

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FAST TRAINING OF ACCURATE PHYSICS-INFORMED NEURAL NETWORKS WITHOUT GRADIENT DESCENT

Anonymous authors

Paper under double-blind review

ABSTRACT

Solving time-dependent Partial Differential Equations (PDEs) is one of the most critical problems in computational science. While Physics-Informed Neural Networks (PINNs) offer a promising framework for approximating PDE solutions, their accuracy and training speed are limited by two core barriers: gradient-descent-based iterative optimization over complex loss landscapes and non-causal treatment of time as an extra spatial dimension. We present *Frozen-PINN*, a novel PINN based on the principle of space-time separation that leverages random features instead of training with gradient descent, and incorporates temporal causality by construction. On [nine](#) PDE benchmarks, including challenges like extreme advection speeds, shocks, and high-dimensionality, Frozen-PINNs achieve superior training efficiency and accuracy over state-of-the-art PINNs, often by several orders of magnitude. Our work addresses longstanding training and accuracy bottlenecks of PINNs, delivering quickly trainable, highly accurate, and inherently causal PDE solvers, a combination that prior methods could not realize. Our approach challenges the reliance of PINNs on stochastic gradient-descent-based methods and specialized hardware, leading to a paradigm shift in PINN training and providing a challenging benchmark for the community.

1 INTRODUCTION

Partial Differential Equations (PDEs) provide a unifying framework for modeling complex dynamical systems across physics, biology, and engineering, yet developing efficient methods to solve them remains a longstanding challenge (Farlow, 1993). Deep neural networks have recently shown significant promise for approximating solutions of PDEs because of the mesh-free construction of basis functions, high expressivity of neural networks (Rudi & Rosasco, 2021), their ability to represent functions in high dimensions (E, 2020; Wu & Long, 2022; Han et al., 2018), and powerful software for automatic differentiation (e.g., Pytorch (Paszke et al., 2017), TensorFlow (Abadi et al., 2015), DeepXDE (Lu et al., 2021b)). Earlier work on solving PDEs using neural networks (Dissanayake & Phan-Thien, 1994; Lagaris et al., 1998) was recently popularized in the form of Physics-informed neural networks (PINNs) (Raissi et al., 2019; Karniadakis et al., 2021; Sirignano & Spiliopoulos, 2018). PINNs incorporate physical constraints by minimizing a loss function involving the PDE, boundary condition, and initial condition residuals during training. Despite their promise, we identify two root causes limiting the performance of PINNs in terms of accuracy and training time.

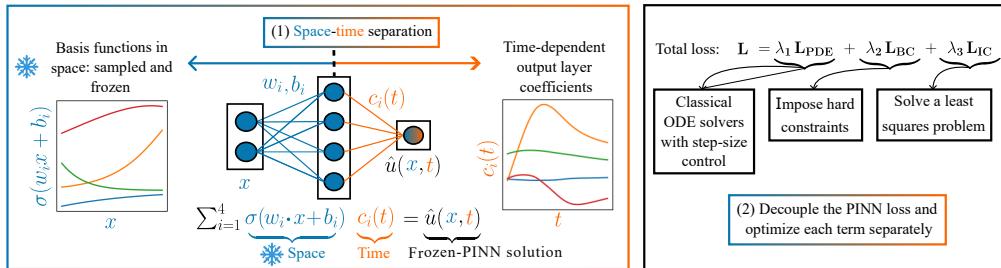
1. Inherent challenges posed by the PINN optimization problem: Many studies (Wang et al., 2021; 2022) show that even in very simple settings, the PINN loss is quite challenging to minimize using iterative gradient-descent-based optimization methods leveraging the classical back-propagation algorithm (Rumelhart et al., 1986). Krishnapriyan et al. (2021) show that incorporating PDE-based soft constraints into the PINN loss function yields a highly nontrivial loss landscape, rendering optimization particularly challenging. Wang et al. (2022) analyze PINN training dynamics via the Neural Tangent Kernel (NTK) and highlight issues with spectral bias and different convergence rates across different loss components. Rathore et al. (2024) show that differential operators in the PDE residual loss induce “ill-conditioning”, characterized by steep and shallow gradients in different directions near the optimum, complicating the optimization.

Efforts to improve PINN training, such as balancing loss terms (Yao et al., 2023), effective regularization (Lu et al., 2021c; Yu et al., 2022), architectural innovations (Wang et al., 2024b), and improved

054 optimizers (Müller & Zeinhofer, 2023; Liu et al., 2024), have been explored. We assert that such
 055 approaches address the symptoms rather than the root cause that makes training PINNs extremely
 056 challenging: the PINN optimization problem is high-dimensional (large number of trainable parameters),
 057 multi-objective (simultaneous minimization of PDE, and initial and boundary condition losses),
 058 and non-convex, with inherently conflicting loss terms (Liu et al., 2024) and further complicated by
 059 treating time as an additional dimension in space.

060 **2. Non-causal treatment of time as an extra spatial dimension:** The temporal structure of initial
 061 value PDEs is inherently Markovian as the solution at each subsequent time step depends solely on
 062 the solution at the preceding time step. Most PINN-based approaches fail to incorporate *temporal*
 063 *causality* explicitly, and time is treated as an extra dimension in the input layer. This leads to
 064 neural bases spanning the entire space-time domain, exacerbating the optimization. Such approaches
 065 struggle to capture high-frequency temporal dynamics (Krishnapriyan et al., 2021), and solving PDEs
 066 over a long time horizon, without resorting to domain decomposition techniques (Meng et al., 2020).

067 Previous studies have sought to enforce temporal causality by progressively penalizing residuals
 068 in time (Wang et al., 2024d), training distinct models across disjoint intervals with integral-form
 069 losses within each interval (Jung et al., 2024), or applying implicit time-differencing with transfer
 070 learning to sequentially update PINNs on each interval (Li et al., 2024). Nonetheless, such approaches
 071 are difficult to implement, require precise tuning of temporal windows and weight scheduling, and
 072 remain computationally demanding (Kim & Son, 2025; Li et al., 2024; Penwarden et al., 2023). See
 073 Appendix A for an extended literature review and Appendix B.1 for a detailed discussion on PINNs.



084 Figure 1: **Core ideas of Frozen-PINNs:** (1) **Space-time separation:** For $x \in \mathbb{R}^d$, spatial bases
 085 $\phi_i = \sigma(w_i \cdot x + b_i)$ with $\sigma = \tanh$, $w_i \in \mathbb{R}^d$, $b_i \in \mathbb{R}$ are sampled and frozen (shown for $d = 1$);
 086 output layer parameters $c_i(t)$ are evolved via ODEs. Each pair (ϕ_i, c_i) is color-matched. (2) **Loss**
 087 **decoupling:** PDE, boundary, and initial condition losses L_{PDE} , L_{BC} , L_{IC} are optimized independently.

089 To address the root causes of accuracy and training bottlenecks of PINNs rather than the symptoms,
 090 we investigate: *How can the PINN optimization problem be simplified while enforcing temporal*
 091 *causality for time-dependent PDEs?* We propose “Frozen-PINN” based on space-time separation —a
 092 novel approach that *simplifies the PINN optimization problem* and *enforces temporal causality by*
 093 *construction*. We achieve this by: (a) sampling and freezing space-dependent hidden layer parameters
 094 to reduce the dimensionality, (b) decoupling the PINN loss and optimizing each term separately, and
 095 (c) computing time-dependent output layer parameters using least squares and adaptive Ordinary
 096 Differential Equation (ODE) solvers, replacing gradient-descent-based training (see Figure 1). In
 097 Figure 8, we contrast Frozen-PINNs with classical PINNs. Our key contributions are:
 098

1. **Training algorithm:** Frozen-PINNs break the longstanding training and accuracy bottlenecks of PINNs, making PINNs rapidly trainable, temporally causal, and highly accurate, a combination realized for the first time, defining a new state-of-the-art, to our knowledge.
2. **Extensive empirical evaluation:** Across nine challenging PDE benchmarks and rigorous ablation studies, we show that Frozen-PINNs achieve up to 4-5 orders of magnitude faster training than state-of-the-art (SOTA) PINNs, attain high-precision accuracies that are comparable to efficient mesh-based methods in low dimensions, which most SOTA neural PDE solvers fail to match, and scale efficiently to high-dimensional problems where mesh-based solvers fail.

108 3. **Adaptive solution-driven network parameters:** We use solution data from previous
 109 time-steps to compute efficient neural network parameters. This extends previous work on
 110 random feature methods (Bolager et al., 2023) for self-supervised PDE learning tasks.
 111 4. **Model compression:** We introduce an *SVD layer* that reduces the number of neurons in the
 112 last hidden layer of the network by up to 20 times and speeds up training up to 75 times.
 113

114 **2 SOLVING TIME-DEPENDENT PDES USING FROZEN-PINNS**

115 In this section, we discuss the theoretical details of Frozen-PINNs.

116 **2.1 FROZEN-PINN ANSATZ**

117 In this work, we consider time-dependent PDEs on domain $\Omega \subset \mathbb{R}^d$ for space dimension d with
 118 boundary $\partial\Omega$, seeking solutions $u : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ of PDEs defined by linear operators \mathcal{L} and \mathcal{B}
 119 that only involve derivative operators in space, forcing $f : \Omega \rightarrow \mathbb{R}$, boundary $g : \partial\Omega \rightarrow \mathbb{R}$, initial
 120 condition $u_0 : \Omega \rightarrow \mathbb{R}$, and a nonlinear operator $\gamma\mathcal{N}$ for $\gamma \in \mathbb{R}$ ($\gamma = 0$ for linear PDEs):
 121

$$122 u_t(x, t) + \mathcal{L}u(x, t) + \gamma\mathcal{N}(u)(x, t) = f(x), \quad x \in \Omega, \quad t \in [0, T], \quad (1a)$$

123 where u_t denotes the time derivative of u , with boundary and initial conditions given by
 124

$$125 \mathcal{B}u(x, t) = g(x), \quad x \in \partial\Omega, \quad t \in [0, T], \quad \text{and}, \quad u(x, 0) = u_0(x), \quad x \in \Omega, \quad (1b)$$

126 respectively. We parameterize the approximation of the solution to the PDE (Equation (1)) with a
 127 Frozen-PINN having a single hidden layer with M neurons and activation function $\sigma = \tanh$ as
 128

$$129 \hat{u}(x, t) = C(t)[\Phi(x), \mathbb{1}] = c(t)\sigma(Wx^\top + b) + c_0(t). \quad (2)$$

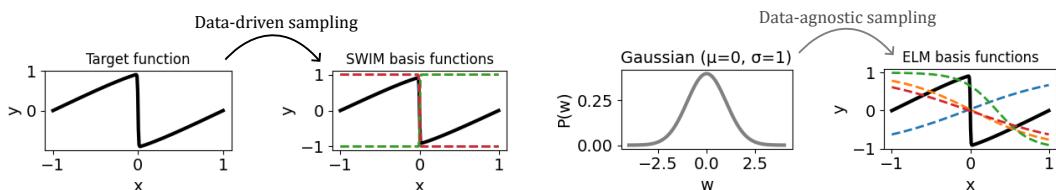
130 Here, $c(t) \in \mathbb{R}^{1 \times M}$ and $c_0(t) \in \mathbb{R}$ are time-dependent parameters, $W \in \mathbb{R}^{M \times d}$ and $b \in \mathbb{R}^{M \times 1}$ are
 131 space-independent parameters, and $C := [c, c_0] \in \mathbb{R}^{1 \times (M+1)}$. The activation functions are stacked
 132 in $\Phi = [\phi_1, \dots, \phi_M]$, where $\phi_m(x) = \sigma(w_m x^\top + b_m)$. Note that our approach does not require the
 133 PDE solution to be separable in space and time. We next discuss how to sample parameters W and b .
 134

135 **2.2 COMPUTING HIDDEN LAYER PARAMETERS WITHOUT GRADIENT DESCENT**

136 We sample space-dependent hidden layer parameters in Frozen-PINNs using either ELM or SWIM.
 137 Hidden layer parameters are frozen (kept independent of time) after sampling (except Section 3.4).
 138

139 **ELM (Data-agnostic):** In the Extreme Learning Machine (ELM) approach (Huang et al., 2006), the
 140 weights are sampled from a Gaussian distribution, and biases are sampled from a uniform distribution
 141 in $[-\eta, \eta]$ for each hidden layer, where η is a hyper-parameter.
 142

143 **SWIM (Data-dependent):** The Sample Where It Matters (SWIM) approach follows Bolager et al.
 144 (2023) and samples weights and biases using a data-dependent distribution. Each pair (w_m, b_m) is
 145 computed using two collocation points $x^{(1)}, x^{(2)} \in \Omega$: $w_m = s_1 \frac{x^{(2)} - x^{(1)}}{\|x^{(2)} - x^{(1)}\|^2}$, $b_m = -\langle w_m, x^{(1)} \rangle +$
 146 s_2 , where $s_1, s_2 \in \mathbb{R}$ depend on the activation function. In the unsupervised setting, one can choose
 147 pairs of collocation points from a uniform distribution over all possible pairs of collocation points,
 148 which is the default setting in this paper, as we do not know the solution of the PDE beforehand.
 149 In the supervised setting (Section 3.4, Section 3.7), collocation pairs $(x^{(1)}, x^{(2)})$ are sampled with
 150



151 **Figure 2: Sampling in Frozen-PINNs: (Left): SWIM (data-driven, places bases with steep gradients
 152 near regions with shocks) vs. (Right): ELM (data-agnostic, no control over basis placement).**

density $\|f(x^{(2)}) - f(x^{(1)})\|/\|x^{(2)} - x^{(1)}\|$. Neuron weights and biases are set so that the tanh output is -0.5 at $x^{(1)}$ and $+0.5$ at $x^{(2)}$, ensuring centers of activations tanh lie inside the domain and are aligned with the direction $x^{(1)} \rightarrow x^{(2)}$, unlike ELM. The suitability of each of the proposed approaches depends on the true PDE solution’s gradient distribution. See Appendix B.2.1 for details. In Figure 2, we illustrate the difference between the basis functions sampled with ELM and SWIM.

2.3 SOLVING TIME-DEPENDENT PDEs USING FROZEN-PINNS BY SEPARATION OF VARIABLES

We now discuss the computation of time-dependent output layer parameters $c(t)$. We insert the ansatz (Equation (2)) into the PDE Equation (1a), reformulating it as an ODE for $c(t)$, preserving the inherent causal structure of time-dependent PDEs, thereby enforcing temporal causality by design. We assemble N_c collocation points in $X \in \mathbb{R}^{N_c \times d}$, sample weights and biases of M neurons, compute hidden layer output $\Phi(X)$, and obtain the ODE

$$\begin{aligned} C_t(t) &= R(X, C(t))[\Phi(X), \mathbb{1}]^+, \quad \text{where} \\ R(X, C(t)) &= -C(t)\mathcal{L}[\Phi(X), \mathbb{1}] - \gamma\mathcal{N}(C(t)[\Phi(X), \mathbb{1}]) + [f(X)]^\top, \end{aligned} \quad (3)$$

where $[\Phi(X), \mathbb{1}] \in \mathbb{R}^{(M+1) \times N_c}$ and the pseudo-inverse is denoted by \cdot^+ . The initial condition is computed via a least squares solution: $C(0) = u(X, 0)^\top[\Phi(X), \mathbb{1}]^+$, which decouples the initial condition loss from PDE and boundary losses, simplifying the optimization problem. We compute $C(t)$ via ODE solvers with step-size control (e.g., RK45 (Dormand & Prince, 1980), LSODA (Petzold, 1983)) instead of gradient descent, and interpolate solutions at test points. See Appendix B.2.2, Appendix B.2.3 for detailed derivations of PDE-to-ODE reformulations for all PDEs considered here.

2.4 APPROACHES FOR SATISFYING BOUNDARY CONDITIONS FOR FROZEN-PINNS

We propose two different strategies to satisfy boundary conditions for Frozen-PINNs: the first utilizes a boundary-compliant layer, and the second augments the reformulated ODE.

Boundary-compliant layer: Certain boundary conditions can be enforced via a linear map $A \in \mathbb{R}^{M_b \times M_s}$ ($M_s := M$) applied after the sampled hidden layer, forming a *boundary-compliant layer* (see Figure 3). Defining $\Phi_A := [A\Phi, \mathbb{1}]$ and $C(t) \in \mathbb{R}^{1 \times (M_b+1)}$, we rewrite Equation (3) to

$$\begin{aligned} C_t(t) &= R(X, C(t))\Phi_A(X)^+, \quad \text{where} \\ R(X, C(t)) &= -C(t)\mathcal{L}\Phi_A(X) - \gamma\mathcal{N}(C(t)\Phi_A(X)) + [f(X)]^\top. \end{aligned} \quad (4)$$

Boundary conditions defined by \mathcal{B} and g determine the construction of A ; see Appendix B.2.4 for details. With a boundary-compliant layer, boundary conditions are satisfied by construction, fully decoupling the PINN loss so that the ODE solver minimizes only the PDE residual. The rationale for outer basis functions is discussed in Appendix B.2.1.

Augmented ODE: This strategy eliminates the need for a boundary-compliant layer by augmenting the ODE with a correction term enforcing boundary conditions. For *Dirichlet boundary condition* $u(x) = g(x)$, we add $\hat{u}_t(x) = -\kappa(\hat{u}(x) - g(x))$ for $x \in \partial\Omega$ and solve the augmented system:

$$C_t(t) = \underbrace{[R(X, C(t)), -\kappa(C(t)\Phi_A(X_b) - g(X_b)^\top)]}_{\in \mathbb{R}^{1 \times (N_c + N_b)}} \underbrace{\Phi_A([X, X_b])^+}_{\in \mathbb{R}^{(N_c + N_b) \times (M_b + 1)}}, \quad (5)$$

where $\kappa > 0$ is a fixed parameter, X are the N_c collocation points and $X_b \in \mathbb{R}^{N_b \times d}$ is a collection of N_b points on the boundary $\partial\Omega$. For consistency of notation, we set $A = I$ in Equation (4) when using the augmented ODE. In practice, we skip the boundary-compliant layer if we adopt this approach. The intuition behind this technique is that the augmented ODE (Equation (5)) corrects the solution by steering $\hat{u}(x, t)$ toward $g(x)$ for $x \in \partial\Omega$ at rate $\kappa(\hat{u} - g)$, with $\kappa = 10^5$ as a default value. We empirically investigate the effect of κ on the boundary loss and the time to solution (see Figure 15). This still partially decouples the PINN loss, with the initial condition treated separately. Depending on the PDE, domain, and boundary type, either strategy can be applied (see Appendix B.2.5).

2.5 SVD LAYER

As the last step in the Frozen-PINN architecture, we add a linear layer to reduce the stiffness of the associated ODE (Equation (4)) and the size of the ODE system. To achieve this, we propose

orthogonalizing the basis functions using an *SVD layer*. We compute a truncated singular value decomposition of $A\Phi(X) \in \mathbb{R}^{M_b \times N_c}$ to obtain matrices V_r , Σ_r , and U_r with $r \leq M_b$ such that $V_r \Sigma_r U_r^\top = A\Phi(X) + O(\Sigma_{r+1})$. We then define $A_r := V_r^\top A$ and use it instead of the matrix A and $C(t) \in \mathbb{R}^{1 \times (r+1)}$. This ensures $A_r\Phi(X)$ are orthogonal functions on the data X , and the matrix $A_r\Phi(X)$ has a bounded condition number. The SVD layer accelerates computation by up to 75 times while reducing the ODE system dimension 20 times, as validated by an extensive ablation study (see Appendix C). Figure 3 visualizes the complete Frozen-PINN architecture.

2.6 SUMMARY OF THE TRAINING ALGORITHM FOR FROZEN-PINNS

We summarize our training process in Algorithm 1, where ϵ_{SVD} is the SVD threshold that governs the SVD-layer width. See Appendix B.2 for additional methodological details, and Appendix B.2.1 for extended discussion on PINN vs. Frozen-PINN training, comparison between sampling strategies, influence of random sampling, rationale for outer bases, and the Kolmogorov n -width barrier.

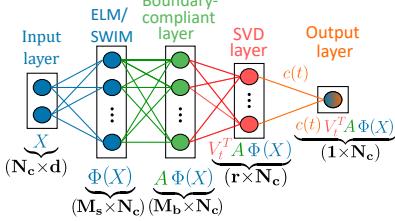


Figure 3: Architecture of Frozen-PINNs trained with a gradient-descent-free training algorithm.

Algorithm 1 Frozen-PINN training algorithm

Input: PDE (Equation (1)), test grid points $X_{\text{test}} \times T_{\text{test}}$
Output: PDE Solution on the test grid points $\hat{u}(X_{\text{test}}, T_{\text{test}})$
Parameters: $N_c, M_s, M_b \in \mathbb{N}, \epsilon_{SVD} \in \mathbb{R}$
1: Sample N_c collocation points: $X \in \mathbb{R}^{N_c \times d}$
2: Construct hidden layer params $\{w_m, b_m\}_{m=1}^{M_s}$ (SWIM/ELM) ▷ Section 2.2
3: Compute hidden layer output $\Phi(X) \in \mathbb{R}^{M_s \times N_c}$
4: Construct boundary-compliant layer: $A\Phi(X) \in \mathbb{R}^{M_b \times N_c}$ ▷ Section 2.4
5: Compute truncated SVD: $V_r \Sigma_r U_r^\top = A\Phi(X)$ and SVD layer output
 $V_r^\top A\Phi(X) = A_r\Phi(X)$
6: Compute neural bases: $\Phi_{A_r}(X) := (A_r\Phi(X), 1)^\top \in \mathbb{R}^{(r+1) \times N_c}$
7: Initialize output-layer params (least-squares): $C(0) = u(X, 0)^\top \Phi_{A_r}(X)^\top$
8: Solve ODE for $C(t) \in \mathbb{R}^{1 \times (r+1)}$ using Φ_{A_r} ▷ Equation (4)
9: Evaluate $\hat{u}(X_{\text{test}}, T_{\text{test}}) = C(T_{\text{test}})\Phi_{A_r}(X_{\text{test}})$ ▷ Equation (2)

3 EMPIRICAL RESULTS

In this section, with a comprehensive empirical study across nine challenging low- and high-dimensional PDE benchmarks, we demonstrate that Frozen-PINNs consistently outperform existing state-of-the-art neural PDE solvers with orders-of-magnitude faster training in all cases and higher accuracy in almost all cases without requiring specialized hardware like GPUs. Moreover, our work includes rigorous evaluation against the classical SOTA approaches like IGA-FEM (see Appendix B.3) (Hughes et al., 2005; Cottrell et al., 2006; 2009) or FEM for low-dimensional PDEs, bridging a gap not sufficiently addressed in the literature between neural and mesh-based solvers.

Appendix C contains details of the PDEs, important ablation studies for our experiments (for the SVD layer and the width of the network), metrics used for comparison, train and test data, software and hardware environments, the absolute error plots on test points, and elaborate explanations of results. Figure 12 visually summarizes all the PDE benchmarks used for evaluation, identifies the specific challenges posed by each PDE, and shows true solutions. We perform all experiments with three seeds and report the mean and standard deviation.

To ensure fair comparisons, we follow the two rules outlined by McGreivy & Hakim (2024): (i) we **benchmark at (almost) equal accuracy**, defining low-precision ($1e-2$ to $1e-4$) and high-precision ($1e-5$ to $1e-10$) regimes, configuring Frozen-PINNs to marginally outperform the best PINN baselines in the low-precision regime and aligning FEM/IGA-FEM fidelity with Frozen-PINNs in the high-precision regime; (ii) we **compare against efficient numerical methods**, including SOTA IGA-FEM or classical FEM for low-dimensional PDEs, while highlighting neural solvers' scalability in high-dimensional benchmarks where FEM and IGA-FEM suffer from the curse of dimensionality.

3.1 HIGH ADVECTION SPEEDS, FAST CONVERGENCE, AND LONG-TIME SIMULATION

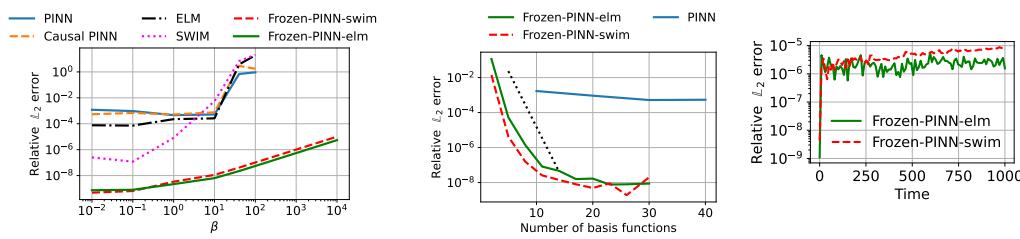
We benchmark the linear advection equation to demonstrate how Frozen-PINNs resolve three important well-known challenges for PINNs: (1) handling high advection speeds (Krishnapriyan et al.,

270 2021), (2) achieving fast convergence with increasing width (Cuomo et al., 2022), and (3) long-time
 271 simulations (Lippe et al., 2024; Kapoor et al., 2024a). We describe all details in Appendix C.1.
 272

273 **High advection speeds:** We solve the advection equation for increasing advection coefficients,
 274 denoted by β . Figure 4 (Left) shows that approaches using basis functions in the entire spatiotemporal
 275 domain, such as PINNs, ELM, and SWIM, completely fail as the flow velocity β increases beyond 40.
 276 In contrast, Frozen-PINNs can accurately solve the PDE, even for extremely high values of β (as high
 277 as 10^4) with relative L^2 errors less than 10^{-4} . Table 1 shows that for $\beta = 40$, Frozen-PINNs train
 278 45 to 533 times faster than other alternatives at similar accuracy in the low-precision regime. With
 279 the exception of Frozen-PINNs, none of the neural PDE solvers evaluated here attain high-precision
 280 accuracy. Frozen-PINNs outperform existing neural PDE solvers by over six orders of magnitude in
 281 accuracy and approach the fidelity of IGA-FEM, which unsurprisingly is the most accurate solver.
 282

283 **Fast convergence (error decay with hidden layer width):** For a low value of advection coefficient
 284 $\beta = 10$, Figure 4 (Middle) shows that errors with classical PINNs do not decay quickly with width,
 285 primarily due to the difficulties in training. In contrast, the relative L^2 error decays exponentially
 286 with hidden layer width for Frozen-PINNs, ultimately plateauing at a value more than four orders of
 287 magnitude smaller than that obtained with PINNs.
 288

289 **Long-time simulation:** Neural PDE solvers employing joint space–time basis functions, like vanilla
 290 PINNs, encounter substantial challenges in accurately approximating dynamics over extended time
 291 spans. Here, we consider the advection equation with the advection coefficient $\beta = 1$. As shown in
 292 Figure 4 (Right), Frozen-PINNs can simulate the advection equation for 1000 seconds with a relative
 293 L^2 error under 0.001% in just 0.94 seconds.
 294



300 **Figure 4: Illustration of experimental results for the advection equation: (Left): high advection
 301 speeds - effect of advection coefficient β on the test error for different PDE solvers, (Middle): fast
 302 convergence - with $\beta = 10$, Frozen PINNs achieve exponential decay in test error as indicated by the
 303 reference dotted line, while standard PINNs display plateaued error decay despite increasing number
 304 of basis functions (hidden layer size), (Right): long time simulation - Slow error growth with time.**
 305

3.2 HIGHER-ORDER DERIVATIVES IN SPACE AND TIME

309 We consider two variants of the Euler-Bernoulli beam equation —classical Euler-Bernoulli beam
 310 equation and its extension with a Winkler foundation. See Appendix C.2 for details. The main
 311 challenge posed by both PDEs for PINNs is the higher-order differential terms (fourth- and second-
 312 order derivatives in space and time, respectively). Frozen-PINNs eliminate expensive evaluation of
 313 higher-order derivatives via backpropagation, cutting training cost by four orders of magnitude in
 314 the low-precision regime, while achieving IGA-FEM-level accuracy that is more than six orders of
 315 magnitude accurate compared to other SOTA PINN benchmarks considered here (see Table 1).
 316

3.3 MULTI-SCALE SOLUTIONS

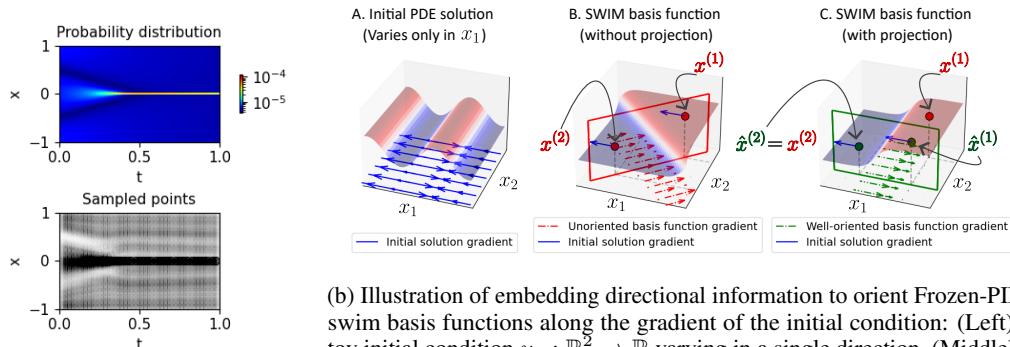
320 To demonstrate the capability of our method to solve PDEs with multi-scale solutions, we consider
 321 a Wave equation benchmark (Hao et al., 2024). We examine two settings: one with two distinct
 322 frequencies and another with three well-separated frequencies, which increases the spatial complexity
 323 and significantly broadens the range of scales in the solution. For the two-frequency setup, we
 324 compare the performance against prior PINN baselines in Table 1 and observe that CPU-trained

324 Frozen-PINNs achieve 625 to 5500 times faster training than GPU-trained competing PINN variants,
 325 while simultaneously being four to five orders of magnitude more accurate. Frozen-PINNs also solve
 326 the wave equation in the three-frequency scenario (illustrated in Figure 19) extremely quickly and
 327 with high precision, reinforcing their potential for solving PDEs with complex, multiscale dynamics.
 328 Additional implementation details and extended results are provided in Appendix C.3.

330 3.4 NON-LINEARITY AND SHOCKS

331 In this example, we highlight how using pairs of data points to sample neural basis functions using the
 332 SWIM algorithm can be leveraged to resolve locally steep gradients in the solution of the non-linear
 333 viscous Burgers’ equation, as shown in Figure 2 (Left). See Appendix C.4 for details.

334 Frozen-PINN-swim creates numerous basic functions with steep gradients, accurately placing them
 335 near the location of the shock, leveraging the SWIM algorithm and solutions from previous time-steps
 336 to fit neural basis functions, given enough collocation points in the domain’s center (see Figure 20a
 337 (Left)). To concentrate collocation points near the shock in the domain’s center, we resample them
 338 periodically after a set number of time steps, guided by a probability distribution that leverages the
 339 gradient of the approximate solution (see Figure 5a (Top)). At the resampling time $t_r \in [0, T]$, we
 340 approximate the probability density $p(x) \sim |\nabla \hat{u}(x, t_r)|$, which we then use to re-sample collocation
 341 points as illustrated in Figure 5a (Bottom), placing more collocation points near the shock region.



350 (a) (Top): Probability distribution,
 351 (Bottom): Sampled collocation
 352 points.

353 (b) Illustration of embedding directional information to orient Frozen-PINN-
 354 swim basis functions along the gradient of the initial condition: (Left): A
 355 randomly selected pair of points $(x^{(1)}, x^{(2)})$ leads to a SWIM basis function
 356 misaligned with the gradient of the initial solution, (Right): A projected pair
 357 of points $(\hat{x}^{(1)}, \hat{x}^{(2)})$ yields a basis function aligned with the gradient of u_0 .

358 Figure 5: Constructing useful Frozen-PINN-swim bases. (Left): shock-aware sampling (Burgers,
 359 (Section 3.4)) and (Right): direction-aware bases (reaction-diffusion, Section 3.7).

360 As shown in Table 1, Frozen-PINNs achieve 46 to 2945 times speedups in training time over other
 361 PINN variants in the low-precision regime. Remarkably, even in the high-precision regime, CPU-
 362 trained Frozen-PINNs remain 203 to 535 times faster than state-of-the-art GPU-trained PINNs
 363 at comparable accuracy. While optimizers like SSBroyden (Kiyani et al., 2025) can offer higher
 364 accuracy, they are extremely slow, resource-intensive, and difficult to implement. Furthermore,
 365 Frozen-PINN-swim basis functions handle shocks significantly better than Fourier or Chebyshev
 366 bases used in classical spectral methods (see Figure 22, Figure 23, Appendix C.4.1).

368 3.5 NON-LINEARITY AND COMPLICATED DOMAIN GEOMETRY

370 In this example, we consider a non-linear diffusion equation on a complicated domain geometry. See
 371 Appendix C.5 for details. For mesh-based methods, meshing can be resource-intensive and technically
 372 demanding (see Figure 24), unlike neural PDE solvers. As shown in Table 1, Frozen-PINNs are
 373 145 to 456 times faster than PINNs and 4.83 times faster than FEM at comparable low-precision
 374 accuracy, and can achieve over 1000 times better accuracy than other PINNs. Notably, Frozen-PINNs
 375 require only 350 basis functions versus around 2000 finite elements in FEM for similar accuracy (see
 376 Table 18), mainly due to the global support of neural bases. For fairness, the FEM grid points are
 377 reused as collocation points for minimizing the PDE residual in Frozen-PINNs.

378
379

3.6 CHAOS AND STRONG NON-LINEARITY

380
381
382
383
384
385

We tackle the highly nonlinear Kuramoto-Sivashinsky equation, which models laminar flame-front instabilities that exhibit spatiotemporal chaos. As shown in Figure 6, our Frozen-PINN captures the characteristic chaotic pattern over a long-time horizon $t \in [0, 5]$, with an average training time of only 6.9 seconds on CPU (averaged over 5 seeds). Further experimental details are provided in Appendix C.7. Since chaotic dynamics amplify small numerical differences, trajectory-level errors are not meaningful, and we assess performance based on the qualitative spatiotemporal patterns.

386
387

3.7 HIGH-DIMENSIONAL PDEs WITH LOW-DIMENSIONAL SOLUTION MANIFOLDS

388
389
390
391
392
393
394

In this benchmark (Zang et al., 2020), we solve a five-dimensional non-linear reaction-diffusion equation, where the solution only changes in two dimensions that are a priori unknown. We construct SWIM basis functions aligned with the two intrinsic dimensions of variation, directly embedding directional information unlike in PINNs and ELMs, by using spatial coordinates projected onto the gradient of the initial solution to sample SWIM basis functions, as shown in Figure 5b. See Appendix C.6 for further details.

395
396
397
398
399

Table 1 shows that Frozen-PINN-swim is over 3400 times faster than other PINNs at comparable low-precision accuracy. It is the only method to reach the high-precision regime, achieving 2–3 orders of magnitude higher accuracy than other PINN variants and weak adversarial networks (Zang et al., 2020). These results confirm that explicitly embedding informative basis functions yields far more efficient and accurate models than relying on iterative optimization to learn them implicitly.

400

3.8 HIGH-DIMENSIONALITY

401
402
403
404
405
406
407
408

High-dimensional PDEs, such as the 100-dimensional heat equation, are computationally prohibitive for grid-based methods, which require more than 10^{30} grid points, considering only two points per dimension. The following examples demonstrate Frozen-PINNs’ ability to solve such PDEs efficiently and accurately. We evaluate our approach on two established benchmarks: one introduced in Wang & Dong (2024), which addresses the heat equation in up to 10 dimensions on a unit hypercube, and another introduced in He et al. (2023), which focuses on a 100-dimensional variant of the heat equation on a unit ball. We discuss all details in Appendix C.8.

409
410
411
412
413
414
415
416

Frozen-PINN-elm is consistently 10–1000 times more accurate than classical PINNs for up to 100-dimensional PDEs Figure 7 (top), with error decaying rapidly with network width until saturation Figure 7 (bottom). For the 10-d heat equation, Frozen-PINN-elm trains 100 – 1000 times faster than other PINNs while achieving higher accuracy. For the 100-d heat equation, CPU-trained Frozen-PINNs remain hundreds of times faster than GPU-trained PINNs while delivering an order-of-magnitude better accuracy (Table 1), underscoring both their computational efficiency and high accuracy. Table 2 summarizes the advantages of our algorithm over classical mesh-based and physics-informed methods based on iterative gradient-descent-based methods.

417
418
419

4 CONCLUSION

420
421
422
423
424
425
426
427
428
429
430
431

Frozen-PINNs directly address the longstanding training and accuracy bottlenecks of PINNs by fundamentally simplifying the optimization problem and enforcing temporal causality by construction, leveraging the idea of space-time separation. Our extensive empirical analysis reveals that Frozen-PINNs consistently realize extremely fast training and high precision (often several orders of magnitude better than SOTA PINNs), and preserve temporal causality on a broad range of PDEs involving challenges such as extreme flow velocities, long-time simulation, higher-order spatial and temporal derivatives, complicated spatial domains, non-linearities, shocks, and high-dimensionality, without requiring specialized hardware like GPUs. Frozen-PINNs maintain high precision over long time spans and capture high-frequency temporal dynamics where prior neural PDE solvers fail. Within the scope of the empirical study in this work, in low dimensions, Frozen-PINNs match the accuracy of classical mesh-based solvers while retaining advantages such as mesh-free basis functions, ease of implementation, the ability to handle complex domains, spectral convergence for PDEs with smooth solutions, and scalability for high-dimensional PDEs where mesh-based approaches struggle.

432
 433 **Table 1: Summary of empirical results on eight PDE benchmarks**, including results from prior
 434 works: dashes denote training times not reported in prior works; Training times labeled with $^+$ were
 435 obtained using GPUs; thus, CPU-based training, as with Frozen-PINNs, would lead to substantially
 436 larger values. For each PDE, solvers above/below the horizontal line correspond to low-/high-
 437 precision regimes. Normalized training times relative to Frozen-PINNs are computed as the ratio of
 438 each method’s training time to that of Frozen-PINNs, and are computed at similar accuracy.

PDE benchmark	Method	Training time (s)	Normalized training time	Relative L^2 error
Advection ($\beta = 40$)	PINN (Adam)	-	-	Fail for $\beta=40$
	SWIM	-	-	Fail for $\beta=40$
	ELM	-	-	Fail for $\beta=40$
	Causal PINN	357.63	533	$2.90e0 \pm 1.2e0$
	PINN (L-BFGS)	30.5	45.5	$6.92e-1 \pm 2.96e-2$
Krishnapriyan et al. (2021)	PINN (seq2seq, L-BFGS)	-	-	$2.41e-1$
Krishnapriyan et al. (2021)	PINN (Curriculum training, L-BFGS)	-	-	$5.33e-2$
	Frozen-PINN-elm (our) *	0.67	1	$4.19e-3 \pm 2.97e-3$
	Frozen-PINN-swim (our) *	0.7	1	$8.42e-9 \pm 1.12e-8$
	Mesh-based method (IGA)	0.07	0.1	$1.17e-10$
Euler-Bernoulli (classical)	PINN (Adam)	4209.82	84196	$3.95e-2 \pm 1.79e-2$
Kapoor et al. (2023)	PINN (L-BFGS)	2303.71	46074	$4.21e-3 \pm 9.56e-4$
	Frozen-PINN-elm (our) *	0.05	1	$2.82e-4 \pm 2.15e-4$
	Mesh-based method (IGA)	0.94	0.13	$4.21e-7$
	Frozen-PINN-elm (our) *	6.90	1	$9.33e-9 \pm 4.36e-9$
Euler-Bernoulli (Winkler)	PINN (L-BFGS)	1858 ⁺	37160 ⁺	5.33e+0
Kapoor et al. (2024b)	Adaptive PINN	3807.89	76140	5.32e+0
Kapoor et al. (2024b)	Self-adaptive PINN	4042.57	80840	5.15e+0
Kapoor et al. (2024b)	Wavelet PINN	4764.25	95280	4.38e+0
Kapoor et al. (2024b)	Causal PINN	1873 ⁺	37460 ⁺	3.00e-2
	Frozen-PINN-elm (our) *	0.05	1	$1.41e-2 \pm 4.19e-3$
	Frozen-PINN-swim (our) *	2.41	1	$1.42e-7 \pm 1.20e-7$
	Mesh-based method (IGA)	1.08	0.44	$2.70e-8$
Wave Hao et al. (2024)	PINN (FBPINN)	3090 ⁺	5517.9 ⁺	$5.91e-1 \pm 4.74e-2$
Hao et al. (2024)	PINN (L-BFGS)	350 ⁺	625 ⁺	$5.88e-1 \pm 9.63e-2$
Hao et al. (2024)	PINN (gPINN)	775 ⁺	1383.9 ⁺	$5.56e-1 \pm 1.67e-2$
Hao et al. (2024)	PINN (NTK)	840 ⁺	1500 ⁺	$9.79e-2 \pm 7.72e-3$
	Frozen-PINN-elm (our) *	0.56	1	$1.81e-6 \pm 1.01e-6$
Burgers	Causal PINN	1531.79	2945.75	$1.60e-2 \pm 8.97e-3$
	PINN (L-BFGS)	275.2	529.2	$3.88e-3 \pm 2.61e-3$
Kiyani et al. (2025)	PINN (BFGS with trust region)	24 ⁺	46.1 ⁺	1.1e-3
	Frozen-PINN-swim (our) *	0.52	1	$1.00e-3 \pm 1.13e-3$
Chen et al. (2024b)	PINN (residual-based attention)	-	-	$8.22e-4 \pm 2.33e-4$
McClenny & Braga-Neto (2023)	Self-adaptive PINN	-	-	$4.80e-4 \pm 1e-4$
Chen et al. (2024b)	PINN (balanced residual decay rate)	-	-	$1.38e-4 \pm 0.85e-4$
Kiyani et al. (2025)	PINN (RAdam + BFGS)	1070	203 ⁺	6e-6
Urbán et al. (2025)	PINN (SSBroyden)	-	-	$2.9e-6 \pm 0.4e-6$
	Frozen-PINN-swim (our) *	5.25	1	$2.27e-7 \pm 6.89e-8$
	Mesh-based method (IGA)	76.32	14.5	1.12e-7
Kiyani et al. (2025)	PINN (Adam + SSBroyden)	2812 ⁺	535 ⁺	$1.62e-8$
Nonlinear diffusion	PINN (Adam)	81.36	145.2	$2.09e-2 \pm 3.14e-3$
	PINN (L-BFGS)	255.9	456.9	$1.22e-2 \pm 2.38e-4$
	Mesh-based method (FEM)	2.71	4.83	2.68e-3
	Frozen-PINN-elm (our) *	0.56	1	$2.60e-3 \pm 1.61e-3$
	Frozen-PINN-swim (our) *	423	-	$2.00e-6 \pm 1.99e-6$
5-d Reaction diffusion	PINN (Adam)	171.43	3428.6	$3.40e-1 \pm 1.79e-2$
	PINN (L-BFGS)	183.38	3667.6	$3.33e-2 \pm 1.54e-2$
Zang et al. (2020)	Weak Adversarial Network	-	-	$2.8e-2$
	Frozen-PINN-swim (our) *	0.05	1	$1.07e-2 \pm 4.52e-4$
	Frozen-PINN-swim (our) *	12.43	-	$9.99e-5 \pm 6.21e-9$
10-d heat	PINN (Adam)	1002.49	3037.8	$1.68e-1 \pm 3.21e-2$
Wang & Dong (2024)	PINN (L-BFGS)	189.6	574.5	$6.06e-4 \pm 1.00e-4$
benchmark extended to $d = 10$	Frozen-PINN-elm (our) *	0.33	1	$4.35e-4 \pm 5.91e-5$
	Frozen-PINN-elm (our) *	168.6	-	$2.28e-5 \pm 2.1e-5$
100-d heat He et al. (2023)	PINN (Adam)	141 ⁺	1084.6 ⁺	$0.60e-2$
He et al. (2023)	PINN (no stacked-backpropagation)	49.8 ⁺	383.1 ⁺	$0.63e-2$
	PINN (Adam+L-BFGS)	26.25 ⁺	201.9 ⁺	$4.98e-3 \pm 2.96e-4$
	Frozen-PINN-elm (our) *	0.13	1	$4.12e-4 \pm 1.70e-5$

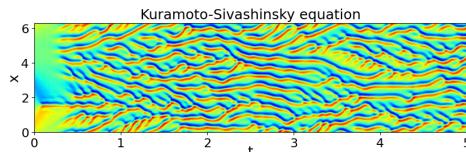


Figure 6: **Frozen-PINN solution of the strongly nonlinear and chaotic Kuramoto-Sivashinsky equation.**

PDE setting	IGA-FEM/ FEM	PINNs	Frozen-PINNs
Solutions with shocks	✓	✓	✓ (SWIM)
Complex domains	mesh	Easy	Easy
High dimensionality	✗ (CoD)	✓	✓
Performance/features			
Accuracy/Precision	High	Often low	High
Speed	Fast	Slow (training)	Fast
Temporal causality	✓	✗ (soft constraint)	✓

Table 2: Comparison of Frozen-PINNs with mesh-based FEM and classical PINNs in different problem settings presented in this paper: The comparison is grounded in results reported in Section 3 for the PDEs and solvers studied. ✓ denotes compatibility, and ✗ denotes either incompatibility or the need for substantial modifications. Curse of Dimensionality is abbreviated as CoD.

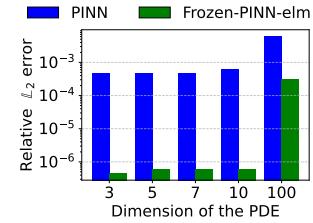
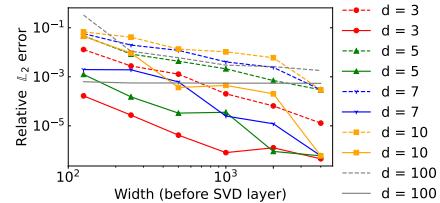


Figure 7: High-dimensional heat equation: (Top): comparison of test errors for varying PDE dimensions (different hatch patterns indicate different benchmarks), (Bottom): fast decay of test error with network width (dashed: Frozen-PINN-swim, solid: Frozen-PINN-elm).

Limitations and future work: Our method assumes knowledge of the PDE, but its speed makes it well-suited for inverse problems via fast forward solves. While Frozen-PINNs efficiently deal with extreme temporal complexity, as shown in the advection equation with extreme flow velocities, dealing with spatial complexity encountered while solving PDEs like Navier–Stokes is an exciting next step, where one could leverage domain decomposition to deal with the added complexity (Moseley et al., 2023; Howard et al., 2024). Finally, universal approximation properties concerning specific PDE settings and understanding the role of re-sampling network parameters in overcoming the Kolmogorov n -width barrier (Peherstorfer, 2022) are some of the most challenging, yet important theoretical open areas of investigation, beyond the scope of this paper.

Frozen-PINNs take a decisive step toward practical neural PDE solvers through a lightweight optimization process and extremely fast training without GPUs, promoting low-carbon AI development (Verdecchia et al., 2023), advancing state-of-the-art performance, and establishing a formidable benchmark for the community to build upon in advancing rapid and accurate neural PDE solvers.

540 **Reproducibility statement:** The code to reproduce the experiments from the paper, along with
 541 reproducibility instructions, is included in the supplemental material. The source code will be released
 542 as open-source upon acceptance. All experiments are run with multiple seeds, and the corresponding
 543 seed values are stored in the repository to ensure reproducibility.

544 **Ethics statement:** Neural networks are inherently dual-use technologies, and ethical considerations
 545 are essential for any new machine learning approach. Frozen-PINNs are grounded in classical
 546 scientific computing principles, which offer well-understood behavior and interpretability. By
 547 bridging neural PDE solvers with classical numerical methods, our framework enables clearer
 548 analysis of robustness, failure modes, and reproducibility. We believe this transparency reduces the
 549 risk of misuse and enhances controllability, making Frozen-PINNs safe and interpretable. Thus, we
 550 believe that the benefits of our approach far outweigh the potential downsides of misuse because a
 551 system that is better understood can also be controlled more straightforwardly.

552
 553 **REFERENCES**
 554

555 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
 556 Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
 557 Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
 558 Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
 559 Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
 560 Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
 561 Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
 562 heterogeneous systems, 2015. Software available from tensorflow.org.

563 Joubine Aghili, Joy Zalesi Atokple, Marie Billaud-Friess, Guillaume Garnier, Olga Mula, and
 564 Norbert Tognon. A Dynamical Neural Galerkin Scheme for Filtering Problems, January 2024.

565 Igor A. Baratta, Joseph P. Dean, Jørgen S. Dokken, Michal Habera, Jack S. Hale, Chris N. Richardson,
 566 Marie E. Rognes, Matthew W. Scroggs, Nathan Sime, and Garth N. Wells. DOLFINx: the next
 567 generation FEniCS problem solving environment. preprint, 2023.

568 Cea Basdevant, M Deville, P Haldenwang, JM Lacroix, J Ouazzani, R Peyret, Paolo Orlandi, and
 569 AT0612 Patera. Spectral and finite difference solutions of the burgers equation. *Computers &*
 570 *fluids*, 14(1):23–41, 1986.

571 Jules Berman and Benjamin Peherstorfer. Randomized sparse neural galerkin schemes for solving
 572 evolution equations with deep networks. *Advances in Neural Information Processing Systems*, 36,
 573 2024.

574 Jules Berman, Paul Schwerdtner, and Benjamin Peherstorfer. Neural Galerkin schemes for sequential-
 575 in-time solving of partial differential equations with deep networks. In *Handbook of Numerical
 576 Analysis*, volume 25, pp. 389–418. Elsevier, 2024. ISBN 978-0-443-23984-7. doi: 10.1016/bs.hna.
 577 2024.05.006.

578 Dimitri E Beskos. Boundary element methods in dynamic analysis. *Applied Mechanics Reviews*, 40
 579 (1):1–23, 1987.

580 Erik L Bolager, Iryna Burak, Chinmay Datar, Qing Sun, and Felix Dietrich. Sampling weights of
 581 deep neural networks. In *Advances in Neural Information Processing Systems*, volume 36, pp.
 582 63075–63116. Curran Associates, Inc., 2023.

583 Mayur P Bonkile, Ashish Awasthi, C Lakshmi, Vijitha Mukundan, and VS Aswin. A systematic
 584 literature review of burgers' equation with recent advances. *Pramana*, 90:1–21, 2018.

585 N. F. Britton. *Reaction-diffusion equations and their applications to biology*. Academic Press,
 586 London, 1986. ISBN 9780121351403.

587 Joan Bruna, Benjamin Peherstorfer, and Eric Vanden-Eijnden. Neural Galerkin schemes with active
 588 learning for high-dimensional evolution equations. *Journal of Computational Physics*, 496:112588,
 589 January 2024. ISSN 00219991. doi: 10.1016/j.jcp.2023.112588.

590 Hans-Joachim Bungartz and Michael Griebel. Sparse grids. *Acta numerica*, 13:147–269, 2004.

594 Francesco Calabrò, Gianluca Fabiani, and Constantinos Siettos. Extreme learning machine collocation
 595 for the numerical solution of elliptic PDEs with sharp gradients. *Computer Methods in Applied*
 596 *Mechanics and Engineering*, 387:114188, December 2021. ISSN 00457825. doi: 10.1016/j.cma.
 597 2021.114188.

598 Jingrun Chen, Weinan E, and Yifei Sun. Optimization of random feature method in the high-precision
 599 regime. *Communications on Applied Mathematics and Computation*, pp. 1–28, 2024a.

601 Peter Yichen Chen, Jinxu Xiang, Dong Heon Cho, Yue Chang, G A Pershing, Henrique Teles Maia,
 602 Maurizio M Chiaramonte, Kevin Thomas Carlberg, and Eitan Grinspan. CROM: Continuous
 603 reduced-order modeling of PDEs using implicit neural representations. In *The Eleventh Interna-*
 604 *tional Conference on Learning Representations*, 2023. URL [https://openreview.net/](https://openreview.net/forum?id=FUORz1tG8Og)
 605 [forum?id=FUORz1tG8Og](https://openreview.net/forum?id=FUORz1tG8Og).

606 Wen Chen, Zhuo-Jia Fu, and C.S. Chen. *Recent Advances in Radial Basis Function Collocation Meth-*
 607 *ods*. Springer Berlin Heidelberg, 2014. ISBN 9783642395727. doi: 10.1007/978-3-642-39572-7.

609 Wenqian Chen, Amanda A Howard, and Panos Stinis. Self-adaptive weights based on balanced
 610 residual decay rate for physics-informed neural networks and deep operator networks. *arXiv*
 611 *preprint arXiv:2407.01613*, 2024b.

613 Pao-Hsiung Chiu, Jian Cheng Wong, Chinchun Ooi, My Ha Dao, and Yew-Soon Ong. Can-pinn:
 614 A fast physics-informed neural network based on coupled-automatic-numerical differentiation
 615 method. *Computer Methods in Applied Mechanics and Engineering*, 395:114909, 2022.

616 Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park.
 617 Separable physics-informed neural networks. *Advances in Neural Information Processing Systems*,
 618 36, 2024.

620 Ronald R Coifman and Stéphane Lafon. Diffusion maps. *Applied and computational harmonic*
 621 *analysis*, 21(1):5–30, 2006.

623 J. Austin Cottrell, Thomas J. R. Hughes, and Yuri Bazilevs. *Isogeometric Analysis: Toward Integration*
 624 *of CAD and FEA*. Wiley Publishing, 1st edition, 2009. ISBN 0470748737.

625 J.A. Cottrell, A. Reali, Y. Bazilevs, and T.J.R. Hughes. Isogeometric analysis of structural vibrations.
 626 *Computer Methods in Applied Mechanics and Engineering*, 195(41):5257–5296, 2006. ISSN
 627 0045-7825. doi: <https://doi.org/10.1016/j.cma.2005.09.027>. John H. Argyris Memorial Issue. Part
 628 II.

630 M. G. COX. The Numerical Evaluation of B-Splines*. *IMA Journal of Applied Mathematics*, 10(2):
 631 134–149, 10 1972. ISSN 0272-4960. doi: 10.1093/imamat/10.2.134.

632 Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
 633 and Francesco Piccialli. Scientific machine learning through physics-informed neural networks:
 634 Where we are and what's next. *Journal of Scientific Computing*, 92(3):88, 2022.

636 Chinmay Datar, Adwait Datar, Felix Dietrich, and Wil Schilders. Systematic construction of
 637 continuous-time neural networks for linear dynamical systems. *SIAM Journal on Scientific*
 638 *Computing*, 47(4):C820–C845, 2025.

639 Carl de Boor. On calculating with b-splines. *Journal of Approximation Theory*, 6(1):50–62, 1972.
 640 ISSN 0021-9045. doi: [https://doi.org/10.1016/0021-9045\(72\)90080-9](https://doi.org/10.1016/0021-9045(72)90080-9).

642 MWMG Dissanayake and Nhan Phan-Thien. Neural-network-based approximations for solving
 643 partial differential equations. *communications in Numerical Methods in Engineering*, 10(3):
 644 195–201, 1994.

646 Suchuan Dong and Zongwei Li. Local extreme learning machines and domain decomposition for
 647 solving linear and nonlinear partial differential equations. *Computer Methods in Applied Mechanics*
 and *Engineering*, 387:114129, 2021.

648 Suchuan Dong and Jielin Yang. On computing the hyperparameter of extreme learning machines:
 649 Algorithm and application to computational pdes, and comparison with classical and high-order
 650 finite elements. *Journal of Computational Physics*, 463:111290, 2022.

651

652 John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. *Journal of
 653 computational and applied mathematics*, 6(1):19–26, 1980.

654

655 Gideon Dresdner, Dmitrii Kochkov, Peter Christian Norgaard, Leonardo Zepeda-Nunez, Jamie Smith,
 656 Michael Brenner, and Stephan Hoyer. Learning to correct spectral methods for simulating turbulent
 657 flows. *Transactions on Machine Learning Research*, 2022.

658

659 Yifan Du and Tamer A Zaki. Evolutional deep neural network. *Physical Review E*, 104(4):045303,
 660 2021.

661

662 Yiheng Du, Nithin Chalapathi, and Aditi Krishnapriyan. Neural spectral methods: Self-supervised
 663 learning in the spectral domain. *arXiv preprint arXiv:2312.05225*, 2023.

664

665 Vikas Dwivedi and Balaji Srinivasan. Physics informed extreme learning machine (pielm)—a rapid
 666 method for the numerical solution of partial differential equations. *Neurocomputing*, 391:96–118,
 667 2020.

668

669 Vikas Dwivedi, Nishant Parashar, and Balaji Srinivasan. Distributed learning machines for solving
 670 forward and inverse problems in partial differential equations. *Neurocomputing*, 420:299–316,
 671 2021.

672

673 Weinan E. Towards a Mathematical Understanding of Neural Network-Based Machine Learning:
 674 What We Know and What We Don’t. *CSIAM Transactions on Applied Mathematics*, 1(4):561–615,
 675 June 2020. ISSN 2708-0560, 2708-0579. doi: 10.4208/csiam-am.SO-2020-0002.

676

677 Gianluca Fabiani, Francesco Calabò, Lucia Russo, and Constantinos Siettos. Numerical solution
 678 and bifurcation analysis of nonlinear partial differential equations with extreme learning machines.
 679 *Journal of Scientific Computing*, 89(2):44, November 2021. ISSN 0885-7474, 1573-7691. doi:
 10.1007/s10915-021-01650-5.

680

681 Stanley J. Farlow. *Partial Differential Equations for Scientists and Engineers*. Dover Publications,
 682 New York, 1993. ISBN 9780486676203.

683

684 Marc Finzi, Andres Potapczynski, Matthew Choptuik, and Andrew Gordon Wilson. A stable and scal-
 685 able method for solving initial value pdes with neural networks. *arXiv preprint arXiv:2304.14994*,
 686 2023.

687

688 Evangelos Galaris, Gianluca Fabiani, Ioannis Gallos, Ioannis Kevrekidis, and Constantinos Siettos.
 689 Numerical Bifurcation Analysis of PDEs From Lattice Boltzmann Model Simulations: A Parsi-
 690 monious Machine Learning Approach. *Journal of Scientific Computing*, 92(2):34, August 2022.
 691 ISSN 0885-7474, 1573-7691. doi: 10.1007/s10915-022-01883-y.

692

693 Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator
 694 with built-in pre- and post-processing facilities. *International Journal for Numerical Methods in
 695 Engineering*, 79:1309 – 1331, 09 2009. doi: 10.1002/nme.2579.

696

697 R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and application to
 698 non-spherical stars. *Monthly Notices of the Royal Astronomical Society*, 181(3):375–389, 12 1977.
 699 ISSN 0035-8711. doi: 10.1093/mnras/181.3.375.

700

701 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
 702 networks. In *Proceedings of the thirteenth international conference on artificial intelligence and
 703 statistics*, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

704

705 David Gottlieb and Chi-Wang Shu. On the gibbs phenomenon and its resolution. *SIAM review*, 39(4):
 706 644–668, 1997.

707

708 Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
 709 using deep learning. *Proceedings of the National Academy of Sciences*, 115(34):8505–8510, 2018.

702 Zhongkai Hao, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang,
 703 Songming Liu, Lu Lu, and Jun Zhu. Pinnacle: a comprehensive benchmark of physics-informed
 704 neural networks for solving pdes. In *Proceedings of the 38th International Conference on Neural
 705 Information Processing Systems*, NIPS '24, Red Hook, NY, USA, 2024. Curran Associates Inc.
 706 ISBN 9798331314385.

707 Di He, Shanda Li, Wenlei Shi, Xiaotian Gao, Jia Zhang, Jiang Bian, Liwei Wang, and Tie-Yan Liu.
 708 Learning physics-informed neural networks without stacked back-propagation. In *International
 709 conference on artificial intelligence and statistics*, pp. 3034–3047. PMLR, 2023.

710

711 Amanda A Howard, Bruno Jacob, Sarah H Murphy, Alexander Heinlein, and Panos Stinis. Finite
 712 basis kolmogorov-arnold networks: domain decomposition for data-driven and physics-informed
 713 problems. *arXiv preprint arXiv:2406.19662*, 2024.

714

715 Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory and
 716 applications. *Neurocomputing*, 70(1-3):489–501, 2006.

717

718 Xinquan Huang and Tariq Alkhalifah. Efficient physics-informed neural networks using hash
 719 encoding. *Journal of Computational Physics*, 501:112760, 2024.

720

721 T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: Cad, finite elements, nurbs,
 722 exact geometry and mesh refinement. *Computer Methods in Applied Mechanics and Engineering*,
 194(39):4135–4195, 2005.

723

724 Tanveer ul Islam and Prasanna S Gandhi. Viscous fingering in multiport hele shaw cell for controlled
 725 shaping of fluids. *Scientific reports*, 7(1):16602, 2017.

726

727 Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions
 728 accelerate convergence in deep and physics-informed neural networks. *Journal of Computational
 729 Physics*, 404:109136, 2020.

730

731 Jacques Janssen, Oronzio Manca, and Raimondo Manca. *Applied diffusion processes from engineering
 732 to finance*. John Wiley & Sons, 2013.

733

734 Jeahan Jung, Heechang Kim, Hyomin Shin, and Minseok Choi. Ceens: Causality-enforced evolutional
 735 networks for solving time-dependent partial differential equations. *Computer Methods in Applied
 736 Mechanics and Engineering*, 427:117036, 2024.

737

738 Taniya Kapoor, Hongrui Wang, Alfredo Núñez, and Rolf Dollevoet. Physics-informed neural
 739 networks for solving forward and inverse problems in complex beam systems. *IEEE Transactions
 740 on Neural Networks and Learning Systems*, 2023.

741

742 Taniya Kapoor, Abhishek Chandra, Daniel M Tartakovsky, Hongrui Wang, Alfredo Nunez, and
 743 Rolf Dollevoet. Neural oscillators for generalization of physics-informed machine learning. In
 744 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 13059–13067,
 745 2024a.

746

747 Taniya Kapoor, Hongrui Wang, Alfredo Núñez, and Rolf Dollevoet. Transfer learning for improved
 748 generalizability in causal physics-informed neural networks for beam simulations. *Engineering
 749 Applications of Artificial Intelligence*, 133:108085, 2024b.

750

751 George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 752 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

753

754 Mariella Kast and Jan S Hesthaven. Positional embeddings for solving pdes with evolutional deep
 755 neural networks. *Journal of Computational Physics*, 508:112986, 2024.

756

757 Jaeseung Kim and Hwijae Son. Causality-aware training of physics-informed neural networks for
 758 solving inverse problems. *Mathematics*, 13(7):1057, 2025.

759

760 Elham Kiyani, Khemraj Shukla, Jorge F Urbán, Jérôme Darbon, and George Em Karniadakis. Which
 761 optimizer works best for physics-informed neural networks and kolmogorov-arnold networks?
 762 *arXiv preprint arXiv:2501.16371*, 2025.

756 Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
 757 Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
 758 spaces. *CoRR*, abs/2108.08481, 2021.

759

760 Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
 761 acterizing possible failure modes in physics-informed neural networks. *Advances in neural*
 762 *information processing systems*, 34:26548–26560, 2021.

763 Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
 764 ordinary and partial differential equations. *IEEE transactions on neural networks*, 9(5):987–1000,
 765 1998.

766 King-Yeung Lam and Yuan Lou. *Introduction to reaction-diffusion equations: Theory and applica-*
 767 *tions to spatial ecology and evolutionary biology*. Springer Nature, 2022.

768

769 Peter Lancaster and Kestutis Salkauskas. Surfaces generated by moving least squares methods.
 770 *Mathematics of Computation*, 37:141–158, 1981.

771

772 Henning Lange, Steven L Brunton, and J Nathan Kutz. From fourier to koopman: Spectral methods
 773 for long-term time series prediction. *Journal of Machine Learning Research*, 22(41):1–38, 2021.

774

775 Huilai Li, Zuoqun Wu, Jingxue Yin, and Junning Zhao. *Nonlinear Diffusion Equations*. World
 776 Scientific, 2001.

777

778 Ye Li, Siqi Chen, Bin Shan, and Sheng-Jun Huang. Causality-enhanced discreted physics-informed
 779 neural networks for predicting evolutionary equations. In *Proceedings of the Thirty-Third Interna-*
 780 *tional Joint Conference on Artificial Intelligence*, pp. 4497–4505, 2024.

781

782 Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
 783 Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential
 784 equations. In *International Conference on Learning Representations*, 2020.

785

786 Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-
 787 refiner: Achieving accurate long rollouts with neural pde solvers. *Advances in Neural Information*
 788 *Processing Systems*, 36, 2024.

789

790 Qiang Liu, Mengyu Chu, and Nils Thuerey. Config: Towards conflict-free training of physics
 791 informed neural networks. *arXiv preprint arXiv:2408.11104*, 2024.

792

793 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 794 nonlinear operators via deeponet based on the universal approximation theorem of operators.
 795 *Nature machine intelligence*, 3(3):218–229, 2021a.

796

797 Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learning
 798 library for solving differential equations. *SIAM Review*, 63(1):208–228, 2021b. doi: 10.1137/
 799 19M1274067.

800

801 Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson.
 802 Physics-informed neural networks with hard constraints for inverse design. *SIAM Journal on*
 803 *Scientific Computing*, 43(6):B1105–B1132, 2021c.

804

805 L. B. Lucy. A numerical approach to the testing of the fission hypothesis. *The Astronomical Journal*,
 806 82:1013–1024, December 1977. doi: 10.1086/112164.

807

808 Levi D McClenny and Ulisses M Braga-Neto. Self-adaptive physics-informed neural networks.
 809 *Journal of Computational Physics*, 474:111722, 2023.

810

811 Robert McGraw, Fan Yang, and Laura M Fierce. Preserving tracer correlations in moment-based atmo-
 812 spheric transport models. *Journal of Advances in Modeling Earth Systems*, 16(5):e2023MS003621,
 813 2024.

814

815 Nick McGreivy and Ammar Hakim. Weak baselines and reporting biases lead to overoptimism in
 816 machine learning for fluid-related partial differential equations. *Nature Machine Intelligence*, 6
 817 (10):1256–1269, 2024.

810 Xuhui Meng, Zhen Li, Dongkun Zhang, and George Em Karniadakis. Ppinn: Parareal physics-
 811 informed neural network for time-dependent pdes. *Computer Methods in Applied Mechanics and*
 812 *Engineering*, 370:113250, 2020.

813 Brek Meuris, Saad Qadeer, and Panos Stinis. Machine-learning-based spectral methods for partial
 814 differential equations. *Scientific Reports*, 13(1):1739, 2023.

815 Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neural
 816 networks (fbpinns): a scalable domain decomposition approach for solving differential equations.
 817 *Advances in Computational Mathematics*, 49(4):62, 2023.

818 Johannes Müller and Marius Zeinhofer. Achieving high accuracy with pinns via energy natural
 819 gradient descent. In *International Conference on Machine Learning*, pp. 25471–25485. PMLR,
 820 2023.

821 Masao Nagasawa. *Schrödinger equations and diffusion theory*. Springer Science & Business Media,
 822 2012.

823 Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
 824 Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
 825 PyTorch, 2017.

826 Benjamin Peherstorfer. Breaking the kolmogorov barrier with nonlinear model reduction. *Notices of*
 827 *the American Mathematical Society*, 69(5):725–733, 2022.

828 Michael Penwarden, Ameya D Jagtap, Shandian Zhe, George Em Karniadakis, and Robert M Kirby.
 829 A unified scalable framework for causal sweeping strategies for physics-informed neural networks
 830 (pinns) and their temporal decompositions. *Journal of Computational Physics*, 493:112464, 2023.

831 Linda Petzold. Automatic selection of methods for solving stiff and nonstiff systems of ordinary
 832 differential equations. *SIAM journal on scientific and statistical computing*, 4(1):136–148, 1983.

833 Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
 834 simulation with graph networks. In *International Conference on Learning Representations*, 2021.

835 Les Piegl and Wayne Tiller. *The NURBS book (2nd ed.)*. Springer-Verlag, Berlin, Heidelberg, 1997.
 836 ISBN 3540615458.

837 M J D Powell. The Theory of Radial Basis Function Approximation in 1990. In *Advances in*
 838 *Numerical Analysis: Wavelets, Subdivision Algorithms, and Radial Basis Functions*. Oxford
 839 University Press, 04 1992. ISBN 9780198534396. doi: 10.1093/oso/9780198534396.003.0003.

840 Serge Prudhomme, Frédéric Pascal, J.Tinsley Oden, and Albert Romkes. A priori error estimate for
 841 the baumann–oden version of the discontinuous galerkin method. *Comptes Rendus de l'Académie*
 842 *des Sciences - Series I - Mathematics*, 332(9):851–856, 2001. ISSN 0764-4442. doi: [https://doi.org/10.1016/S0764-4442\(01\)01936-X](https://doi.org/10.1016/S0764-4442(01)01936-X).

843 Atamert Rahma, Chinmay Datar, and Felix Dietrich. Training hamiltonian neural networks without
 844 backpropagation. *arXiv preprint arXiv:2411.17511*, 2024.

845 Atamert Rahma, Chinmay Datar, Ana Cukarska, and Felix Dietrich. Rapid training of hamiltonian
 846 graph networks without gradient descent. *arXiv preprint arXiv:2506.06558*, 2025.

847 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 848 deep learning framework for solving forward and inverse problems involving nonlinear partial
 849 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

850 Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in training
 851 pinns: A loss landscape perspective. *arXiv preprint arXiv:2402.01868*, 2024.

852 Richard B Rood. Numerical advection algorithms and their role in atmospheric transport and
 853 chemistry models. *Reviews of geophysics*, 25(1):71–100, 1987.

854 Alessandro Rudi and Lorenzo Rosasco. Generalization Properties of Learning with Random Features,
 855 April 2021.

864 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
 865 back-propagating errors. *nature*, 323(6088):533–536, 1986.

866

867 Guillermo Sapiro. Geometric partial differential equations and image analysis. *Geometric Partial*
 868 *Differential Equations and Image Analysis*, pp. 440, 2001.

869

870 M.S. Shadloo, G. Oger, and D. Le Touzé. Smoothed particle hydrodynamics method for fluid flows,
 871 towards industrial applications: Motivations, current state, and challenges. *Computers & Fluids*,
 872 136:11–34, 2016. ISSN 0045-7930. doi: <https://doi.org/10.1016/j.compfluid.2016.05.029>.

873

874 Yong Shang and Fei Wang. Randomized Neural Networks with Petrov–Galerkin Methods for
 875 Solving Linear Elasticity and Navier–Stokes Equations. *Journal of Engineering Mechanics*, 150
 876 (4):04024010, April 2024. ISSN 0733-9399, 1943-7889. doi: 10.1061/JENMDT.EMENG-7463.

877

878 Ramansh Sharma and Varun Shankar. Accelerated training of physics-informed neural networks
 879 (pinns) using meshless discretizations. *Advances in Neural Information Processing Systems*, 35:
 1034–1046, 2022.

880

881 Donald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In *Proceedings*
 882 *of the 1968 23rd ACM National Conference*, ACM '68, pp. 517–524, New York, NY, USA, 1968.
 883 Association for Computing Machinery. ISBN 9781450374866. doi: 10.1145/800186.810616.

884

885 Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
 886 differential equations. *Journal of computational physics*, 375:1339–1364, 2018.

887

888 Shashank Subramanian, Robert M Kirby, Michael W Mahoney, and Amir Gholami. Adaptive self-
 889 supervision algorithms for physics-informed neural networks. In *ECAI 2023*, pp. 2234–2241. IOS
 890 Press, 2023.

891

892 Jingbo Sun, Suchuan Dong, and Fei Wang. Local randomized neural networks with discontinuous
 893 Galerkin methods for partial differential equations. *Journal of Computational and Applied*
 894 *Mathematics*, 445:115830, August 2024. ISSN 03770427. doi: 10.1016/j.cam.2024.115830.

895

896 Ziya Uddin, Sai Ganga, Rishi Asthana, and Wubshet Ibrahim. Wavelets based physics informed
 897 neural networks to solve non-linear differential equations. *Scientific Reports*, 13(1):2882, 2023.

898

899 Jorge F Urbán, Petros Stefanou, and José A Pons. Unveiling the optimization process of physics
 900 informed neural networks: How accurate and competitive can pinns be? *Journal of Computational*
 901 *Physics*, 523:113656, 2025.

902

903 Roberto Verdeccchia, June Sallou, and Luís Cruz. A systematic review of green ai. *Wiley Interdisci-*
 904 *plinary Reviews: Data Mining and Knowledge Discovery*, 13(4):e1507, 2023.

905

906 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
 907 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
 908 Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
 909 Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
 910 Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
 911 Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
 912 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nature*
 913 *Methods*, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

914

915 Haoxiang Wang, Tao Yu, Tianwei Yang, Hui Qiao, and Qionghai Dai. Neural physical simulation
 916 with multi-resolution hash grid encoding. In *Proceedings of the AAAI Conference on Artificial*
 917 *Intelligence*, volume 38, pp. 5410–5418, 2024a.

918

919 Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies
 920 in physics-informed neural networks. *SIAM Journal on Scientific Computing*, 43(5):A3055–A3081,
 921 2021.

922

923 Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
 924 kernel perspective. *Journal of Computational Physics*, 449:110768, 2022.

918 Sifan Wang, Bowen Li, Yuhang Chen, and Paris Perdikaris. Piratenets: Physics-informed deep learning
 919 with residual adaptive networks. *Journal of Machine Learning Research*, 25(402):1–51, 2024b.
 920

921 Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality for training physics-
 922 informed neural networks. *Computer Methods in Applied Mechanics and Engineering*, 421:
 923 116813, 2024c.
 924

925 Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality for training physics-
 926 informed neural networks. *Computer Methods in Applied Mechanics and Engineering*, 421:
 927 116813, 2024d.
 928

929 Yiran Wang and Suchuan Dong. An extreme learning machine-based method for computational pdes
 930 in higher dimensions. *Computer Methods in Applied Mechanics and Engineering*, 418:116578,
 931 2024.
 932

933 Lei Wu and Jihao Long. A Spectral-Based Analysis of the Separation between Two-Layer Neural
 934 Networks and Linear Methods. *Journal of Machine Learning Research*, 23(1), January 2022. ISSN
 935 1532-4435.
 936

937 Mingtao Xia, Lucas Böttcher, and Tom Chou. Spectrally adapted physics-informed neural networks
 938 for solving unbounded domain problems. *Machine Learning: Science and Technology*, 4(2):
 939 025024, 2023.
 940

941 Chenhui Xu, Dancheng Liu, Yuting Hu, Jiajie Li, Ruiyang Qin, Qingxiao Zheng, and Jinjun Xiong.
 942 Sub-sequential physics-informed learning with state space model. In *Forty-second International
 943 Conference on Machine Learning*, 2025.
 944

945 Jiachen Yao, Chang Su, Zhongkai Hao, Songming Liu, Hang Su, and Jun Zhu. Multiadam: Parameter-
 946 wise scale-invariant optimizer for multiscale training of physics-informed neural networks. In
 947 *International Conference on Machine Learning*, pp. 39702–39721. PMLR, 2023.
 948

949 Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and Patrick Gallinari.
 950 Continuous pde dynamics forecasting with implicit neural representations. In *International
 951 Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=B73niNjbPs>.
 952

953 Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
 954 neural networks for forward and inverse pde problems. *Computer Methods in Applied Mechanics
 955 and Engineering*, 393:114823, 2022.
 956

957 Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adversarial networks for high-
 958 dimensional partial differential equations. *Journal of Computational Physics*, 411:109409, 2020.
 959

960 Zhiyuan Zhao, Xueying Ding, and B Aditya Prakash. Pinnsformer: A transformer-based framework
 961 for physics-informed neural networks. In *The Twelfth International Conference on Learning
 962 Representations*, 2024.
 963

964

965

966

967

968

969

970

971

972	APPENDIX	
973		
974	CONTENTS	
975		
976		
977	1 Introduction	1
978		
979	2 Solving time-dependent PDEs using Frozen-PINNs	3
980	2.1 Frozen-PINN ansatz	3
981	2.2 Computing hidden layer parameters without gradient descent	3
982	2.3 Solving time-dependent PDEs using Frozen-PINNs by separation of variables . . .	4
983	2.4 Approaches for satisfying boundary conditions for Frozen-PINNs	4
984	2.5 SVD Layer	4
985	2.6 Summary of the training algorithm for Frozen-PINNs	5
986		
987		
988		
989	3 Empirical results	5
990	3.1 High advection speeds, fast convergence, and long-time simulation	5
991	3.2 Higher-order derivatives in space and time	6
992	3.3 Multi-scale solutions	6
993	3.4 Non-linearity and shocks	7
994	3.5 Non-linearity and complicated domain geometry	7
995	3.6 Chaos and strong non-linearity	8
996	3.7 High-Dimensional PDEs with low-dimensional solution manifolds	8
997	3.8 High-dimensionality	8
998		
999		
1000		
1001	4 Conclusion	8
1002		
1003		
1004		
1005	A Extended review of related work	21
1006		
1007		
1008	B Supplementary methodological details on PDE solvers	22
1009	B.1 Physics-Informed Neural Networks	22
1010	B.2 Frozen-PINN-swim and Frozen-PINN-elm	23
1011	B.2.1 Extended Discussion on Frozen-PINNs	23
1012	B.2.2 Computing spatial and temporal differential operators in PDEs	27
1013	B.2.3 Reformulating PDEs as ODEs using Frozen-PINN ansatz	28
1014	B.2.4 Handling boundary conditions via boundary-compliant layer	31
1015	B.2.5 Handling boundary conditions via augmented ODE	31
1016	B.3 IGA-FEM	31
1017		
1018		
1019		
1020		
1021	C Supplementary details on numerical experiments	32
1022		
1023	C.1 Linear advection equation	33
1024	C.2 Euler-Bernoulli equation	35
1025	C.3 Wave equation	38

1026	C.4 Burgers	42
1027	C.4.1 Comparison with classical spectral methods	44
1028		
1029	C.5 Nonlinear diffusion equation	46
1030		
1031	C.6 Nonlinear reaction-diffusion equation	50
1032		
1033	C.7 Kuramoto-Sivashinsky equation	54
1034		
1035	C.8 High-dimensional diffusion equation	54
1036		
1037		
1038		
1039		
1040		
1041		
1042		
1043		
1044		
1045		
1046		
1047		
1048		
1049		
1050		
1051		
1052		
1053		
1054		
1055		
1056		
1057		
1058		
1059		
1060		
1061		
1062		
1063		
1064		
1065		
1066		
1067		
1068		
1069		
1070		
1071		
1072		
1073		
1074		
1075		
1076		
1077		
1078		
1079		

1080
1081 A EXTENDED REVIEW OF RELATED WORK
1082
1083
1084
1085
1086

In this section, we provide a comprehensive extended review of the literature and highlight how it relates to our work.

1087 **Physics-informed neural networks** are widely used to solve PDEs with neural networks. In
1088 this work, we benchmark our approach against various PINN variants such as adaptive activation
1089 PINNs (Jagtap et al., 2020), self-adaptive PINNs (McClenny & Braga-Neto, 2023), wavelet PINNs
1090 (Uddin et al., 2023), and causal PINNs (Wang et al., 2024c), among others. For high-frequency
1091 temporal variations in the PDE solutions, Krishnapriyan et al. (2021) propose curriculum learning
1092 with gradually increasing advection coefficients. Compared to curriculum learning, our approach
1093 with space-time separation is much easier to implement, computationally efficient, and accurate, as
1094 we demonstrate in Section 3.1. Subramanian et al. (2023) propose using adaptive self-supervision of
1095 PINNs for sampling collocation points using the gradient of the loss function. We instead use the
1096 solution gradient to capture locally sharp features in the solution (see Section 3.4). Many specialized
1097 approaches based on PINNs (Cho et al., 2024; Meng et al., 2020; Sharma & Shankar, 2022; Chiu
1098 et al., 2022), methods based on hash-encoding (Huang & Alkhalifah, 2024; Wang et al., 2024a), and
1099 transfer learning (Kapoor et al., 2024b) have been proposed, but are still based on gradient-based
1100 iterative optimization and back-propagation, unlike ours.

1100 Other recent advances of PINNs include methods that model the PDE system as pseudo-sequences.
1101 For instance, PINNsFormer employs a Transformer-based architecture that constructs pseudo-
1102 sequences from spatio-temporal samples and uses self-attention to model long-range temporal
1103 dependencies (Zhao et al., 2024). Another work, PINNMamba, is based on State Space Models
1104 (SSMs) and sub-sequence alignment, enabling continuous-discrete temporal modeling and improved
1105 propagation of initial-condition information (Xu et al., 2025). Although these methods model
1106 PDE systems as pseudo-sequences, these architectures often lead to more computational time and
1107 out-of-memory issues owing to their architecture, as presented by Xu et al. (2025).

1108 **Physics-informed approaches using randomized neural networks** for solving PDEs have mostly
1109 been studied by combining Extreme Learning Machines (ELMs) with the self-supervised setting of
1110 PINNs (Chen et al., 2024a; Wang & Dong, 2024; Shang & Wang, 2024; Sun et al., 2024). For instance,
1111 Dwivedi & Srinivasan (2020) propose a physics-informed extreme learning machine (PIELM) to
1112 efficiently solve linear PDEs, while Calabrò et al. (2021); Galaris et al. (2022) employ ELMs to
1113 learn invariant manifolds as well as PDEs from data. Dong & Yang (2022) show that given a
1114 fixed computational budget, ELMs achieve substantially higher accuracy compared to classical
1115 second-order FEM and slightly higher accuracy compared to higher-order FEM. For static, nonlinear
1116 PDEs, ELMs can be used together with nonlinear optimization schemes (Fabiani et al., 2021). On
1117 larger spatiotemporal domains, Dong & Li (2021) and Dwivedi et al. (2021) propose using multiple
1118 distributed ELMs on multiple subdomains. Although the aforementioned methods simplify the
1119 optimization problem by randomly sampling hidden layer parameters and fixing them, they treat
1120 time as merely another spatial dimension. As a result, their neural basis functions span the full
1121 spatiotemporal domain, which limits their accuracy on PDEs exhibiting high-frequency temporal
1122 dynamics, unlike our approach.

1122 While the problem setting is restricted to Hamiltonian systems, Rahma et al. (2024; 2025) discuss
1123 how to train Hamiltonian neural networks and Hamiltonian graph neural networks using ELM and
1124 SWIM approaches, and demonstrate how random sampling can be leveraged to significantly speed
1125 up training compared to gradient-based iterative optimization. In this work, we show how random
1126 sampling can speed up training and resolve optimization challenges of PINNs for time-dependent
1127 PDEs.

1128 **Neural Galerkin schemes** (Finzi et al., 2023; Aghili et al., 2024; Berman et al., 2024; Bruna et al.,
1129 2024) offer an alternative to the full spatiotemporal approach of the randomized neural networks and
1130 PINNs. These approaches treat all or sparse subsets of network parameters, beyond just the last
1131 layer’s parameters, as time-dependent. This leads to a much larger system of ODEs compared to our
1132 approach. The work on neural implicit representations (Chen et al., 2023; Yin et al., 2023) also uses
1133 neural basis functions to represent only the space component, but relies on gradient-based iterative
optimization via back-propagation, unlike our approach.

1134 **Spectral methods for solving PDEs** promise fast convergence with much fewer basis functions.
 1135 Meuris et al. (2023) present a method to extract hierarchical spatial basis functions from a trained
 1136 DeepONet and employ it in a spectral method to solve the given PDE. Xia et al. (2023) integrate
 1137 adaptive techniques into PINN-based PDE solvers to obtain numerical solutions of unbounded domain
 1138 problems that standard PINNs cannot efficiently approximate. Lange et al. (2021) propose spectral
 1139 methods that fit linear and nonlinear oscillators to data and facilitate long-term forecasting of temporal
 1140 signals. Dresdner et al. (2022) demonstrate spectral solvers that provide sub-grid corrections to
 1141 classical spectral methods to improve their accuracy. Du et al. (2023) use fixed orthogonal bases to
 1142 learn PDE solutions as a map between spectral coefficients and introduce a training strategy based on
 1143 spectral loss. These methods differ from ours in problem setting, architecture, and training.

1144 **Neural operator frameworks** (Lu et al., 2021a; Kovachki et al., 2021; Li et al., 2020; Pfaff et al.,
 1145 2021) are promising but are typically trained with PDE solutions with different initial conditions,
 1146 spatial domains (geometries), or parameter settings. Datar et al. (2025) have demonstrated how
 1147 continuous-time neural networks can be constructed for linear operator approximation for linear
 1148 and time-invariant systems. Instead, in our setting here, we solve the PDE using given coefficients,
 1149 domain, and initial conditions without relying on any training data. The ease of implementation,
 1150 rapid training, and high accuracy of our backpropagation-free approach can be leveraged to generate
 1151 PDE solution data for training operator networks.

1152 **Mesh-free methods** are typically based on radial basis functions (RBFs, (Powell, 1992; Chen et al.,
 1153 2014)) or Moving Least Squares (MLS) (Shepard, 1968; Lancaster & Salkauskas, 1981). These
 1154 often do not have user-friendly software or are only applicable in specialized settings (e.g., smoothed
 1155 particle hydrodynamics, (Lucy, 1977; Gingold & Monaghan, 1977; Shadloo et al., 2016)). Moreover,
 1156 despite the ease of dealing with complicated geometries, these methods typically suffer from many
 1157 challenges, such as the choice of kernel, imposing boundary conditions, and convergence issues.
 1158 These methods are not the focus of this work.

1159 **Classical numerical methods** such as finite elements, finite volumes, and finite differences have
 1160 been used to solve PDEs for decades. They often have a rich theoretical grounding and high accuracy.
 1161 Isogeometric analysis (IGA) is one such method, in which spline-based basis functions are defined
 1162 over a structured grid (Hughes et al., 2005; Cottrell et al., 2009; 2006). Mesh-based methods often
 1163 entail a time-consuming setup phase, especially when mesh generation is challenging. Methods
 1164 like sparse grids enable adaptivity through hierarchical bases but pose significant implementation
 1165 challenges, particularly for irregular domains (Bungartz & Griebel, 2004). In this work, we benchmark
 1166 our results against IGA and finite-element-based methods.

1167 B SUPPLEMENTARY METHODOLOGICAL DETAILS ON PDE SOLVERS

1170 B.1 PHYSICS-INFORMED NEURAL NETWORKS

1172 This work benchmarks Frozen PINNs against many prominent variants of physics-informed neural
 1173 networks. While we directly report results from other works for many PINN variants for different PDE
 1174 benchmarks (see Table 1), we also implement two PINN variants for certain PDEs - classical physics-
 1175 informed neural network (PINN) (Raissi et al., 2019) and causality-respecting physics-informed
 1176 neural network (causal PINN) (Wang et al., 2024c). We now describe these two variants.

1177 Classical PINNs are feedforward deep neural networks designed to approximate PDE solutions by
 1178 incorporating physical laws into the learning process. The architecture of a vanilla PINN includes a
 1179 deep neural network that maps inputs (e.g., space and time coordinates) to outputs (e.g., physical
 1180 quantities of interest) and is trained to minimize a loss function that combines data and physics-based
 1181 errors. The data term ensures that the neural network fits the provided data points, while the physics
 1182 term enforces the PDE constraints with automatic differentiation. The constraints on initial and
 1183 boundary conditions are satisfied via additional loss terms. The loss function for a classical PINN is:

$$1184 L(\mu) = \lambda_1 L_{\text{PDE}}(\mu) + \lambda_2 L_{\text{IC}}(\mu) + \lambda_3 L_{\text{BC}}(\mu) + \lambda_4 L_{\text{Data}}(\mu), \quad (6)$$

1186 where μ represents the trainable network parameters, and λ_i , for $i = 1, 2, 3, 4$ represent the weighting
 1187 factors for individual loss terms, which are hyperparameters. In this work, we consider the setting of
 1188 unsupervised learning and thus neglect the data loss term.

Let N be the total number of training points, which is the sum of the number of interior training points N_{int} (where the PDE residual is evaluated), initial condition training points N_{ic} (where the initial condition is evaluated), and boundary condition training points N_{b} (where the boundary condition is evaluated). We denote the neural network solution at a point $(x^{(n)}, t^{(n)})$ in the computational domain by $u^*(x^{(n)}, t^{(n)})$. We consider the generic nonlinear PDE defined by equation 1. The PDE loss term is defined by

$$L_{\text{PDE}}(\mu) = \frac{1}{N_{\text{int}}} \sum_{n=1}^{N_{\text{int}}} \|u_t^*(x^{(n)}, t^{(n)}) + L u^*(x^{(n)}, t^{(n)}) + \lambda N(u^*)(x^{(n)}, t^{(n)}) - f(x^{(n)})\|^p. \quad (7)$$

The boundary condition loss term is defined as

$$L_{\text{BC}}(\mu) = \frac{1}{N_{\text{b}}} \sum_{n=1}^{N_{\text{b}}} \|B u^*(x^{(n)}, t^{(n)}) - g(x^{(n)})\|^p. \quad (8)$$

Similarly, the initial condition loss term is defined as

$$L_{\text{IC}}(\mu) = \frac{1}{N_{\text{ic}}} \sum_{n=1}^{N_{\text{ic}}} \|u_0^*(x^{(n)}) - u_0(x^{(n)})\|^p. \quad (9)$$

We now describe a Causal PINN, which modifies the PINN loss function to impose temporal causality, inherent in time-dependent PDEs, as a soft constraint. In conventional PINNs, the loss is computed without prioritizing accuracy at earlier times, which disrupts temporal causality. The Causal PINN remedies this by assigning weights at each time step based on the cumulative loss from previous steps, ensuring that the model concentrates on accurately approximating solutions at earlier times before moving forward. This tries to incorporate the causal structure of the physical problem being solved as a soft constraint. The causal PDE loss term is defined by

$$L_{\text{PDE}}(\mu) = \sum_{i=1}^{N_{\text{t}}} w_i L_{\text{PDE}}(t_i, \mu), \quad \text{where} \quad (10)$$

$$w_1 = 1, \quad w_i = e^{-\epsilon \sum_{k=1}^{i-1} L_{\text{PDE}}(t_k, \mu)}, \quad \text{for } i = 2, 3, \dots, N_{\text{t}}.$$

Here N_{t} represents the number of time steps into which the computational domain is divided. The causality hyperparameter ϵ regulates the steepness of the weights and is incorporated in the loss function, similar to Kapoor et al. (2024b). This modification introduces a weighting factor w_i for the loss at each time level t_i , with w_i being dependent on the cumulative PDE loss up to time t_i . The network prioritizes a fully resolved solution at earlier time levels by exponentiating the negative of this accumulated loss. Consequently, the modified PDE loss term for a causal PINN is expressed as

$$L_{\text{PDE}}(\mu) = \frac{1}{N_{\text{t}}} \left[w_1 L_{\text{PDE}}(t_1, \mu) + \sum_{i=2}^{N_{\text{t}}} e^{-\epsilon \sum_{k=1}^{i-1} L_{\text{PDE}}(t_k, \mu)} L_{\text{PDE}}(t_i, \mu) \right]. \quad (11)$$

B.2 FROZEN-PINN-SWIM AND FROZEN-PINN-ELM

B.2.1 EXTENDED DISCUSSION ON FROZEN-PINNS

Difference compared to training physics-informed neural networks: We summarize the difference between training classical physics-informed neural networks and Frozen PINNs in Figure 8.

Comparison between Frozen-PINN-swim and Frozen-PINN-elm One of the main factors influencing the performance of Frozen-PINN-swim and Frozen-PINN-elm is the underlying solution of the PDE. We explain, with an example of the Burgers' equation, how the SWIM sampling can be leveraged when the solution has steep gradients, as one can sample localized basis functions in the part of the domain where the solution has steep gradients. For ELM, the probability of sampling steep basis functions with the vanilla ELM is lower, as illustrated in the Figure 2. Even if one uses a different distribution to sample the network parameters such that more basis functions with steep

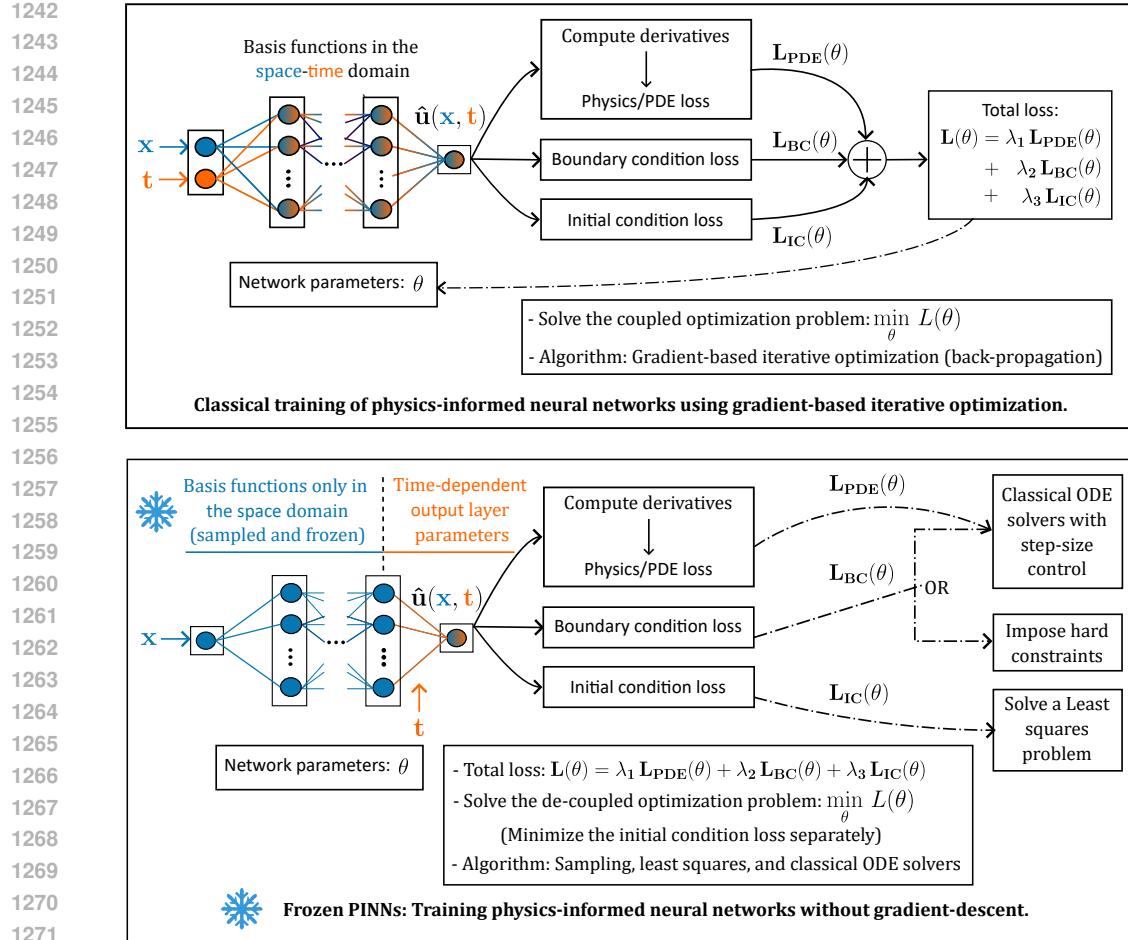


Figure 8: Comparison of Frozen-PINNs (bottom row) that leverage a gradient-descent-free training algorithm, with conventional PINNs (top row) that rely on gradient-based iterative optimization: conventional PINNs use basis functions in the entire spatio-temporal domain and solve a fully coupled optimization problem involving multiple loss terms via gradient-based iterative training. In contrast, Frozen-PINNs sample basis functions only in space, make time dependence explicit only in the output layer, decouple initial/boundary conditions, and leverage least squares and adaptive ODE solvers. Parameters dependent on space, time, and both are indicated by blue, orange, and blue-orange colors, respectively, offering a direct visual representation of the space–time separation in Frozen-PINNs. Notation: The network output $\hat{u}(x, t, \theta)$ approximates the solution to the PDE. The total loss term ($L(\theta)$) sums three loss terms - one for the initial condition ($L_{IC}(\theta)$), one for the boundary conditions ($L_{BC}(\theta)$), and one for the PDE residual ($L_{PDE}(\theta)$) that together impose physical constraints.

gradients are sampled, placing the basis functions at appropriate spatial locations is another challenge. With ELM, one cannot resample or choose basis functions using data as it is data-agnostic. Thus, especially if the solution has localized steep gradients, the performance of ELM is typically worse compared to SWIM. We additionally demonstrate with a snapshot of the Burgers' solution that SWIM basis functions exhibit a rapid exponential decay of error with increasing network width, where ELM, Fourier, and Chebyshev basis functions used in classical spectral methods suffer from the Gibbs phenomenon (see Appendix C.4.1) and lead to poor scaling and accuracy (see Figure 23, Figure 22).

If the underlying solution is sufficiently smooth and does not have steep gradients anywhere in the domain, ELM typically performs very well, as seen in the example with the Advection equation (see Section 3.1), Euler Bernoulli equation (see Section 3.2), and high-dimensional diffusion equation (Section 3.8), where Frozen-PINN-elm performs much better than Frozen-PINN-swim as shown in Table 31. While we just use the vanilla SWIM algorithm in the presented results, one can easily adapt

1296 the algorithm and, after sampling the network parameters with SWIM, multiply the basis functions
 1297 with a tunable scaling factor before applying the non-linearity to sample many more basis functions
 1298 with shallow slopes.

1299 Thus, the choice between the two strategies is particularly governed by the underlying solution of
 1300 the PDE. Apart from the favorable cases for each method mentioned above, both methods have
 1301 comparable performance and typically outperform PINNs by several orders of magnitude in speed
 1302 and time. Thus, the rapid training of our approach could be leveraged to try out both approaches if
 1303 one has no information about what the solution of the PDE could look like.

1304
 1305 **Influence of random sampling on the method** Similar to the question of how PINNs trained with
 1306 Adam/SGD perform based on their random network initialization, understanding the influence of
 1307 weights on the output is a challenge. There are two main differences between (stochastic) gradient-
 1308 based optimization and our setting. First, after fixing the internal weights, we use regularized
 1309 least-squares (not a stochastic method) to fit the initial condition. Second, we do not use a stochastic
 1310 method to solve over time. Therefore, even though PINNs can adapt their random initialization over
 1311 the gradient-based optimization, precisely that optimization also adds stochasticity. If the number
 1312 of neurons for the model increases, the randomness in our case decreases because the regularized
 1313 least-squares fit to the initial condition (which converges to a single solution in the limit of many
 1314 neurons), while stochastic gradient descent will only converge to a distribution (because of mini-batch
 1315 optimization). This has been observed for the supervised learning problems in Bolager et al. (2023),
 1316 particularly in the transfer learning experiments. In Table 1, we observe that our model’s performance
 1317 is often orders of magnitude better, and the variance is on the same scale as the magnitude.

1318
 1319 **“data-driven” and “data-agnostic” sampling** In this work, we assume that we do not have access
 1320 to the true solution of the PDE. The term “data-driven sampling” can be misleading for the problem
 1321 setting of this paper, which concerns unsupervised learning tasks. Thus, here we clarify what we
 1322 mean by data-driven sampling. Our data are random pairs of collocation points, but we do not have
 1323 access to the true function values (because, at the initial time point $t = 0$, we have not solved the
 1324 PDE yet). Thus, even though we do not have access to the true solution of the PDE, we call this
 1325 “data-driven” sampling because we create the parameters of our basis functions (neurons) so that they
 1326 are centered strictly within the domain. We achieve this by using data points sampled in the domain,
 1327 thereby considering the geometry and bounds of the spatial domain. Note that with data-agnostic
 1328 sampling in ELM, the neurons can easily be centered outside the spatial domain because weights and
 1329 biases are chosen without considering any information about the geometry and bounds of the spatial
 1330 domain. To summarize, though our algorithm proposes “data-driven” sampling, we do not start with
 1331 time-series data and instead work in a self-supervised setting.

1332
 1333 **Rationale for constructing outer basis functions** One might reasonably ask that if one knows
 1334 the outer basis functions analytically, why add another layer just to approximate them with \tanh
 1335 basis functions? When analytical basis functions are known, they should be used directly. However,
 1336 in many cases, such expressions are not readily available. We argue that this idea of a boundary-
 1337 compliant layer can be quite powerful for PDEs where the basis functions are not known analytically
 1338 but only through boundary conditions, which we can then incorporate by constructing useful outer
 1339 basis functions. For instance, to solve the diffusion equation on complex geometries, one can use the
 1340 optimal bases consisting of the eigenfunctions of the Laplacian operator computed numerically at
 1341 discrete points as the outer basis functions (Coifman & Lafon, 2006). Thus, representing them with
 1342 \tanh basis functions facilitates a straightforward computation of the derivatives needed for solving
 1343 the PDE.

1344
 1345 **Kolmogorov n-width barrier** Without resampling the internal network parameters, our method
 1346 faces the Kolmogorov n-width barrier Peherstorfer (2022); Du & Zaki (2021); Berman & Peherstorfer
 1347 (2024); Kast & Hesthaven (2024) because our basis functions are not time-dependent. However,
 1348 resampling basis functions at certain time points of the Frozen-PINN-swim (as done in the Burgers’
 1349 equation in Section 3.4) results in a solution- and time-dependent basis approximation of the solution
 manifold and, thus, in theory, can break the barrier. PINNs can theoretically break the Kolmogorov
 n-width barrier as time is treated as an extra spatial dimension, and internal network parameters are
 time-dependent. However, for PINNs, the optimization issues pose much more severe challenges even
 on very simple PDEs and in low dimensions (Krishnapriyan et al., 2021; Wang et al., 2021; 2022).

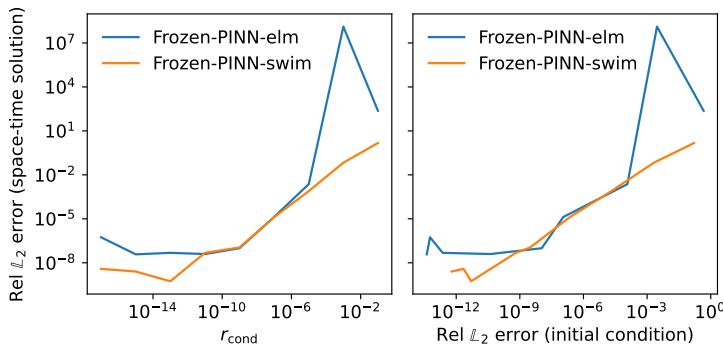


Figure 9: (Advection Equation): Empirical analysis of how initial condition loss affects the performance of Frozen-PINNs: (Left): Relative error of the full space-time solution Vs r_{cond} , (Right): Relative error of the full space-time solution grows with the relative error of the initial condition (controlled via r_{cond}).

So even though our vanilla Frozen-PINN-swim/Frozen-PINN-elm approach (without periodically resampling hidden layer weights) faces the Kolmogorov n -width barrier, we outperform PINNs, typically by several orders of accuracy and time in practice.

Analysis of residual initial condition loss and its impact on model performance For all PDEs considered here, the initial condition is relatively easy to fit, and one can approximate it accurately by sampling enough collocation points at $t = 0$, using enough basis functions, and setting a relatively low regularization constant ($\approx 10^{-12}$). So, the initial condition loss is not the bottleneck in any of the PDEs we considered here. However, it is interesting to investigate the impact of initial condition loss on the model’s performance.

Given N_c collocation points $X \in \mathbb{R}^{N_c \times d}$, M neurons, and hidden layer output $\Phi(X)$, the initial condition is computed via a least squares solution:

$$C(0) = u(X, 0)^\top [\Phi(X), \mathbb{1}]^+, \quad (12)$$

where $[\Phi(X), \mathbb{1}] \in \mathbb{R}^{(M+1) \times N_c}$ and the pseudo-inverse is denoted by \cdot^+ . We compute this least squares solution $C(0)$ using the Python function `np.linalg.lstsq`, which takes as an argument r_{cond} which is the cut-off ratio for small singular values of $[\Phi(X), \mathbb{1}]$. High cut-off ratios reduce the accuracy of the least-squares solution, while very low ratios lead to poorly conditioned systems that can introduce numerical errors. We perform an experiment by progressively increasing the cut-off value to deliberately degrade the initial-condition fit and study its impact on the overall PDE residual. We solve the advection equation given in Equation (24), using the same hyperparameter settings as in Table 5, fix the advection coefficient to 40, and vary r_{cond} from 10^{-1} to 10^{-17} . Figure 9 shows that small r_{cond} values yield highly accurate initial-condition fits and low relative error. As r_{cond} increases, more dominant singular values are discarded in the least-squares solve, degrading the initial-condition representation and leading to larger errors in the full space-time solution. Thus, for Frozen-PINNs, maintaining a reasonably accurate initial condition fit is important, as inaccuracies can influence the ODE solve and increase the overall error.

On the choice of the SVD truncation threshold: The SVD truncation threshold is a crucial hyperparameter for Frozen-PINNs, determining the dimensionality of the ODE solver and affecting the speed and accuracy of Frozen-PINNs. We conduct an ablation study on the SVD truncation threshold for Burgers’ equation (Equation (28)), the nonlinear diffusion equation (Equation (29)), and the 10-dimensional diffusion equation (Equation (33)) with hyperparameters described in Table 14, Table 18, Table 29, respectively. We change the width to 200 for the non-linear diffusion equation, and for all PDEs, we only vary the SVD truncation thresholds. For detailed problem setups please refer to Appendix C.4, Appendix C.5, Appendix C.8.

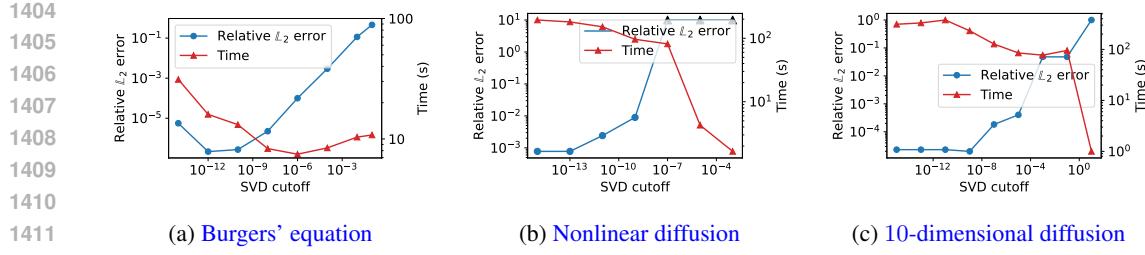


Figure 10: Impact of the SVD truncation threshold ϵ_{SVD} used for the SVD layer on the time-to-solution and accuracy of Frozen-PINN across three PDEs. Black triangles in the nonlinear diffusion plot indicate solution blow-up at large SVD cutoffs.

Figure 10 highlights the well-known trade-off between accuracy and speed. Retaining fewer singular values reduces the dimensionality and stiffness of the last-layer ODE, yielding faster solutions with similar or slightly lower accuracy. Retaining more singular values increases dimensionality and stiffness, which slows the solver but improves accuracy. Importantly, the performance is robust for SVD truncation thresholds $\epsilon_{SVD} < 10^{-10}$.

The choice of the optimal SVD truncation threshold depends highly on the application constraints. Higher thresholds ($\epsilon_{SVD} \geq 10^{-8}$) are suitable for faster solutions with moderate accuracy, while very low thresholds ($\epsilon_{SVD} \leq 10^{-13}$) are preferable when high accuracy is the primary goal. The default value we choose is 10^{-12} as it represents a good trade-off between accuracy and speed. We always set the `rcond` (regularization constant for the initial least squares solve) to the same value as the SVD truncation threshold because: (a) it also represents the cut-off ratio for the SVD of the feature matrix for the initial least squares solve and it does not make sense to solve this with extremely high or low precision when the data has already been passed through the SVD layer, to maintain a similar level of truncation as the SVD layer. (b) Empirically, we observe very robust performance if we set the regularization constant to be equal to the SVD threshold (see Figure 9, where the relative error stays the same for the `rcond` values in the range $10^{-17} - 10^{-11}$, when the SVD truncation threshold is set at 10^{-14}).

On the choice between the two strategies for enforcing boundary conditions: In practice, the choice between the boundary-compliant layer and the augmented ODE follows a simple cost-benefit tradeoff.

We recommend using a boundary-compliant layer when a problem-specific transformation $\phi_A(X)$ is easy to derive (e.g., zero Dirichlet, periodic boundary conditions on simple domains). It enforces boundary conditions (almost) exactly and does not enlarge the ODE system, so it is typically more efficient. The main limitation is that it requires deriving $\phi_A(X)$, which may be non-trivial for complex geometries or boundary conditions.

We recommend using the Augmented ODE strategy when boundary geometry or constraints make an analytic boundary-compliant mapping difficult. This is universally applicable and requires no problem-specific engineering since it soft-enforces boundary conditions by augmenting the state, at the cost of increasing system dimension and possibly worsening stiffness.

B.2.2 COMPUTING SPATIAL AND TEMPORAL DIFFERENTIAL OPERATORS IN PDEs

We use the notation described in Section 2 of the manuscript. We first discuss how to compute different spatial and temporal derivative terms appearing in the PDEs described in this manuscript using the neural network ansatz. We then use these expressions to reformulate the PDEs described in this manuscript as corresponding ODEs. We consider neural networks in the most general setting by considering the outer basis functions and the SVD layer (cf Algorithm 1).

Computing spatial derivatives: We list and describe how to compute the spatial derivatives of the approximate PDE solutions:

1458 • *First-order spatial derivative* of the approximate PDE solution is computed as:
 1459

$$\begin{aligned}\hat{u}_x(x, t) &= C(t)[\Phi_{A_r}]_x(x) \\ 1460 &= C(t)[A_r W \odot \tilde{\sigma}_x(x), 0] \in \mathbb{R}^{1 \times d},\end{aligned}\tag{13}$$

1463 where \odot is the Hadamard product, and

$$\tilde{\sigma}_x(x) := [\sigma_z(z)|_{z=Wx^\top+b}, \sigma_z(z)|_{z=Wx^\top+b}, \dots, \sigma_z(z)|_{z=Wx^\top+b}] \in \mathbb{R}^{M_s \times d}, \tag{14}$$

1466 with $\sigma_z(z) \in \mathbb{R}^{M_s}$ and σ_z is the first derivative of the \tanh activation function.
 1467

1468 • *Second-order spatial derivative* of the approximate PDE solution is computed as:
 1469

$$\begin{aligned}\hat{u}_{xx}(x, t) &= C(t)[\Phi_{A_r}]_{xx}(x) \\ 1470 &= C(t)[A_r W \odot W \odot \tilde{\sigma}_{xx}(x), 0] \in \mathbb{R}^{1 \times d},\end{aligned}\tag{15}$$

1472 where $\tilde{\sigma}_{xx}(x)$ is defined equivalently as $\tilde{\sigma}_x(x)$ but with σ_{xx} being the second-order spatial
 1473 derivative of the \tanh activation function.

1474 • The *Laplacian* of the approximate PDE solution is computed as:
 1475

$$\begin{aligned}\Delta \hat{u}(x, t) &= C(t)[\Phi_{A_r}]_{xx}(x) \mathbb{1}, \quad \text{where, } \mathbb{1} \in \mathbb{R}^{d \times 1} \\ 1476 &= C(t)[A_r W \odot W \odot \tilde{\sigma}_{xx}(x), 0] \mathbb{1} \in \mathbb{R}^{1 \times 1}.\end{aligned}\tag{16}$$

1479 • *Fourth-order spatial derivative* of the approximate PDE solution is computed as:
 1480

$$\begin{aligned}\hat{u}_{xxxx}(x, t) &= C(t)[\Phi_{A_r}]_{xxxx}(x) \\ 1481 &= C(t)[A_r W \odot W \odot W \odot W \odot \tilde{\sigma}_{xxxx}(x), 0] \in \mathbb{R}^{1 \times d},\end{aligned}\tag{17}$$

1484 where σ_{zzzz} is the fourth-order spatial derivative of the \tanh activation function.
 1485

1486 **Computing time derivatives:** We now list and describe how to compute the time derivatives of the
 1487 approximate PDE solutions:

1488 • *First-order time derivative* of the approximate PDE solution is computed as:
 1489

$$\hat{u}_t(x, t) = C_t(t)[\Phi_{A_r}](x). \tag{18}$$

1492 • *Second-order time derivative* of the approximate PDE solution is computed as:
 1493

$$\hat{u}_{tt}(x, t) = C_{tt}(t)[\Phi_{A_r}](x). \tag{19}$$

1495 B.2.3 REFORMULATING PDES AS ODES USING FROZEN-PINN ANSATZ

1497 The partial differential equations considered in this work are recast as ordinary differential equations
 1498 for evolving output layer coefficients, making use of the spatial and temporal derivatives derived in
 1499 Appendix B.2.2. We denote the pseudo-inverse by \cdot^+ .
 1500

1501 **Advection equation:** The one-dimensional advection equation is
 1502

$$u_t(x, t) + \beta u_x(x, t) = 0,$$

1503 where β is a scalar. Approximating the solution with neural network ansatz (Equation (2)) and
 1504 substituting Equation (18) and Equation (13) in the advection equation, we get,
 1505

$$\begin{aligned}C_t(t)[\Phi_{A_r}(X)] &= -\beta C(t)[\Phi_{A_r}(X)]_x, \\ 1507 C_t(t) &= -\beta C(t)[\Phi_{A_r}(X)]_x [\Phi_{A_r}(X)]^+.\end{aligned}$$

1509 The initial condition is given by
 1510

$$C(0) = u(X, 0)^\top [\Phi_{A_r}(X)]^+.$$

1512

Euler-Bernoulli equation: The Euler-Bernoulli PDE considered in this manuscript is

1513

$$u_{tt} + u_{xxxx} = f(x, t).$$

1514

Approximating the solution with neural network ansatz (Equation (2)) and substituting Equation (17) and Equation (19) in the Euler-Bernoulli equation, we get,

1515

$$C_{tt}(t)\Phi(X) = f(X, t)^\top - C(t)\Phi_{xxxx}(X)$$

1516

We rewrite this second-order ODE as a combination of first-order ODEs given by

1517

$$C_t(t) = D(t),$$

1518

$$D_t(t)\Phi(X) = f(X, t)^\top - C(t)\Phi_{xxxx}(X).$$

1519

We then reformulate the ODEs as

1520

$$(C_t(t) \quad D_t(t)) = (C(t) \quad D(t)) \begin{pmatrix} 0 & -\Phi(X)_{xxxx}\Phi(X)^+ \\ 1 & 0 \end{pmatrix} + (0 \quad 1) [f(X, t)]^\top \Phi(X)^+.$$

1521

The initial condition is given by

1522

$$C(0) = u(X, 0)^\top \Phi(X)^+,$$

1523

$$D(0) = u_t(X, 0)^\top \Phi(X)^+.$$

1524

The extension to the Euler-Bernoulli beam equation on a Winkler foundation is straightforward, where the reformulated ODE is written as:

1525

$$(C_t(t) \quad D_t(t)) = (C(t) \quad D(t)) \begin{pmatrix} 0 & -(\Phi(X)_{xxxx} + \kappa\Phi(X))\Phi(X)^+ \\ 1 & 0 \end{pmatrix} + (0 \quad 1) [f(X, t)]^\top \Phi(X)^+.$$

1526

1527

Wave equation: The wave equation considered in this manuscript is

1528

$$u_{tt} - \kappa u_{xx} = f(X, t).$$

1529

Approximating the solution with neural network ansatz (Equation (2)) and substituting Equation (15) and Equation (19) in the wave equation, we get,

1530

$$C_{tt}(t)\Phi(X) = f(X, t)^\top - \kappa C(t)\Phi_{xx}(X)$$

1531

We rewrite this second-order ODE as a combination of first-order ODEs given by

1532

$$C_t(t) = D(t),$$

1533

$$D_t(t)\Phi(X) = f(X, t)^\top - \kappa C(t)\Phi_{xx}(X).$$

1534

We then reformulate the ODEs as

1535

1536

$$(C_t(t) \quad D_t(t)) = (C(t) \quad D(t)) \begin{pmatrix} 0 & -\kappa\Phi(X)_{xx}\Phi(X)^+ \\ 1 & 0 \end{pmatrix} + (0 \quad 1) [f(X, t)]^\top \Phi(X)^+.$$

1537

The initial condition is given by

1538

$$C(0) = u(X, 0)^\top \Phi(X)^+,$$

1539

$$D(0) = u_t(X, 0)^\top \Phi(X)^+.$$

1540

1541

Burgers' equation: The one-dimensional Burgers' PDE we consider is

1542

$$u_t + uu_x - \alpha u_{xx} = 0,$$

1543

where α is a scalar. Approximating the solution with neural network ansatz (Equation (2)) and substituting Equation (18), Equation (13) and Equation (15) in the Burgers equation, we get,

1544

$$C_t(t)\Phi_{A_r}(X) = -(C(t)\Phi_{A_r}(X) \odot C(t)[\Phi_{A_r}]_x(X)) + \alpha(C(t)[\Phi_{A_r}]_{xx}(X)),$$

1545

$$C_t(t) = -(C(t)\Phi_{A_r}(X) \odot C(t)[\Phi_{A_r}]_x(X) + \alpha(C(t)[\Phi_{A_r}]_{xx}(X)))[\Phi_{A_r}(X)]^+$$

1546

Note that the non-linearity is transferred to the right-hand side of the ODE. The initial condition is given by

1547

$$C(0) = u(X, 0)^\top \Phi(X)^+.$$

1620
1621

B.2.4 HANDLING BOUNDARY CONDITIONS VIA BOUNDARY-COMPLIANT LAYER

1622
1623
1624
1625
1626
1627
1628
1629
1630

To enforce *periodic boundary conditions*, it is sufficient for each basis function to satisfy the periodic condition individually, as the Frozen-PINN ansatz, which is a linear combination of these functions, will inherently satisfy it as well. For instance, for a one-dimensional spatial domain, we find A so that $A\Phi(x_l) = A\Phi(x_r)$, where x_l, x_r are the left and right boundary points of the domain. In this paper, for certain PDEs (see Appendix C), for $x \in \Omega$ and $k = 1, 2, \dots, M_s$, we approximate $[A\Phi]_k(x) = \sin(kx)$ (for k even) and $[A\Phi]_k(x) = \cos(kx)$ (for k odd) and set $c_0(t) = 1$ for all t . For *zero Dirichlet boundary condition* given by $u(x) = 0$, we can use the technique described above by choosing basis functions so that $A\phi(x) = 0$ for $x \in \partial\Omega$. For other boundary conditions, we propose using the augmented ODE trick to satisfy the boundary conditions.

1631
1632

B.2.5 HANDLING BOUNDARY CONDITIONS VIA AUGMENTED ODE

1633
1634
1635

Our approaches to satisfying the Dirichlet and periodic boundary conditions are already explained in the main text. Here, we explain how we handle time-dependent Dirichlet boundary conditions and Neumann boundary conditions.

1636
1637
1638
1639

Time-dependent Dirichlet boundary conditions: For handling time-dependent Dirichlet boundary conditions ($u(x, t) = g(x, t)$ for $x \in \partial\Omega$), we set A to the identity map and augment the ODE (Equation (3)) with an additional equation given by

1640
1641
1642

$$\hat{u}_t(x, t) = g_t(x, t) \text{ for } x \in \partial\Omega \implies C_t(t) = \underbrace{[R(X, C(t)), g_t(X_b, t)]}_{\in \mathbb{R}^{1 \times (N_c + N_b)}} \underbrace{\Phi_A([X, X_b])^+}_{\in \mathbb{R}^{(N_c + N_b) \times (M_b + 1)}}.$$

1643
1644
1645

In the example in Section 3.5, we know the solution on the boundary at all time points, which is continuously differentiable. If the solution on the boundary points is not available at all time points, one can interpolate and approximate the derivative of the solution on the boundary.

1646

Neumann boundary conditions: For simple spatial domains, one can choose appropriate outer basis functions as described in Section 2.4 that inherently satisfy the Neumann boundary conditions. For instance, for zero Neumann boundary conditions on a one-dimensional domain, one can choose outer basis functions consisting of cosines of different frequencies scaled to the domain (function value is 1 at the boundaries) so that their spatial derivatives, which are the sine functions, are zero on the boundary points.

1652
1653
1654
1655

On complicated domain geometries, to satisfy Neumann boundary conditions ($\nabla u(x, t) \cdot \hat{n}(x) = 0$ for $x \in \partial\Omega$), we set A to the identity map and augment the ODE (Equation (3)) with an additional equation for the boundary points and solve

1656
1657
1658

$$C_t(t) = \underbrace{[R(X, C(t)), 0]}_{\in \mathbb{R}^{1 \times (N_c + N_b)}} \underbrace{[\Phi_A(X), \nabla \Phi_A(X_b) [\hat{n}(X_b)]^\top]^+}_{\in \mathbb{R}^{(N_c + N_b) \times (M_b + 1)}}.$$

1659
1660

B.3 IGA-FEM

1661

First introduced in Hughes et al. (2005), Isogeometric analysis (IGA) is a numerical method developed to unify the fields of computer-aided design (CAD) and finite element analysis (FEA). The key idea is to represent the solution space for the numerical analysis using the same functions that define the geometry in CAD (Cottrell et al., 2009), which include the B-Splines and Non-Uniform Rational B-Splines (NURBS) (Piegl & Tiller, 1997).

1666
1667
1668

In this paper, we use B-Splines as the basis functions. The B-Splines are defined using the Cox-de Boor recursion formula (COX, 1972; de Boor, 1972), i.e.,

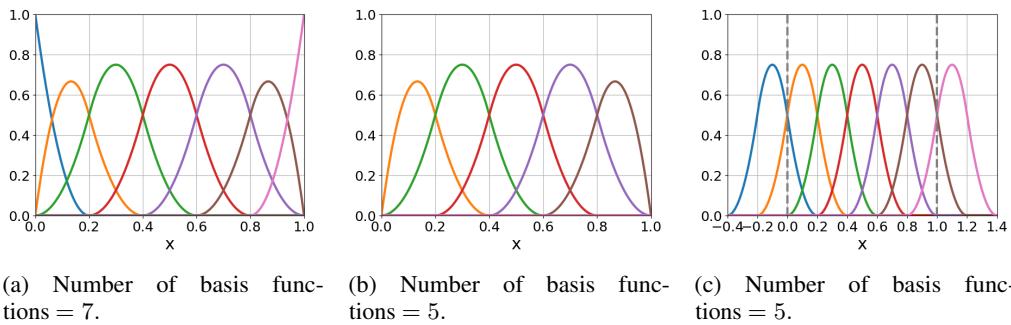
1669
1670
1671

$$N_{i,0}(\xi) = \begin{cases} 1 & \xi_i \leq \xi < \xi_{i+1} \\ 0 & \text{otherwise,} \end{cases}$$

1672
1673

$$N_{i,p}(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} N_{i,p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1,p-1}(\xi),$$

1674 where ξ_i is the i th knot, and p is the polynomial degree. The vector $\Xi = [\xi_1, \xi_2, \dots, \xi_{n+p+1}]$ is the
 1675 knot vector, where n is the number of B-Splines. By specifying the knot vector, we define the basis
 1676 functions we use to solve the PDEs. We use a uniform open knot vector, where the first and last
 1677 knots have multiplicity $p + 1$, the inner knots have no multiplicity, and all knots that have different
 1678 values are uniformly distributed. We refer to the knots with different values as "nodes". The intervals
 1679 between two successive nodes are knot spans, which can be viewed as "elements". The elements
 1680 form a "patch". A domain can be partitioned into subdomains, and each is represented by a patch. In
 1681 our work, we use a single patch to represent the entire 1D domain. Figure 11a shows an example of
 1682 such a patch, where the B-Splines are C^p -continuous within the knot spans and C^{p-1} continuous
 1683 at the inner knots. In order to address the boundary conditions, we adapt the B-Splines as shown in
 1684 Figure 11b Figure 11c, so that the boundary conditions are directly built into the solution space.



1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694 Figure 11: Examples of B-Splines representing the 1D domain $[0, 1]$. Number of nodes = 6 and
 1695 degree of polynomials = 2. (Left): The original B-Splines. (Middle): Adapted B-Splines to satisfy the
 1696 Dirichlet boundary condition. (Right): Adapted B-Splines to satisfy the periodic boundary condition.
 1697 Note that the first (blue) spline is identical to the second last (brown) one, and the second (orange)
 1698 spline is identical to the last (pink) one, as they share the same coefficient. The gray dashed lines
 1699 indicate where the domain starts and ends.
 1700

1701 In the following, we refer to the adapted B-Splines as basis functions $\phi_k(x)$. Thus, the solutions of
 1702 PDEs are approximated by

$$1703 u(x, t) = \sum_{k=1}^K c_k(t) \phi_k(x).$$

1704 We solve the PDEs in the weak formulation. For the linear advection equation (see Equation (24)),
 1705 the weak form of the equation is

$$1706 \sum_{k=1}^K c'_k(t) \int_X \phi_k(x) v(x) dx + \beta \sum_{k=1}^K c_k(t) \int_X \phi'_k(x) v(x) dx = 0, \quad (23)$$

1707 where $v(x)$ are the test functions. The test functions are chosen to be the same as the basis functions.
 1708 The integral of the functions is computed using Gaussian quadrature. Then we solve the linear
 1709 Ordinary differential equation (ODE)

$$1710 \mathbf{M} \dot{\mathbf{c}} + \mathbf{K} \mathbf{c} = \mathbf{0},$$

1711 where matrix \mathbf{M} and matrix \mathbf{K} contain the integral of the B-Splines and their derivatives, and the
 1712 coefficient β , which are given. We solve the Euler-Bernoulli equation equation 25 and the Burgers'
 1713 equation equation 28 in a similar way. The boundary condition for the Euler-Bernoulli equation is, in
 1714 addition, weakly imposed, as is done in Prudhomme et al. (2001).

1715 C SUPPLEMENTARY DETAILS ON NUMERICAL EXPERIMENTS

1716 Here, we discuss additional experimental details for the PDEs considered in this work. We start by
 1717 listing the details on the code repository, FEM software, hardware, error metrics, and ablation studies:

- **Code repository:** The source code, along with the instructions on reproducing the results, is provided in the supplemental material (zipped file) and will be released publicly upon acceptance. The code repository provides Python scripts and notebooks that can be readily executed and tested.
- **FEM code:** In this paper, we use DOLFINx 0.8.0 to solve the nonlinear diffusion equation (see equation 29). DOLFINx (Baratta et al., 2023), which is part of the FEniCS project, is a C++ and Python library used for solving PDEs with the finite element method (FEM). It provides tools for defining complex geometries, formulating variational problems, and solving them efficiently on distributed architectures. We used the software Gmsh (Geuzaine & Remacle, 2009) to generate a mesh for this experiment with complicated geometry, as shown in Figure 24a.
- **Hardware details:** The computational experiments for Frozen PINNs, FEM, and IGA-FEM were performed with: Ubuntu 20.04.6 LTS, NVIDIA driver 515.105.01 and i7 CPU.
- **Metrics for computing errors:** We use the Root Mean Squared Error (RMSE) and the relative L^2 error to quantify errors in all experiments (see Appendix C for the definitions). We compute the test error on a uniform grid for all PDEs with 256 points in space and 100 points in time, unless otherwise specified. [We use float 64 numerical precision in all the experiments.](#)

Let d be the dimension of space and $\Omega \times [0, T] \subset \mathbb{R}^d \times \mathbb{R}$ be the spatio-temporal domain. Given N points in a test set X , the error metrics we use to compare numerical results are Root Mean Squared Error (RMSE) and relative L^2 error given by

$$\text{RMSE} := \sqrt{\frac{\sum_{x \in X} (u_{\text{true}}(x) - u_{\text{pred}}(x))^2}{N}},$$

and

$$\text{Relative } L^2 \text{ error} := \frac{\sqrt{\sum_{x \in X} (u_{\text{true}}(x) - u_{\text{pred}}(x))^2}}{\sqrt{\sum_{x \in X} (u_{\text{true}}(x))^2}}.$$

For each experiment, the mean and standard deviation of the RMSE and the relative L^2 error are computed with three seeds.

- **Ablation studies for neural architecture and SVD layer:** We perform ablation studies whenever necessary for the neural architectures we considered in this work. Importantly, we also perform an ablation study on the SVD layer. To quantify the compression in width after the SVD layer, we define a compression ratio as $C_r = \frac{M_s}{r}$, where M_s is the width of the (sampled) hidden layer before the SVD layer (assuming no-boundary-compliant layer), and r is the width of the SVD layer (see Figure 3). We define a speed-up in computation time as $s = \frac{T_{\text{no-svd}}}{T_{\text{svd}}}$ as the ratio of computational time without the SVD layer to the time required with the SVD layer.

We now describe the detailed problem setups, ablation studies, and plots comparing the results of Frozen-PINNs with those of other approaches for all PDEs considered here (see Figure 12).

C.1 LINEAR ADVECTION EQUATION

Problem setup: The linear advection equation describes the transport of a quantity and is used to model many real-life applications, such as simplified traffic flow models, transport of pollutants in rivers or the atmosphere (Rood, 1987; McGraw et al., 2024). Here, we consider the linear advection equation with periodic boundary conditions given by

$$u_t(x, t) + \beta u_x(x, t) = 0, \quad \text{for } x \in [0, 2\pi], t \in [0, 1], \quad (24a)$$

$$u(x, 0) = \sin(x), \quad \text{for } x \in [0, 2\pi], \quad (24b)$$

$$u(0, t) = u(2\pi, t), \quad \text{for } t \in [0, 1]. \quad (24c)$$

The analytical solution of Equation (24) is given by $u(x, t) = \sin(x - \beta t)$. We describe detailed hyperparameter settings used for the experiments on: (a) high-advection speeds (how the error grows

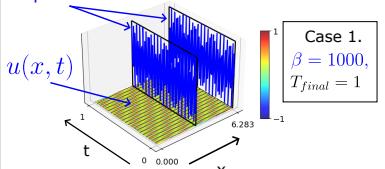
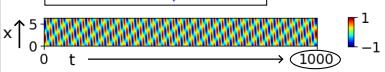
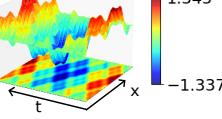
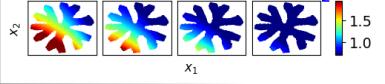
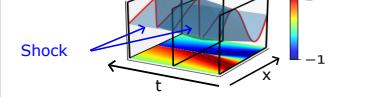
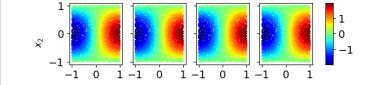
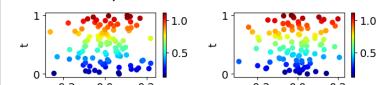
Application	Key challenges posed by the PDE	PDE and ground truth solution of the PDE
Advection equation	Case (1): Extremely high-frequency temporal variations	PDE: $u_t + \beta u_x = 0$ BC : Periodic Rapid oscillations  Case 1. $\beta = 1000$, $T_{final} = 1$
	Case (2): Long time span	Case 2. $\beta = 1$, $T_{final} = 1000$ 
Euler-Bernoulli beam equation	Higher-order derivatives in space and time	PDE (classical): $u_{tt} + u_{xxxx} = f(x, t)$ PDE (winkler foundation): $u_{tt} + u_{xxxx} + \kappa u = f(x, t)$ BC : $(u, u_{xx}) = 0$ 
Wave equation	Multi-scale solutions	PDE: $u_{tt} - 4u_{xx} = 0$ BC : Periodic 
Diffusion equation	Non-linearity and complicated domain geometry	PDE : $u_t - u\Delta u = f(x, t)$ Complicated geometry BC : Time-dependent Dirichlet 
Burgers' equation	Non-linearity and shock	PDE: $u_t + uu_x - \nu \Delta u = 0$ BC : Dirichlet 
5-dimensional Reaction-diffusion equation	Non-linearity and high-dimensionality	PDE: $u_t - \Delta u - u^2 = f(x, t)$ BC : Time-dependent Dirichlet 
100-dimensional diffusion equation	High-dimensionality	PDE: $u_t - \Delta u = f(x, t)$ BC : Time-dependent Dirichlet 

Figure 12: Overview of the PDE benchmarks considered in this study, highlighting the core challenges associated with each problem and their corresponding ground truth solutions. Boundary conditions are abbreviated as BC.

with the advection coefficient β), (b) convergence (how the error decays with the number of basis functions for a fixed advection coefficient $\beta = 10$), (c) error for advection coefficient $\beta = 40$ (for a comparison with other PINN-based variants), and (d) long-time simulation for $T = 1000$ seconds for a fixed advection coefficient $\beta = 1$ in Table 3, Table 4, Table 5, and Table 8, respectively. The hidden layer weights for ELM and Frozen-PINN-elm are sampled from the Gaussian distribution and biases from a uniform distribution in $[-4, 4]$. For SWIM and ELM, we use 1000 interior points for $\beta \in \{10^{-2}, 10^{-1}, 1, 10\}$, and we use 8000 interior points for $\beta \in \{40, 100\}$. The code repository contains all the necessary Python notebooks to reproduce results for Frozen-PINNs for all the different cases of the advection equation considered here, including the three key experiments concerning high advection speeds, convergence, and long-time simulation (see Section 3.1).

Deeper networks and further optimization experiments: Additional experiments are carried out for baseline PINN on deeper networks with 10 and 20 hidden layers, where each hidden layer has 30 neurons. The experiments are run for 20000 epochs using Adam and L-BFGS optimizers under multiple learning rates for the advection equation with $\beta = 10$ and $\beta = 40$. Tables 6 and 7 summarize the RMSE, relative L^2 errors, and training times for $\beta = 10$ and $\beta = 40$ cases, respectively. The results show consistency with the known literature of PINNs. First, deeper PINNs do not directly lead to better performance. Increasing depth from 10 to 20 layers often degrades accuracy for both optimizers, reflecting the optimization difficulty of fully-connected PINNs as the models become deeper. This behavior is also discussed previously in the literature, for instance by Wang et al. (2024b), where the authors show that PINN performance is known to degrade when larger and deeper neural network architectures are employed. Second, the $\beta = 40$ case is known to be challenging for PINNs (Krishnapriyan et al., 2021) due to high frequency features, and the results presented in Table 7 show failures across depths, learning rates, and optimizers. The results show that even with larger networks, longer training, and different optimizers, standard PINNs face challenges in achieving high accuracy, especially for $\beta = 40$, and require more computational time. Thus, matching the accuracy of standard PINNs with the proposed method is inherently challenging and computationally expensive.

Ablation studies: For the advection coefficient $\beta = 10$, the ablation study for Frozen-PINN-swim, Frozen-PINN-elm, and vanilla PINNs is already presented in Figure 4(Middle) for varying the number of neurons and interior points. The ablation studies for PINNs for the network width and number of interior points are presented in Table 9, and Table 10, respectively. Since the network width is already quite low for optimal parameters, the SVD layer does not further reduce the dimension of the ODE system. Hence, we do not perform ablation studies for the SVD layer in Frozen-PINNs, as it is not used in this case.

Comparison of results: Figure 13 shows the absolute errors obtained with the Frozen-PINN-swim, Frozen-PINN-elm, PINN, Causal PINN, and IGA methods along with the ground truth for $\beta = 40$. One can observe that all approaches considered here, besides Frozen-PINNs and IGA-FEM, fail to capture the high-frequency temporal dynamics. Figure 14 shows the true solution at $\beta = 1$ for the example with long time simulation.

C.2 EULER-BERNOULLI EQUATION

Problem Setup: The time-dependent Euler–Bernoulli beam equation models the dynamic behavior of beams, including vibrations and transient loads. It is used to model loads on rail tracks, bridges, and aircraft wings, among many other applications (Beskos, 1987). We consider two different types of the Euler-Bernoulli beam equations in this work. The first is the classical Euler-Bernoulli beam equation that models a simply supported beam with varying transverse force and is described as

$$u_{tt} + u_{xxxx} = f(x, t) \quad x \in [0, \pi], t \in [0, 1], \quad (25a)$$

where $f(x, t) = (1 - 16\pi^2) \sin(x) \cos(4\pi t)$, with initial and boundary conditions

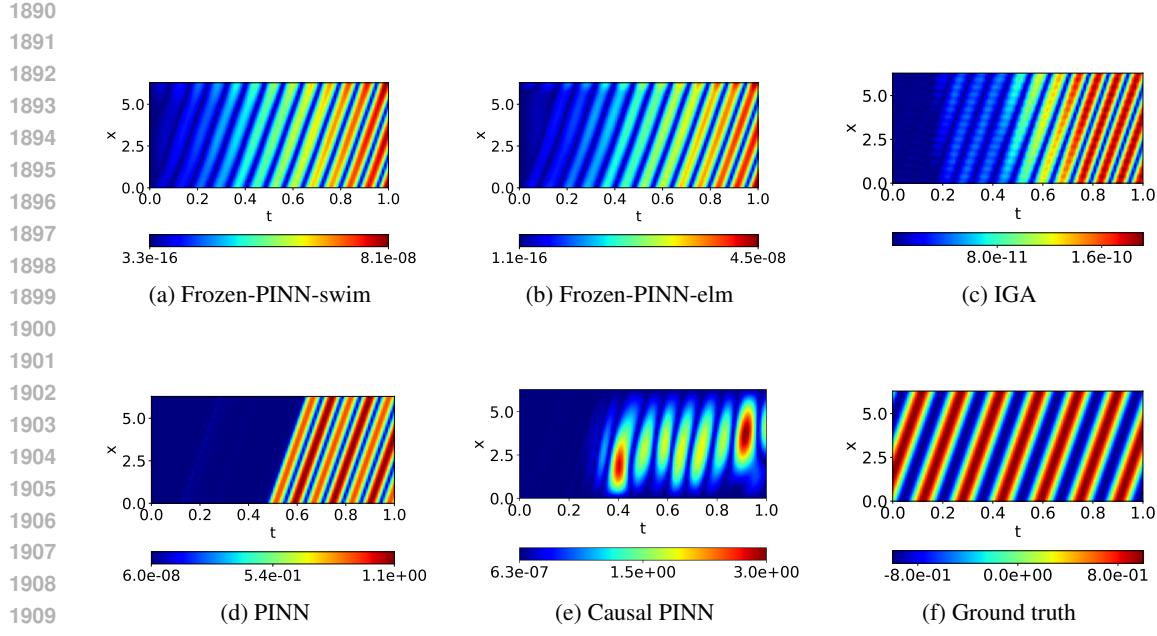
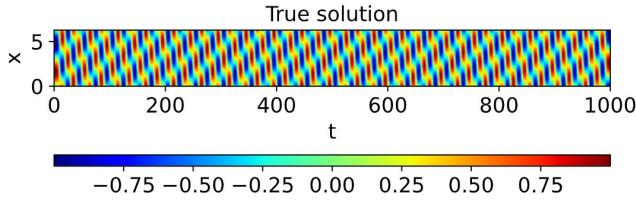
$$u(x, 0) = \sin(x), \quad u_t(x, 0) = 0, \quad (25b)$$

$$u(0, t) = u(\pi, t) = u_{xx}(0, t) = u_{xx}(\pi, t) = 0. \quad (25c)$$

The forcing function and the analytical solution are taken from Kapoor et al. (2023).

We consider another variant of the Euler-Bernoulli beam equation, with a Winkler foundation (an elastic, deformable foundation) given by:

$$u_{tt} + u_{xxxx} + p(x, t) = f(x, t) \quad x \in [0, 8\pi], t \in [0, 1]. \quad (26a)$$

Figure 13: Advection equation ($\beta = 40$): absolute error plots and ground truth.Figure 14: Advection equation $\beta = 1$, (long time simulation): Analytical solution $u(x, t) = \sin(x - \beta t)$.

The forcing term is $f(x, t) = (2 - \pi^2) \sin(x) \cos(\pi t)$, with the initial and boundary conditions

$$u(x, 0) = \sin(x), \quad u_t(x, 0) = 0, \quad (26b)$$

$$u(0, t) = u(8\pi, t) = u_{xx}(0, t) = u_{xx}(8\pi, t) = 0. \quad (26c)$$

The foundation reaction force $p(x, t)$ is assumed to be proportional to the displacement of the beam and modeled as $p(x, t) = \kappa u(x, t)$, where κ is the spring constant and is set to 1 in this case. The forcing function and the analytical solution for the Euler-Bernoulli beam equation with a Winkler foundation are taken from Kapoor et al. (2024b).

Ablation studies: The ablation studies for the PINN-based variants for classical Euler Bernoulli and the one with the Winkler foundation could be found in Kapoor et al. (2023; 2024b). The hyperparameters for various neural PDE solvers used for solving the classical Euler-Bernoulli PDE and the one with the Winkler foundation are described in Table 11, and Table 12, respectively. The hidden layer weights for Frozen-PINN-elm are sampled from the Gaussian distribution and biases from a uniform distribution in $[-2, 2]$.

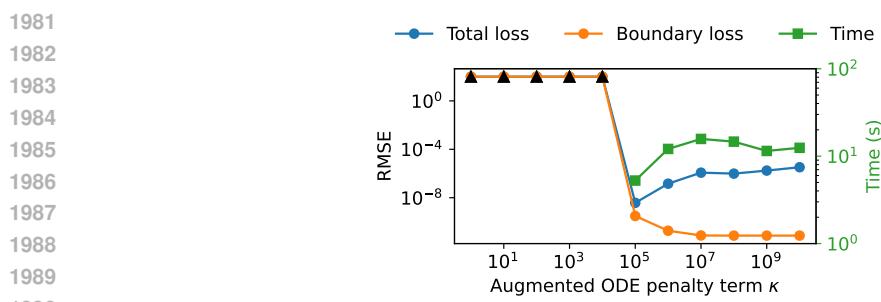
For this example, we have employed the augmented ODE strategy to satisfy boundary conditions and obtain the results presented in Table 1. We empirically investigate the effect of the penalty term in the augmented ODE on the performance of Frozen-PINNs, considering both accuracy and computation time. For this experiment, we use the hyperparameters described in Table 11 for Frozen-PINN-elm (high-precision regime) and vary the value of κ . Figure 15 shows that: (a) for $\kappa > 10^5$, the boundary loss is negligible ($\text{RMSE} < 10^{-10}$) and the total loss is very low ($\text{RMSE} \sim 10^{-5} - 10^{-9}$), and (b) for extremely large $\kappa \geq 10^6$, the augmented ODE becomes slightly stiffer, resulting in increased solution time.

1944 Table 3: Advection equation (high-advection speeds): Network hyper-parameters used for
 1945 $\beta \in \{10^{-2}, 10^{-1}, 1, 10, 40, 100, 1000, 10000\}$ to study the influence of the advection coefficient
 1946 on the errors (optimal hyper-parameters in bold) (see Figure 4(Left)).

1947

	Parameter	Value
1949 1950 1951 1952 1953	Frozen-PINN-swim, Number of hidden layers	2
	Hidden layer width	[140, 380 , 560]
	Outer basis functions	[10, 14 , 20, 40]
	Activation	tanh
	L^2 -regularization	[10^{-8} , 10^{-10} , 10^{-12} , 10^{-14}]
	Loss	mean-squared error
1954 1955 1956 1957 1958	boundary condition strategy	boundary-compliant layer
	SWIM, ELM Number of hidden layers	2
	SVD cutoff	10^{-12}
	Hidden layer width	[140, 380 , 560]
	Activation	tanh
	L^2 -regularization	[10^{-8} , 10^{-10} , 10^{-12}]
1959 1960 1961	Loss	mean-squared error
	# Initial and boundary points	400
	IGA Number of nodes	16
	Degree of polynomials	8
	Number of basis functions	15
	PINN Number of hidden layers	4
1962 1963 1964 1965 1966 1967 1968 1969	Layer width	[10, 20, 30 , 40]
	Activation	tanh
	Optimizer	LBFGS
	Epochs	5000
	Loss	mean-squared error
	Learning rate	0.1
	Batch size	200
	Parameter initialization	Xavier (Glorot & Bengio, 2010)
	Loss weights, λ_1, λ_2	1, 1
	# Interior points	[500, 1000, 1500, 2000]
	# Initial and boundary points	600
	Causal PINN Number of hidden layers	4
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979	Layer width	30
	Activation	tanh
	Optimizer	ADAM followed by LBFGS
	ADAM Epochs	2000
	LBFGS Epochs	5000
	Loss	mean-squared error
	Learning rate	0.1
	Batch size	2000
	Parameter initialization	Xavier (Glorot & Bengio, 2010)
	Loss weights, λ_1, λ_2	1, 1
	# Interior points	40000
	# Initial and boundary points	6000
	Causality parameter, ϵ	10

1980



1991 Figure 15: The effect of penalty term κ in the augmented ODE (see Equation (5)) on the losses and
 1992 time to solution.

1993

1994

1995 **Comparison of results:** Figure 16 and Figure 17 present the absolute errors for the classical Euler-
 1996 Bernoulli PDE and its variant with a Winkler foundation, respectively, using Frozen-PINN-swim,
 1997 Frozen-PINN-elm, PINN, and IGA methods, along with the true solution. The error plots for the
 Euler-Bernoulli beam equation with a Winkler foundation for other variants of PINNs, such as

1998 Table 4: Advection equation (convergence for $\beta = 10$): Optimal hyper-parameters in the experiment
 1999 designed to study how the error decays with the number of basis functions in the neural network (see
 2000 Figure 4(Middle)).

	Parameter	Value
2002 2003 2004 2005 2006	Frozen-PINNs (both variants)	Number of hidden layers 2 Hidden layer width [2, ..., 30] Activation \tanh L^2 -regularization $[10^{-7}, 10^{-8}, 10^{-9}, 10^{-10}, 10^{-11}, 10^{-12}]$ Loss mean-squared error boundary condition strategy boundary-compliant layer
	2007 2008 2009 2010 2011 2012 2013 2014	PINN
		Number of hidden layers 4 Layer width [10, 20, 30, 40] Activation \tanh Optimizer LBFGS Epochs 5000 Loss mean-squared error
		Learning rate 0.1
		Batch size 200
		Parameter initialization Xavier (Glorot & Bengio, 2010)
		Loss weights, λ_1, λ_2 1, 1

Table 5: Advection equation (for $\beta = 40$): Hyper-parameters for the results in Table 1.

	Parameter	Value
2017 2018 2019 2020 2021 2022 2023 2024	Frozen-PINN-elm (low-precision)	Number of hidden layers 2 Hidden layer width 50 Outer basis functions [14] svd cutoff $[10^{-12}]$ Activation \tanh L^2 -regularization 10^{-10} ODE solver tolerance 10^{-4} Loss mean-squared error boundary condition strategy boundary-compliant layer
	2025 2026 2027 2028 2029 2030 2031	Frozen-PINN-swim (high-precision)
		Number of hidden layers 2 Hidden layer width 380 Outer basis functions [14] svd cutoff $[10^{-12}]$ Activation \tanh L^2 -regularization 10^{-14} ODE solver tolerance 10^{-8} Loss mean-squared error boundary condition strategy boundary-compliant layer
2032 2033 2034 2035 2036 2037 2038 2039 2040	PINN	Number of hidden layers 4 Layer width [10, 20, 30, 40] Activation \tanh Optimizer LBFGS Epochs 5000 Loss mean-squared error Learning rate 0.1 Batch size 200 Parameter initialization Xavier (Glorot & Bengio, 2010) Loss weights, λ_1, λ_2 1, 1

2041 Wavelet PINN, causal PINN, adaptive PINN, and self-adaptive PINNs, can be found in Kapoor et al.
 2042 (2024b). Table 1 shows the summary of results for the classical Euler-Bernoulli beam equation and
 2043 the variant considering the Winkler foundation for different methods.

C.3 WAVE EQUATION

2048 **Problem Setup:** The acoustic wave equation models the propagation of sound waves through a
 2049 medium. It describes how pressure or velocity evolve over time. We consider the wave equation on
 2050 $\Omega = [0, 1]$ for time $t \in [0, 1]$ from Hao et al. (2024), given by:

$$2051 \quad u_{tt} - 4u_{xx} = 0, \quad x \in \Omega, \quad t \in [0, 1], \quad (27a)$$

Table 6: Results of PINNs for advection equation ($\beta = 10$) for dense networks (number of hidden layers = 10 and 20, with each hidden layer having 30 neurons). The experiment studies the performance of PINNs with L-BFGS and ADAM optimizers under different learning rates. Each case is run for 20000 epochs.

Optimizer	Learning rate	RMSE		Relative L^2 error		Training time (s)	
		Hidden layers		Hidden layers		Hidden layers	
		10	20	10	20	10	20
L-BFGS	0.1	6.02e-4	1.23e-2	8.51e-4	1.74e-2	204.25	336.32
	0.01	1.57e-3	1.30e-2	2.22e-3	1.84e-2	213.26	327.41
Adam	0.001	2.26e-2	1.64e-2	3.19e-2	2.32e-2	174.84	301.12
	0.0001	6.72e-3	2.07e-2	9.5e-3	2.92e-2	190.24	317.97

Table 7: Results of PINNs for advection equation ($\beta = 40$) for dense networks (number of hidden layers = 10 and 20, with each hidden layer having 30 neurons). The experiment studies the performance of PINNs with ADAM and L-BFGS optimizers under different learning rates. Each case is run for 20000 epochs.

Optimizer	Learning rate	RMSE		Relative L^2 error		Training time (s)	
		Hidden layers		Hidden layers		Hidden layers	
		10	20	10	20	10	20
L-BFGS	0.1	3.09e-3	1.53e+1	4.37e-3	2.17e+1	207.25	320.43
	0.01	1.46e-2	7.07e-1	2.07e-2	1.00e+0	205.08	323.43
Adam	0.001	3.66e-1	7.07e-1	5.18e-1	1.00e+0	168.14	331.03
	0.0001	6.67e-1	6.82e-1	9.44e-1	9.65e-1	181.89	316.90

Table 8: Advection equation (long-time simulation for $\beta = 1$): Optimal hyper-parameters for Frozen-PINNs in the experiment used to demonstrate that the errors with Frozen-PINNs stay low for simulations up to 1000 seconds (see Figure 4(Right)).

	Parameter	Value
Frozen-PINN (both variants)	Number of hidden layers	2
	Hidden layer width	250
	Outer basis functions	25
	Activation	tanh
	L^2 -regularization	[10 ⁻¹⁰]
	Loss	mean-squared error
	boundary condition strategy	boundary-compliant layer

Table 9: Advection equation ($\beta = 10$): Ablation study for PINN (LBFGS) with respect to the network width. The mean is computed over 3 seeds.

Layer width	Training time (s)	RMSE	Relative L^2 error
10	24.47 ± 0.19	1.24e-3 ± 2.38e-4	1.76e-3 ± 3.37e-4
20	27.46 ± 0.08	6.52e-4 ± 2.59e-4	9.22e-4 ± 3.66e-4
30	30.43 ± 0.50	3.69e-4 ± 4.33e-5	5.23e-4 ± 6.13e-5
40	33.64 ± 0.41	3.86e-4 ± 9.37e-5	5.46e-4 ± 1.32e-4

with the initial condition

$$u(x, 0) = \sin(\pi x) + \frac{1}{2} \sin(4\pi x), \quad x \in \Omega, \quad (27b)$$

$$u_t(x, 0) = 0, \quad x \in \Omega, \quad (27c)$$

and the boundary condition

$$u(0, t) = u(1, t) = 0 \quad t \in [0, 1]. \quad (27d)$$

2106 Table 10: Advection equation ($\beta = 10$): hyperparameter optimization for PINN (LBFGS) varying
 2107 the number of interior points. The mean is computed over 3 seeds.

2108

2109	Interior points	Training time (s)	RMSE	Relative L^2 error
2110	500	25.76 ± 0.29	4.10e-4 ± 7.20e-5	5.80e-4 ± 1.01e-4
2111	1000	27.44 ± 0.25	3.72e-4 ± 4.06e-5	5.27e-4 ± 5.74e-5
2112	1500	29.61 ± 0.16	5.68e-4 ± 1.97e-4	8.03e-4 ± 2.79e-4
2113	2000	30.43 ± 0.50	3.69e-4 ± 4.33e-5	5.23e-4 ± 6.13e-5

2114

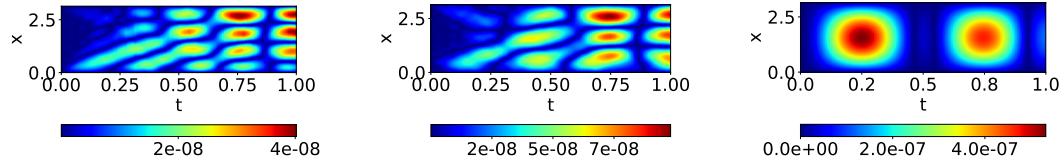
2115

2116

2117

2118

2119



2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

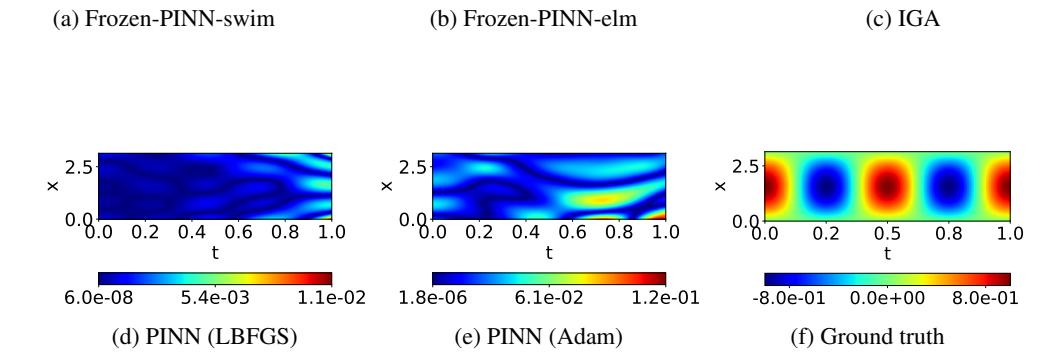


Figure 16: The classical Euler-Bernoulli beam equation: absolute error plots and ground truth.

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

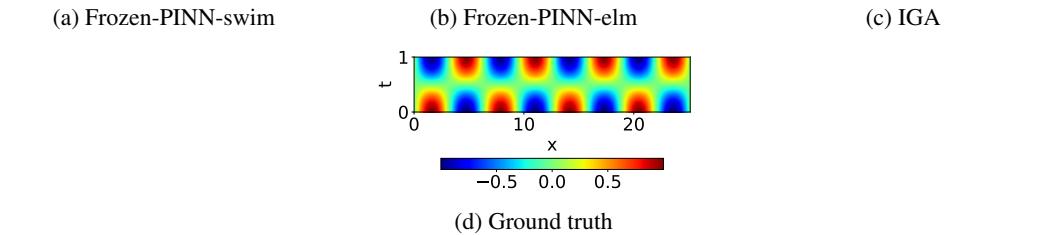


Figure 17: The Euler-Bernoulli beam equation on Winkler foundation: absolute error plots and ground truth.

2153

2154

2155

2156

2157

The analytical solution of the problem is

2158

2159

$$u(x, t) = \sin(\pi x) \cos(2\pi t) + \frac{1}{2} \sin(4\pi x) \cos(8\pi t). \quad (27e)$$

2160 Table 11: The classical Euler-Bernoulli beam equation for the results in Table 1: summary of all
 2161 hyperparameters.

	Parameter	Value
Frozen-PINN-elm (low-precision)	Number of hidden layers	2
	Hidden layer width	50
	SVD-cutoff	10^{-6}
	Activation	tanh
	L^2 -regularization	10^{-6}
	Loss	mean-squared error
	boundary condition strategy	augmented ODE
Frozen-PINN-elm (high-precision)	Number of hidden layers	2
	Hidden layer width	100
	SVD-cutoff	10^{-12}
	Activation	tanh
	L^2 -regularization	10^{-10}
	Loss	mean-squared error
	boundary condition strategy	augmented ODE
IGA	Number of nodes	27
	Degree of polynomials	9
	Number of basis functions	33
PINN	Number of hidden layers	4
	Layer width	20
	Activation	tanh
	Optimizer	LBFGS (ADAM)
	Epochs	15000 (30000)
	Loss	mean-squared error
	Learning rate	0.1
	Batch size	2000
	Parameter initialization	Xavier (Glorot & Bengio, 2010)
	Loss weights, λ_1, λ_2	0.1, 1
# Interior points		10000
	# Initial and boundary points	6000

2185
 2186 Table 12: The Euler-Bernoulli beam equation on Winkler foundation for the results in Table 1:
 2187 summary of all hyperparameters.

	Parameter	Value
Frozen-PINN-elm (low-precision)	Number of hidden layers	2
	Hidden layer width	200
	SVD-cutoff	10^{-6}
	Activation	tanh
	L^2 -regularization	10^{-6}
	Loss	mean-squared error
	boundary condition strategy	augmented ODE
Frozen-PINN-swim (high-precision)	Number of hidden layers	2
	Hidden layer width	400
	SVD-cutoff	10^{-10}
	Activation	tanh
	L^2 -regularization	10^{-10}
	Loss	mean-squared error
	boundary condition strategy	augmented ODE
IGA	Number of nodes	60
	Degree of polynomials	6
	Number of basis functions	63
PINN	Number of hidden layers	4
	Layer width	200
	Activation	tanh
	Optimizer	LBFGS
	Epochs	10000
	Loss	mean-squared error
	Learning rate	0.1
	Batch size	500
	Parameter initialization	Xavier (Glorot & Bengio, 2010)
	Loss weights, λ_1, λ_2	1, 1
	# Interior points	10000
	# Initial and boundary points	1500

2214
2215 In addition, we present a significantly challenging scenario involving a multi-scale solution by
2216 employing the initial condition

2217
$$u(x, 0) = \sin(\pi x) + \frac{1}{2} \sin(4\pi x) + \frac{1}{4} \sin(9\pi x), \quad x \in \Omega, \quad (27f)$$

2218

2219
$$u_t(x, 0) = 0, \quad x \in \Omega, \quad (27g)$$

2220

2221 for which the corresponding analytical solution is given by
2222

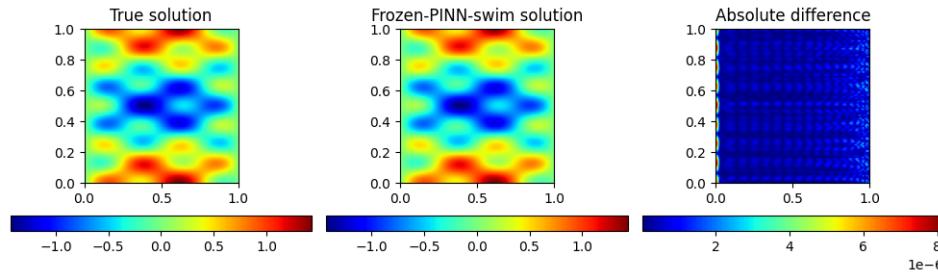
2223
$$u(x, t) = \sin(\pi x) \cos(2\pi t) + \frac{1}{2} \sin(4\pi x) \cos(8\pi t) + \frac{1}{4} \sin(9\pi x) \cos(18\pi t). \quad (27h)$$

2224

2225 **Comparison of results:** In Table 1, we compare the Frozen-PINN-swim result of Equation (27e)
2226 with other PINN methods from Hao et al. (2024), see Figure 18. The hyperparameters used for this
2227 experiment can be found in Table 13. Additionally, we demonstrate the capability of our proposed
2228 method by solving the multi-scale problem as in Equation (27h) using the same neural network
2229 architecture, and the relative L^2 error is less than 10^{-5} . The results are shown in Figure 19.
2230

2231 Table 13: Wave equation: Hyper-parameters for the result in Table 1.
2232

	Parameter	Value
Frozen-PINN-swim	Number of hidden layers	2
	Hidden layer width	400
	Outer basis functions	30
	Activation	tanh
	L^2 -regularization	10^{-12}
	Loss	mean-squared error
	boundary condition strategy	boundary-compliant layer



2241 Figure 18: Wave equation Equation (27e): Ground truth, Frozen-PINN-swim solution, absolute error.
2242
2243
2244
2245
2246
2247
2248
2249

2254 C.4 BURGERS

2255 **Problem Setup:** The Burgers' equation in different settings is used to model traffic flows, large-
2256 scale structure formation in cosmology, and shock formation in inviscid flows, among other appli-
2257 cations (Bonkile et al., 2018). The inviscid Burgers' equation is a nonlinear PDE, which can form
2258 shock waves. We consider Burgers' equation on $\Omega = [-1, 1]$ for time $t \in (0, 1]$ from Raissi et al.
2259 (2019), given by:
2260

2261
$$u_t + uu_x - (0.01/\pi)u_{xx} = 0, \quad x \in \Omega, \quad t \in [0, 1], \quad (28a)$$

2262

2263 with initial and boundary conditions

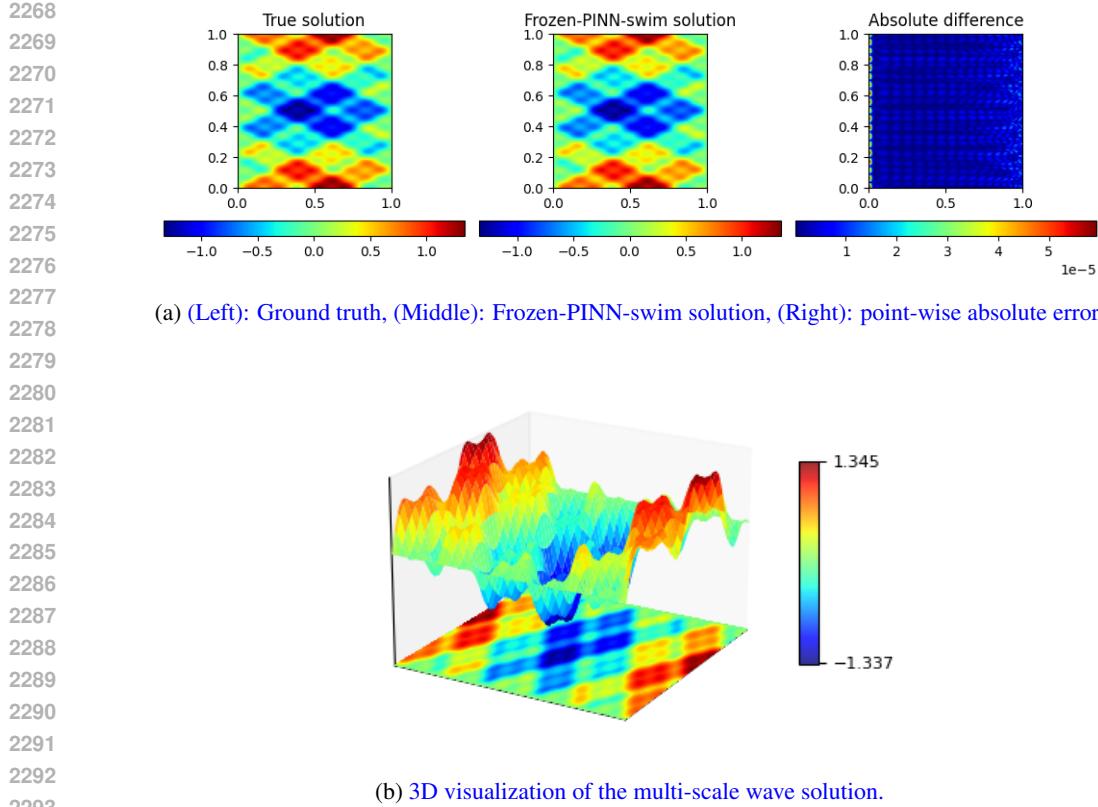
2264
$$u(0, x) = -\sin(\pi x), \quad x \in \Omega, \quad (28b)$$

2265

2266
$$u(t, -1) = u(t, 1) = 0 \quad t \in [0, 1]. \quad (28c)$$

2267

2268 We consider the analytical solution provided by Basdevant et al. (1986).



2294 Figure 19: Wave equation Equation (27h): Ground truth, Frozen-PINN-swim solution, absolute error,
2295 and multi-scale solution visualization.

2299 **Why Frozen-PINN-elm can't resolve shocks in PDE solutions?** To accurately resolve PDE
2300 solutions with sharp gradients, it is essential to: (a) construct basis functions with steep gradients,
2301 and (b) position them particularly near the shock regions within the domain. Figure 20a (Right)
2302 illustrates why solution- or data-agnostic ELM basis functions make it very difficult for Frozen-
2303 PINN-elm to capture the sharp features in the solution, particularly at the center of the domain, due
2304 to the exponentially small probability of sampling steep basis functions (Huang et al., 2006). While
2305 sampling weights from a wider uniform distribution, as discussed by Calabro et al. (2021) for linear
2306 PDEs, can increase the probability of sampling steeper basis functions, it offers no spatial control
2307 over their placement.

2308 **Ablation studies:** We describe additional details in solving the Burgers' equation with various
2309 neural PDE solvers in Table 14 and Table 15. The results of the ablation study with the number
2310 of neurons in the hidden layer for Frozen-PINN-swim are presented in Table 16. We observe that
2311 starting with a width of 1200, the error decreases for a width up to 600 and increases again below
2312 600. We believe that for widths lower than 600, the network capacity seems to be the reason for the
2313 loss of accuracy. For very high widths, the regularization constant has to be kept to a higher value to
2314 avoid overfitting. Otherwise, the ODE system becomes highly stiff. With this high regularization
2315 constant, the training becomes stable, but it affects the training accuracy. We do not include results
2316 for Frozen-PINN-elm as it fails on all widths, as it is not able to capture the sharp shocks and exhibits
2317 Gibbs phenomenon (Gottlieb & Shu, 1997), which is explained in detail in Appendix C.4.1.

2318 We also perform an ablation study for the SVD layer for Frozen-PINN-swim. Please refer to Table 17.
2319 The ablation study reveals that the SVD layer compresses the number of neurons by a factor of 1.58,
2320 which reduces the output computation time by a factor of 7 for almost the same accuracy. This
2321 highlights the utility of the SVD layer.

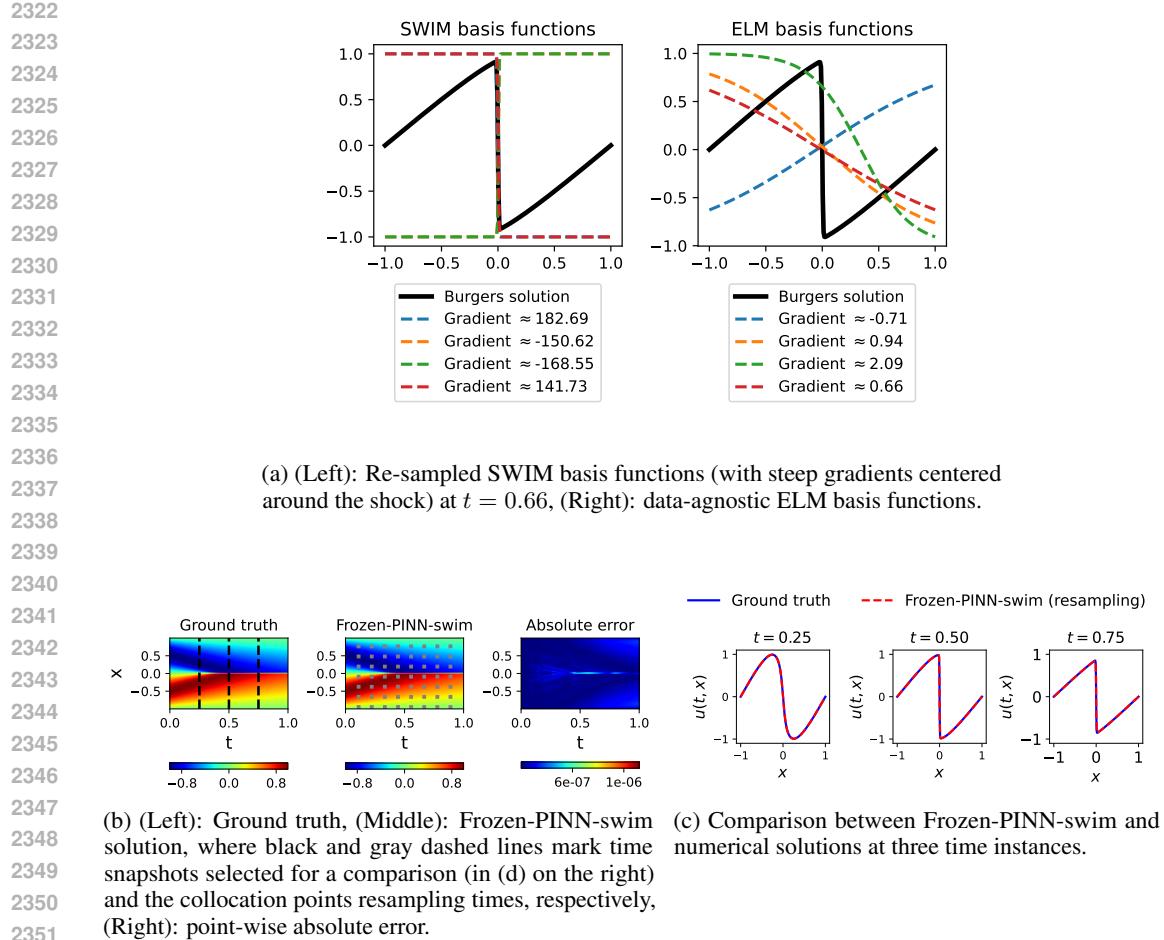


Figure 20: Illustration of experimental results for the Burgers' equation.

Comparison of results: Figures 20b and 20c present a comparison between the Frozen-PINN-swim solution and the numerical solution from Raissi et al. (2019), validating the ability of Frozen-PINN-swim to resolve shocks with high accuracy. We demonstrate with a snapshot of the Burgers' solution that SWIM basis functions exhibit a rapid exponential decay of error with increasing network width, where Fourier and Chebyshev basis functions suffer from the Gibbs phenomenon Gottlieb & Shu (1997) (See Figure 22, Figure 23, Appendix C.4.1). Figure 21 shows the absolute errors obtained with the PINN, Causal PINN, and IGA methods.

C.4.1 COMPARISON WITH CLASSICAL SPECTRAL METHODS

In this section, we study how the basis functions sampled with SWIM and ELM approaches perform in comparison to the basis functions typically employed in traditional spectral methods. We try to approximate a single snapshot of the solution to the Burgers' equation, which has a locally steep gradient. If a method fails to even approximate a single snapshot well enough, it is highly unlikely to achieve better results in approximating the entire space-time solution of the PDE.

Figure 22 shows the approximation of the Burgers' equation solution at $t = 0.99$, using SWIM basis functions, ELM basis functions, Fourier series, and Chebyshev polynomials, respectively. The number of basis functions is 102 for all methods. Figure 23 shows the approximation error using a different number of basis functions. We can see that for ELM basis functions, Fourier basis functions, and Chebyshev polynomials, there are oscillations near the shock, and the error is large compared to the SWIM basis functions, where we are able to take advantage of resampling data points and sampling appropriate basis functions in order to adapt to the target function well. Note that in this experiment, the weights for the ELM basis functions are sampled from a Gaussian distribution

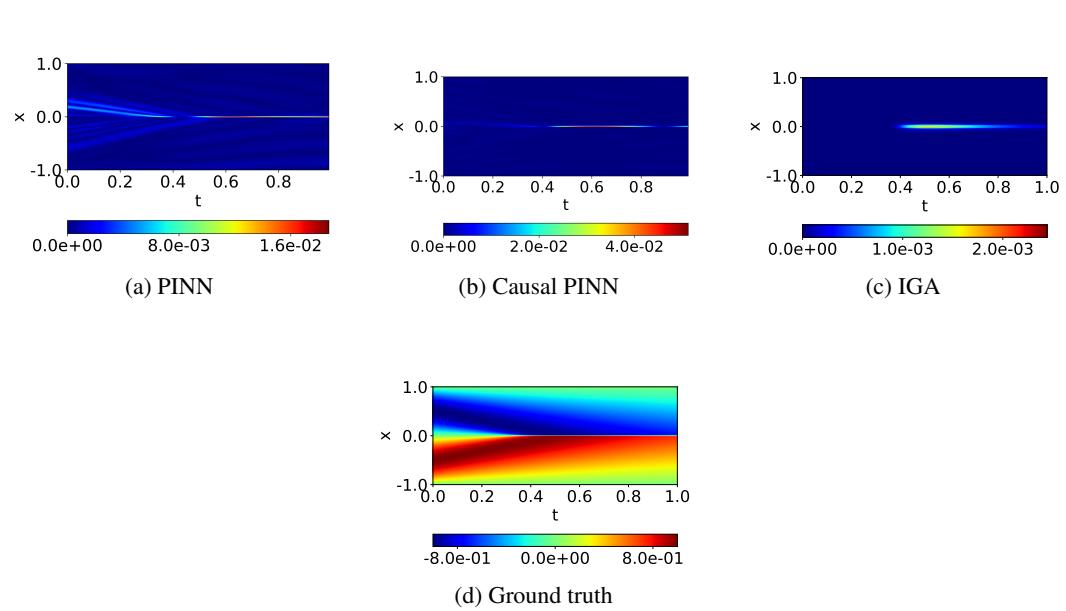


Figure 21: Burgers' equation: absolute error plots and ground truth.

Table 14: Burgers' equation: Summary of hyper-parameters for Frozen-PINNs (see Table 1).

Parameter	Value	
Frozen-PINN-swim (low-precision)	Number of hidden layers Hidden layer width Activation L^2 -regularization svd cutoff Loss # collocation points (space) # sampling points ODE solver tolerance # time windows for resampling boundary condition strategy	2 [300] tanh $[10^{-6}, 10^{-7}, 10^{-8}, 10^{-10}, 10^{-12}]$ 10^{-8} mean-squared error [600] [1000] 10^{-3} 9 augmented ODE
Frozen-PINN-swim (high-precision)	Number of hidden layers Hidden layer width Activation L^2 -regularization svd cutoff Loss # collocation points (space) # sampling points ODE solver tolerance # time windows for resampling boundary condition strategy	2 [450] tanh $[10^{-6}, 10^{-7}, 10^{-8}, 10^{-10}, 10^{-12}, 10^{-13}]$ 5×10^{-11} mean-squared error [1000] [6000] 10^{-6} 9 augmented ODE
Frozen-PINN-elm	Number of hidden layers Hidden layer width Activation L^2 -regularization Loss # collocation points (space) # sampling points boundary condition strategy	2 [2000] tanh $[10^{-6}, 10^{-7}, 10^{-8}, 10^{-10}, 10^{-12}]$ mean-squared error [3000] [6000] augmented ODE

with a standard deviation of 10 in order to increase the number of basis functions. The biases are sampled from a uniform distribution in $[-10, 10]$. For the Fourier basis functions and Chebyshev polynomials, we use equispaced grid points. We also experimented with quadrature points and placed more points near the steep gradient in an attempt to mitigate the oscillations associated with the Gibbs phenomenon and the Runge phenomenon, but it did not lead to any significant improvement in the

2430 Table 15: Burgers' equation (see Table 1): Network hyper-parameters used for PINN, Causal PINN,
 2431 and IGA.

	Parameter	Value
PINN	Number of hidden layers	9
	Layer width	20
	Activation	tanh
	Optimizer	LBFGS
	Epochs	10000
	Loss	mean-squared error
	Learning rate	0.1
	Batch size	200
	Parameter initialization	Xavier (Glorot & Bengio, 2010)
	Loss weights, λ_1, λ_2	1, 1
Causal PINN	# Interior points	10000
	# Initial and boundary points	600
Causal PINN	Number of hidden layers	9
	Layer width	20
	Activation	tanh
	Optimizer	ADAM followed by LBFGS
	ADAM Epochs	5000
	LBFGS Epochs	10000
	Loss	mean-squared error
	Learning rate	0.1
	Batch size	200
	Parameter initialization	Xavier (Glorot & Bengio, 2010)
IGA	Loss weights, λ_1, λ_2	1, 1
	# Interior points	40000
	# Initial and boundary points	600
	Causality parameter, ϵ	5
IGA	Number of nodes	750
	Degree of polynomials	9
	Number of basis functions	756

2455 Table 16: Burgers' equation: ablation study for the network width for Frozen-PINN-swim.

Width	Relative L^2 error
240	4.27e-4
550	2.27e-7
800	2.78e-6
1200	1.54e-6

2463 Table 17: Burgers' Equation: Ablation Study for the SVD layer with Frozen-PINN-swim.

	With SVD layer	Without SVD layer	Ratio
Number of neurons	500	316	Width Compression $\approx 1.58x$
Time (s)	141.5	989.84	Speed-up $\approx 7x$
Rel. L_2 error	3.34e-4	3.28e-4	-

2471 results. This conclusively demonstrates that SWIM basis functions perform better than traditional
 2472 bases used in spectral methods in accurately resolving shocks.

2474 C.5 NONLINEAR DIFFUSION EQUATION

2476 **Problem Setup:** The non-linear diffusion equation in different forms is used to model the spread of
 2477 populations, bacterial colonies, and forest fires, as well as to model groundwater and ice-sheet flow
 2478 in glaciers, and mass diffusion in reactive flows (Li et al., 2001). We consider a two-dimensional
 2479 nonlinear diffusion equation given by

$$2480 \quad u_t - u\Delta u = f(x, y, t), \quad (x, y) \in \Omega, \quad t \in [0, 1], \quad (29a)$$

2481 with a forcing function

$$2482 \quad f(x, y, t) = 5e^{-t} \sin(\pi x) y^{-3} (-1 + e^{-t} \sin(\pi x) y^{-5} (-12 + \pi^2 y^2)) \quad (29b)$$

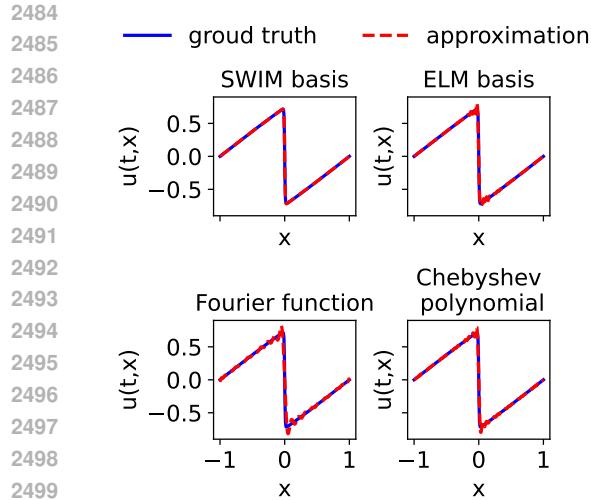


Figure 22: Approximation of Burgers' equation solution at $t = 0.99$ with four types of basis functions. The number of basis functions in all cases is 102. Oscillations can be seen near the steep gradient for the methods using ELM basis functions, Fourier functions, and Chebyshev polynomials.

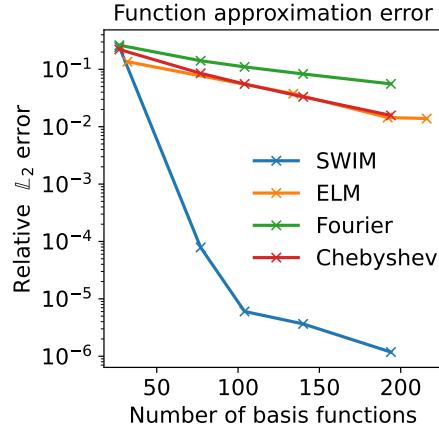


Figure 23: Approximation error for four types of basis functions. Here, we directly fit the Burgers' equation solution at $t = 0.99$. The approximation error decreases as we increase the number of basis functions, and the SWIM basis functions yield the best result among all methods.

on a complicated geometry inspired by a tree-like pattern occurring during the controlled shaping of fluids Islam & Gandhi (2017). The initial condition and time-dependent Dirichlet boundary conditions are obtained from the constructed solution of the PDE

$$u(x, y, t) = 5e^{-t} \sin(\pi x) y^{-3}, \quad (x, y) \in \Omega, \quad t \in [0, 1]. \quad (29c)$$

The training is performed on 1500 data points in the interior and boundary. We test the neural-PDE solvers with 5000 data points in the interior and on the boundary. The weights of the hidden layer for the Frozen-PINN-elm are sampled from the Gaussian distribution and biases from a uniform distribution in $[-1, 1]$. For our approach to handling time-dependent Dirichlet boundary conditions, please refer to Appendix B.2.5. The hyperparameters for various neural PDE solvers are outlined in Table 18. Figure 24 shows the mesh generated for the FEM and the sampled collocation points for the neural PDE solvers. For the mesh we consider for this problem (see Figure 24), we could not improve the accuracy further with FEM by using higher-order polynomial basis functions. While mesh refinement is possible, it's time-consuming, and our method avoids this by working directly with point clouds.

Ablation studies: The ablation study for the number of neurons in the hidden layer of the network for Frozen-PINN-elm and Frozen-PINN-swim is presented in Table 19. For PINN, the results for the ablation studies for the width of the network and the number of data points are included in Table 20, Table 21. Additionally, we perform an ablation study for the SVD layer to demonstrate its impact on the computation time saved in Table 22. Particularly, we observe that with the SVD layer, the number of basis functions (width after the SVD layer) is reduced by up to 22x for Frozen-PINN-elm and up to 1.5x for Frozen-PINN-swim, and we obtain substantial speed-ups (more than a factor of 50) in the computation time.

Comparison of results: The comparison of training times and errors is presented in Table 1. Figure 25 shows the ground truth and Figure 26 shows the error plots with all approaches.

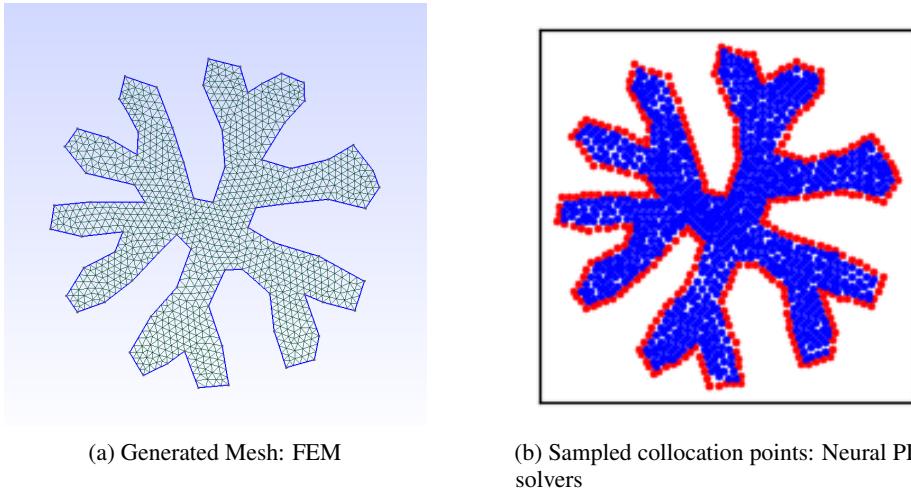
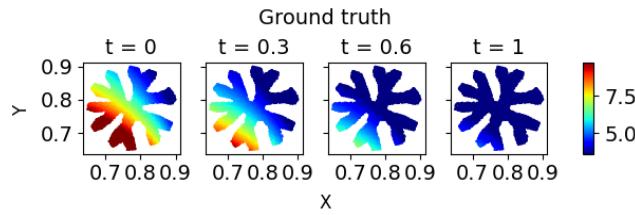


Figure 24: Advantages of mesh-free methods: (a) For mesh-based methods, a complicated mesh must be constructed, whereas (b) for neural PDE solvers, one can easily sample arbitrary points in the interior (blue) and on the boundary (red) of the domain and work directly with point clouds.

Table 18: Non-linear diffusion equation (see Table 1): Summary of hyper-parameters.

	Parameter	Value
Frozen-PINN-elm (low-precision)	Number of hidden layers	2 (nonlinear and SVD layer)
	Hidden layer width	350
	Activation	\tanh
	L^2 -regularization	5×10^{-11}
	SVD cutoff	5×10^{-11}
	ODE solver tolerance	10^{-6}
	Loss	mean-squared error
	boundary condition strategy	augmented ODE
Frozen-PINN-swim (high-precision)	Number of hidden layers	2 (nonlinear and SVD layer)
	Hidden layer width	500
	Activation	\tanh
	L^2 -regularization	10^{-15}
	SVD cutoff	10^{-15}
	ODE solver tolerance	10^{-6}
	Loss	mean-squared error
	boundary condition strategy	augmented ODE
FEM	Number of entities	154
	Number of nodes	1193
	Number of elements	2070
	Type of elements	Lagrange
	Shape of elements	triangle
	Degree of polynomials	1
	Number of basis functions	1193
	Solver	Newton solver
	Timestep size	0.001
PINN	Number of hidden layers	4
	Layer width	[10, 20, 30 , 40]
	Activation	\tanh
	Optimizer	LBFGS & ADAM
	Epochs	10000
	Loss	mean-squared error
	Learning rate	0.01
	Batch size	1000
	Parameter initialization	Xavier (Glorot & Bengio, 2010)
	Loss weights, λ_1, λ_2	0.01, 1
	# Interior points	[8790, 1760, 880 , 440]
	# Initial and boundary points	[3140, 630, 320 , 160]

2592
2593
2594
2595
2596
2597
2598
2599

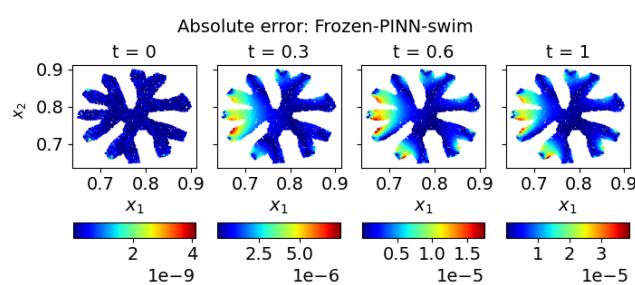


2600
2601

Figure 25: Non-linear diffusion equation: ground truth.

2602

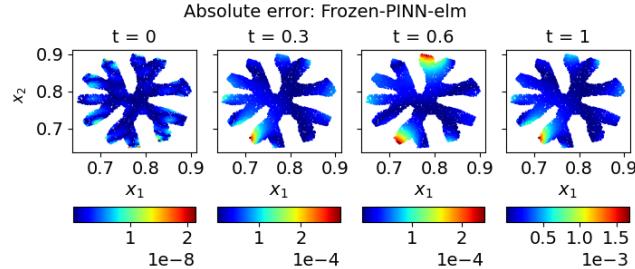
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612



(a) Absolute error: Frozen-PINN-swim.

2613

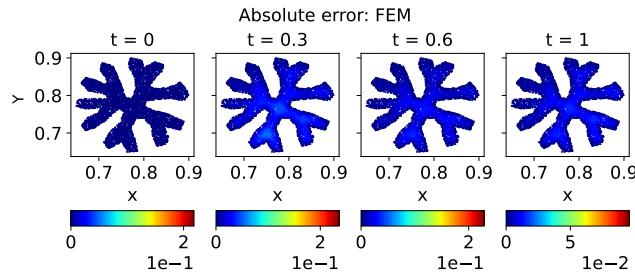
2614
2615
2616
2617
2618
2619
2620
2621
2622



(b) Absolute error: Frozen-PINN-elm.

2623

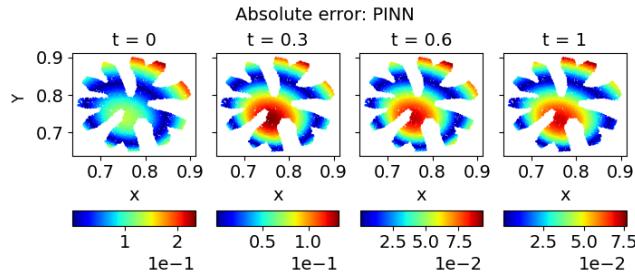
2624
2625
2626
2627
2628
2629
2630
2631
2632



(c) Absolute error: FEM.

2633

2634
2635
2636
2637
2638
2639
2640
2641
2642



(d) Absolute error: PINN (LBFGS).

2643
2644
2645

Figure 26: Non-linear diffusion equation: absolute error plots and ground truth at four-time instants.

2646 Table 19: Non-linear diffusion equation: ablation study for the network width for Frozen-PINN-swim
 2647 and Frozen-PINN-elm. The mean is computed over 3 seeds.

Width	Relative L^2 error (Frozen-PINN-swim)	Relative L^2 error (Frozen-PINN-elm)
200	1.34e-4	4.92e-3
300	5.07e-6	3.13e-5
400	2.88e-6	1.02e-5
500	3.02e-7	1.52e-5

2655 Table 20: Non-linear diffusion equation: hyperparameter optimization for PINN varying layer width.
 2656 The mean is computed over 3 seeds.

Layer width	Training time (s)	RMSE	Relative L^2 error
10	61.09 ± 1.62	4.11e-2 ± 2.04e-3	1.50e-2 ± 7.48e-4
20	68.05 ± 1.56	3.74e-2 ± 1.04e-3	1.37e-2 ± 3.82e-4
30	76.01 ± 0.57	3.67e-2 ± 1.03e-3	1.34e-2 ± 3.78e-4
40	82.43 ± 0.45	3.76e-2 ± 1.69e-3	1.37e-2 ± 6.21e-4

2664 Table 21: Non-linear diffusion equation: hyperparameter optimization for PINN varying interior
 2665 points.

Interior points	Training time (s)	RMSE	Relative L^2 error
600	65.08 ± 4.23	3.74e-2 ± 1.04e-3	1.37e-2 ± 3.82e-4
1200	98.48 ± 3.78	3.51e-2 ± 6.67e-4	1.28e-2 ± 2.44e-4
2390	143.31 ± 5.50	3.34e-2 ± 6.53e-4	1.22e-2 ± 2.38e-4

2673 Table 22: Non-linear diffusion equation: Ablation study of the SVD layer in Frozen-PINN-swim and
 2674 Frozen-PINN-elm. We report ∞ for runtimes exceeding 3 hours. Two variants of Frozen-PINN-elm
 2675 are shown: Frozen-PINN-elm-accurate (higher accuracy, longer runtime) and Frozen-PINN-elm-fast
 2676 (lower runtime, with error comparable to or better than PINNs, enabling fair comparison). The ratio
 2677 of the hidden layer width to the SVD layer width is denoted by C_r .

Method	Quantity	With SVD layer	Without SVD layer	Ratio
Frozen-PINN-elm-accurate	Width	62	300	$C_r \approx 22.8x$
	Time (s)	60.98	7087.38	Speed-up $\approx 52x$
	Rel. L_2 error	6.49e-8	1.02e-6	-
Frozen-PINN-elm-fast	Width	35	300	$C_r \approx 8.5x$
	Time (s)	30.57	∞	Speed-up ∞
	Rel. L_2 error	5.12e-5	-	-
Frozen-PINN-swim	Width	316	500	$C_r \approx 1.5x$
	Time (s)	328.03	∞	Speed-up ∞
	Rel. L_2 error	2e-6	-	-

C.6 NONLINEAR REACTION-DIFFUSION EQUATION

2691 **Problem Setup:** The non-linear reaction-diffusion equation models biological pattern formation,
 2692 such as Zebra stripes, fish spots, in myriad chemical reactions, and flame propagation during
 2693 combustion (Britton, 1986; Lam & Lou, 2022).

2694 In this benchmark from Zang et al. (2020), we consider a five-dimensional nonlinear diffusion
 2695 equation given by

$$u_t - \Delta u - u^2 = f(x, t), \quad x \in \Omega \subset \mathbb{R}^d, \quad t \in [0, 1], \quad (30a)$$

$$f(x, t) = (\pi^2 - 2) \sin\left(\frac{\pi}{2}x_1\right) \cos\left(\frac{\pi}{2}x_2\right) e^{-t} - 4 \sin^2\left(\frac{\pi}{2}x_1\right) \cos^2\left(\frac{\pi}{2}x_2\right) e^{-2t}, \quad (30b)$$

on the domain $\Omega = [-1, 1]^d$. The initial condition and time-dependent Dirichlet boundary conditions are obtained from the constructed solution of the PDE

$$u(x, t) = 2 \sin\left(\frac{\pi}{2}x_1\right) \cos\left(\frac{\pi}{2}x_2\right) e^{-t}. \quad (31)$$

Note that the solution is independent of three out of five dimensions. The training is performed on 1000 data points in the interior and 1000 data points on the boundary. The test data set is generated the same way as in Zang et al. (2020) to evaluate the weak adversarial networks. In particular, to compute the error in the 5-dimensional domain, we use a mesh of size 100×100 for the two coordinate directions in which the solution changes (here, (x_1, x_2)) and uniformly randomly sample the other coordinates (here, (x_3, x_4, x_5)) in the domain. The hidden layer weights for the Frozen-PINN-elm are sampled from the standard Gaussian distribution and biases from a uniform distribution in $[-1, 1]$. Please refer to Appendix B.2.5 for our approach to handling time-dependent Dirichlet boundary conditions.

The sampling strategy for basis functions described in Section 3.7 using projected pairs of data points substantially improves efficiency and accuracy. Our approach requires 20 times fewer training points in the interior compared to Zang et al. (2020) while simultaneously achieving a relative L^2 error more than two orders of magnitude lower.

Details on the sampling well-oriented basis functions: For each pair of collocation points in the spatial domain $x^{(1)}, x^{(2)} \in \Omega$, we project the vector $x^{(2)} - x^{(1)}$ onto the two-dimensional hyper-plane spanned by the gradient of the initial solution at $x^{(1)}, x^{(2)}$ and use the projected points as the new pair of points $\hat{x}^{(1)}, \hat{x}^{(2)} \in \Omega$. Since $\hat{x}^{(2)} - \hat{x}^{(1)}$ always points in the direction of the gradient of the initial solution, this allows the SWIM algorithm to embed directional information into basis functions, unlike PINNs and ELMs, which lack this control. This idea is illustrated in Figure 5b.

Ablation studies: The ablation study for the number of neurons in the hidden layer of the network for Frozen-PINN-elm and Frozen-PINN-swim is presented in Table 23. We further validate the efficiency of sampling basis functions using projected pairs of data points with the Frozen-PINN-swim approach by performing an ablation study varying the number of internal collocation points in Table 24. Our results show that using just 1,000 data points achieves training errors that are nearly identical to those with 20,000 points. This highlights the effectiveness of the projection trick in reducing the need for excessive collocation points, thereby significantly lowering computational cost without compromising accuracy. Additionally, we perform an ablation study for the SVD layer to demonstrate its impact on the computation time saved in Table 25. We observe that with the SVD layer, the number of basis functions (width after the SVD layer) is reduced by up to 1.57x for Frozen-PINN-swim, and we obtain substantial speed-ups by a factor of 4.1x in the computation time.

Table 23: Non-linear reaction diffusion equation: ablation study for the network width for Frozen-PINN-swim and Frozen-PINN-elm. The mean is computed over 3 seeds.

Width	Frozen-PINN-swim (with projection)	Frozen-PINN-swim	Frozen-PINN-elm
100	1.44e-4	7.65e-2	2.08e-1
400	9.99e-5	1.75e-2	6.37e-2
700	9.92e-5	8.72e-3	3.65e-2
1000	9.87e-5	5.70e-3	2.58e-2
2000	9.86e-5	8.62e-3	1.67e-2
4000	9.86e-5	9.98e-3	3.68e-2

Table 24: Non-linear reaction diffusion equation: ablation study for the number of interior collocation points for Frozen-PINN-swim. The mean is computed over 3 seeds, and the network width is 400.

Interior points	Training time (s)	RMSE	Relative L^2 error
1000	12.43	3.68e-5 +- 6.78e-12	9.99e-5 +- 1.84e-11
2000	102.74	3.67e-5 +- 3.00e-10	9.90e-5 +- 8.16e-10
20000	689.81	3.63e-5 +- 2.02e-9	9.87e-5 +- 5.49e-09

2754 Table 25: Non-linear reaction diffusion equation: Ablation Study for the SVD layer with Frozen-
 2755 PINN-swim.

	With SVD layer	Without SVD layer	Ratio
Number of neurons	254	400	Width Compression $\approx 1.57x$
Time (s)	12.86	53.51	Speed-up $\approx 4.1x$
Rel. L_2 error	9.99e-5	9.99e-5	-

2763 **Comparison of results:** The exact architectures and comparison of training times and errors are
 2764 presented in Table 26 and Table 27. We observe that Frozen-PINN-swim with the projected pairs
 2765 of points (Frozen-PINN-swim-p) far outperforms all the other approaches by around 2 orders of
 2766 magnitude, while simultaneously being 9 – 50 times faster. Figure 27 shows the errors with all
 2767 approaches and the ground truth.

2769 Table 26: Non-linear reaction diffusion equation: Summary of hyper-parameters.

	Parameter	Value
PINN	Number of hidden layers	4
	Activation	tanh
	Optimizer	LBFGS & ADAM
	Epochs	10000
	Loss	mean-squared error
	Learning rate	0.001
	Batch size	1000
	Parameter initialization	Xavier (Glorot & Bengio, 2010)
	Loss weights, λ_1, λ_2	0.01, 1
	# Interior points	1000
Frozen-PINN-swim	# Initial and boundary points	1000
	Number of hidden layers	2 (nonlinear and SVD layer)
	Hidden layer width	1000
	Activation	tanh
	L^2 -regularization	10^{-10}
	SVD cutoff	10^{-10}
	ODE solver tolerance	10^{-4}
	Loss	mean-squared error
Frozen-PINN-elm	boundary condition strategy	augmented ODE
	Number of hidden layers	2 (nonlinear and SVD layer)
	Hidden layer width	2000
	Activation	tanh
	L^2 -regularization	10^{-10}
	SVD cutoff	10^{-10}
	ODE solver tolerance	10^{-4}
	Loss	mean-squared error
Frozen-PINN-swim (with projection)	boundary condition strategy	augmented ODE
	Number of hidden layers	2 (nonlinear and SVD layer)
	Hidden layer width	700
	Activation	tanh
	L^2 -regularization	10^{-10}
	SVD cutoff	10^{-10}
	ODE solver tolerance	10^{-4}
	Loss	mean-squared error
	boundary condition strategy	augmented ODE

2798 Table 27: Non-linear reaction diffusion equation: Summary of results.

Method	Train time (s)	RMSE	Relative L^2 error	architecture
PINN (ADAM)	171.43	$1.25e-1 \pm 6.60e-3$	$3.40e-1 \pm 1.79e-2$	$(6, 4 \times 20, 1)$
PINN (LBFGS)	183.38	$3.33e-2 \pm 1.54e-2$	$3.33e-2 \pm 1.54e-2$	$(6, 4 \times 20, 1)$
Frozen-PINN-elm	621.2	$6.17e-3 \pm 2.02e-4$	$1.67e-2 \pm 5.49e-4$	$(5, 2000, 1)$
Frozen-PINN-swim	117.24	$2.09e-3 \pm 1.91e-5$	$5.70e-3 \pm 5.19e-5$	$(5, 1000, 1)$
Frozen-PINN-swim (projection)	12.43	$3.67e-5 \pm 2.28e-9$	$9.99e-5 \pm 6.21e-9$	$(5, 700, 1)$

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

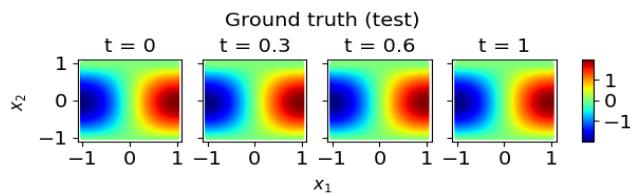
2857

2858

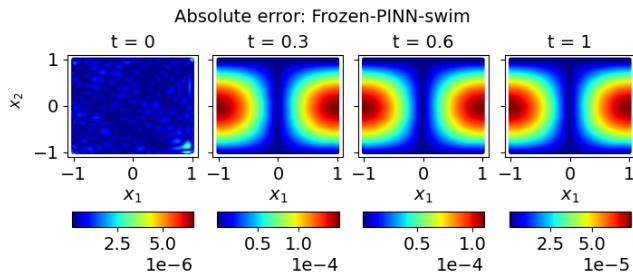
2859

2860

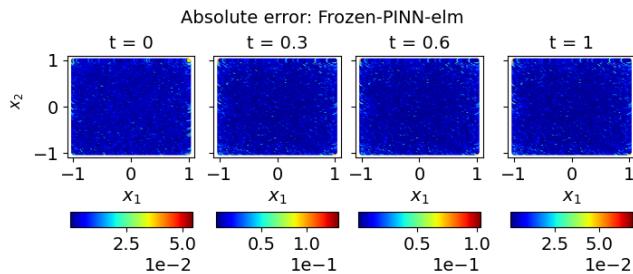
2861



(a) Ground truth.



(b) Absolute error: Frozen-PINN-swim (with projected pairs of data points).



(c) Absolute error: Frozen-PINN-elm.

Figure 27: Non-linear reaction diffusion equation: absolute error plots and ground truth at four time instants.

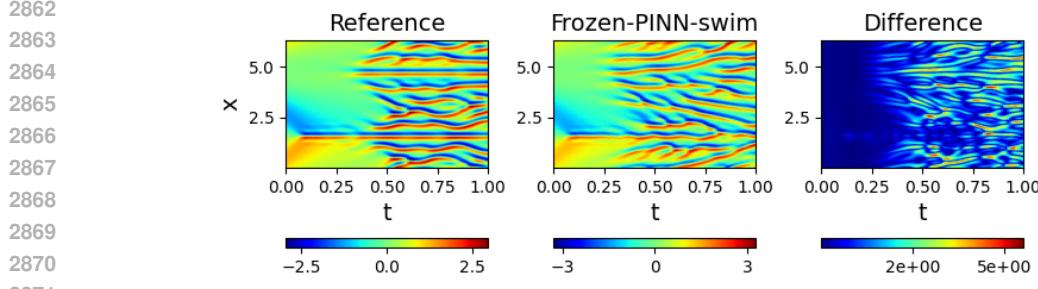


Figure 28: The Kuramoto-Sivashinsky equation: Reference solution, Frozen-PINN solution, and difference between two solutions.

C.7 KURAMOTO-SIVASHINSKY EQUATION

Problem Setup: The Kuramoto-Sivashinsky equation is a fourth-order nonlinear PDE, which models the instabilities in flames and exhibits chaos. We consider the equation from Hao et al. (2024) of the form:

$$u_t + \alpha uu_x + \beta u_{xx} + \gamma u_{xxxx} = 0, \quad x \in \Omega, \quad t \in T, \quad (32a)$$

with the parameters

$$\alpha = \frac{100}{16}, \beta = \frac{100}{16^2}, \gamma = \frac{100}{16^4}. \quad (32b)$$

The domain is $\Omega \times T = [0, 2\pi] \times [0, 5]$ for the experiment in Figure 6, or $\Omega \times T = [0, 2\pi] \times [0, 1]$ for the experiment in Figure 28. The initial condition is

$$u(x, 0) = \cos(x)(1 + \sin(x)), \quad x \in \Omega, \quad (32c)$$

and we apply the periodic boundary condition.

Comparison of results: In Figure 28, we compare our Frozen-PINN solution with the reference solution in Hao et al. (2024). The training time of Frozen-PINN is 2.7 seconds on CPU (averaged over 5 seeds). We also solve the PDE for a longer time span, as shown in Figure 6. The architecture of the model can be found in Table 28.

Table 28: Kuramoto-Sivashinsky equation: Hyper-parameters for the result in Figure 6 and Figure 28.

	Parameter	Value
Frozen-PINN-swim	Number of hidden layers	2
	Hidden layer width	2000
	Outer basis functions	100
	Activation	tanh
	L^2 -regularization	10^{-12}
	Loss	mean-squared error
	boundary condition strategy	boundary-compliant layer

C.8 HIGH-DIMENSIONAL DIFFUSION EQUATION

Problem setup: High-dimensional diffusion plays an important role in various fields, including image processing, finance, and quantum mechanics (Sapiro, 2001; Janssen et al., 2013; Nagasawa, 2012).

We consider two benchmarks for the high-dimensional diffusion equation. In the first case, following (Wang & Dong, 2024), we solve the diffusion equation defined over the domain $\Omega = [-1, 1]^d$ and time interval $t \in (0, 1]$, for dimension $d \in \{3, 5, 7, 10\}$ given by

$$u_t - \Delta u = \left(\frac{1}{d} - 1 \right) \cos \left(\frac{1}{d} \sum_{i=1}^d x_i \right) \exp(-t), \quad x \in \Omega, \quad t \in [0, 1], \quad (33)$$

2916 with the exact solution given by
 2917

$$2918 \quad 2919 \quad 2920 \quad 2921 \quad 2922 \quad 2923 \quad 2924 \quad 2925 \quad 2926 \quad 2927 \quad 2928 \quad 2929 \quad 2930 \quad 2931 \quad 2932 \quad 2933 \quad 2934 \quad 2935 \quad 2936 \quad 2937 \quad 2938 \quad 2939 \quad 2940 \quad 2941 \quad 2942 \quad 2943 \quad 2944 \quad 2945 \quad 2946 \quad 2947 \quad 2948 \quad 2949 \quad 2950 \quad 2951 \quad 2952 \quad 2953 \quad 2954 \quad 2955 \quad 2956 \quad 2957 \quad 2958 \quad 2959 \quad 2960 \quad 2961 \quad 2962 \quad 2963 \quad 2964 \quad 2965 \quad 2966 \quad 2967 \quad 2968 \quad 2969$$

$$u(x, t) = \cos \left(\frac{1}{d} \sum_{i=1}^d x_i \right) \exp(-t). \quad (34)$$

The initial and boundary conditions are derived from Equation (34). For this high-dimensional diffusion equation, we use 16000 training points in the interior and 4000 points on the boundary randomly sampled using the Latin hypercube strategy. The test data contains 8000 points in the interior and 2000 points on the domain's boundary, which were also sampled with a Latin hypercube strategy.

For the second benchmark from He et al. (2023), we consider a 100-dimensional heat equation for $x \in B(0, 1)$, $t \in (0, 1)$ given by

$$u_t = \Delta u, \quad x \in B(0, 1), \quad t \in [0, 1], \quad (35a)$$

$$u(x, 0) = \frac{\|x\|^2}{2N}, \quad x \in B(0, 1) \quad (35b)$$

$$u(x, t) = t + \frac{1}{2N}, \quad x \in \partial B(0, 1), \quad t \in [0, 1], \quad (35c)$$

where the true solution is

$$u(x, t) = t + \frac{\|x\|^2}{2d}. \quad (36)$$

The value of d is 100 and represents the dimension of the PDE. To solve the 100-dimensional heat equation, we generate 1000 interior and 1000 boundary training samples using Latin hypercube sampling. The test dataset comprises 8000 interior points and 2000 boundary points, also selected via Latin hypercube sampling.

Extended discussion on results: Note that, in general, it is extremely hard to accurately represent arbitrary 100-dimensional functions with a few hundred basis functions unless the solution is already in their span (e.g., approximating a linear solution with linear bases). The 100-dimensional heat equation benchmark from He et al. (2023), indeed, admits a true solution with very shallow gradients in space that varies linearly in time (see Equation (36)). Although this benchmark technically admits a quadratic analytical solution, rendering second-order polynomials a natural fit for this particular example, higher-order approximations, in general, quickly become infeasible due to the curse of dimensionality. For instance, a cubic approximation already requires millions of basis functions. A natural alternative could be to use lower-order approximations like linear regression. However, if one uses linear bases to solve the diffusion equation, they cannot capture temporal dynamics because linear basis functions are harmonic (the Laplacian is zero). By contrast, our approach provides mildly non-linear bases that have non-zero Laplacians, facilitating “almost linear” approximation at each point in time.

The fact that Frozen-PINN-elm with a single hidden layer yields a significantly accurate and faster approximation compared to PINNs with multiple hidden layers trained with classical back-propagation reveals an interesting observation that one does not necessarily benefit from using deeper neural networks. While stochastic and iterative training methods might eventually identify suitable parameters, the highly non-linear, non-convex loss landscape makes such optimization particularly challenging.

Due to the smoothness and lack of steep gradients in the solution of the PDE, Frozen-PINN-elm is more suitable for approximating the solution of the chosen PDE and is one to three orders of magnitude more accurate than vanilla Frozen-PINN-swim, as one would expect (see Section 2.2).

Ablation studies: The ablation study with respect to the network width for Frozen-PINN-elm and Frozen-PINN-swim is already presented in Figure 7, where we observe a rapid exponential decay of error with respect to increasing width of the network (even exponential convergence for the high-dimensional diffusion equation in 3 and 5 dimensions).

The hyperparameters for all neural PDE solvers considered in this work for the 10-d heat equation and the 100-d heat equation are presented in Table 29 and Table 30, respectively. The results for up

to 100-dimensional diffusion equations are summarized in Table 31. Please refer to He et al. (2023) for details on hyperparameters for PINNs for the 100-dimensional heat equation.

The results of the ablation study for the SVD layer with the high-dimensional diffusion equations for different dimensions are presented in Tables 32 and 33. We observe that for Frozen-PINN-elm, the SVD layer results in substantial speed-ups for 3, 5, and 7 dimensional heat equations - by factors of 52, 77, and 21, respectively. We observe that the compression ratios achieved with the SVD layer are also substantial 22.8, 5, and 1.2, for dimensions 3, 5, and 7, respectively. For the 10-dimensional diffusion equation, to cover the high-dimensional space, we observe a (relatively lower compared to other dimensions) compression ratio of 1.4, as more basis functions are required to represent functions in high dimensions accurately. Thus, the time required with the SVD layer is around 6 percent less than the time required without the SVD layer. In all the cases, the loss is always in the same order as the one without the SVD layer.

Note that in all cases, the extra cost of computing the SVD easily pays off by substantially saving time in the ODE solver for Frozen-PINN-elm. This is because of the improved conditioning of the feature matrix and the reduction in the size of the ODE system to be solved. With Frozen-PINN-swim, the observations are similar but with lower compression ratios and speed-ups. But, for this problem, Frozen-PINN-swim is not the preferred method, as the underlying solution is smooth, has low-frequency spatial variations, and does not have steep gradients anywhere in the domain. Thus, SWIM basis functions are not optimal in the vanilla setting. See Appendix B.2.1 for details on this.

Comparison of results: We demonstrate that Frozen-PINN-elm accurately solves the 10-dimensional and 100-dimensional heat equation by visualizing the time evolution of the solution at some sampled points in space in Figure 29 and Figure 30 in certain dimensions.

Table 29: Summary of hyperparameters for the 10-dimensional diffusion equation.

	Parameter	Value
Frozen-PINN-swim	Number of hidden layers	2 (nonlinear and SVD layer)
	Hidden layer width	4000
	Activation	tanh
	L^2 -regularization	10^{-10}
	SVD cutoff	10^{-10}
	ODE solver tolerance	10^{-6}
	Loss	mean-squared error
	boundary condition strategy	augmented ODE
Frozen-PINN-elm (low-precision)	Number of hidden layers	2 (nonlinear and SVD layer)
	Hidden layer width	400
	Activation	tanh
	L^2 -regularization	10^{-5}
	SVD cutoff	10^{-5}
	ODE solver tolerance	10^{-4}
	parameter range $[-r_m, r_m]$	$r_m = 0.05$
	Loss	mean-squared error
	boundary condition strategy	augmented ODE
Frozen-PINN-elm (high-precision)	Number of hidden layers	2 (nonlinear and SVD layer)
	Hidden layer width	4000
	Activation	tanh
	L^2 -regularization	10^{-10}
	SVD cutoff	10^{-10}
	ODE solver tolerance	10^{-6}
	parameter range $[-r_m, r_m]$	$r_m = 0.05$
	Loss	mean-squared error
	boundary condition strategy	augmented ODE
PINN	Number of hidden layers	4
	Layer width	20
	Activation	tanh
	Optimizer	LBFGS (ADAM)
	Epochs	1000 (5000)
	Loss	mean-squared error
	Learning rate	0.1
	Batch size	4000
	Parameter initialization	Xavier (Glorot & Bengio, 2010)
	Loss weights, λ_1, λ_2	1, 1
	# Interior points	16000
	# Initial and boundary points	4000

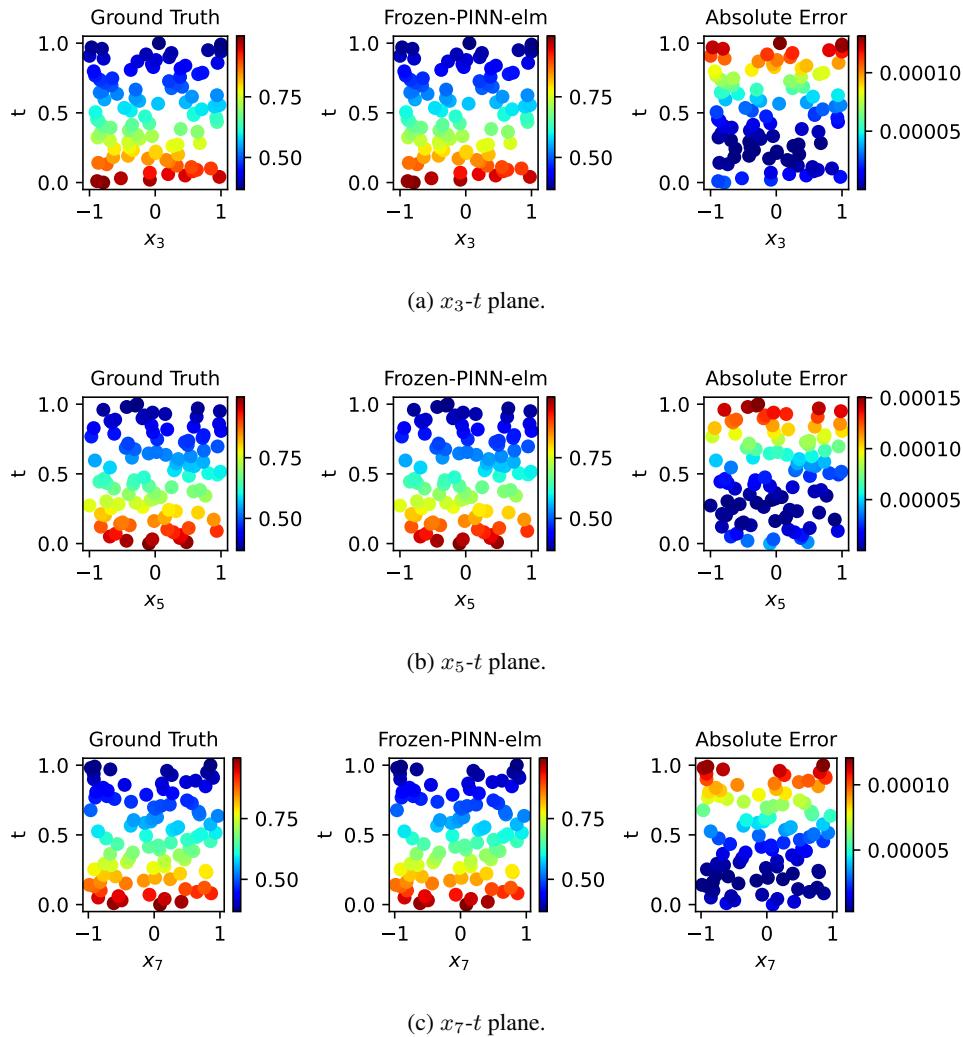


Figure 29: 10-dimensional diffusion equation: Ground truth, Frozen-PINN-elm solution, and pointwise absolute error at various planes at different time points. The rest of the spatial coordinates are set to the center of the spatial-temporal domain.

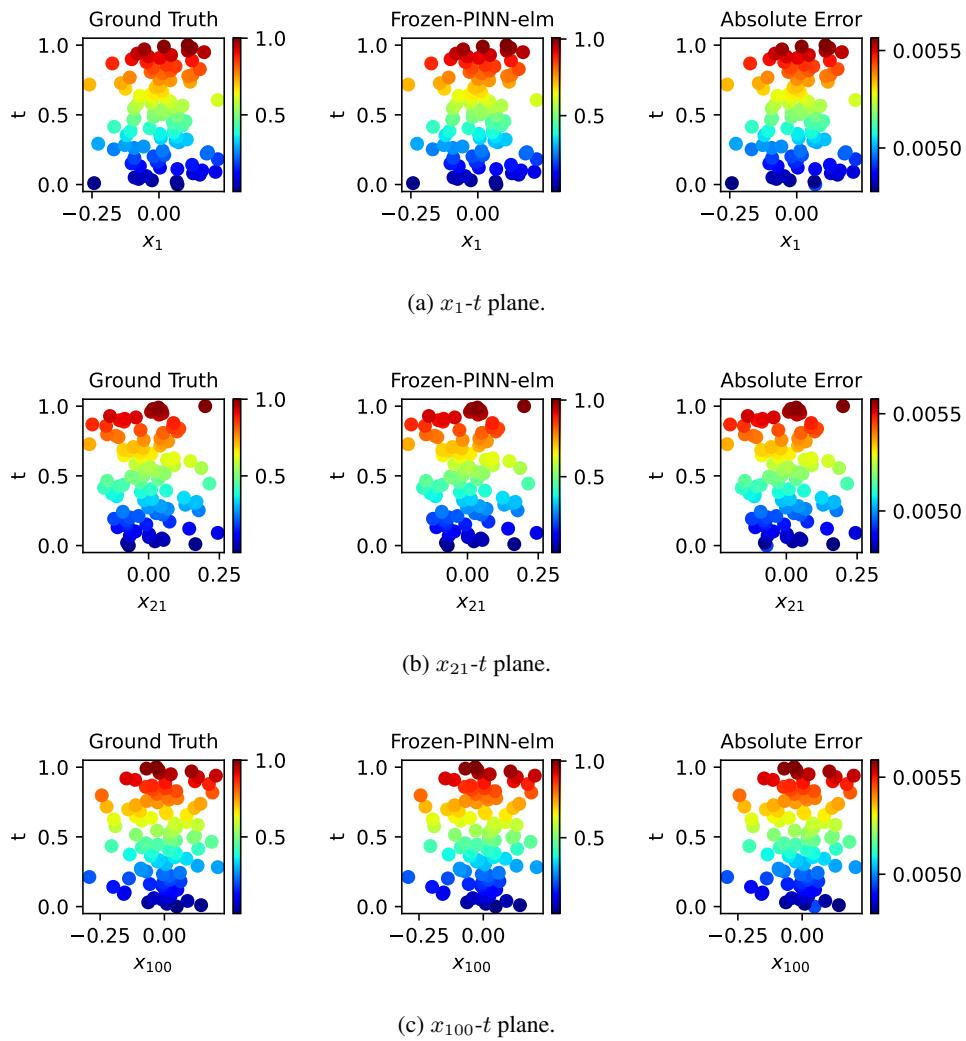


Table 30: Summary of hyper-parameters for the 100-dimensional diffusion equation.

	Parameter	Value
Frozen-PINN-swim	Number of hidden layers	2 (nonlinear and SVD layer)
	Hidden layer width	200
	Activation	\tanh
	L^2 -regularization	10^{-8}
	SVD cutoff	10^{-8}
	ODE solver tolerance	10^{-4}
	Loss	mean-squared error
	boundary condition strategy	augmented ODE
Frozen-PINN-elm	Number of hidden layers	2 (nonlinear and SVD layer)
	Hidden layer width	125
	Activation	\tanh
	L^2 -regularization	10^{-4}
	SVD cutoff	10^{-4}
	ODE solver tolerance	10^{-2}
	parameter range $[-r_m, r_m]$	$r_m = 0.05$
	Loss	mean-squared error
	boundary condition strategy	augmented ODE

Table 31: Summary of results for high-dimensional diffusion equation. We denote the Frozen-PINN-elm results in the low-precision and high-precision regimes with Frozen-PINN-elm-fast and Frozen-PINN-elm-accurate, respectively.

Dimension	Method	Time (s)	RMSE	Relative L^2 error
3-d	PINN (LBFGS)	102.32	$2.84e-4 \pm 3.73e-5$	$4.54e-4 \pm 5.97e-5$
	Frozen-PINN-swim (our)	95.73	$2.18e-6 \pm 1.93e-6$	$5.37e-6 \pm 4.27e-7$
	Frozen-PINN-elm-fast (our)	0.9	$2.42e-6 \pm 1.37e-6$	$3.90e-6 \pm 2.98e-6$
	Frozen-PINN-elm-accurate (our)	60.98	$3.48e-8 \pm 2.17e-6$	$6.49e-8 \pm 4.31e-8$
5-d	PINN (LBFGS)	133.95	$2.91e-4 \pm 5.34e-5$	$4.52e-4 \pm 8.30e-5$
	Frozen-PINN-swim (our)	129.65	$1.03e-4 \pm 5.94e-5$	$2.39e-4 \pm 8.69e-5$
	Frozen-PINN-elm-fast (our)	1.2	$1.25e-4 \pm 2.42e-5$	$3.74e-4 \pm 5.37e-5$
	Frozen-PINN-elm-accurate (our)	102.95	$4.71e-7 \pm 3.56e-7$	$7.5e-7 \pm 3.92e-7$
7-d	PINN (LBFGS)	163.89	$3.05e-4 \pm 2.94e-5$	$4.69e-4 \pm 4.51e-5$
	Frozen-PINN-swim (our)	198.20	$3.96e-4 \pm 1.03e-4$	$7.8e-4 \pm 2.50e-4$
	Frozen-PINN-elm-fast (our)	5.95	$1.05e-5 \pm 8.76e-6$	$2.21e-5 \pm 1.01e-5$
	Frozen-PINN-elm-accurate (our)	176.95	$1.19e-6 \pm 2.93e-7$	$2.54e-6 \pm 5.10e-7$
10-d	PINN (LBFGS)	189.67	$3.98e-4 \pm 6.59e-5$	$6.06e-4 \pm 1.00e-4$
	Frozen-PINN-swim (our)	61.07	$1.01e-3 \pm 3.09e-4$	$2.31e-3 \pm 1.03e-3$
	Frozen-PINN-elm-fast (our)	2.07	$2.89e-4 \pm 5.91e-5$	$4.46e-4 \pm 9.61e-5$
	Frozen-PINN-elm-accurate (our)	182.91	$1.04e-5 \pm 3.32e-6$	$2.28e-5 \pm 5.91e-6$
100-d	Vanilla PINN ((He et al., 2023))	141	-	$6.00e-3$
	PINN ((He et al., 2023))	49.8	-	$6.30e-3$
	Frozen-PINN-swim (our)	68.39	$1.00e-3 \pm 1.75e-5$	$1.71e-3 \pm 3.01e-5$
	Frozen-PINN-elm (our)	5.24	$2.40e-4 \pm 9.92e-6$	$4.12e-4 \pm 1.70e-5$

3186
 3187
 3188
 3189
 3190 Table 32: High-dimensional diffusion equation: Ablation Study for the SVD layer with Frozen-PINN-
 3191 swim.

Dimension	Quantity	With SVD layer	Without SVD layer	Ratio
3-d	Width	1391	4000	Compression $\approx 2.9x$
	Time (s)	95.73	388.12	Speed-up $\approx 4x$
	Rel. L_2 error	5.29e-6	4.77e-6	-
5-d	Width	1437	4000	Compression $\approx 2.8x$
	Time (s)	129.65	199.92	Speed-up $\approx 1.5x$
	Rel. L_2 error	2.39e-4	2.18e-4	-
7-d	Width	3114	4000	Compression $\approx 1.3x$
	Time (s)	120.32	198.31	Speed-up $\approx 1.6x$
	Rel. L_2 error	7.83e-4	7.83e-4	-
10-d	Width	3100	4000	Compression $\approx 1.3x$
	Time (s)	121.93	111.8	Speed-up $\approx 0.91x$
	Rel. L_2 error	2.30e-3	2.30e-3	-
100-d	Width	200	200	Compression $\approx 1x$
	Time (s)	5.24	5.13	Speed-up $\approx 0.97x$
	Rel. L_2 error	3.82e-3	3.82e-3	-

3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217 Table 33: High-dimensional diffusion equation: Ablation Study for the SVD layer with Frozen-PINN-
 3218 elm.

Dimension	Quantity	With SVD layer	Without SVD layer	Ratio
3-d	Width	175	4000	Compression $\approx 22.8x$
	Time (s)	60.98	7087.38	Speed-up $\approx 52x$
	Rel. L_2 error	6.49e-8	1.02e-6	-
5-d	Width	794	4000	Compression $\approx 5x$
	Time (s)	89.27	6873.8	Speed-up $\approx 77x$
	Rel. L_2 error	7.30e-7	2.19e-6	-
7-d	Width	3336	4000	Compression $\approx 1.2x$
	Time (s)	176.95	3770.09	Speed-up $\approx 21x$
	Rel. L_2 error	2.54e-6	4.06e-6	-
10-d	Width	2856	4000	Compression $\approx 1.4x$
	Time (s)	119	127	Speed-up $\approx 1.06x$
	Rel. L_2 error	5.57e-5	4.36e-5	-
100-d	Width	552	600	Compression $\approx 1.3x$
	Time (s)	68.39	71.38	Speed-up $\approx 0.96x$
	Rel. L_2 error	1.71e-3	1.71e-3	-