x, t) toward g(x) for x ∈ ∂Ω at rate κ(û − g), with κ = 105 as a default value. We
empirically investigate the effect of κ on the boundary loss and the time to solution (see Figure 15).
This still partially decouples the PINN loss, with the initial condition treated separately. Depending
on the PDE, domain, and boundary type, either strategy can be applied (see Appendix B.2.5).

2.5 SVD LAYER

As the last step in the Frozen-PINN architecture, we add a linear layer to reduce the stiffness of
the associated ODE (Equation (4)) and the size of the ODE system. To achieve this, we propose
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orthogonalizing the basis functions using an SVD layer. We compute a truncated singular value
decomposition of AΦ(X) ∈ RMb×Nc to obtain matrices Vr,Σr, and Ur with r ≤ Mb such that
VrΣrU

⊤
r = AΦ(X) +O(Σr+1). We then define Ar := V ⊤

r A and use it instead of the matrix A and
C(t) ∈ R1×(r+1). This ensures ArΦ(X) are orthogonal functions on the data X , and the matrix
ArΦ(X) has a bounded condition number. The SVD layer accelerates computation by up to 75 times
while reducing the ODE system dimension 20 times, as validated by an extensive ablation study (see
Appendix C). Figure 3 visualizes the complete Frozen-PINN architecture.

2.6 SUMMARY OF THE TRAINING ALGORITHM FOR FROZEN-PINNS

We summarize our training process in Algorithm 1, where ϵSV D is the SVD threshold that governs
the SVD-layer width. See Appendix B.2 for additional methodological details, and Appendix B.2.1
for extended discussion on PINN vs. Frozen-PINN training, comparison between sampling strategies,
influence of random sampling, rationale for outer bases, and the Kolmogorov n-width barrier.

SVD
layer

Output
layer

ELM/

SWIM

Boundary-
compliant
layerInput

layer

Figure 3: Architecture of Frozen-
PINNs trained with a gradient-
descent-free training algorithm.

Algorithm 1 Frozen-PINN training algorithm
Input: PDE (Equation (1)), test grid points Xtest × Ttest
Output: PDE Solution on the test grid points û(Xtest, Ttest)
Parameters: Nc, Ms, Mb ∈ N, ϵSV D ∈ R
1: Sample Nc collocation points: X ∈ RNc×d

2: Construct hidden layer params {wm, bm}Ms
m=1 (SWIM/ELM) ▷ Section 2.2

3: Compute hidden layer output Φ(X) ∈ RMs×Nc

4: Construct boundary-compliant layer: AΦ(X) ∈ RMb×Nc ▷ Section 2.4
5: Compute truncated SVD: VrΣrU

⊤
r = AΦ(X) and SVD layer output

V ⊤
r AΦ(X) = ArΦ(X)

6: Compute neural bases: ΦAr (X) := (ArΦ(X), 1)⊤ ∈ R(r+1)×Nc

7: Initialize output-layer params (least-squares): C(0) = u(X, 0)⊤ΦAr (X)+

8: Solve ODE for C(t) ∈ R1×(r+1) using ΦAr ▷ Equation (4)
9: Evaluate û(Xtest, Ttest) = C(Ttest)ΦAr (Xtest) ▷ Equation (2)

3 EMPIRICAL RESULTS

In this section, with a comprehensive empirical study across nine challenging low- and high-
dimensional PDE benchmarks, we demonstrate that Frozen-PINNs consistently outperform existing
state-of-the-art neural PDE solvers with orders-of-magnitude faster training in all cases and higher
accuracy in almost all cases without requiring specialized hardware like GPUs. Moreover, our work
includes rigorous evaluation against the classical SOTA approaches like IGA-FEM (see Appendix B.3)
(Hughes et al., 2005; Cottrell et al., 2006; 2009) or FEM for low-dimensional PDEs, bridging a gap
not sufficiently addressed in the literature between neural and mesh-based solvers.

Appendix C contains details of the PDEs, important ablation studies for our experiments (for the
SVD layer and the width of the network), metrics used for comparison, train and test data, software
and hardware environments, the absolute error plots on test points, and elaborate explanations of
results. Figure 12 visually summarizes all the PDE benchmarks used for evaluation, identifies the
specific challenges posed by each PDE, and shows true solutions. We perform all experiments with
three seeds and report the mean and standard deviation.

To ensure fair comparisons, we follow the two rules outlined by McGreivy & Hakim (2024): (i) we
benchmark at (almost) equal accuracy, defining low-precision (1e-2 to 1e-4) and high-precision
(1e-5 to 1e-10) regimes, configuring Frozen-PINNs to marginally outperform the best PINN
baselines in the low-precision regime and aligning FEM/IGA-FEM fidelity with Frozen-PINNs in
the high-precision regime; (ii) we compare against efficient numerical methods, including SOTA
IGA-FEM or classical FEM for low-dimensional PDEs, while highlighting neural solvers’ scalability
in high-dimensional benchmarks where FEM and IGA-FEM suffer from the curse of dimensionality.

3.1 HIGH ADVECTION SPEEDS, FAST CONVERGENCE, AND LONG-TIME SIMULATION

We benchmark the linear advection equation to demonstrate how Frozen-PINNs resolve three im-
portant well-known challenges for PINNs: (1) handling high advection speeds (Krishnapriyan et al.,
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2021), (2) achieving fast convergence with increasing width (Cuomo et al., 2022), and (3) long-time
simulations (Lippe et al., 2024; Kapoor et al., 2024a). We describe all details in Appendix C.1.

High advection speeds: We solve the advection equation for increasing advection coefficients,
denoted by β. Figure 4 (Left) shows that approaches using basis functions in the entire spatiotemporal
domain, such as PINNs, ELM, and SWIM, completely fail as the flow velocity β increases beyond 40.
In contrast, Frozen-PINNs can accurately solve the PDE, even for extremely high values of β (as high
as 104) with relative L2 errors less than 10−4. Table 1 shows that for β = 40, Frozen-PINNs train
45 to 533 times faster than other alternatives at similar accuracy in the low-precision regime. With
the exception of Frozen-PINNs, none of the neural PDE solvers evaluated here attain high-precision
accuracy. Frozen-PINNs outperform existing neural PDE solvers by over six orders of magnitude in
accuracy and approach the fidelity of IGA-FEM, which unsurprisingly is the most accurate solver.

Fast convergence (error decay with hidden layer width): For a low value of advection coefficient
β = 10, Figure 4 (Middle) shows that errors with classical PINNs do not decay quickly with width,
primarily due to the difficulties in training. In contrast, the relative L2 error decays exponentially
with hidden layer width for Frozen-PINNs, ultimately plateauing at a value more than four orders of
magnitude smaller than that obtained with PINNs.

Long-time simulation: Neural PDE solvers employing joint space–time basis functions, like vanilla
PINNs, encounter substantial challenges in accurately approximating dynamics over extended time
spans. Here, we consider the advection equation with the advection coefficient β = 1. As shown in
Figure 4 (Right), Frozen-PINNs can simulate the advection equation for 1000 seconds with a relative
L2 error under 0.001% in just 0.94 seconds.
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Figure 4: Illustration of experimental results for the advection equation: (Left): high advection
speeds - effect of advection coefficient β on the test error for different PDE solvers, (Middle): fast
convergence - with β = 10, Frozen PINNs achieve exponential decay in test error as indicated by the
reference dotted line, while standard PINNs display plateaued error decay despite increasing number
of basis functions (hidden layer size), (Right): long time simulation - Slow error growth with time.

3.2 HIGHER-ORDER DERIVATIVES IN SPACE AND TIME

We consider two variants of the Euler-Bernoulli beam equation —classical Euler-Bernoulli beam
equation and its extension with a Winkler foundation. See Appendix C.2 for details. The main
challenge posed by both PDEs for PINNs is the higher-order differential terms (fourth- and second-
order derivatives in space and time, respectively). Frozen-PINNs eliminate expensive evaluation of
higher-order derivatives via backpropagation, cutting training cost by four orders of magnitude in
the low-precision regime, while achieving IGA-FEM–level accuracy that is more than six orders of
magnitude accurate compared to other SOTA PINN benchmarks considered here (see Table 1).

3.3 MULTI-SCALE SOLUTIONS

To demonstrate the capability of our method to solve PDEs with multi-scale solutions, we consider
a Wave equation benchmark (Hao et al., 2024). We examine two settings: one with two distinct
frequencies and another with three well-separated frequencies, which increases the spatial complexity
and significantly broadens the range of scales in the solution. For the two-frequency setup, we
compare the performance against prior PINN baselines in Table 1 and observe that CPU-trained
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Frozen-PINNs achieve 625 to 5500 times faster training than GPU-trained competing PINN variants,
while simultaneously being four to five orders of magnitude more accurate. Frozen-PINNs also solve
the wave equation in the three-frequency scenario (illustrated in Figure 19) extremely quickly and
with high precision, reinforcing their potential for solving PDEs with complex, multiscale dynamics.
Additional implementation details and extended results are provided in Appendix C.3.

3.4 NON-LINEARITY AND SHOCKS

In this example, we highlight how using pairs of data points to sample neural basis functions using the
SWIM algorithm can be leveraged to resolve locally steep gradients in the solution of the non-linear
viscous Burgers’ equation, as shown in Figure 2 (Left). See Appendix C.4 for details.

Frozen-PINN-swim creates numerous basic functions with steep gradients, accurately placing them
near the location of the shock, leveraging the SWIM algorithm and solutions from previous time-steps
to fit neural basis functions, given enough collocation points in the domain’s center (see Figure 20a
(Left)). To concentrate collocation points near the shock in the domain’s center, we resample them
periodically after a set number of time steps, guided by a probability distribution that leverages the
gradient of the approximate solution (see Figure 5a (Top)). At the resampling time tr ∈ [0, T ], we
approximate the probability density p(x) ∼ |∇û(x, tr)|, which we then use to re-sample collocation
points as illustrated in Figure 5a (Bottom), placing more collocation points near the shock region.

(a) (Top): Probability distribution,
(Bottom): Sampled collocation
points.

C. SWIM basis func�on 
(with projec�on)

B. SWIM basis func�on 
(without projec�on)

A. Ini�al PDE solu�on 
(Varies only in       )

(b) Illustration of embedding directional information to orient Frozen-PINN-
swim basis functions along the gradient of the initial condition: (Left): A
toy initial condition u0 : R2 → R varying in a single direction, (Middle): A
randomly selected pair of points (x(1), x(2)) leads to a SWIM basis function
misaligned with the gradient of the initial solution, (Right): A projected pair
of points (x̂(1), x̂(2)) yields a basis function aligned with the gradient of u0.

Figure 5: Constructing useful Frozen-PINN-swim bases. (Left): shock-aware sampling (Burgers,
(Section 3.4)) and (Right): direction-aware bases (reaction–diffusion, Section 3.7).

As shown in Table 1, Frozen-PINNs achieve 46 to 2945 times speedups in training time over other
PINN variants in the low-precision regime. Remarkably, even in the high-precision regime, CPU-
trained Frozen-PINNs remain 203 to 535 times faster than state-of-the-art GPU-trained PINNs
at comparable accuracy. While optimizers like SSBroyden (Kiyani et al., 2025) can offer higher
accuracy, they are extremely slow, resource-intensive, and difficult to implement. Furthermore,
Frozen-PINN-swim basis functions handle shocks significantly better than Fourier or Chebyshev
bases used in classical spectral methods (see Figure 22, Figure 23, Appendix C.4.1).

3.5 NON-LINEARITY AND COMPLICATED DOMAIN GEOMETRY

In this example, we consider a non-linear diffusion equation on a complicated domain geometry. See
Appendix C.5 for details. For mesh-based methods, meshing can be resource-intensive and technically
demanding (see Figure 24), unlike neural PDE solvers. As shown in Table 1, Frozen-PINNs are
145 to 456 times faster than PINNs and 4.83 times faster than FEM at comparable low-precision
accuracy, and can achieve over 1000 times better accuracy than other PINNs. Notably, Frozen-PINNs
require only 350 basis functions versus around 2000 finite elements in FEM for similar accuracy (see
Table 18), mainly due to the global support of neural bases. For fairness, the FEM grid points are
reused as collocation points for minimizing the PDE residual in Frozen-PINNs.
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3.6 CHAOS AND STRONG NON-LINEARITY

We tackle the highly nonlinear Kuramoto-Sivashinsky equation, which models laminar flame-front
instabilities that exhibit spatiotemporal chaos. As shown in Figure 6, our Frozen-PINN captures
the characteristic chaotic pattern over a long-time horizon t ∈ [0, 5], with an average training time
of only 6.9 seconds on CPU (averaged over 5 seeds). Further experimental details are provided in
Appendix C.7. Since chaotic dynamics amplify small numerical differences, trajectory-level errors
are not meaningful, and we assess performance based on the qualitative spatiotemporal patterns.

3.7 HIGH-DIMENSIONAL PDES WITH LOW-DIMENSIONAL SOLUTION MANIFOLDS

In this benchmark (Zang et al., 2020), we solve a five-dimensional non-linear reaction-diffusion
equation, where the solution only changes in two dimensions that are a priori unknown. We construct
SWIM basis functions aligned with the two intrinsic dimensions of variation, directly embedding
directional information unlike in PINNs and ELMs, by using spatial coordinates projected onto
the gradient of the initial solution to sample SWIM basis functions, as shown in Figure 5b. See
Appendix C.6 for further details.

Table 1 shows that Frozen-PINN-swim is over 3400 times faster than other PINNs at comparable
low-precision accuracy. It is the only method to reach the high-precision regime, achieving 2–3
orders of magnitude higher accuracy than other PINN variants and weak adversarial networks (Zang
et al., 2020). These results confirm that explicitly embedding informative basis functions yields far
more efficient and accurate models than relying on iterative optimization to learn them implicitly.

3.8 HIGH-DIMENSIONALITY

High-dimensional PDEs, such as the 100-dimensional heat equation, are computationally prohibitive
for grid-based methods, which require more than 1030 grid points, considering only two points per
dimension. The following examples demonstrate Frozen-PINNs’ ability to solve such PDEs efficiently
and accurately. We evaluate our approach on two established benchmarks: one introduced in Wang
& Dong (2024), which addresses the heat equation in up to 10 dimensions on a unit hypercube,
and another introduced in He et al. (2023), which focuses on a 100-dimensional variant of the heat
equation on a unit ball. We discuss all details in Appendix C.8.

Frozen-PINN-elm is consistently 10–1000 times more accurate than classical PINNs for up to 100-
dimensional PDEs Figure 7 (top), with error decaying rapidly with network width until saturation
Figure 7 (bottom). For the 10-d heat equation, Frozen-PINN-elm trains 100 − 1000 times faster
than other PINNs while achieving higher accuracy. For the 100-d heat equation, CPU-trained
Frozen-PINNs remain hundreds of times faster than GPU-trained PINNs while delivering an order-
of-magnitude better accuracy (Table 1), underscoring both their computational efficiency and high
accuracy. Table 2 summarizes the advantages of our algorithm over classical mesh-based and
physics-informed methods based on iterative gradient-descent-based methods.

4 CONCLUSION

Frozen-PINNs directly address the longstanding training and accuracy bottlenecks of PINNs by
fundamentally simplifying the optimization problem and enforcing temporal causality by construc-
tion, leveraging the idea of space-time separation. Our extensive empirical analysis reveals that
Frozen-PINNs consistently realize extremely fast training and high precision (often several orders
of magnitude better than SOTA PINNs), and preserve temporal causality on a broad range of PDEs
involving challenges such as extreme flow velocities, long-time simulation, higher-order spatial and
temporal derivatives, complicated spatial domains, non-linearities, shocks, and high-dimensionality,
without requiring specialized hardware like GPUs. Frozen-PINNs maintain high precision over
long time spans and capture high-frequency temporal dynamics where prior neural PDE solvers fail.
Within the scope of the empirical study in this work, in low dimensions, Frozen-PINNs match the
accuracy of classical mesh-based solvers while retaining advantages such as mesh-free basis functions,
ease of implementation, the ability to handle complex domains, spectral convergence for PDEs with
smooth solutions, and scalability for high-dimensional PDEs where mesh-based approaches struggle.
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Table 1: Summary of empirical results on eight PDE benchmarks, including results from prior
works: dashes denote training times not reported in prior works; Training times labeled with + were
obtained using GPUs; thus, CPU-based training, as with Frozen-PINNs, would lead to substantially
larger values. For each PDE, solvers above/below the horizontal line correspond to low-/high-
precision regimes. Normalized training times relative to Frozen-PINNs are computed as the ratio of
each method’s training time to that of Frozen-PINNs, and are computed at similar accuracy.

PDE benchmark Method Training Normalized Relative L2 error
time (s) training time

Advection (β = 40) PINN (Adam) - - Fail for β=40
SWIM - - Fail for β=40
ELM - - Fail for β=40
Causal PINN 357.63 533 2.90e0 ± 1.2e0
PINN (L-BFGS) 30.5 45.5 6.92e-1 ± 2.96e-2

Krishnapriyan et al. (2021) PINN (seq2seq, L-BFGS) - - 2.41e-1
Krishnapriyan et al. (2021) PINN (Curriculum training, L-BFGS) - - 5.33e-2

Frozen-PINN-elm (our) 0.67 1 4.19e-3 ± 2.97e-3
Frozen-PINN-swim (our) 0.7 1 8.42e-9 ± 1.12e-8
Mesh-based method (IGA) 0.07 0.1 1.17e-10

Euler-Bernoulli (classical) PINN (Adam) 4209.82 84196 3.95e-2 ± 1.79e-2
Kapoor et al. (2023) PINN (L-BFGS) 2303.71 46074 4.21e-3 ± 9.56e-4

Frozen-PINN-elm (our) 0.05 1 2.82e-4 ± 2.15e-4
Mesh-based method (IGA) 0.94 0.13 4.21e-7
Frozen-PINN-elm (our) 6.90 1 9.33e-9 ± 4.36e-9

Euler-Bernoulli (Winkler) PINN (L-BFGS) 1858+ 37160+ 5.33e+0
Kapoor et al. (2024b) Adaptive PINN 3807.89 76140 5.32e+0
Kapoor et al. (2024b) Self-adaptive PINN 4042.57 80840 5.15e+0
Kapoor et al. (2024b)) Wavelet PINN 4764.25 95280 4.38e+0
Kapoor et al. (2024b) Causal PINN 1873+ 37460+ 3.00e-2

Frozen-PINN-elm (our) 0.05 1 1.41e-2 ± 4.19e-3
Frozen-PINN-swim (our) 2.41 1 1.42e-7 ± 1.20e-7
Mesh-based method (IGA) 1.08 0.44 2.70e-8

Wave Hao et al. (2024) PINN (FBPINN) 3090+ 5517.9+ 5.91e-1 ± 4.74e-2
Hao et al. (2024) PINN (L-BFGS) 350+ 625+ 5.88e-1 ± 9.63e-2
Hao et al. (2024) PINN (gPINN) 775+ 1383.9+ 5.56e-1 ± 1.67e-2
Hao et al. (2024) PINN (NTK) 840+ 1500+ 9.79e-2 ± 7.72e-3

Frozen-PINN-elm (our) 0.56 1 1.81e-6 ± 1.01e-6

Burgers Causal PINN 1531.79 2945.75 1.60e-2 ± 8.97e-3
PINN (L-BFGS) 275.2 529.2 3.88e-3 ± 2.61e-3

Kiyani et al. (2025) PINN (BFGS with trust region) 24+ 46.1+ 1.1e-3
Frozen-PINN-swim (our) 0.52 1 1.00e-3 ± 1.13e-3

Chen et al. (2024b) PINN (residual-based attention) - - 8.22e-4 ± 2.33e-4
McClenny & Braga-Neto (2023) Self-adaptive PINN - - 4.80e-4 ± 1e-4
Chen et al. (2024b) PINN (balanced residual decay rate) - - 1.38e-4 ± 0.85e-4
Kiyani et al. (2025) PINN (RAdam + BFGS) 1070 203+ 6e-6
Urbán et al. (2025) PINN (SSBroyden) - - 2.9e-6 ± 0.4e-6

Frozen-PINN-swim (our) 5.25 1 2.27e-7 ± 6.89e-8
Mesh-based method (IGA) 76.32 14.5 1.12e-7

Kiyani et al. (2025) PINN (Adam + SSBroyden) 2812+ 535+ 1.62e-8

Nonlinear diffusion PINN (Adam) 81.36 145.2 2.09e-2 ± 3.14e-3
PINN (L-BFGS) 255.9 456.9 1.22e-2 ± 2.38e-4
Mesh-based method (FEM) 2.71 4.83 2.68e-3
Frozen-PINN-elm (our) 0.56 1 2.60e-3 ± 1.61e-3
Frozen-PINN-swim (our) 423 - 2.00e-6 ± 1.99e-6

5-d Reaction diffusion PINN (Adam) 171.43 3428.6 3.40e-1 ± 1.79e-2
PINN (L-BFGS) 183.38 3667.6 3.33e-2 ± 1.54e-2

Zang et al. (2020) Weak Adversarial Network - - 2.8e-2
Frozen-PINN-swim (our) 0.05 1 1.07e-2 ± 4.52e-4
Frozen-PINN-swim (our) 12.43 - 9.99e-5 ± 6.21e-9

10-d heat PINN (Adam) 1002.49 3037.8 1.68e-1 ± 3.21e-2
Wang & Dong (2024) PINN (L-BFGS) 189.6 574.5 6.06e-4 ± 1.00e-4
benchmark extended to d = 10 Frozen-PINN-elm (our) 0.33 1 4.35e-4 ± 5.91e-5

Frozen-PINN-elm (our) 168.6 - 2.28e-5 ± 2.1e-5

100-d heat He et al. (2023) PINN (Adam) 141+ 1084.6+ 0.60e-2
He et al. (2023) PINN (no stacked-backpropagation) 49.8+ 383.1+ 0.63e-2

PINN (Adam+L-BFGS) 26.25+ 201.9+ 4.98e-3 ± 2.96e-4
Frozen-PINN-elm (our) 0.13 1 4.12e-4 ± 1.70e-5
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Figure 6: Frozen-PINN solution of the strongly non-
linear and chaotic Kuramoto-Sivashinsky equation.

PDE setting IGA-FEM/ PINNs Frozen-PINNs

FEM

Solutions with shocks ✓ ✓ ✓ (SWIM)
Complex domains mesh Easy Easy
High dimensionality ✗ (CoD) ✓ ✓

Performance/features

Accuracy/Precision High Often low High
Speed Fast Slow (training) Fast
Temporal causality ✓ ✗ (soft constraint) ✓

Table 2: Comparison of Frozen-PINNs with mesh-based
FEM and classical PINNs in different problem settings
presented in this paper: The comparison is grounded in
results reported in Section 3 for the PDEs and solvers
studied. ✓ denotes compatibility, and ✗ denotes either
incompatibility or the need for substantial modifications.
Curse of Dimensionality is abbreviated as CoD.
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Figure 7: High-dimensional heat equation:
(Top): comparison of test errors for vary-
ing PDE dimensions (different hatch pat-
terns indicate different benchmarks), (Bot-
tom): fast decay of test error with network
width (dashed: Frozen-PINN-swim, solid:
Frozen-PINN-elm).

Limitations and future work: Our method assumes knowledge of the PDE, but its speed makes
it well-suited for inverse problems via fast forward solves. While Frozen-PINNs efficiently deal
with extreme temporal complexity, as shown in the advection equation with extreme flow velocities,
dealing with spatial complexity encountered while solving PDEs like Navier–Stokes is an exciting
next step, where one could leverage domain decomposition to deal with the added complexity
(Moseley et al., 2023; Howard et al., 2024). Finally, universal approximation properties concerning
specific PDE settings and understanding the role of re-sampling network parameters in overcoming
the Kolmogorov n-width barrier (Peherstorfer, 2022) are some of the most challenging, yet important
theoretical open areas of investigation, beyond the scope of this paper.

Frozen-PINNs take a decisive step toward practical neural PDE solvers through a lightweight opti-
mization process and extremely fast training without GPUs, promoting low-carbon AI development
(Verdecchia et al., 2023), advancing state-of-the-art performance, and establishing a formidable
benchmark for the community to build upon in advancing rapid and accurate neural PDE solvers.
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Reproducibility statement: The code to reproduce the experiments from the paper, along with
reproducibility instructions, is included in the supplemental material. The source code will be released
as open-source upon acceptance. All experiments are run with multiple seeds, and the corresponding
seed values are stored in the repository to ensure reproducibility.

Ethics statement: Neural networks are inherently dual-use technologies, and ethical considerations
are essential for any new machine learning approach. Frozen-PINNs are grounded in classical
scientific computing principles, which offer well-understood behavior and interpretability. By
bridging neural PDE solvers with classical numerical methods, our framework enables clearer
analysis of robustness, failure modes, and reproducibility. We believe this transparency reduces the
risk of misuse and enhances controllability, making Frozen-PINNs safe and interpretable. Thus, we
believe that the benefits of our approach far outweigh the potential downsides of misuse because a
system that is better understood can also be controlled more straightforwardly.
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A EXTENDED REVIEW OF RELATED WORK

In this section, we provide a comprehensive extended review of the literature and highlight how it
relates to our work.

Physics-informed neural networks are widely used to solve PDEs with neural networks. In
this work, we benchmark our approach against various PINN variants such as adaptive activation
PINNs (Jagtap et al., 2020), self-adaptive PINNs (McClenny & Braga-Neto, 2023), wavelet PINNs
(Uddin et al., 2023), and causal PINNs (Wang et al., 2024c), among others. For high-frequency
temporal variations in the PDE solutions, Krishnapriyan et al. (2021) propose curriculum learning
with gradually increasing advection coefficients. Compared to curriculum learning, our approach
with space-time separation is much easier to implement, computationally efficient, and accurate, as
we demonstrate in Section 3.1. Subramanian et al. (2023) propose using adaptive self-supervision of
PINNs for sampling collocation points using the gradient of the loss function. We instead use the
solution gradient to capture locally sharp features in the solution (see Section 3.4). Many specialized
approaches based on PINNs (Cho et al., 2024; Meng et al., 2020; Sharma & Shankar, 2022; Chiu
et al., 2022), methods based on hash-encoding (Huang & Alkhalifah, 2024; Wang et al., 2024a), and
transfer learning (Kapoor et al., 2024b) have been proposed, but are still based on gradient-based
iterative optimization and back-propagation, unlike ours.

Other recent advances of PINNs include methods that model the PDE system as pseudo-sequences.
For instance, PINNsFormer employs a Transformer-based architecture that constructs pseudo-
sequences from spatio-temporal samples and uses self-attention to model long-range temporal
dependencies (Zhao et al., 2024). Another work, PINNMamba, is based on State Space Models
(SSMs) and sub-sequence alignment, enabling continuous–discrete temporal modeling and improved
propagation of initial-condition information (Xu et al., 2025). Although these methods model
PDE systems as pseudo-sequences, these architectures often lead to more computational time and
out-of-memory issues owing to their architecture, as presented by Xu et al. (2025).

Physics-informed approaches using randomized neural networks for solving PDEs have mostly
been studied by combining Extreme Learning Machines (ELMs) with the self-supervised setting of
PINNs (Chen et al., 2024a; Wang & Dong, 2024; Shang & Wang, 2024; Sun et al., 2024). For instance,
Dwivedi & Srinivasan (2020) propose a physics-informed extreme learning machine (PIELM) to
efficiently solve linear PDEs, while Calabrò et al. (2021); Galaris et al. (2022) employ ELMs to
learn invariant manifolds as well as PDEs from data. Dong & Yang (2022) show that given a
fixed computational budget, ELMs achieve substantially higher accuracy compared to classical
second-order FEM and slightly higher accuracy compared to higher-order FEM. For static, nonlinear
PDEs, ELMs can be used together with nonlinear optimization schemes (Fabiani et al., 2021). On
larger spatiotemporal domains, Dong & Li (2021) and Dwivedi et al. (2021) propose using multiple
distributed ELMs on multiple subdomains. Although the aforementioned methods simplify the
optimization problem by randomly sampling hidden layer parameters and fixing them, they treat
time as merely another spatial dimension. As a result, their neural basis functions span the full
spatiotemporal domain, which limits their accuracy on PDEs exhibiting high-frequency temporal
dynamics, unlike our approach.

While the problem setting is restricted to Hamiltonian systems, Rahma et al. (2024; 2025) discuss
how to train Hamiltonian neural networks and Hamiltonian graph neural networks using ELM and
SWIM approaches, and demonstrate how random sampling can be leveraged to significantly speed
up training compared to gradient-based iterative optimization. In this work, we show how random
sampling can speed up training and resolve optimization challenges of PINNs for time-dependent
PDEs.

Neural Galerkin schemes (Finzi et al., 2023; Aghili et al., 2024; Berman et al., 2024; Bruna et al.,
2024) offer an alternative to the full spatiotemporal approach of the randomized neural networks and
PINNs. These approaches treat all or sparse subsets of network parameters, beyond just the last
layer’s parameters, as time-dependent. This leads to a much larger system of ODEs compared to our
approach. The work on neural implicit representations (Chen et al., 2023; Yin et al., 2023) also uses
neural basis functions to represent only the space component, but relies on gradient-based iterative
optimization via back-propagation, unlike our approach.
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Spectral methods for solving PDEs promise fast convergence with much fewer basis functions.
Meuris et al. (2023) present a method to extract hierarchical spatial basis functions from a trained
DeepONet and employ it in a spectral method to solve the given PDE. Xia et al. (2023) integrate
adaptive techniques into PINN-based PDE solvers to obtain numerical solutions of unbounded domain
problems that standard PINNs cannot efficiently approximate. Lange et al. (2021) propose spectral
methods that fit linear and nonlinear oscillators to data and facilitate long-term forecasting of temporal
signals. Dresdner et al. (2022) demonstrate spectral solvers that provide sub-grid corrections to
classical spectral methods to improve their accuracy. Du et al. (2023) use fixed orthogonal bases to
learn PDE solutions as a map between spectral coefficients and introduce a training strategy based on
spectral loss. These methods differ from ours in problem setting, architecture, and training.

Neural operator frameworks (Lu et al., 2021a; Kovachki et al., 2021; Li et al., 2020; Pfaff et al.,
2021) are promising but are typically trained with PDE solutions with different initial conditions,
spatial domains (geometries), or parameter settings. Datar et al. (2025) have demonstrated how
continuous-time neural networks can be constructed for linear operator approximation for linear
and time-invariant systems. Instead, in our setting here, we solve the PDE using given coefficients,
domain, and initial conditions without relying on any training data. The ease of implementation,
rapid training, and high accuracy of our backpropagation-free approach can be leveraged to generate
PDE solution data for training operator networks.

Mesh-free methods are typically based on radial basis functions (RBFs, (Powell, 1992; Chen et al.,
2014)) or Moving Least Squares (MLS) (Shepard, 1968; Lancaster & Salkauskas, 1981). These
often do not have user-friendly software or are only applicable in specialized settings (e.g., smoothed
particle hydrodynamics, (Lucy, 1977; Gingold & Monaghan, 1977; Shadloo et al., 2016)). Moreover,
despite the ease of dealing with complicated geometries, these methods typically suffer from many
challenges, such as the choice of kernel, imposing boundary conditions, and convergence issues.
These methods are not the focus of this work.

Classical numerical methods such as finite elements, finite volumes, and finite differences have
been used to solve PDEs for decades. They often have a rich theoretical grounding and high accuracy.
Isogeometric analysis (IGA) is one such method, in which spline-based basis functions are defined
over a structured grid (Hughes et al., 2005; Cottrell et al., 2009; 2006). Mesh-based methods often
entail a time-consuming setup phase, especially when mesh generation is challenging. Methods
like sparse grids enable adaptivity through hierarchical bases but pose significant implementation
challenges, particularly for irregular domains (Bungartz & Griebel, 2004). In this work, we benchmark
our results against IGA and finite-element-based methods.

B SUPPLEMENTARY METHODOLOGICAL DETAILS ON PDE SOLVERS

B.1 PHYSICS-INFORMED NEURAL NETWORKS

This work benchmarks Frozen PINNs against many prominent variants of physics-informed neural
networks. While we directly report results from other works for many PINN variants for different PDE
benchmarks (see Table 1), we also implement two PINN variants for certain PDEs - classical physics-
informed neural network (PINN) (Raissi et al., 2019) and causality-respecting physics-informed
neural network (causal PINN) (Wang et al., 2024c). We now describe these two variants.

Classical PINNs are feedforward deep neural networks designed to approximate PDE solutions by
incorporating physical laws into the learning process. The architecture of a vanilla PINN includes a
deep neural network that maps inputs (e.g., space and time coordinates) to outputs (e.g., physical
quantities of interest) and is trained to minimize a loss function that combines data and physics-based
errors. The data term ensures that the neural network fits the provided data points, while the physics
term enforces the PDE constraints with automatic differentiation. The constraints on initial and
boundary conditions are satisfied via additional loss terms. The loss function for a classical PINN is:

L(µ) = λ1LPDE(µ) + λ2LIC(µ) + λ3LBC(µ) + λ4LData(µ), (6)

where µ represents the trainable network parameters, and λi, for i = 1, 2, 3, 4 represent the weighting
factors for individual loss terms, which are hyperparameters. In this work, we consider the setting of
unsupervised learning and thus neglect the data loss term.
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Let N be the total number of training points, which is the sum of the number of interior training points
Nint (where the PDE residual is evaluated), initial condition training points Nic (where the initial
condition is evaluated), and boundary condition training points Nb (where the boundary condition is
evaluated). We denote the neural network solution at a point (x(n), t(n)) in the computational domain
by u∗(x(n), t(n)). We consider the generic nonlinear PDE defined by equation 1. The PDE loss term
is defined by

LPDE(µ) =
1

Nint

Nint∑
n=1

||u∗
t (x

(n), t(n)) + Lu∗(x(n), t(n)) + λN(u∗)(x(n), t(n))− f(x(n))||p. (7)

The boundary condition loss term is defined as

LBC(µ) =
1

Nb

Nb∑
n=1

||Bu∗(x(n), t(n))− g(x(n))||p. (8)

Similarly, the initial condition loss term is defined as

LIC(µ) =
1

Nic

Nic∑
n=1

||u∗
0(x

(n))− u0(x
(n))||p. (9)

We now describe a Causal PINN, which modifies the PINN loss function to impose temporal causality,
inherent in time-dependent PDEs, as a soft constraint. In conventional PINNs, the loss is computed
without prioritizing accuracy at earlier times, which disrupts temporal causality. The Causal PINN
remedies this by assigning weights at each time step based on the cumulative loss from previous
steps, ensuring that the model concentrates on accurately approximating solutions at earlier times
before moving forward. This tries to incorporate the causal structure of the physical problem being
solved as a soft constraint. The causal PDE loss term is defined by

LPDE(µ) =

Nt∑
i=1

wiLPDE(ti, µ), where

w1 = 1, wi = e−ϵ
∑i−1

k=1 LPDE(tk,µ), for i = 2, 3, . . . Nt.

(10)

Here Nt represents the number of time steps into which the computational domain is divided. The
causality hyperparameter ϵ regulates the steepness of the weights and is incorporated in the loss
function, similar to Kapoor et al. (2024b). This modification introduces a weighting factor wi for the
loss at each time level ti, with wi being dependent on the cumulative PDE loss up to time ti. The
network prioritizes a fully resolved solution at earlier time levels by exponentiating the negative of
this accumulated loss. Consequently, the modified PDE loss term for a causal PINN is expressed as

LPDE(µ) =
1

Nt

[
w1LPDE(t1, µ) +

Nt∑
i=2

e−ϵ
∑i−1

k=1 LPDE(tk,µ)LPDE(ti, µ)

]
. (11)

B.2 FROZEN-PINN-SWIM AND FROZEN-PINN-ELM

B.2.1 EXTENDED DISCUSSION ON FROZEN-PINNS

Difference compared to training physics-informed neural networks: We summarize the
difference between training classical physics-informed neural networks and Frozen PINNs in Figure 8.

Comparison between Frozen-PINN-swim and Frozen-PINN-elm One of the main factors in-
fluencing the performance of Frozen-PINN-swim and Frozen-PINN-elm is the underlying solution
of the PDE. We explain, with an example of the Burgers’ equation, how the SWIM sampling can
be leveraged when the solution has steep gradients, as one can sample localized basis functions in
the part of the domain where the solution has steep gradients. For ELM, the probability of sampling
steep basis functions with the vanilla ELM is lower, as illustrated in the Figure 2. Even if one uses
a different distribution to sample the network parameters such that more basis functions with steep
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Compute derivatives 
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Classical	training	of	physics-informed	neural	networks	using	gradient-based	iterative	optimization.	

Network parameters: 

Basis functions only in 
the space domain 

(sampled and frozen)

Time-dependent 

output layer 
parameters

Solve a Least 
squares 
problem 

Impose hard 
constraints

OR

Classical ODE 
solvers with 

step-size 
control

Total loss: 

- Solve the coupled optimization problem: 

- Algorithm: Gradient-based iterative optimization (back-propagation) 

- Total loss: 

                  (Minimize the initial condition loss separately)

- Algorithm: Sampling, least squares, and classical ODE solvers

- Solve the de-coupled optimization problem: 

Frozen	PINNs:	Training	physics-informed	neural	networks	without	gradient-descent.	

Figure 8: Comparison of Frozen-PINNs (bottom row) that leverage a gradient-descent-free training
algorithm, with conventional PINNs (top row) that rely on gradient-based iterative optimization:
conventional PINNs use basis functions in the entire spatio-temporal domain and solve a fully coupled
optimization problem involving multiple loss terms via gradient-based iterative training. In contrast,
Frozen-PINNs sample basis functions only in space, make time dependence explicit only in the output
layer, decouple initial/boundary conditions, and leverage least squares and adaptive ODE solvers.
Parameters dependent on space, time, and both are indicated by blue, orange, and blue-orange colors,
respectively, offering a direct visual representation of the space–time separation in Frozen-PINNs.
Notation: The network output û(x, t, θ) approximates the solution to the PDE. The total loss term
(L(θ)) sums three loss terms - one for the initial condition (LIC(θ)), one for the boundary conditions
(LBC(θ)), and one for the PDE residual (LPDE(θ)) that together impose physical constraints.

gradients are sampled, placing the basis functions at appropriate spatial locations is another challenge.
With ELM, one cannot resample or choose basis functions using data as it is data-agnostic. Thus,
especially if the solution has localized steep gradients, the performance of ELM is typically worse
compared to SWIM. We additionally demonstrate with a snapshot of the Burgers’ solution that SWIM
basis functions exhibit a rapid exponential decay of error with increasing network width, where ELM,
Fourier, and Chebyshev basis functions used in classical spectral methods suffer from the Gibbs
phenomenon (see Appendix C.4.1) and lead to poor scaling and accuracy (see Figure 23, Figure 22).

If the underlying solution is sufficiently smooth and does not have steep gradients anywhere in the
domain, ELM typically performs very well, as seen in the example with the Advection equation (see
Section 3.1), Euler Bernoulli equation (see Section 3.2), and high-dimensional diffusion equation
(Section 3.8), where Frozen-PINN-elm performs much better than Frozen-PINN-swim as shown in
Table 31. While we just use the vanilla SWIM algorithm in the presented results, one can easily adapt
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the algorithm and, after sampling the network parameters with SWIM, multiply the basis functions
with a tunable scaling factor before applying the non-linearity to sample many more basis functions
with shallow slopes.

Thus, the choice between the two strategies is particularly governed by the underlying solution of
the PDE. Apart from the favorable cases for each method mentioned above, both methods have
comparable performance and typically outperform PINNs by several orders of magnitude in speed
and time. Thus, the rapid training of our approach could be leveraged to try out both approaches if
one has no information about what the solution of the PDE could look like.

Influence of random sampling on the method Similar to the question of how PINNs trained with
Adam/SGD perform based on their random network initialization, understanding the influence of
weights on the output is a challenge. There are two main differences between (stochastic) gradient-
based optimization and our setting. First, after fixing the internal weights, we use regularized
least-squares (not a stochastic method) to fit the initial condition. Second, we do not use a stochastic
method to solve over time. Therefore, even though PINNs can adapt their random initialization over
the gradient-based optimization, precisely that optimization also adds stochasticity. If the number
of neurons for the model increases, the randomness in our case decreases because the regularized
least-squares fit to the initial condition (which converges to a single solution in the limit of many
neurons), while stochastic gradient descent will only converge to a distribution (because of mini-batch
optimization). This has been observed for the supervised learning problems in Bolager et al. (2023),
particularly in the transfer learning experiments. In Table 1, we observe that our model’s performance
is often orders of magnitude better, and the variance is on the same scale as the magnitude.

“data-driven” and “data-agnostic” sampling In this work, we assume that we do not have access
to the true solution of the PDE. The term “data-driven sampling” can be misleading for the problem
setting of this paper, which concerns unsupervised learning tasks. Thus, here we clarify what we
mean by data-driven sampling. Our data are random pairs of collocation points, but we do not have
access to the true function values (because, at the initial time point t = 0, we have not solved the
PDE yet). Thus, even though we do not have access to the true solution of the PDE, we call this
"data-driven" sampling because we create the parameters of our basis functions (neurons) so that they
are centered strictly within the domain. We achieve this by using data points sampled in the domain,
thereby considering the geometry and bounds of the spatial domain. Note that with data-agnostic
sampling in ELM, the neurons can easily be centered outside the spatial domain because weights and
biases are chosen without considering any information about the geometry and bounds of the spatial
domain. To summarize, though our algorithm proposes "data-driven" sampling, we do not start with
time-series data and instead work in a self-supervised setting.

Rationale for constructing outer basis functions One might reasonably ask that if one knows
the outer basis functions analytically, why add another layer just to approximate them with tanh
basis functions? When analytical basis functions are known, they should be used directly. However,
in many cases, such expressions are not readily available. We argue that this idea of a boundary-
compliant layer can be quite powerful for PDEs where the basis functions are not known analytically
but only through boundary conditions, which we can then incorporate by constructing useful outer
basis functions. For instance, to solve the diffusion equation on complex geometries, one can use the
optimal bases consisting of the eigenfunctions of the Laplacian operator computed numerically at
discrete points as the outer basis functions (Coifman & Lafon, 2006). Thus, representing them with
tanh basis functions facilitates a straightforward computation of the derivatives needed for solving
the PDE.

Kolmogorov n-width barrier Without resampling the internal network parameters, our method
faces the Kolmogorov n-width barrier Peherstorfer (2022); Du & Zaki (2021); Berman & Peherstorfer
(2024); Kast & Hesthaven (2024) because our basis functions are not time-dependent. However,
resampling basis functions at certain time points of the Frozen-PINN-swim (as done in the Burgers’
equation in Section 3.4) results in a solution- and time-dependent basis approximation of the solution
manifold and, thus, in theory, can break the barrier. PINNs can theoretically break the Kolmogorov
n-width barrier as time is treated as an extra spatial dimension, and internal network parameters are
time-dependent. However, for PINNs, the optimization issues pose much more severe challenges even
on very simple PDEs and in low dimensions (Krishnapriyan et al., 2021; Wang et al., 2021; 2022).
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Figure 9: (Advection Equation): Empirical analysis of how initial condition loss affects the perfor-
mance of Frozen-PINNs: (Left): Relative error of the full space-time solution Vs rcond, (Right):
Relative error of the full space-time solution grows with the relative error of the initial condition
(controlled via rcond).

So even though our vanilla Frozen-PINN-swim/Frozen-PINN-elm approach (without periodically
resampling hidden layer weights) faces the Kolmogorov n-width barrier, we outperform PINNs,
typically by several orders of accuracy and time in practice.

Analysis of residual initial condition loss and its impact on model performance For all PDEs
considered here, the initial condition is relatively easy to fit, and one can approximate it accurately by
sampling enough collocation points at t = 0, using enough basis functions, and setting a relatively low
regularization constant (≈ 10−12). So, the initial condition loss is not the bottleneck in any of the
PDEs we considered here. However, it is interesting to investigate the impact of initial condition loss
on the model’s performance.

Given Nc collocation points X ∈ RNc×d, M neurons, and hidden layer output Φ(X), the initial
condition is computed via a least squares solution:

C(0) = u(X, 0)⊤[Φ(X),1]+, (12)

where [Φ(X),1] ∈ R(M+1)×Nc and the pseudo-inverse is denoted by ·+. We compute this least
squares solution C(0) using the Python function np.linalg.lstsq, which takes as an argument
rcond which is the cut-off ratio for small singular values of [Φ(X),1]. High cut-off ratios reduce the
accuracy of the least-squares solution, while very low ratios lead to poorly conditioned systems that
can introduce numerical errors. We perform an experiment by progressively increasing the cut-off
value to deliberately degrade the initial-condition fit and study its impact on the overall PDE residual.
We solve the advection equation given in Equation (24), using the same hyperparameter settings
as in Table 5, fix the advection coefficient to 40, and vary rcond from 10−1 to 10−17. Figure 9
shows that small rcond values yield highly accurate initial-condition fits and low relative error. As
rcond increases, more dominant singular values are discarded in the least-squares solve, degrading
the initial-condition representation and leading to larger errors in the full space–time solution. Thus,
for Frozen-PINNs, maintaining a reasonably accurate initial condition fit is important, as inaccuracies
can influence the ODE solve and increase the overall error.

On the choice of the SVD truncation threshold: The SVD truncation threshold is a crucial
hyperparameter for Frozen-PINNs, determining the dimensionality of the ODE solver and affecting
the speed and accuracy of Frozen-PINNs. We conduct an ablation study on the SVD truncation
threshold for Burgers’ equation (Equation (28)), the nonlinear diffusion equation (Equation (29)), and
the 10-dimensional diffusion equation (Equation (33)) with hyperparameters described in Table 14,
Table 18, Table 29, respectively. We change the width to 200 for the non-linear diffusion equation,
and for all PDEs, we only vary the SVD truncation thresholds. For detailed problem setups please
refer to Appendix C.4, Appendix C.5, Appendix C.8.
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(b) Nonlinear diffusion
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Figure 10: Impact of the SVD truncation threshold ϵSV D used for the SVD layer on the time-to-
solution and accuracy of Frozen-PINN across three PDEs. Black triangles in the nonlinear diffusion
plot indicate solution blow-up at large SVD cutoffs.

Figure 10 highlights the well-known trade-off between accuracy and speed. Retaining fewer singular
values reduces the dimensionality and stiffness of the last-layer ODE, yielding faster solutions with
similar or slightly lower accuracy. Retaining more singular values increases dimensionality and
stiffness, which slows the solver but improves accuracy. Importantly, the performance is robust for
SVD truncation thresholds ϵSV D < 10−10.

The choice of the optimal SVD truncation threshold depends highly on the application constraints.
Higher thresholds (ϵSV D ≥ 10−8) are suitable for faster solutions with moderate accuracy, while
very low thresholds (ϵSV D ≤ 10−13) are preferable when high accuracy is the primary goal. The
default value we choose is 10−12 as it represents a good trade-off between accuracy and speed. We
always set the rcond (regularization constant for the initial least squares solve) to the same value
as the SVD truncation threshold because: (a) it also represents the cut-off ratio for the SVD of the
feature matrix for the initial least squares solve and it does not make sense to solve this with extremely
high or low precision when the data has already been passed through the SVD layer, to maintain a
similar level of truncation as the SVD layer. (b) Empirically, we observe very robust performance if
we set the regularization constant to be equal to the SVD threshold (see Figure 9, where the relative
error stays the same for the rcond values in the range 10−17 − 10−11, when the SVD truncation
threshold is set at 10−14).

On the choice between the two strategies for enforcing boundary conditions: In practice, the
choice between the boundary-compliant layer and the augmented ODE follows a simple cost-benefit
tradeoff.

We recommend using a boundary-compliant layer when a problem-specific transformation ϕA(X) is
easy to derive (e.g., zero Dirichlet, periodic boundary conditions on simple domains). It enforces
boundary conditions (almost) exactly and does not enlarge the ODE system, so it is typically more
efficient. The main limitation is that it requires deriving ϕA(X), which may be non-trivial for
complex geometries or boundary conditions.

We recommend using the Augmented ODE strategy when boundary geometry or constraints make
an analytic boundary-compliant mapping difficult. This is universally applicable and requires no
problem-specific engineering since it soft-enforces boundary conditions by augmenting the state, at
the cost of increasing system dimension and possibly worsening stiffness.

B.2.2 COMPUTING SPATIAL AND TEMPORAL DIFFERENTIAL OPERATORS IN PDES

We use the notation described in Section 2 of the manuscript. We first discuss how to compute
different spatial and temporal derivative terms appearing in the PDEs described in this manuscript
using the neural network ansatz. We then use these expressions to reformulate the PDEs described in
this manuscript as corresponding ODEs. We consider neural networks in the most general setting by
considering the outer basis functions and the SVD layer (cf Algorithm 1).

Computing spatial derivatives: We list and describe how to compute the spatial derivatives of the
approximate PDE solutions:
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• First-order spatial derivative of the approximate PDE solution is computed as:

ûx(x, t) = C(t)[ΦAr
]x(x)

= C(t)[ArW ⊙ σ̃x(x), 0] ∈ R1×d,
(13)

where ⊙ is the Hadamard product, and

σ̃x(x) := [σz(z)|z=Wx⊤+b, σz(z)|z=Wx⊤+b, . . . , σz(z)|z=Wx⊤+b] ∈ RMs×d, (14)

with σz(z) ∈ RMs and σz is the first derivative of the tanh activation function.

• Second-order spatial derivative of the approximate PDE solution is computed as:

ûxx(x, t) = C(t)[ΦAr
]xx(x)

= C(t)[ArW ⊙W ⊙ σ̃xx(x), 0] ∈ R1×d,
(15)

where σ̃xx(x) is defined equivalently as σ̃x(x) but with σxx being the second-order spatial
derivative of the tanh activation function.

• The Laplacian of the approximate PDE solution is computed as:

∆û(x, t) = C(t)[ΦAr
]xx(x)1, where, 1 ∈ Rd×1

= C(t)[ArW ⊙W ⊙ σ̃xx(x), 0]1 ∈ R1×1.
(16)

• Fourth-order spatial derivative of the approximate PDE solution is computed as:

ûxxxx(x, t) = C(t)[ΦAr
]xxxx(x)

= C(t)[ArW ⊙W ⊙W ⊙W ⊙ σ̃xxxx(x), 0] ∈ R1×d,
(17)

where σzzzz is the fourth-order spatial derivative of the tanh activation function.

Computing time derivatives: We now list and describe how to compute the time derivatives of the
approximate PDE solutions:

• First-order time derivative of the approximate PDE solution is computed as:

ût(x, t) = Ct(t)[ΦAr
](x). (18)

• Second-order time derivative of the approximate PDE solution is computed as:

ûtt(x, t) = Ctt(t)[ΦAr ](x). (19)

B.2.3 REFORMULATING PDES AS ODES USING FROZEN-PINN ANSATZ

The partial differential equations considered in this work are recast as ordinary differential equations
for evolving output layer coefficients, making use of the spatial and temporal derivatives derived in
Appendix B.2.2. We denote the pseudo-inverse by ·+.

Advection equation: The one-dimensional advection equation is

ut(x, t) + βux(x, t) = 0,

where β is a scalar. Approximating the solution with neural network ansatz (Equation (2)) and
substituting Equation (18) and Equation (13) in the advection equation, we get,

Ct(t)[ΦAr (X)] = −βC(t)[ΦAr (X)]x,

Ct(t) = −βC(t)[ΦAr
(X)]x[ΦAr

(X)]+.

The initial condition is given by

C(0) = u(X, 0)⊤[ΦAr (X)]+.
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Euler-Bernoulli equation: The Euler-Bernoulli PDE considered in this manuscript is

utt + uxxxx = f(x, t).

Approximating the solution with neural network ansatz (Equation (2)) and substituting Equation (17)
and Equation (19) in the Euler-Bernoulli equation, we get,

Ctt(t)Φ(X) = f(X, t)⊤ − C(t)Φxxxx(X)

We rewrite this second-order ODE as a combination of first-order ODEs given by

Ct(t) = D(t),

Dt(t)Φ(X) = f(X, t)⊤ − C(t)Φxxxx(X).

We then reformulate the ODEs as

(Ct(t) Dt(t)) = (C(t) D(t))

(
0 −Φ(X)xxxxΦ(X)+

1 0

)
+ (0 1) [f(X, t)]⊤Φ(X)+.

The initial condition is given by

C(0) = u(X, 0)⊤Φ(X)+,

D(0) = ut(X, 0)⊤Φ(X)+.

The extension to the Euler-Bernoulli beam equation on a Winkler foundation is straightforward,
where the reformulated ODE is written as:

(Ct(t) Dt(t)) = (C(t) D(t))

(
0 − (Φ(X)xxxx + κΦ(X)) Φ(X)+

1 0

)
+ (0 1) [f(X, t)]⊤Φ(X)+.

Wave equation: The wave equation considered in this manuscript is

utt − κuxx = f(X, t).

Approximating the solution with neural network ansatz (Equation (2)) and substituting Equation (15)
and Equation (19) in the wave equation, we get,

Ctt(t)Φ(X) = f(X, t)⊤ − κC(t)Φxx(X)

We rewrite this second-order ODE as a combination of first-order ODEs given by

Ct(t) = D(t),

Dt(t)Φ(X) = f(X, t)⊤ − κC(t)Φxx(X).

We then reformulate the ODEs as

(Ct(t) Dt(t)) = (C(t) D(t))

(
0 −κΦ(X)xxΦ(X)+

1 0

)
+ (0 1) [f(X, t)]⊤Φ(X)+.

The initial condition is given by

C(0) = u(X, 0)⊤Φ(X)+,

D(0) = ut(X, 0)⊤Φ(X)+.

Burgers’ equation: The one-dimensional Burgers’ PDE we consider is

ut + uux − αuxx = 0,

where α is a scalar. Approximating the solution with neural network ansatz (Equation (2)) and
substituting Equation (18), Equation (13) and Equation (15) in the Burgers equation, we get,

Ct(t)ΦAr
(X) = − (C(t)ΦAr

(X)⊙ C(t)[ΦAr
]x(X)) + α (C(t)[ΦAr

]xx(X)) ,

Ct(t) = − (C (t) ΦAr
(X)⊙ C (t) [ΦAr

]x(X) + α (C (t) [ΦAr
]xx (X))) [ΦAr

(X)]+

Note that the non-linearity is transferred to the right-hand side of the ODE. The initial condition is
given by

C(0) = u(X, 0)⊤Φ(X)+.
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Nonlinear diffusion equation: The two-dimensional nonlinear diffusion equation we consider is
ut − u∆u = f(x, t), x ∈ Ω ⊂ R2, t ∈ [0, 1]. (20)

Approximating the solution with neural network ansatz (Equation (2)), substituting Equation (18),
and Equation (15) in the nonlinear diffusion equation, we get,

Ct(t)Φ(X) = (C(t)Φ(X)⊙ [C(t)Φxx(X)]1) + [f(X, t)]⊤,

Ct(t) =
(
C (t) Φ(X)⊙ [C (t) Φxx(X)]1+ [f(X, t)]⊤

)
Φ(X)+.

Note that the non-linearity is transferred to the right-hand side of the ODE. The initial condition is
given by

C(0) = u(X, 0)⊤Φ(X)+.

Nonlinear reaction-diffusion equation: The two-dimensional nonlinear diffusion equation we
consider is

ut −∆u− u2 = f(x, t), x ∈ Ω ⊂ R5, t ∈ [0, 1]. (21)
Approximating the solution with neural network ansatz (Equation (2)), substituting Equation (18),
and Equation (15) in the nonlinear diffusion equation, we get,

Ct(t)Φ(X) = [C(t)Φxx(X)]1+ (C(t)Φ(X)⊙ C(t)Φ(X)) + [f(X, t)]⊤,

Ct(t) =
(
[C(t)Φxx(X)]1+ (C(t)Φ(X)⊙ C(t)Φ(X)) + [f(X, t)]⊤

)
Φ(X)+.

The non-linearity u2 is transferred to the right-hand side of the ODE. The initial condition is given by

C(0) = u(X, 0)⊤Φ(X)+.

High-dimensional diffusion equation: The d-dimensional diffusion equation we consider is

ut −∆u = f(x, t), x ∈ Ω ⊂ Rd, t ∈ [0, 1]. (22)
Approximating the solution with neural network ansatz (Equation (2)), substituting Equation (18),
and Equation (15) in the diffusion equation, we get,

Ct(t)Φ(X) = [C(t)Φxx(X)]1+ [f(X, t)]⊤,

Ct(t) =
(
[C (t) Φxx(X)]1+ [f(X, t)]⊤

)
Φ(X)+.

The initial condition is given by

C(0) = u(X, 0)⊤Φ(X)+.

Kuramoto-Sivashinsky equation: The governing PDE considered in this manuscript is
ut + αuux + βuxx + γuxxxx = f(X, t).

Approximating the solution with neural network ansatz (Equation (2)) and substituting Equation (13),
Equation (15), Equation (17) and Equation (18) in the Kuramoto-Sivashinsky equation, we get,

Ct(t)Φ(X) = f(X, t)⊤ − C(t)Φ(X)⊙ C(t)Φx(X)− β C(t)Φxx(X)− γC(t)Φxxxx(X).

We can reformulate it as:
Ct(t) =

(
f(X, t)⊤ − C(t)Φ(X)⊙ C(t)Φx(X)− β C(t)Φxx(X)− γC(t)Φxxxx(X)

)
Φ(X)+.

The initial condition is given by

C(0) = u(X, 0)⊤Φ(X)+.

Note on ODE solvers and interpolation in time: We use the solve_ivp routine of the SciPy
package Virtanen et al. (2020). One can pass test points in time as an argument to the method
solve_ivp. One can optionally set the parameter dense_output to true, which means that the
output of the ODE is a function handle that can be evaluated by interpolation at any time point t ∈ Ω.
The method specified dictates the interpolation order. RK23 uses a cubic Hermite polynomial, while
DOPRI85 uses a seventh-order polynomial.
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B.2.4 HANDLING BOUNDARY CONDITIONS VIA BOUNDARY-COMPLIANT LAYER

To enforce periodic boundary conditions, it is sufficient for each basis function to satisfy the periodic
condition individually, as the Frozen-PINN ansatz, which is a linear combination of these functions,
will inherently satisfy it as well. For instance, for a one-dimensional spatial domain, we find A
so that AΦ(xl) = AΦ(xr), where xl, xr are the left and right boundary points of the domain. In
this paper, for certain PDEs (see Appendix C), for x ∈ Ω and k = 1, 2, . . . ,Ms, we approximate
[AΦ]k(x) = sin(kx) (for k even) and [AΦ]k(x) = cos(kx) (for k odd) and set c0(t) = 1 for all t.
For zero Dirichlet boundary condition given by u(x) = 0, we can use the technique described above
by choosing basis functions so that Aϕ(x) = 0 for x ∈ ∂Ω. For other boundary conditions, we
propose using the augmented ODE trick to satisfy the boundary conditions.

B.2.5 HANDLING BOUNDARY CONDITIONS VIA AUGMENTED ODE

Our approaches to satisfying the Dirichlet and periodic boundary conditions are already explained in
the main text. Here, we explain how we handle time-dependent Dirichlet boundary conditions and
Neumann boundary conditions.

Time-dependent Dirichlet boundary conditions: For handling time-dependent Dirichlet bound-
ary conditions (u(x, t) = g(x, t) for x ∈ ∂Ω), we set A to the identity map and augment the ODE
(Equation (3)) with an additional equation given by

ût(x, t) = gt(x, t) for x ∈ ∂Ω =⇒ Ct(t) = [R(X,C(t)), gt(Xb, t)]︸ ︷︷ ︸
∈R1×(Nc+Nb)

ΦA([X,Xb])
+︸ ︷︷ ︸

∈R(Nc+Nb)×(Mb+1)

.

In the example in Section 3.5, we know the solution on the boundary at all time points, which is
continuously differentiable. If the solution on the boundary points is not available at all time points,
one can interpolate and approximate the derivative of the solution on the boundary.

Neumann boundary conditions: For simple spatial domains, one can choose appropriate outer
basis functions as described in Section 2.4 that inherently satisfy the Neumann boundary conditions.
For instance, for zero Neumann boundary conditions on a one-dimensional domain, one can choose
outer basis functions consisting of cosines of different frequencies scaled to the domain (function
value is 1 at the boundaries) so that their spatial derivatives, which are the sine functions, are zero on
the boundary points.

On complicated domain geometries, to satisfy Neumann boundary conditions (∇u(x, t) · n̂(x) = 0
for x ∈ ∂Ω), we set A to the identity map and augment the ODE (Equation (3)) with an additional
equation for the boundary points and solve

Ct(t) = [R(X,C(t)), 0]︸ ︷︷ ︸
∈R1×(Nc+Nb)

[ΦA(X),∇ΦA(Xb)[n̂(Xb)]
⊤]+︸ ︷︷ ︸

∈R(Nc+Nb)×(Mb+1)

.

B.3 IGA-FEM

First introduced in Hughes et al. (2005), Isogeometric analysis (IGA) is a numerical method developed
to unify the fields of computer-aided design (CAD) and finite element analysis (FEA). The key idea
is to represent the solution space for the numerical analysis using the same functions that define the
geometry in CAD (Cottrell et al., 2009), which include the B-Splines and Non-Uniform Rational
B-Splines (NURBS) (Piegl & Tiller, 1997).

In this paper, we use B-Splines as the basis functions. The B-Splines are defined using the Cox-de
Boor recursion formula (COX, 1972; de Boor, 1972), i.e.,

Ni,0(ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise,

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ),
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where ξi is the ith knot, and p is the polynomial degree. The vector Ξ = [ξ1, ξ2, . . . , ξn+p+1] is the
knot vector, where n is the number of B-Splines. By specifying the knot vector, we define the basis
functions we use to solve the PDEs. We use a uniform open knot vector, where the first and last
knots have multiplicity p+ 1, the inner knots have no multiplicity, and all knots that have different
values are uniformly distributed. We refer to the knots with different values as "nodes". The intervals
between two successive nodes are knot spans, which can be viewed as "elements". The elements
form a "patch". A domain can be partitioned into subdomains, and each is represented by a patch. In
our work, we use a single patch to represent the entire 1D domain. Figure 11a shows an example of
such a patch, where the B-Splines are Cp-continuous within the knot spans and Cp−1 continuous
at the inner knots. In order to address the boundary conditions, we adapt the B-Splines as shown in
Figure 11b Figure 11c, so that the boundary conditions are directly built into the solution space.

(a) Number of basis func-
tions = 7.

(b) Number of basis func-
tions = 5.

(c) Number of basis func-
tions = 5.

Figure 11: Examples of B-Splines representing the 1D domain [0, 1]. Number of nodes = 6 and
degree of polynomials = 2. (Left): The original B-Splines. (Middle): Adapted B-Splines to satisfy the
Dirichlet boundary condition. (Right): Adapted B-Splines to satisfy the periodic boundary condition.
Note that the first (blue) spline is identical to the second last (brown) one, and the second (orange)
spline is identical to the last (pink) one, as they share the same coefficient. The gray dashed lines
indicate where the domain starts and ends.

In the following, we refer to the adapted B-Splines as basis functions ϕk(x). Thus, the solutions of
PDEs are approximated by

u(x, t) =

K∑
k=1

ck(t)ϕk(x).

We solve the PDEs in the weak formulation. For the linear advection equation (see Equation (24)),
the weak form of the equation is

K∑
k=1

c′k(t)

∫
X

ϕk(x)v(x)dx+ β

K∑
k=1

ck(t)

∫
X

ϕ′
k(x)v(x)dx = 0, (23)

where v(x) are the test functions. The test functions are chosen to be the same as the basis functions.
The integral of the functions is computed using Gaussian quadrature. Then we solve the linear
Ordinary differential equation (ODE)

Mċ+Kc = 0,

where matrix M and matrix K contain the integral of the B-Splines and their derivatives, and the
coefficient β, which are given. We solve the Euler-Bernoulli equation equation 25 and the Burgers’
equation equation 28 in a similar way. The boundary condition for the Euler-Bernoulli equation is, in
addition, weakly imposed, as is done in Prudhomme et al. (2001).

C SUPPLEMENTARY DETAILS ON NUMERICAL EXPERIMENTS

Here, we discuss additional experimental details for the PDEs considered in this work. We start by
listing the details on the code repository, FEM software, hardware, error metrics, and ablation studies:
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• Code repository: The source code, along with the instructions on reproducing the results,
is provided in the supplemental material (zipped file) and will be released publicly upon
acceptance. The code repository provides Python scripts and notebooks that can be readily
executed and tested.

• FEM code: In this paper, we use DOLFINx 0.8.0 to solve the nonlinear diffusion equation
(see equation 29). DOLFINx (Baratta et al., 2023), which is part of the FEniCS project,
is a C++ and Python library used for solving PDEs with the finite element method (FEM).
It provides tools for defining complex geometries, formulating variational problems, and
solving them efficiently on distributed architectures. We used the software Gmsh (Geuzaine
& Remacle, 2009) to generate a mesh for this experiment with complicated geometry, as
shown in Figure 24a.

• Hardware details: The computational experiments for Frozen PINNs, FEM, and IGA-FEM
were performed with: Ubuntu 20.04.6 LTS, NVIDIA driver 515.105.01 and i7 CPU.

• Metrics for computing errors: We use the Root Mean Squared Error (RMSE) and the
relative L2 error to quantify errors in all experiments (see Appendix C for the definitions).
We compute the test error on a uniform grid for all PDEs with 256 points in space and 100
points in time, unless otherwise specified. We use float64 numerical precision in all the
experiments.
Let d be the dimension of space and Ω× [0, T ] ⊂ Rd × R be the spatio-temporal domain.
Given N points in a test set X , the error metrics we use to compare numerical results are
Root Mean Squared Error (RMSE) and relative L2 error given by

RMSE :=

√∑
x∈X(utrue(x)− upred(x))2

N
,

and

Relative L2 error :=

√∑
x∈X(utrue(x)− upred(x))2√∑

x∈X(utrue(x))2
.

For each experiment, the mean and standard deviation of the RMSE and the relative L2 error
are computed with three seeds.

• Ablation studies for neural architecture and SVD layer: We perform ablation studies
whenever necessary for the neural architectures we considered in this work. Importantly, we
also perform an ablation study on the SVD layer. To quantify the compression in width after
the SVD layer, we define a compression ratio as Cr = Ms

r , where Ms is the width of the
(sampled) hidden layer before the SVD layer (assuming no-boundary-compliant layer), and
r is the width of the SVD layer (see Figure 3). We define a speed-up in computation time
as s = Tno-svd

Tsvd
as the ratio of computational time without the SVD layer to the time required

with the SVD layer.

We now describe the detailed problem setups, ablation studies, and plots comparing the results of
Frozen-PINNs with those of other approaches for all PDEs considered here (see Figure 12).

C.1 LINEAR ADVECTION EQUATION

Problem setup: The linear advection equation describes the transport of a quantity and is used to
model many real-life applications, such as simplified traffic flow models, transport of pollutants in
rivers or the atmosphere (Rood, 1987; McGraw et al., 2024). Here, we consider the linear advection
equation with periodic boundary conditions given by

ut(x, t) + βux(x, t) = 0, for x ∈ [0, 2π], t ∈ [0, 1], (24a)

u(x, 0) = sin(x), for x ∈ [0, 2π], (24b)

u(0, t) = u(2π, t), for t ∈ [0, 1]. (24c)

The analytical solution of Equation (24) is given by u(x, t) = sin(x − βt). We describe detailed
hyperparameter settings used for the experiments on: (a) high-advection speeds (how the error grows
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Figure 12: Overview of the PDE benchmarks considered in this study, highlighting the core challenges
associated with each problem and their corresponding ground truth solutions. Boundary conditions
are abbreviated as BC.
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with the advection coefficient β), (b) convergence (how the error decays with the number of basis
functions for a fixed advection coefficient β = 10), (c) error for advection coefficient β = 40 (for a
comparison with other PINN-based variants), and (d) long-time simulation for T = 1000 seconds
for a fixed advection coefficient β = 1 in Table 3, Table 4, Table 5, and Table 8, respectively. The
hidden layer weights for ELM and Frozen-PINN-elm are sampled from the Gaussian distribution and
biases from a uniform distribution in [−4, 4]. For SWIM and ELM, we use 1000 interior points for
β ∈ {10−2, 10−1, 1, 10}, and we use 8000 interior points for β ∈ {40, 100}. The code repository
contains all the necessary Python notebooks to reproduce results for Frozen-PINNs for all the different
cases of the advection equation considered here, including the three key experiments concerning high
advection speeds, convergence, and long-time simulation (see Section 3.1).

Deeper networks and further optimization experiments: Additional experiments are carried out
for baseline PINN on deeper networks with 10 and 20 hidden layers, where each hidden layer has
30 neurons. The experiments are run for 20000 epochs using Adam and L-BFGS optimizers under
multiple learning rates for the advection equation with β = 10 and β = 40. Tables 6 and 7 summarize
the RMSE, relative L2 errors, and training times for β = 10 and β = 40 cases, respectively. The
results show consistency with the known literature of PINNs. First, deeper PINNs do not directly
lead to better performance. Increasing depth from 10 to 20 layers often degrades accuracy for both
optimizers, reflecting the optimization difficulty of fully-connected PINNs as the models become
deeper. This behavior is also discussed previously in the literature, for instance by Wang et al. (2024b),
where the authors show that PINN performance is known to degrade when larger and deeper neural
network architectures are employed. Second, the β = 40 case is known to be challenging for PINNs
(Krishnapriyan et al., 2021) due to high frequency features, and the results presented in Table 7 show
failures across depths, learning rates, and optimizers. The results show that even with larger networks,
longer training, and different optimizers, standard PINNs face challenges in achieving high accuracy,
especially for β = 40, and require more computational time. Thus, matching the accuracy of standard
PINNs with the proposed method is inherently challenging and computationally expensive.

Ablation studies: For the advection coefficient β = 10, the ablation study for Frozen-PINN-swim,
Frozen-PINN-elm, and vanilla PINNs is already presented in Figure 4(Middle) for varying the number
of neurons and interior points. The ablation studies for PINNs for the network width and number
of interior points are presented in Table 9, and Table 10, respectively. Since the network width is
already quite low for optimal parameters, the SVD layer does not further reduce the dimension of the
ODE system. Hence, we do not perform ablation studies for the SVD layer in Frozen-PINNs, as it is
not used in this case.

Comparison of results: Figure 13 shows the absolute errors obtained with the Frozen-PINN-swim,
Frozen-PINN-elm, PINN, Causal PINN, and IGA methods along with the ground truth for β = 40.
One can observe that all approaches considered here, besides Frozen-PINNs and IGA-FEM, fail to
capture the high-frequency temporal dynamics. Figure 14 shows the true solution at β = 1 for the
example with long time simulation.

C.2 EULER-BERNOULLI EQUATION

Problem Setup: The time-dependent Euler–Bernoulli beam equation models the dynamic behavior
of beams, including vibrations and transient loads. It is used to model loads on rail tracks, bridges,
and aircraft wings, among many other applications (Beskos, 1987). We consider two different types
of the Euler-Bernoulli beam equations in this work. The first is the classical Euler-Bernoulli beam
equation that models a simply supported beam with varying transverse force and is described as

utt + uxxxx = f(x, t) x ∈ [0, π], t ∈ [0, 1], (25a)
where f(x, t) = (1− 16π2) sin (x) cos(4πt), with initial and boundary conditions

u(x, 0) = sin(x), ut(x, 0) = 0, (25b)
u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0. (25c)

The forcing function and the analytical solution are taken from Kapoor et al. (2023).

We consider another variant of the Euler-Bernoulli beam equation, with a Winkler foundation (an
elastic, deformable foundation) given by:

utt + uxxxx + p(x, t) = f(x, t) x ∈ [0, 8π], t ∈ [0, 1]. (26a)
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Figure 13: Advection equation (β = 40): absolute error plots and ground truth.

Figure 14: Advection equation β = 1, (long time simulation): Analytical solution u(x, t) =
sin(x− βt).

The forcing term is f(x, t) = (2− π2) sin (x) cos(πt), with the initial and boundary conditions

u(x, 0) = sin(x), ut(x, 0) = 0, (26b)

u(0, t) = u(8π, t) = uxx(0, t) = uxx(8π, t) = 0. (26c)
The foundation reaction force p(x, t) is assumed to be proportional to the displacement of the beam
and modeled as p(x, t) = κu(x, t), where κ is the spring constant and is set to 1 in this case. The
forcing function and the analytical solution for the Euler-Bernoulli beam equation with a Winkler
foundation are taken from Kapoor et al. (2024b).

Ablation studies: The ablation studies for the PINN-based variants for classical Euler Bernoulli
and the one with the Winkler foundation could be found in Kapoor et al. (2023; 2024b). The
hyperparameters for various neural PDE solvers used for solving the classical Euler-Bernoulli PDE
and the one with the Winkler foundation are described in Table 11, and Table 12, respectively. The
hidden layer weights for Frozen-PINN-elm are sampled from the Gaussian distribution and biases
from a uniform distribution in [−2, 2].

For this example, we have employed the augmented ODE strategy to satisfy boundary conditions and
obtain the results presented in Table 1. We empirically investigate the effect of the penalty term in the
augmented ODE on the performance of Frozen-PINNs, considering both accuracy and computation
time. For this experiment, we use the hyperparameters described in Table 11 for Frozen-PINN-elm
(high-precision regime) and vary the value of κ. Figure 15 shows that: (a) for κ > 105, the boundary
loss is negligible (RMSE < 10−10) and the total loss is very low (RMSE ∼ 10−5−10−9), and (b) for
extremely large κ ≥ 106, the augmented ODE becomes slightly stiffer, resulting in increased solution
time.
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Table 3: Advection equation (high-advection speeds): Network hyper-parameters used for
β ∈ {10−2, 10−1, 1, 10, 40, 100, 1000, 10000} to study the influence of the advection coefficient
on the errors (optimal hyper-parameters in bold) (see Figure 4(Left).

Parameter Value

Frozen-PINN-swim, Number of hidden layers 2
Frozen-PINN-elm Hidden layer width [140, 380, 560]

Outer basis functions [10, 14, 20, 40]
Activation tanh
L2-regularization [10−8, 10−10, 10−12, 10−14]
Loss mean-squared error
boundary condition strategy boundary-compliant layer

SWIM, ELM Number of hidden layers 2

SVD cutoff 10−12

Hidden layer width [140, 380, 560]
Activation tanh
L2-regularization [10−8, 10−10, 10−12]
Loss mean-squared error
# Initial and boundary points 400

IGA Number of nodes 16
Degree of polynomials 8
Number of basis functions 15

PINN Number of hidden layers 4
Layer width [10, 20, 30, 40]
Activation tanh
Optimizer LBFGS
Epochs 5000
Loss mean-squared error
Learning rate 0.1
Batch size 200
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1
# Interior points [500, 1000, 1500, 2000]
# Initial and boundary points 600

Causal PINN Number of hidden layers 4
Layer width 30
Activation tanh
Optimizer ADAM followed by LBFGS
ADAM Epochs 2000
LBFGS Epochs 5000
Loss mean-squared error
Learning rate 0.1
Batch size 2000
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1
# Interior points 40000
# Initial and boundary points 6000
Causality parameter, ϵ 10
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Figure 15: The effect of penalty term κ in the augmented ODE (see Equation (5)) on the losses and
time to solution.

Comparison of results: Figure 16 and Figure 17 present the absolute errors for the classical Euler-
Bernoulli PDE and its variant with a Winkler foundation, respectively, using Frozen-PINN-swim,
Frozen-PINN-elm, PINN, and IGA methods, along with the true solution. The error plots for the
Euler-Bernoulli beam equation with a Winkler foundation for other variants of PINNs, such as
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Table 4: Advection equation (convergence for β = 10): Optimal hyper-parameters in the experiment
designed to study how the error decays with the number of basis functions in the neural network (see
Figure 4(Middle).

Parameter Value

Frozen-PINNs Number of hidden layers 2
(both variants) Hidden layer width [2, ..., 30]

Activation tanh
L2-regularization [10−7, 10−8, 10−9, 10−10, 10−11, 10−12]
Loss mean-squared error
boundary condition strategy boundary-compliant layer

PINN Number of hidden layers 4
Layer width [10, 20, 30, 40]
Activation tanh
Optimizer LBFGS
Epochs 5000
Loss mean-squared error
Learning rate 0.1
Batch size 200
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1

Table 5: Advection equation (for β = 40): Hyper-parameters for the results in Table 1.

Parameter Value

Frozen-PINN-elm (low-precision) Number of hidden layers 2
Hidden layer width 50
Outer basis functions [14]

svd cutoff [10−12]
Activation tanh
L2-regularization 10−10

ODE solver tolerance 10−4

Loss mean-squared error
boundary condition strategy boundary-compliant layer

Frozen-PINN-swim (high-precision) Number of hidden layers 2
Hidden layer width 380
Outer basis functions [14]

svd cutoff [10−12]
Activation tanh
L2-regularization 10−14

ODE solver tolerance 10−8

Loss mean-squared error
boundary condition strategy boundary-compliant layer

PINN Number of hidden layers 4
Layer width [10, 20, 30, 40]
Activation tanh
Optimizer LBFGS
Epochs 5000
Loss mean-squared error
Learning rate 0.1
Batch size 200
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1

Wavelet PINN, causal PINN, adaptive PINN, and self-adaptive PINNs, can be found in Kapoor et al.
(2024b). Table 1 shows the summary of results for the classical Euler-Bernoulli beam equation and
the variant considering the Winkler foundation for different methods.

C.3 WAVE EQUATION

Problem Setup: The acoustic wave equation models the propagation of sound waves through a
medium. It describes how pressure or velocity evolve over time. We consider the wave equation on
Ω = [0, 1] for time t ∈ [0, 1] from Hao et al. (2024), given by:

utt − 4uxx = 0, x ∈ Ω, t ∈ [0, 1], (27a)
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Table 6: Results of PINNs for advection equation (β = 10) for dense networks (number of hidden
layers = 10 and 20, with each hidden layer having 30 neurons). The experiment studies the perfor-
mance of PINNs with L-BFGS and ADAM optimizers under different learning rates. Each case is
run for 20000 epochs.

Optimizer Learning rate
RMSE Relative L2 error Training time (s)

Hidden layers Hidden layers Hidden layers
10 20 10 20 10 20

L-BFGS
0.1 6.02e-4 1.23e-2 8.51e-4 1.74e-2 204.25 336.32
0.01 1.57e-3 1.30e-2 2.22e-3 1.84e-2 213.26 327.41

Adam
0.001 2.26e-2 1.64e-2 3.19e-2 2.32e-2 174.84 301.12
0.0001 6.72e-3 2.07e-2 9.5e-3 2.92e-2 190.24 317.97

Table 7: Results of PINNs for advection equation (β = 40) for dense networks (number of hidden
layers = 10 and 20, with each hidden layer having 30 neurons). The experiment studies the perfor-
mance of PINNs with ADAM and L-BFGS optimizers under different learning rates. Each case is
run for 20000 epochs.

Optimizer Learning rate
RMSE Relative L2 error Training time (s)

Hidden layers Hidden layers Hidden layers
10 20 10 20 10 20

L-BFGS
0.1 3.09e-3 1.53e+1 4.37e-3 2.17e+1 207.25 320.43
0.01 1.46e-2 7.07e-1 2.07e-2 1.00e+0 205.08 323.43

Adam
0.001 3.66e-1 7.07e-1 5.18e-1 1.00e+0 168.14 331.03
0.0001 6.67e-1 6.82e-1 9.44e-1 9.65e-1 181.89 316.90

Table 8: Advection equation (long-time simulation for β = 1): Optimal hyper-parameters for
Frozen-PINNs in the experiment used to demonstrate that the errors with Frozen-PINNs stay low for
simulations up to 1000 seconds (see Figure 4(Right)).

Parameter Value

Frozen-PINN Number of hidden layers 2
(both variants) Hidden layer width 250

Outer basis functions 25
Activation tanh
L2-regularization [10−10]
Loss mean-squared error
boundary condition strategy boundary-compliant layer

Table 9: Advection equation (β = 10): Ablation study for PINN (LBFGS) with respect to the network
width. The mean is computed over 3 seeds.

Layer width Training time (s) RMSE Relative L2 error

10 24.47 ± 0.19 1.24e-3 ± 2.38e-4 1.76e-3 ± 3.37e-4
20 27.46 ± 0.08 6.52e-4 ± 2.59e-4 9.22e-4 ± 3.66e-4
30 30.43 ± 0.50 3.69e-4 ± 4.33e-5 5.23e-4 ± 6.13e-5
40 33.64 ± 0.41 3.86e-4 ± 9.37e-5 5.46e-4 ± 1.32e-4

with the initial condition

u(x, 0) = sin(πx) +
1

2
sin(4πx), x ∈ Ω, (27b)

ut(x, 0) = 0, x ∈ Ω, (27c)

and the boundary condition

u(0, t) = u(1, t) = 0 t ∈ [0, 1]. (27d)
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Table 10: Advection equation (β = 10): hyperparameter optimization for PINN (LBFGS) varying
the number of interior points. The mean is computed over 3 seeds.

Interior points Training time (s) RMSE Relative L2 error

500 25.76 ± 0.29 4.10e-4 ± 7.20e-5 5.80e-4 ± 1.01e-4
1000 27.44 ± 0.25 3.72e-4 ± 4.06e-5 5.27e-4 ± 5.74e-5
1500 29.61 ± 0.16 5.68e-4 ± 1.97e-4 8.03e-4 ± 2.79e-4
2000 30.43 ± 0.50 3.69e-4 ± 4.33e-5 5.23e-4 ± 6.13e-5
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Figure 16: The classical Euler-Bernoulli beam equation: absolute error plots and ground truth.
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Figure 17: The Euler-Bernoulli beam equation on Winkler foundation: absolute error plots and
ground truth.

The analytical solution of the problem is

u(x, t) = sin(πx) cos(2πt) +
1

2
sin(4πx) cos(8πt). (27e)
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Table 11: The classical Euler-Bernoulli beam equation for the results in Table 1: summary of all
hyperparameters.

Parameter Value

Frozen-PINN-elm (low-precision) Number of hidden layers 2
Hidden layer width 50

SVD-cutoff 10−6

Activation tanh
L2-regularization 10−6

Loss mean-squared error
boundary condition strategy augmented ODE

Frozen-PINN-elm (high-precision) Number of hidden layers 2
Hidden layer width 100

SVD-cutoff 10−12

Activation tanh
L2-regularization 10−10

Loss mean-squared error
boundary condition strategy augmented ODE

IGA Number of nodes 27
Degree of polynomials 9
Number of basis functions 33

PINN Number of hidden layers 4
Layer width 20
Activation tanh
Optimizer LBFGS (ADAM)
Epochs 15000 (30000)
Loss mean-squared error
Learning rate 0.1
Batch size 2000
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 0.1, 1
# Interior points 10000
# Initial and boundary points 6000

Table 12: The Euler-Bernoulli beam equation on Winkler foundation for the results in Table 1:
summary of all hyperparameters.

Parameter Value

Frozen-PINN-elm (low-precision) Number of hidden layers 2
Hidden layer width 200

SVD-cutoff 10−6

Activation tanh
L2-regularization 10−6

Loss mean-squared error
boundary condition strategy augmented ODE

Frozen-PINN-swim (high-precision) Number of hidden layers 2
Hidden layer width 400

SVD-cutoff 10−10

Activation tanh
L2-regularization 10−10

Loss mean-squared error
boundary condition strategy augmented ODE

IGA Number of nodes 60
Degree of polynomials 6
Number of basis functions 63

PINN Number of hidden layers 4
Layer width 200
Activation tanh
Optimizer LBFGS
Epochs 10000
Loss mean-squared error
Learning rate 0.1
Batch size 500
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1
# Interior points 10000
# Initial and boundary points 1500
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In addition, we present a significantly challenging scenario involving a multi-scale solution by
employing the initial condition

u(x, 0) = sin(πx) +
1

2
sin(4πx) +

1

4
sin(9πx), x ∈ Ω, (27f)

ut(x, 0) = 0, x ∈ Ω, (27g)

for which the corresponding analytical solution is given by

u(x, t) = sin(πx) cos(2πt) +
1

2
sin(4πx) cos(8πt) +

1

4
sin(9πx) cos(18πt). (27h)

Comparison of results: In Table 1, we compare the Frozen-PINN-swim result of Equation (27e)
with other PINN methods from Hao et al. (2024), see Figure 18. The hyperparameters used for this
experiment can be found in Table 13. Additionally, we demonstrate the capability of our proposed
method by solving the multi-scale problem as in Equation (27h) using the same neural network
architecture, and the relative L2 error is less than 10−5. The results are shown in Figure 19.

Table 13: Wave equation: Hyper-parameters for the result in Table 1.

Parameter Value

Frozen-PINN-swim Number of hidden layers 2
Hidden layer width 400
Outer basis functions 30
Activation tanh
L2-regularization 10−12

Loss mean-squared error
boundary condition strategy boundary-compliant layer

Figure 18: Wave equation Equation (27e): Ground truth, Frozen-PINN-swim solution, absolute error.

C.4 BURGERS

Problem Setup: The Burgers’ equation in different settings is used to model traffic flows, large-
scale structure formation in cosmology, and shock formation in inviscid flows, among other appli-
cations (Bonkile et al., 2018). The inviscid Burgers’ equation is a nonlinear PDE, which can form
shock waves. We consider Burgers’ equation on Ω = [−1, 1] for time t ∈ (0, 1] from Raissi et al.
(2019), given by:

ut + uux − (0.01/π)uxx = 0, x ∈ Ω, t ∈ [0, 1], (28a)

with initial and boundary conditions

u(0, x) = − sin(πx), x ∈ Ω, (28b)

u(t,−1) = u(t, 1) = 0 t ∈ [0, 1]. (28c)

We consider the analytical solution provided by Basdevant et al. (1986).
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(a) (Left): Ground truth, (Middle): Frozen-PINN-swim solution, (Right): point-wise absolute error.

(b) 3D visualization of the multi-scale wave solution.

Figure 19: Wave equation Equation (27h): Ground truth, Frozen-PINN-swim solution, absolute error,
and multi-scale solution visualization.

Why Frozen-PINN-elm can’t resolve shocks in PDE solutions? To accurately resolve PDE
solutions with sharp gradients, it is essential to: (a) construct basis functions with steep gradients,
and (b) position them particularly near the shock regions within the domain. Figure 20a (Right)
illustrates why solution- or data-agnostic ELM basis functions make it very difficult for Frozen-
PINN-elm to capture the sharp features in the solution, particularly at the center of the domain, due
to the exponentially small probability of sampling steep basis functions (Huang et al., 2006). While
sampling weights from a wider uniform distribution, as discussed by Calabrò et al. (2021) for linear
PDEs, can increase the probability of sampling steeper basis functions, it offers no spatial control
over their placement.

Ablation studies: We describe additional details in solving the Burgers’ equation with various
neural PDE solvers in Table 14 and Table 15. The results of the ablation study with the number
of neurons in the hidden layer for Frozen-PINN-swim are presented in Table 16. We observe that
starting with a width of 1200, the error decreases for a width up to 600 and increases again below
600. We believe that for widths lower than 600, the network capacity seems to be the reason for the
loss of accuracy. For very high widths, the regularization constant has to be kept to a higher value to
avoid overfitting. Otherwise, the ODE system becomes highly stiff. With this high regularization
constant, the training becomes stable, but it affects the training accuracy. We do not include results
for Frozen-PINN-elm as it fails on all widths, as it is not able to capture the sharp shocks and exhibits
Gibbs phenomenon (Gottlieb & Shu, 1997), which is explained in detail in Appendix C.4.1.

We also perform an ablation study for the SVD layer for Frozen-PINN-swim. Please refer to Table 17.
The ablation study reveals that the SVD layer compresses the number of neurons by a factor of 1.58,
which reduces the output computation time by a factor of 7 for almost the same accuracy. This
highlights the utility of the SVD layer.
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(a) (Left): Re-sampled SWIM basis functions (with steep gradients centered
around the shock) at t = 0.66, (Right): data-agnostic ELM basis functions.
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Figure 20: Illustration of experimental results for the Burgers’ equation.

Comparison of results: Figures 20b and 20c present a comparison between the Frozen-PINN-swim
solution and the numerical solution from Raissi et al. (2019), validating the ability of Frozen-PINN-
swim to resolve shocks with high accuracy. We demonstrate with a snapshot of the Burgers’ solution
that SWIM basis functions exhibit a rapid exponential decay of error with increasing network width,
where Fourier and Chebyshev basis functions suffer from the Gibbs phenomenon Gottlieb & Shu
(1997) (See Figure 22, Figure 23, Appendix C.4.1). Figure 21 shows the absolute errors obtained
with the PINN, Causal PINN, and IGA methods.

C.4.1 COMPARISON WITH CLASSICAL SPECTRAL METHODS

In this section, we study how the basis functions sampled with SWIM and ELM approaches perform
in comparison to the basis functions typically employed in traditional spectral methods. We try to
approximate a single snapshot of the solution to the Burgers’ equation, which has a locally steep
gradient. If a method fails to even approximate a single snapshot well enough, it is highly unlikely to
achieve better results in approximating the entire space-time solution of the PDE.

Figure 22 shows the approximation of the Burgers’ equation solution at t = 0.99, using SWIM
basis functions, ELM basis functions, Fourier series, and Chebyshev polynomials, respectively. The
number of basis functions is 102 for all methods. Figure 23 shows the approximation error using a
different number of basis functions. We can see that for ELM basis functions, Fourier basis functions,
and Chebyshev polynomials, there are oscillations near the shock, and the error is large compared
to the SWIM basis functions, where we are able to take advantage of resampling data points and
sampling appropriate basis functions in order to adapt to the target function well. Note that in this
experiment, the weights for the ELM basis functions are sampled from a Gaussian distribution
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(a) PINN (b) Causal PINN
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(d) Ground truth

Figure 21: Burgers’ equation: absolute error plots and ground truth.

Table 14: Burgers’ equation: Summary of hyper-parameters for Frozen-PINNs (see Table 1).

Parameter Value

Frozen-PINN-swim (low-precision) Number of hidden layers 2
Hidden layer width [300]
Activation tanh
L2-regularization [10−6, 10−7, 10−8, 10−10, 10−12]

svd cutoff 10−8

Loss mean-squared error
# collocation points (space) [600]
# sampling points [1000]

ODE solver tolerance 10−3

# time windows for resampling 9
boundary condition strategy augmented ODE

Frozen-PINN-swim (high-precision) Number of hidden layers 2
Hidden layer width [450]
Activation tanh
L2-regularization [10−6, 10−7, 10−8, 10−10, 10−12, 10−13]

svd cutoff 5 × 10−11

Loss mean-squared error
# collocation points (space) [1000]
# sampling points [6000]

ODE solver tolerance 10−6

# time windows for resampling 9
boundary condition strategy augmented ODE

Frozen-PINN-elm Number of hidden layers 2
Hidden layer width [2000]
Activation tanh
L2-regularization [10−6, 10−7, 10−8, 10−10, 10−12]
Loss mean-squared error
# collocation points (space) [3000]
# sampling points [6000]
boundary condition strategy augmented ODE

with a standard deviation of 10 in order to increase the number of basis functions. The biases are
sampled from a uniform distribution in [−10, 10]. For the Fourier basis functions and Chebyshev
polynomials, we use equispaced grid points. We also experimented with quadrature points and placed
more points near the steep gradient in an attempt to mitigate the oscillations associated with the Gibbs
phenomenon and the Runge phenomenon, but it did not lead to any significant improvement in the
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Table 15: Burgers’ equation (see Table 1): Network hyper-parameters used for PINN, Causal PINN,
and IGA.

Parameter Value

PINN Number of hidden layers 9
Layer width 20
Activation tanh
Optimizer LBFGS
Epochs 10000
Loss mean-squared error
Learning rate 0.1
Batch size 200
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1
# Interior points 10000
# Initial and boundary points 600

Causal PINN Number of hidden layers 9
Layer width 20
Activation tanh
Optimizer ADAM followed by LBFGS
ADAM Epochs 5000
LBFGS Epochs 10000
Loss mean-squared error
Learning rate 0.1
Batch size 200
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1
# Interior points 40000
# Initial and boundary points 600
Causality parameter, ϵ 5

IGA Number of nodes 750
Degree of polynomials 9
Number of basis functions 756

Table 16: Burgers’ equation: ablation study for the network width for Frozen-PINN-swim.

Width Relative L2 error

240 4.27e-4
550 2.27e-7
800 2.78e-6
1200 1.54e-6

Table 17: Burgers’ Equation: Ablation Study for the SVD layer with Frozen-PINN-swim.

With SVD layer Without SVD layer Ratio

Number of neurons 500 316 Width Compression ≈ 1.58x
Time (s) 141.5 989.84 Speed-up ≈ 7x
Rel. L2 error 3.34e-4 3.28e-4 -

results. This conclusively demonstrates that SWIM basis functions perform better than traditional
bases used in spectral methods in accurately resolving shocks.

C.5 NONLINEAR DIFFUSION EQUATION

Problem Setup: The non-linear diffusion equation in different forms is used to model the spread of
populations, bacterial colonies, and forest fires, as well as to model groundwater and ice-sheet flow
in glaciers, and mass diffusion in reactive flows (Li et al., 2001). We consider a two-dimensional
nonlinear diffusion equation given by

ut − u∆u = f(x, y, t), (x, y) ∈ Ω, t ∈ [0, 1], (29a)

with a forcing function

f(x, y, t) = 5e−t sin(πx)y−3
(
−1 + e−t sin(πx)y−5

(
−12 + π2y2

))
(29b)
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Figure 22: Approximation of Burgers’ equation
solution at t = 0.99 with four types of basis
functions. The number of basis functions in all
cases is 102. Oscillations can be seen near the
steep gradient for the methods using ELM ba-
sis functions, Fourier functions, and Chebyshev
polynomials.
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Figure 23: Approximation error for four types of
basis functions. Here, we directly fit the Burgers’
equation solution at t = 0.99. The approxima-
tion error decreases as we increase the number
of basis functions, and the SWIM basis functions
yield the best result among all methods.

on a complicated geometry inspired by a tree-like pattern occurring during the controlled shaping of
fluids Islam & Gandhi (2017). The initial condition and time-dependent Dirichlet boundary conditions
are obtained from the constructed solution of the PDE

u(x, y, t) = 5e−t sin(πx)y−3, (x, y) ∈ Ω, t ∈ [0, 1]. (29c)

The training is performed on 1500 data points in the interior and boundary. We test the neural-PDE
solvers with 5000 data points in the interior and on the boundary. The weights of the hidden layer
for the Frozen-PINN-elm are sampled from the Gaussian distribution and biases from a uniform
distribution in [−1, 1]. For our approach to handling time-dependent Dirichlet boundary conditions,
please refer to Appendix B.2.5. The hyperparameters for various neural PDE solvers are outlined in
Table 18. Figure 24 shows the mesh generated for the FEM and the sampled collocation points for
the neural PDE solvers. For the mesh we consider for this problem (see Figure 24), we could not
improve the accuracy further with FEM by using higher-order polynomial basis functions. While
mesh refinement is possible, it’s time-consuming, and our method avoids this by working directly
with point clouds.

Ablation studies: The ablation study for the number of neurons in the hidden layer of the network
for Frozen-PINN-elm and Frozen-PINN-swim is presented in Table 19. For PINN, the results for the
ablation studies for the width of the network and the number of data points are included in Table 20,
Table 21. Additionally, we perform an ablation study for the SVD layer to demonstrate its impact on
the computation time saved in Table 22. Particularly, we observe that with the SVD layer, the number
of basis functions (width after the SVD layer) is reduced by up to 22x for Frozen-PINN-elm and up
to 1.5x for Frozen-PINN-swim, and we obtain substantial speed-ups (more than a factor of 50) in the
computation time.

Comparison of results: The comparison of training times and errors is presented in Table 1.
Figure 25 shows the ground truth and Figure 26 shows the error plots with all approaches.
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(a) Generated Mesh: FEM (b) Sampled collocation points: Neural PDE
solvers

Figure 24: Advantages of mesh-free methods: (a) For mesh-based methods, a complicated mesh
must be constructed, whereas (b) for neural PDE solvers, one can easily sample arbitrary points in
the interior (blue) and on the boundary (red) of the domain and work directly with point clouds.

Table 18: Non-linear diffusion equation (see Table 1): Summary of hyper-parameters.

Parameter Value

Frozen-PINN-elm (low-precision) Number of hidden layers 2 (nonlinear and SVD layer)
Hidden layer width 350
Activation tanh
L2-regularization 5 × 10−11

SVD cutoff 5 × 10−11

ODE solver tolerance 10−6

Loss mean-squared error
boundary condition strategy augmented ODE

Frozen-PINN-swim (high-precision) Number of hidden layers 2 (nonlinear and SVD layer)
Hidden layer width 500
Activation tanh
L2-regularization 10−15

SVD cutoff 10−15

ODE solver tolerance 10−6

Loss mean-squared error
boundary condition strategy augmented ODE

FEM Number of entities 154
Number of nodes 1193
Number of elements 2070
Type of elements Lagrange
Shape of elements triangle
Degree of polynomials 1
Number of basis functions 1193
Solver Newton solver
Timestep size 0.001

PINN Number of hidden layers 4
Layer width [10, 20, 30, 40]
Activation tanh
Optimizer LBFGS & ADAM
Epochs 10000
Loss mean-squared error
Learning rate 0.01
Batch size 1000
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 0.01, 1
# Interior points [8790, 1760, 880, 440]
# Initial and boundary points [3140, 630, 320, 160]
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Figure 25: Non-linear diffusion equation: ground truth.

(a) Absolute error: Frozen-PINN-swim.

(b) Absolute error: Frozen-PINN-elm.
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Figure 26: Non-linear diffusion equation: absolute error plots and ground truth at four-time instants.
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Table 19: Non-linear diffusion equation: ablation study for the network width for Frozen-PINN-swim
and Frozen-PINN-elm. The mean is computed over 3 seeds.

Width Relative L2 error (Frozen-PINN-swim) Relative L2 error (Frozen-PINN-elm)

200 1.34e-4 4.92e-3
300 5.07e-6 3.13e-5
400 2.88e-6 1.02e-5
500 3.02e-7 1.52e-5

Table 20: Non-linear diffusion equation: hyperparameter optimization for PINN varying layer width.
The mean is computed over 3 seeds.

Layer width Training time (s) RMSE Relative L2 error

10 61.09 ± 1.62 4.11e-2 ± 2.04e-3 1.50e-2 ± 7.48e-4
20 68.05 ± 1.56 3.74e-2 ± 1.04e-3 1.37e-2 ± 3.82e-4
30 76.01 ± 0.57 3.67e-2 ± 1.03e-3 1.34e-2 ± 3.78e-4
40 82.43 ± 0.45 3.76e-2 ± 1.69e-3 1.37e-2 ± 6.21e-4

Table 21: Non-linear diffusion equation: hyperparameter optimization for PINN varying interior
points.

Interior points Training time (s) RMSE Relative L2 error

600 65.08 ± 4.23 3.74e-2 ± 1.04e-3 1.37e-2 ± 3.82e-4
1200 98.48 ± 3.78 3.51e-2 ± 6.67e-4 1.28e-2 ± 2.44e-4
2390 143.31 ± 5.50 3.34e-2 ± 6.53e-4 1.22e-2 ± 2.38e-4

Table 22: Non-linear diffusion equation: Ablation study of the SVD layer in Frozen-PINN-swim and
Frozen-PINN-elm. We report ∞ for runtimes exceeding 3 hours. Two variants of Frozen-PINN-elm
are shown: Frozen-PINN-elm-accurate (higher accuracy, longer runtime) and Frozen-PINN-elm-fast
(lower runtime, with error comparable to or better than PINNs, enabling fair comparison). The ratio
of the hidden layer width to the SVD layer width is denoted by Cr.

Method Quantity With SVD layer Without SVD layer Ratio

Frozen-PINN-elm-accurate Width 62 300 Cr ≈ 22.8x
Time (s) 60.98 7087.38 Speed-up ≈ 52x

Rel. L2 error 6.49e-8 1.02e-6 -

Frozen-PINN-elm-fast Width 35 300 Cr ≈ 8.5x
Time (s) 30.57 ∞ Speed-up ∞

Rel. L2 error 5.12e-5 - -

Frozen-PINN-swim Width 316 500 Cr ≈ 1.5x
Time (s) 328.03 ∞ Speed-up ∞

Rel. L2 error 2e-6 - -

C.6 NONLINEAR REACTION-DIFFUSION EQUATION

Problem Setup: The non-linear reaction–diffusion equation models biological pattern forma-
tion, such as Zebra stripes, fish spots, in myriad chemical reactions, and flame propagation during
combustion (Britton, 1986; Lam & Lou, 2022).

In this benchmark from Zang et al. (2020), we consider a five-dimensional nonlinear diffusion
equation given by

ut −∆u− u2 = f(x, t), x ∈ Ω ⊂ Rd, t ∈ [0, 1], (30a)

f(x, t) = (π2 − 2) sin
(π
2
x1

)
cos
(π
2
x2

)
e−t − 4 sin2

(π
2
x1

)
cos2

(π
2
x2

)
e−2t, (30b)
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on the domain Ω = [−1, 1]d. The initial condition and time-dependent Dirichlet boundary conditions
are obtained from the constructed solution of the PDE

u(x, t) = 2 sin
(π
2
x1

)
cos
(π
2
x2

)
e−t. (31)

Note that the solution is independent of three out of five dimensions. The training is performed on
1000 data points in the interior and 1000 data points on the boundary. The test data set is generated the
same way as in Zang et al. (2020) to evaluate the weak adversarial networks. In particular, to compute
the error in the 5-dimensional domain, we use a mesh of size 100 × 100 for the two coordinate
directions in which the solution changes (here, (x1, x2)) and uniformly randomly sample the other
coordinates (here, (x3, x4, x5)) in the domain. The hidden layer weights for the Frozen-PINN-elm
are sampled from the standard Gaussian distribution and biases from a uniform distribution in [−1, 1].
Please refer to Appendix B.2.5 for our approach to handling time-dependent Dirichlet boundary
conditions.

The sampling strategy for basis functions described in Section 3.7 using projected pairs of data points
substantially improves efficiency and accuracy. Our approach requires 20 times fewer training points
in the interior compared to Zang et al. (2020) while simultaneously achieving a relative L2 error
more than two orders of magnitude lower.

Details on the sampling well-oriented basis functions: For each pair of collocation points in the
spatial domain x(1), x(2) ∈ Ω, we project the vector x(2)−x(1) onto the two-dimensional hyper-plane
spanned by the gradient of the initial solution at x(1), x(2) and use the projected points as the new
pair of points x̂(1), x̂(2) ∈ Ω. Since x̂(2) − x̂(1) always points in the direction of the gradient of the
initial solution, this allows the SWIM algorithm to embed directional information into basis functions,
unlike PINNs and ELMs, which lack this control. This idea is illustrated in Figure 5b.

Ablation studies: The ablation study for the number of neurons in the hidden layer of the network
for Frozen-PINN-elm and Frozen-PINN-swim is presented in Table 23. We further validate the
efficiency of sampling basis functions using projected pairs of data points with the Frozen-PINN-
swim approach by performing an ablation study varying the number of internal collocation points in
Table 24. Our results show that using just 1,000 data points achieves training errors that are nearly
identical to those with 20,000 points. This highlights the effectiveness of the projection trick in
reducing the need for excessive collocation points, thereby significantly lowering computational
cost without compromising accuracy. Additionally, we perform an ablation study for the SVD layer
to demonstrate its impact on the computation time saved in Table 25. We observe that with the
SVD layer, the number of basis functions (width after the SVD layer) is reduced by up to 1.57x for
Frozen-PINN-swim, and we obtain substantial speed-ups by a factor of 4.1x in the computation time.

Table 23: Non-linear reaction diffusion equation: ablation study for the network width for Frozen-
PINN-swim and Frozen-PINN-elm. The mean is computed over 3 seeds.

Width Frozen-PINN-swim (with projection) Frozen-PINN-swim Frozen-PINN-elm

100 1.44e-4 7.65e-2 2.08e-1
400 9.99e-5 1.75e-2 6.37e-2
700 9.92e-5 8.72e-3 3.65e-2
1000 9.87e-5 5.70e-3 2.58e-2
2000 9.86e-5 8.62e-3 1.67e-2
4000 9.86e-5 9.98e-3 3.68e-2

Table 24: Non-linear reaction diffusion equation: ablation study for the number of interior collocation
points for Frozen-PINN-swim. The mean is computed over 3 seeds, and the network width is 400.

Interior points Training time (s) RMSE Relative L2 error

1000 12.43 3.68e-5 +- 6.78e-12 9.99e-5 +- 1.84e-11
2000 102.74 3.67e-5 +- 3.00e-10 9.90e-5 +- 8.16e-10
20000 689.81 3.63e-5 +- 2.02e-9 9.87e-5 +- 5.49e-09
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Table 25: Non-linear reaction diffusion equation: Ablation Study for the SVD layer with Frozen-
PINN-swim.

With SVD layer Without SVD layer Ratio

Number of neurons 254 400 Width Compression ≈ 1.57x
Time (s) 12.86 53.51 Speed-up ≈ 4.1x
Rel. L2 error 9.99e-5 9.99e-5 -

Comparison of results: The exact architectures and comparison of training times and errors are
presented in Table 26 and Table 27. We observe that Frozen-PINN-swim with the projected pairs
of points (Frozen-PINN-swim-p) far outperforms all the other approaches by around 2 orders of
magnitude, while simultaneously being 9 − 50 times faster. Figure 27 shows the errors with all
approaches and the ground truth.

Table 26: Non-linear reaction diffusion equation: Summary of hyper-parameters.

Parameter Value

PINN Number of hidden layers 4
Activation tanh
Optimizer LBFGS & ADAM
Epochs 10000
Loss mean-squared error
Learning rate 0.001
Batch size 1000
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 0.01, 1
# Interior points 1000
# Initial and boundary points 1000

Frozen-PINN-swim Number of hidden layers 2 (nonlinear and SVD layer)
Hidden layer width 1000
Activation tanh
L2-regularization 10−10

SVD cutoff 10−10

ODE solver tolerance 10−4

Loss mean-squared error
boundary condition strategy augmented ODE

Frozen-PINN-elm Number of hidden layers 2 (nonlinear and SVD layer)
Hidden layer width 2000
Activation tanh
L2-regularization 10−10

SVD cutoff 10−10

ODE solver tolerance 10−4

Loss mean-squared error
boundary condition strategy augmented ODE

Frozen-PINN-swim Number of hidden layers 2 (nonlinear and SVD layer)
(with projection) Hidden layer width 700

Activation tanh
L2-regularization 10−10

SVD cutoff 10−10

ODE solver tolerance 10−4

Loss mean-squared error
boundary condition strategy augmented ODE

Table 27: Non-linear reaction diffusion equation: Summary of results.

Method Train time (s) RMSE Relative L2 error architecture

PINN (ADAM) 171.43 1.25e-1 ± 6.60e-3 3.40e-1 ± 1.79e-2 (6, 4×20, 1)
PINN (LBFGS) 183.38 3.33e-2 ± 1.54e-2 3.33e-2 ± 1.54e-2 (6, 4×20, 1)
Frozen-PINN-elm 621.2 6.17e-3 ± 2.02e-4 1.67e-2 ± 5.49e-4 (5, 2000, 1)
Frozen-PINN-swim 117.24 2.09e-3 ± 1.91e-5 5.70e-3 ± 5.19e-5 (5, 1000, 1)
Frozen-PINN-swim (projection) 12.43 3.67e-5 ± 2.28e-9 9.99e-5 ± 6.21e-9 (5, 700, 1)
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(a) Ground truth.

(b) Absolute error: Frozen-PINN-swim (with projected pairs of data
points).

(c) Absolute error: Frozen-PINN-elm.

Figure 27: Non-linear reaction diffusion equation: absolute error plots and ground truth at four time
instants.
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Figure 28: The Kuramoto-Sivashinsky equation: Reference solution, Frozen-PINN solution, and
difference between two solutions.

C.7 KURAMOTO-SIVASHINSKY EQUATION

Problem Setup: The Kuramoto-Sivashinsky equation is a fourth-order nonlinear PDE, which
models the instabilities in flames and exhibits chaos. We consider the equation from Hao et al. (2024)
of the form:

ut ++αuux + βuxx + γuxxxx = 0, x ∈ Ω, t ∈ T, (32a)

with the parameters

α =
100

16
, β =

100

162
, γ =

100

164
. (32b)

The domain is Ω× T = [0, 2π]× [0, 5] for the experiment in Figure 6, or Ω× T = [0, 2π]× [0, 1]
for the experiment in Figure 28. The initial condition is

u(x, 0) = cos(x)(1 + sin(x)), x ∈ Ω, (32c)

and we apply the periodic boundary condition.

Comparison of results: In Figure 28, we compare our Frozen-PINN solution with the reference
solution in Hao et al. (2024). The training time of Frozen-PINN is 2.7 seconds on CPU (averaged
over 5 seeds). We also solve the PDE for a longer time span, as shown in Figure 6. The architecture
of the model can be found in Table 28.

Table 28: Kuramoto-Sivashinsky equation: Hyper-parameters for the result in Figure 6 and Figure 28.

Parameter Value

Frozen-PINN-swim Number of hidden layers 2
Hidden layer width 2000
Outer basis functions 100
Activation tanh
L2-regularization 10−12

Loss mean-squared error
boundary condition strategy boundary-compliant layer

C.8 HIGH-DIMENSIONAL DIFFUSION EQUATION

Problem setup: High-dimensional diffusion plays an important role in various fields, including
image processing, finance, and quantum mechanics (Sapiro, 2001; Janssen et al., 2013; Nagasawa,
2012).

We consider two benchmarks for the high-dimensional diffusion equation. In the first case, following
(Wang & Dong, 2024), we solve the diffusion equation defined over the domain Ω = [−1, 1]d and
time interval t ∈ (0, 1], for dimension d ∈ {3, 5, 7, 10} given by

ut −∆u =

(
1

d
− 1

)
cos

(
1

d

d∑
i=1

xi

)
exp (−t) , x ∈ Ω, t ∈ [0, 1], (33)
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with the exact solution given by

u(x, t) = cos

(
1

d

d∑
i=1

xi

)
exp (−t) . (34)

The initial and boundary conditions are derived from Equation (34). For this high-dimensional
diffusion equation, we use 16000 training points in the interior and 4000 points on the boundary
randomly sampled using the Latin hypercube strategy. The test data contains 8000 points in the
interior and 2000 points on the domain’s boundary, which were also sampled with a Latin hypercube
strategy.

For the second benchmark from He et al. (2023), we consider a 100-dimensional heat equation for
x ∈ B(0, 1), t ∈ (0, 1) given by

ut = ∆u, x ∈ B(0, 1), t ∈ [0, 1], (35a)

u(x, 0) =
||x||2

2N
, x ∈ B(0, 1) (35b)

u(x, t) = t+
1

2N
, x ∈ ∂B(0, 1), t ∈ [0, 1], (35c)

where the true solution is

u(x, t) = t+
||x||2

2d
. (36)

The value of d is 100 and represents the dimension of the PDE. To solve the 100-dimensional heat
equation, we generate 1000 interior and 1000 boundary training samples using Latin hypercube
sampling. The test dataset comprises 8000 interior points and 2000 boundary points, also selected via
Latin hypercube sampling.

Extended discussion on results: Note that, in general, it is extremely hard to accurately represent
arbitrary 100-dimensional functions with a few hundred basis functions unless the solution is already
in their span (e.g, approximating a linear solution with linear bases). The 100-dimensional heat
equation benchmark from He et al. (2023), indeed, admits a true solution with very shallow gradients
in space that varies linearly in time (see Equation (36)). Although this benchmark technically admits
a quadratic analytical solution, rendering second-order polynomials a natural fit for this particular
example, higher-order approximations, in general, quickly become infeasible due to the curse of
dimensionality. For instance, a cubic approximation already requires millions of basis functions. A
natural alternative could be to use lower-order approximations like linear regression. However, if
one uses linear bases to solve the diffusion equation, they cannot capture temporal dynamics because
linear basis functions are harmonic (the Laplacian is zero). By contrast, our approach provides mildly
non-linear bases that have non-zero Laplacians, facilitating “almost linear” approximation at each
point in time.

The fact that Frozen-PINN-elm with a single hidden layer yields a significantly accurate and faster ap-
proximation compared to PINNs with multiple hidden layers trained with classical back-propagation
reveals an interesting observation that one does not necessarily benefit from using deeper neural net-
works. While stochastic and iterative training methods might eventually identify suitable parameters,
the highly non-linear, non-convex loss landscape makes such optimization particularly challenging.

Due to the smoothness and lack of steep gradients in the solution of the PDE, Frozen-PINN-elm
is more suitable for approximating the solution of the chosen PDE and is one to three orders of
magnitude more accurate than vanilla Frozen-PINN-swim, as one would expect (see Section 2.2).

Ablation studies: The ablation study with respect to the network width for Frozen-PINN-elm
and Frozen-PINN-swim is already presented in Figure 7, where we observe a rapid exponential
decay of error with respect to increasing width of the network (even exponential convergence for the
high-dimensional diffusion equation in 3 and 5 dimensions).

The hyperparameters for all neural PDE solvers considered in this work for the 10-d heat equation
and the 100-d heat equation are presented in Table 29 and Table 30, respectively. The results for up

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

to 100-dimensional diffusion equations are summarized in Table 31. Please refer to He et al. (2023)
for details on hyperparameters for PINNs for the 100-dimensional heat equation.

The results of the ablation study for the SVD layer with the high-dimensional diffusion equations for
different dimensions are presented in Tables 32 and 33. We observe that for Frozen-PINN-elm, the
SVD layer results in substantial speed-ups for 3, 5, and 7 dimensional heat equations - by factors of
52, 77, and 21, respectively. We observe that the compression ratios achieved with the SVD layer
are also substantial 22.8, 5, and 1.2, for dimensions 3, 5, and 7, respectively. For the 10-dimensional
diffusion equation, to cover the high-dimensional space, we observe a (relatively lower compared
to other dimensions) compression ratio of 1.4, as more basis functions are required to represent
functions in high dimensions accurately. Thus, the time required with the SVD layer is around 6
percent less than the time required without the SVD layer. In all the cases, the loss is always in the
same order as the one without the SVD layer.

Note that in all cases, the extra cost of computing the SVD easily pays off by substantially saving
time in the ODE solver for Frozen-PINN-elm. This is because of the improved conditioning of the
feature matrix and the reduction in the size of the ODE system to be solved. With Frozen-PINN-
swim, the observations are similar but with lower compression ratios and speed-ups. But, for this
problem, Frozen-PINN-swim is not the preferred method, as the underlying solution is smooth, has
low-frequency spatial variations, and does not have steep gradients anywhere in the domain. Thus,
SWIM basis functions are not optimal in the vanilla setting. See Appendix B.2.1 for details on this.

Comparison of results: We demonstrate that Frozen-PINN-elm accurately solves the 10-
dimensional and 100-dimensional heat equation by visualizing the time evolution of the solution at
some sampled points in space in Figure 29 and Figure 30 in certain dimensions.

Table 29: Summary of hyperparameters for the 10-dimensional diffusion equation.

Parameter Value
Frozen-PINN-swim Number of hidden layers 2 (nonlinear and SVD layer)

Hidden layer width 4000
Activation tanh
L2-regularization 10−10

SVD cutoff 10−10

ODE solver tolerance 10−6

Loss mean-squared error
boundary condition strategy augmented ODE

Frozen-PINN-elm (low-precision) Number of hidden layers 2 (nonlinear and SVD layer)
Hidden layer width 400
Activation tanh
L2-regularization 10−5

SVD cutoff 10−5

ODE solver tolerance 10−4

parameter range [−rm, rm] rm = 0.05
Loss mean-squared error
boundary condition strategy augmented ODE

Frozen-PINN-elm (high-precision) Number of hidden layers 2 (nonlinear and SVD layer)
Hidden layer width 4000
Activation tanh
L2-regularization 10−10

SVD cutoff 10−10

ODE solver tolerance 10−6

parameter range [−rm, rm] rm = 0.05
Loss mean-squared error
boundary condition strategy augmented ODE

PINN Number of hidden layers 4
Layer width 20
Activation tanh
Optimizer LBFGS (ADAM)
Epochs 1000 (5000)
Loss mean-squared error
Learning rate 0.1
Batch size 4000
Parameter initialization Xavier (Glorot & Bengio, 2010)
Loss weights, λ1, λ2 1, 1
# Interior points 16000
# Initial and boundary points 4000
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Figure 29: 10-dimensional diffusion equation: Ground truth, Frozen-PINN-elm solution, and point-
wise absolute error at various planes at different time points. The rest of the spatial coordinates are
set to the center of the spatial-temporal domain.
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Figure 30: 100-dimensional diffusion equation: Ground truth, Frozen-PINN-elm solution, and point-
wise absolute error at various planes at different time points. The rest of the spatial coordinates are
set to the center of the spatial-temporal domain.
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Table 30: Summary of hyper-parameters for the 100-dimensional diffusion equation.

Parameter Value
Frozen-PINN-swim Number of hidden layers 2 (nonlinear and SVD layer)

Hidden layer width 200
Activation tanh
L2-regularization 10−8

SVD cutoff 10−8

ODE solver tolerance 10−4

Loss mean-squared error
boundary condition strategy augmented ODE

Frozen-PINN-elm Number of hidden layers 2 (nonlinear and SVD layer)
Hidden layer width 125
Activation tanh
L2-regularization 10−4

SVD cutoff 10−4

ODE solver tolerance 10−2

parameter range [−rm, rm] rm = 0.05
Loss mean-squared error
boundary condition strategy augmented ODE

Table 31: Summary of results for high-dimensional diffusion equation. We denote the Frozen-
PINN-elm results in the low-precision and high-precision regimes with Frozen-PINN-elm-fast and
Frozen-PINN-elm-accurate, respectively.

Dimension Method Time (s) RMSE Relative L2 error

3-d PINN (LBFGS) 102.32 2.84e-4 ± 3.73e-5 4.54e-4 ± 5.97e-5
Frozen-PINN-swim (our) 95.73 2.18e-6 ± 1.93e-6 5.37e-6 ± 4.27e-7
Frozen-PINN-elm-fast (our) 0.9 2.42e-6 ± 1.37e-6 3.90e-6 ± 2.98e-6
Frozen-PINN-elm-accurate (our) 60.98 3.48e-8 ± 2.17e-6 6.49e-8 ± 4.31e-8

5-d PINN (LBFGS) 133.95 2.91e-4 ± 5.34e-5 4.52e-4 ± 8.30e-5
Frozen-PINN-swim (our) 129.65 1.03e-4 ± 5.94e-5 2.39e-4 ± 8.69e-5
Frozen-PINN-elm-fast (our) 1.2 1.25e-4 ± 2.42e-5 3.74e-4 ± 5.37e-5
Frozen-PINN-elm-accurate (our) 102.95 4.71e-7 ± 3.56e-7 7.5e-7 ± 3.92e-7

7-d PINN (LBFGS) 163.89 3.05e-4 ± 2.94e-5 4.69e-4 ± 4.51e-5
Frozen-PINN-swim (our) 198.20 3.96e-4 ± 1.03e-4 7.8e-4 ± 2.50e-4
Frozen-PINN-elm-fast (our) 5.95 1.05e-5 ± 8.76e-6 2.21e-5 ± 1.01e-5
Frozen-PINN-elm-accurate (our) 176.95 1.19e-6 ± 2.93e-7 2.54e-6 ± 5.10e-7

10-d PINN (LBFGS) 189.67 3.98e-4 ± 6.59e-5 6.06e-4 ± 1.00e-4
Frozen-PINN-swim (our) 61.07 1.01e-3 ± 3.09e-4 2.31e-3 ± 1.03e-3
Frozen-PINN-elm-fast (our) 2.07 2.89e-4 ± 5.91e-5 4.46e-4 ± 9.61e-5
Frozen-PINN-elm-accurate (our) 182.91 1.04e-5 ± 3.32e-6 2.28e-5 ± 5.91e-6

100-d Vanilla PINN ((He et al., 2023)) 141 - 6.00e-3
PINN ((He et al., 2023)) 49.8 - 6.30e-3
Frozen-PINN-swim (our) 68.39 1.00e-3 ± 1.75e-5 1.71e-3 ± 3.01e-5
Frozen-PINN-elm (our) 5.24 2.40e-4 ± 9.92e-6 4.12e-4 ± 1.70e-5
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Table 32: High-dimensional diffusion equation: Ablation Study for the SVD layer with Frozen-PINN-
swim.

Dimension Quantity With SVD layer Without SVD layer Ratio

3-d Width 1391 4000 Compression ≈ 2.9x
Time (s) 95.73 388.12 Speed-up ≈ 4x

Rel. L2 error 5.29e-6 4.77e-6 -

5-d Width 1437 4000 Compression ≈ 2.8x
Time (s) 129.65 199.92 Speed-up ≈ 1.5x

Rel. L2 error 2.39e-4 2.18e-4 -

7-d Width 3114 4000 Compression ≈ 1.3x
Time (s) 120.32 198.31 Speed-up ≈ 1.6x

Rel. L2 error 7.83e-4 7.83e-4 -

10-d Width 3100 4000 Compression ≈ 1.3x
Time (s) 121.93 111.8 Speed-up ≈ 0.91x

Rel. L2 error 2.30e-3 2.30e-3 -

100-d Width 200 200 Compression ≈ 1x
Time (s) 5.24 5.13 Speed-up ≈ 0.97x

Rel. L2 error 3.82e-3 3.82e-3 -

Table 33: High-dimensional diffusion equation: Ablation Study for the SVD layer with Frozen-PINN-
elm.

Dimension Quantity With SVD layer Without SVD layer Ratio

3-d Width 175 4000 Compression ≈ 22.8x
Time (s) 60.98 7087.38 Speed-up ≈ 52x

Rel. L2 error 6.49e-8 1.02e-6 -

5-d Width 794 4000 Compression ≈ 5x
Time (s) 89.27 6873.8 Speed-up ≈ 77x

Rel. L2 error 7.30e-7 2.19e-6 -

7-d Width 3336 4000 Compression ≈ 1.2x
Time (s) 176.95 3770.09 Speed-up ≈ 21x

Rel. L2 error 2.54e-6 4.06e-6 -

10-d Width 2856 4000 Compression ≈ 1.4x
Time (s) 119 127 Speed-up ≈ 1.06x

Rel. L2 error 5.57e-5 4.36e-5 -

100-d Width 552 600 Compression ≈ 1.3x
Time (s) 68.39 71.38 Speed-up ≈ 0.96x

Rel. L2 error 1.71e-3 1.71e-3 -
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