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Abstract

Transcriptional regulation through cis-regulatory elements (CREs) is crucial for
numerous biological functions, with its disruption potentially leading to various
diseases. It is well-known that these CREs often exhibit redundancy, allowing them
to compensate for each other in response to external disturbances, highlighting the
need for methods to identify CRE sets that collaboratively regulate gene expression
effectively. To address this, we introduce GRIDS, an in silico computational
method that approaches the task as a global feature explanation challenge to dissect
combinatorial CRE effects in two phases. First, GRIDS constructs a differentiable
surrogate function to mirror the complex gene regulatory process, facilitating cross-
translations in single-cell modalities. It then employs learnable perturbations within
a state transition framework to offer global explanations, efficiently navigating the
combinatorial feature landscape. Through comprehensive benchmarks, GRIDS
demonstrates superior explanatory capabilities compared to other leading methods.
Moreover, GRIDS’s global explanations reveal intricate regulatory redundancy
across cell types and states, underscoring its potential to advance our understanding
of cellular regulation in biological research.1

1 Introduction

Transcriptional regulation via cis-regulatory elements (CREs) is essential to maintaining cell identity,
responding to intra- and extra-cellular signals, and coordinating gene activities, whereas its dysreg-
ulation can cause a broad range of diseases [Hoch et al., 1990]. Unfortunately, after decades of
CRE identification efforts, it is still challenging to directly validate single CREs’ impacts at either
intermediate (e.g., gene expression) or clinical phenotype level [Hong et al., 2008, Barolo, 2012].
Most recent research has found that multiple CREs may target a specific gene to drive overlapping
spatiotemporal expression patterns, so if one CRE is damaged, another can step in to fulfill appro-
priate functions [Kassis, 1990]. Such combinatorial CRE effects, usually referred to as regulatory
redundancy, widely exist in most genomes as a regulation buffer to provide phenotypic robust-
ness [Kvon et al., 2021]. Existing research has primarily focused on using computational methods
to uncover individual CRE-to-gene regulatory effects, while combinatorial regulatory redundancy
remains largely unknown due to the complexities in accounting for interactions among CREs. In this
work, We present a computational method to identify combinatorial regulatory redundancy at the
single-cell level by linking it to global feature explanations of black-box models.

To address this challenge, our initial step involves developing a black-box model to predict gene
expressions from CREs, framing the task of identifying multi-CRE-to-gene relationships as a feature
importance explanation problem [Sood and Craven, 2022]. Methods for this task fall into two
categories: local and global feature importance. Local methods, like LIME [Ribeiro et al., 2016] and

1The source code is available at https://github.com/jhliu17/nnpert.

D3S3: Data-driven and Differentiable Simulations, Surrogates, and Solvers @ NeurIPS 2024.

https://github.com/jhliu17/nnpert


SHAP [Lundberg and Lee, 2017], explain individual predictions by identifying important features.
Some approaches use differentiable surrogate models to generate explanations through minimal
adversarial perturbations [Chapman-Rounds et al., 2021], or jointly train the surrogate model and
generate explanations [Chen et al., 2018]. However, for generalizable regulatory insights across
diverse cells, global feature importance explanations are crucial [Doshi-Velez and Kim, 2017, Ibrahim
et al., 2019]. While various methods have been developed, many simplify combinatorial feature
effects as additive, overlooking complex interactions between CREs. Approaches like CXPlain
[Schwab and Karlen, 2019] and SHAP [Lundberg and Lee, 2017] use feature perturbation or
sampling-based methods, but these struggle in high-dimensional feature spaces common in single-cell
multi-modal data [Sood and Craven, 2022].

In this work, we introduce GRIDS, a global feature explanation method for efficient regulatory
redundancy analysis using single-cell multi-modal data. GRIDS consists of two key components: a
differentiable cross-modality surrogate mapping and a global explanation method using learnable
subset perturbations. First, the surrogate mapping learns and aligns modality-specific cell represen-
tations in a common space through adversarial training. Next, GRIDS employs a learnable subset
perturbation technique with a state transition model to identify globally important features that signif-
icantly affect gene expression. This approach, distinct from traditional additive or sampling-based
methods, directly perturbs input CRE modality while leveraging auto-differentiation, enabling precise
and efficient global feature importance explanations for large biological datasets.

2 Methodology

As defined in Wu et al. [2021], the CRE is represented by the ATAC-seq vector x ∈ {0, 1}da , where
each dimension indicates a peak state in chromosomes—"1" for open and "0" for closed. ATAC-seq
data is typically high-dimensional, with da > 105. The gene expression values regulated by the CRE
are denoted by a real-valued vector y ∈ Rdr , where da and dr represent the number of peaks and
genes, respectively. A single-cell multi-omics dataset consists of N single-cell multi-modal data
points C = {c(1), . . . , c(N)}, where each cell c(i) = (x(i),y(i)) includes an ATAC-seq vector and
its corresponding RNA-seq vector, along with a semantic label ℓ(i) indicating its cell type among T
classes. The gene expression level, controlled by CREs through complex biological processes, can be
modeled as a regulatory function y = F(x), where F(x) : Rda → Rdr . Due to experimental costs,
querying this black-box regulatory function F is challenging. The task of regulatory redundancy
dissection involves identifying a subset of L peak indices r = {r1, . . . , rL} within the CRE (i.e.,
subset of features in the ATAC-seq xr ≡ {xj |j ∈ r}) that are crucial for regulating gene expression
across a cell population. Given that x typically has over 105 dimensions, this creates a vast search
space for the subset r within the binomial combination

(
da

L

)
.

Global Feature Explanations for Regulatory Redundancy Dissection To resolve the regulatory
redundancy dissection problem, we propose an in silico computational method by modeling it
within a global feature explanation framework. Conventionally, global explanation is defined by
how much a model’s performance degrades over an observed population of samples when features
are removed [Chapman-Rounds et al., 2021]. In the context of regulatory redundancy, the global
explanation objective can be expressed as

r∗ = argmin
r

Ec∼C [L(F(x\r),y)] (1)

where L is a loss measurement for expected gene expression degradation. x\r denotes the perturbed
CREs induced by r, replacing the original feature xr with preset perturbation values p ∈ Rda at
indices indicated by r (i.e., x\r,rj = prj ). If p = 0, this equates to removal-based perturbation. The
choice of loss function depends on the model and task [Covert et al., 2020]. The optimal subset r∗ in
Eq. 1 is the solution to the regulatory redundancy problem defined above.

However, the regulatory function F is a black box and inefficient to query, which means that
even model-agnostic explanation methods can be intractable in this setting. Therefore, we further
define a surrogate F̂(x; θf ) : Rda → Rdr , which is a neural network trained to be a differentiable
approximation of F using the collected single-cell multi-modal data C. Substituting F̂(x; θf ) for
F in Eq. 1 yields a tractable objective. We elaborate the details of training differentiable cross-
modality surrogate mapping F̂ in Appendix A. Given the differentiable surrogate F̂ and the removal
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perturbation p = 0, we define the loss measurement of expected gene expression degradation
perturbed by a given perturbation subset r as:

L(F̂(x\r),y) = (F̂(x\r)i/yi)
2 +

β

dr − 1

dr∑
j=1,j ̸=i

(F̂(x\r)j/yj − 1)2 (2)

where i is the target gene index, β is a hyperparameter used to guide the learned perturbation r to be
independent of non-target genes, and dr is the total number of genes.

Learning Optimal Subset Perturbations r∗ To work around the non-differentiable replacement
operation in x\r,rj = prj with rj ∈ r, we observe that replacement with any perturbation values
p can be unified as follows x\r,j = xj + 1[j ∈ r](pj − xj), where the jth dimensional feature is
replaced by the perturbation value pj if j is in the subset r; otherwise, it retains its original value.
Given a randomly initialized subset r and the global explanation objective in Eq. 1, the objective
gradient with respect to the category embedding (or the perturbed feature if the input is continuous)
can be easily computed through any automatic differentiation framework. This is represented as

G = ∂Ec∼C [L(F̂(x\r),y)]/∂W
a
Emb(x\r) (3)

where G ∈ Rda×dh . Based on the gradient information of G, we update the current global important
subset r by constructing a state transition matrix of indices T ∈ RL×da , where each entry Ti,j in the
matrix represents the advantage value of transitioning from replacing the previous index ri with the
new index j. The state transition matrix can be approximated by considering the objective gradient
G and the replaced perturbations Wa

Emb(p)−Wa
Emb(x)

dj = Gj · (Wa
Emb(p)j −Wa

Emb(x)j), Ti,j = 1[j /∈ r]dj − 1[j ̸= ri]dri (4)

where dj ∈ Rda represents the approximated objective descent value estimated for applying the
potential perturbation pj . Given the estimated state transition matrix of indices T, we use the
coordinate descent method to update the global feature subset r, which means we iteratively update
each index in r by selecting the candidate indices with the top-k advantage values of the corresponding
row in T. In practice, we have found that the coordinate descent method achieves a good balance
between convergence speed and explanation performance. As a result, the randomly initialized
perturbation subset r can be effectively learned, leading to the optimal solution r∗, through a batch
iteration manner. The overall algorithm is summarized in Algorithm 1.

3 Experiments and Results

Single-Cell Multimodal Dataset and Baselines We curated a set of deeply-sequenced single-cell
multi-modal data from postmortem human PFC [Akbarian et al., 2015]. In total, N = 10, 266
cells with T = 8 different cell types were harvested and sequenced for both chromatin accessibility
(ATAC-seq) and transcription activity (RNA-seq). On the ATAC-seq side, we called da = 127, 219
peaks using Macs2 [Zhang et al., 2008] with an average sequencing depth (i.e. the number of open
state) of 4811.34. For the RNA-seq, we conducted standard quality control and pre-processing using
the default parameters recommended by Pegasus [Li et al., 2020]. The gene number dr is 3000.
We test GRIDS to generate different subset size of global important features r sequence lengths
L on multiple target genes by do perturbation in the CRE input using masking p = 0. In each
experiment, the full dataset was randomly split into three subsets (training, validation, and test) with
the ratio of 0.7, 0.1, and 0.2, respectively. The global explanations were learned in the training set
and then evaluated its performance on the test set. We compared GRIDS against several feature
importance explanation methods, including global and local. Details about dataset processing and
implementation can be found in Appendix C and Appendix D.

The Surrogate Model Accurately Models the ATAC-to-RNA Relationship Since GRIDS relies
on a differentiable surrogate model F̂ for ATAC-to-RNA translation, we first assessed the model’s
accuracy on a single-cell multimodal dataset. We selected marker genes from a previous study Lake
et al. [2016] and compared the mean expressions between cell types and between the observed and
translated cohorts (Fig. 1A). Marker genes, which are highly indicative of each cell type, served
as category labels in this evaluation. Focusing on key marker genes, the UMAP showed consistent
findings, with the translated expression highlighting these cell types and high correlations between
observed and translated data (Fig. 1B).
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Figure 1: The trained differentiable surrogate model F̂ can accurately predict the RNA-seq modality
from given single-cell ATAC-seq profiles. (A) The comparison of predicted marker gene expression
with actual values across different cell types demonstrated high consistency and specificity to cell
type (mean R2=0.914). (B) The UMAP of real scRNA-seq data, colored according to both actual and
predicted expression levels for marker genes, exhibited a strong similarity.

Table 1: Benchmark results by comparing expression drops of marker genes across all cell types
(upper: L = 10, bottom: L = 128).

Cell Random Saliency SmoothGrad FIMAP GRIDS
Type Avg. ∆ Rel. ∆(%) Avg. ∆ Rel. ∆(%) Avg. ∆ Rel. ∆(%) Avg. ∆ Rel. ∆(%) Avg. ∆ Rel. ∆(%)

Astro −0.085 −0.015 −2.163 −0.601 −2.155 −0.621 −13.502 −4.254 −16.696 −5.837
Endo −1.073 −0.138 −4.974 −0.372 −9.726 −0.995 −38.997 −9.303 −57.477 −11.816
Micro −0.012 −0.026 −23.757 −1.545 −32.944 −2.083 −73.752 −6.248 −90.607 −7.671
OPC +0.823 −0.087 −54.645 −2.338 −48.438 −2.067 −77.167 −6.260 −96.661 −8.256
Oligo −0.058 +0.026 −0.558 −0.173 −0.939 −0.220 −10.917 −4.252 −16.760 −6.896
SST +0.159 +0.080 −5.201 −2.006 −5.201 −2.006 −16.453 −5.660 −17.677 −6.365
VIP +0.012 +0.001 −0.654 −1.189 −0.634 −1.160 −2.732 −3.797 −6.804 −7.195
Avg. +0.016 −0.021 −12.988 −1.209 −13.519 −1.290 −30.268 −5.367 −39.103 −7.300
Astro −1.793 −0.533 −15.511 −4.853 −18.505 −6.217 −82.565 −24.766 −100.556 −34.633
Endo +2.554 +0.468 −46.160 −6.217 −52.383 −7.893 −252.338 −41.790 −259.920 −44.601
Micro −9.091 −0.490 −131.512 −9.122 −145.561 −10.116 −451.210 −39.695 −470.430 −44.114
OPC −1.848 −0.165 −193.739 −10.260 −186.235 −9.891 −415.231 −35.687 −392.326 −36.380
Oligo −1.134 −0.211 −19.809 −6.382 −21.136 −7.630 −69.460 −28.175 −93.518 −38.982
SST −1.681 −0.615 −33.589 −11.675 −32.275 −11.115 −86.191 −29.198 −93.772 −33.708
VIP +0.071 +0.002 −4.014 −4.876 −3.872 −4.782 −13.054 −16.757 −19.703 −27.221
Avg. −1.843 −0.237 −68.620 −7.618 −70.292 −8.212 −202.368 −30.787 −209.583 −36.893

Evaluation of Regulatory Redundancy with Learnable Perturbations To verify the effectiveness
and robustness of the explanation process, we benchmarked GRIDS with various baselines on focused
marker genes of 7 cell types. The full list of marker gene of each cell type can be found in the
Appendix C.2. We use two metrics to evaluate each method’s effectiveness in masking L CRE features
to suppress a target gene’s expression, including the averaged expression change (Avg. ∆) [Han
et al., 2020] and the ratio of expression change against the original value (Rel. ∆). We summarize
our benchmarking results in Table 1. In our experiments, we observed that LIME, CXPlain, and
SAGE failed to provide global explanations for the high-dimensional ATAC-seq data. Due to the
curse of dimensionality, both LIME and CXPlain failed to generate reasonable explanations in
ATAC-seq, which means using a simple model (K-Lasso in LIME) or a regular masking strategy
(sliding window in CXPlain) to capture the additive effect of the important feature might be infeasible
in the vast dimension space. Meanwhile, the SAGE method could not converge within a reasonable
time frame, since it randomly samples the subset from the vast combinatorial feature space and
then evaluates the expected performance degradation. This strategy is equivalent to the importance
sampling method, which has the problem of high variance and weight degeneracy in high-dimensional
spaces. GRIDS consistently outperforms all baselines across each cell type by introducing larger
marker gene expression degradation.

4 Conclusions

In this paper, we present GRIDS, a global feature importance explanation method designed to dissect
complex multi-CRE-to-gene regulatory redundancy using single-cell multi-modal data. GRIDS
first employs cross-modality surrogate mapping to approximate the black-box regulatory function,
unifying the regulatory redundancy problem with global feature importance explanations. It also
introduces a subset perturbation learning framework to efficiently generate global feature importance
subsets. Our method, applicable across various data modalities, outperforms state-of-the-art baselines
on single-cell data. Moreover, cross-cell type and regional analysis demonstrate GRIDS’s ability
to characterize cell-type-specific regulatory redundancy, offering valuable insights for experimental
validations in biological research.
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A Cross-Modality Surrogate Mapping

Recalling the collection of single-cell multi-modal data C, we can train the surrogate model F̂ by
mapping RNA and ATAC modalities into the same embedding space E . The advantage of using the
embedding model is that it allows us to easily extend our surrogate model, which learns from paired
RNA and ATAC data with known paired cell type labels, to unpaired data without prior knowledge
of cell type class labels. We adopt two autoencoders to model the modality-specific feature. For
ATAC-seq, each dimension in x is considered a binary categorical feature, with one low-dimensional
embedding for each category. The encoder projects the raw input into semantics features as

h(i)
a = fa

Enc(W
a
Emb(x

(i))), h(i)
r = fr

Enc(W
r
Emb(y

(i))) (5)

where Wa
Emb ∈ Rdh×da is a category embedding module to accommodate the high-dimensional

ATAC-seq data, Wr
Emb ∈ Rdh×dr is an embedding matrix for RNA-seq, fa

Enc and fr
Enc are encoder

networks to generate embeddings ha,hr ∈ Rdh in E of dimension dh. The decoder generates
reconstructions via x̂(i) = fa

Dec(h
(i)
a ), ŷ(i) = fr

Dec(h
(i)
r ), where fa

Dec and fr
Dec are two decoder

networks for the two modalities, x̂(i) and ŷ(i) represent the reconstructions with objective defined as

LRec = Ec∼C [BCE(x̂(i),x(i)) + MSE(ŷ(i),y(i))] (6)

where BCE is the binary cross-entropy loss, and MSE is the mean-squared error.

Alignment Embedding Adversarial Training Given a cell type T = k, we define Ck as a subset of
C, where each cell c(i) ∈ Ck has the same label ℓ(i) = k. To align the modality-specific embeddings
and capture the regulatory regulations between them, two mapping layers are adopted to jointly align
the two modalities

h̃(i)
r = fAR(h

(i)
a ), h̃(i)

a = fRA(h
(i)
r ) (7)

where fAR aims to map the ATAC embeddings to the RNA embeddings and fRA does the opposite.
We use a generative adversarial training mechanism [Arjovsky et al., 2017, Goodfellow et al., 2014]
to let both encoders and mapping layers act as two generators to learn the modality-agnostic latent
space E . And then we apply the discriminator Dk

a in each cell type k for binary classification, aiming
to differentiate whether ha and h̃a of the ATAC embedding belongs to the cell type k or not. The Dk

r

does the similar operation for the RNA embeddings hr and h̃r. Then, the discrimination loss can be
formulated as

Lk
Dis =Ex∼Ck [logD

k
a(ha)] + Ey∼Ck [log(1−Dk

a(h̃a))]

+Ey∼Ck [logD
k
r (hr)] + Ex∼Ck [log(1−Dk

r (h̃r))].
(8)

The generators are trained to simultaneously fool the discriminator and keep the cycle consis-
tency [Zhu et al., 2020]

Lk
Gen =Ex∼Ck [− logDk

r (h̃r) + MSE(fRA(h̃r),ha)]

+Ey∼Ck [− logDk
a(h̃a) + MSE(fAR(h̃a),hr)].

(9)

Therefore, the adversarial training process can be summarized in the following objective function

LAdv = min
θGen

max
θDis

Ek∼T [Lk
Gen + Lk

Dis] (10)

where θGen is the trainable parameters of encoders fr
Enc, f

a
Enc and the cross-mapping layers fAR, fRA,

θDis collects parameters of all T pairs of discriminators Dk
a , D

k
r . The overall objective of the surrogate

F̂ is
LInt = LRec + γLAdv (11)

where γ is a hyperparameter to weigh the adversarial loss. After the training, the surrogate F̂(x; θf )
is defined as

F̂(x; θf ) = fr
Dec(fAR(f

a
Enc(W

a
Emb(x)))). (12)
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B GRIDS Algorithm

The algorithm is summarized in Algorithm 1. Given the estimated state transition matrix of indices
T, we iteratively update each index in r by selecting the candidate indices with the top-k advantage
values of the corresponding row in T. We further evaluate the best index among these k candidates
by assessing which index can make the updated global feature subset r′ most significantly decrease
the global explanation objective L(F̂(x\r′),y). Our global explanation method enables the learning
of the global feature combinatorial subset r∗ using gradient guidance, rather than relying on random
sampling [Covert et al., 2020]. Our experiments prove it to be more efficient and converges more
quickly to find the optimal r∗ in a high-dimensional space. It facilitates the efficient generation of
global explanations in high-throughput biological data, such as the ATAC-seq (da > 104).

Algorithm 1 GRIDS global feature importance explanation algorithm for regulatory redundancy
dissection
Input: cross-modality surrogate mapping model F̂
Parameter: global feature explanation number L, explanation target gene yj , perturbation values p
Output: explanation result r∗

1: randomly initialize the subset r
2: while not converged do
3: sample a batch of data (x,y) ∼ C
4: doing perturbation induced by r and p on the input data x
5: compute the global explanation objective with Eq. 1
6: estimate the indices transition T using Eq. 4
7: update the current r using the candidates in T using coordinate descent
8: end while
9: set optimal result r∗ ← r

10: return r∗

C Datasets

C.1 Single-Cell Multimodal Dataset

Preprocessing We curated a set of deeply-sequenced post-mortem human pre-frontal cortex (PFC)
cells of a healthy individual from the PsychENCODE consortium [Akbarian et al., 2015]. In
total, 10,266 cells were harvested and sequenced for both chromatin accessibility (ATAC-seq) and
transcription activity (RNA-seq) after applying a series of quality control parameters (ATAC-seq
sequencing depth greater than 1,000, RNA-seq number of mapped genes greater than 200, and TSS
enrichment greater than 2.0) and initial processing using Cell Ranger ARC [Zheng et al., 2017].
In the ATAC-seq dataset, we called 127,219 characteristic chromatin regions (peaks) using Macs2
[Zhang et al., 2008] with an average sequencing depth of 4811.34, resulting in a 2-dimensional matrix
of 10, 266× 127, 219 using the R package ArchR [Granja et al., 2021]. Since each chromatin region
must be either opened or closed, we binarized the matrix to obtain the ATAC-seq dataset used for
model training. In the RNA-seq dataset, we mapped to a total of 19,607 genes or pseudogenes for
each cell, generating a 2-dimensional matrix of 10, 266× 19, 607 with raw reads (number of reads
mapped to each gene for each cell). Since RNA-seq raw reads were heavily correlated by the total
number of reads per each gene, we conducted a standard normalization process using the Pegasus
package [Li et al., 2020] followed by a feature selection process in which we selected the top 3,000
most deferentially expressed genes. Finally, we obtained a matrix of 10, 266× 3, 000 as the training
RNA-seq dataset.

Cell Types Furthermore, to guide the training process, we curated a set of cell type annotations
using ATAC-seq and RNA-seq data separately. From the RNA-seq data, we conducted dimension
reduction using PCA (number of components of 20) and clustering using LEIDEN (resolution of
1.0) [Traag et al., 2019]. Using the gene expressions of the marker genes [Lake et al., 2016], we
overlay the clustering and marker gene information to manually assign each cluster to a cell type. The
annotation process for ATAC-seq dataset followed a similar pattern, with an extra step of transforming
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the ATAC-seq matrix into a gene activity matrix using ArchR. Finally, we assign all cells into one
of the following cell types: excitatory neurons (Exc), inhibitory neurons (SST and VIP subtypes),
astrocytes (Astro), endothelial cells (Endo), microglia cells (Micro), oligodendrocyte progenitor cells
(OPC), and oligodendrocyte cells (Oligo). Note that co-assayed data is not necessarily required to
train this model. As long as the ATAC-seq matrix (binarized), the RNA-seq matrix (normalized), and
their corresponding cell type annotation were present, our model can be trained. The only requirement
should be that the two modalities need to come from the same region (for example, the PFC region)
so that the cell type annotation matches.

C.2 Marker Gene List

The full list of marker genes used in our experiments can be found in Table 2. For

Table 2: Marker gene list of each cell type used in the experiments.
Cell Type Marker Genes

Astro ALDH1A1, AQP4, GJA1
Endo CLDN5, FLT1
Micro APBB1IP, CX3CR1
OPC NXPH1, OLIG1, OLIG2
Oligo MOBP, MOG
SST GAD1, GAD2
VIP GAD1, GAD2

D Implementation Details

Hyperparameters Our method is implemented using PyTorch. For the cross-modality surrogate
mapping, we adopted four MLP layers with embedding dimension 32. The learned common latent
dimension dh is set to be 20. During the adversarial training, the weight of adversarial loss γ is set
to be 0.3. The discriminator number T is set to be the number of cell types in the dataset. In the
global explanation generation stage, we set the hyperparameter β to 0.1. We utilized the reference
implementations for LIME2, CXPlain3, and SAGE4, as provided by the original authors of these
methods. For Saliency, SmoothGrad, and FIMAP, we developed our own implementations.

Single-Cell Multimodal Benchmark For LIME, we employed random sampling to generate
neighboring data for each sample. We set the number of neighbors at 1024 and utilized cosine
distance to measure the proximity between neighbors. In the case of CXPlain, we tried to explain
non-overlapping sliding windows measuring the size of w = 4 peaks for the ATAC-seq (we also
tried different window sizes including w = 16, 32, 64). Given that the ATAC sequence length is
127, 219, the resulting target attribution maps were consequently sized at 127, 219//w. We adopted
the CXPlain (U-net) model using the one-dimensional convolutional neural network to learn these
target attribution maps. This model underwent training for 2000 epochs, using a batch size of 512
and the Adam optimizer with a learning rate of 5× 10−4. For SAGE, we configured the permutation
number to sample 256, 000 times, maintaining a batch size of 512. For SAGE, the model was trained
for 300 epochs to converge with a batch size of 512 using Adam optimizer with a learning rate
1e−3. We tried to run SAGE with more sampling times but it still cannot coverage. For FIMAP, For
GRIDS, we set the perturbation subset size to 10 and 128 depending on the experiment setting, and
the candidate size to 32.

Computing Infrastructure All model training and experiments are conducted on a server equipped
with an AMD EPYC 7662 64-Core Processor with 1 TB memory, 32 CPU cores, and eight NVIDIA
RTX A6000 GPUs. The code is implemented in PyTorch [Paszke et al., 2019]. We use slurm as the
job scheduler. For each experiment, we allocate 4 CPU cores, 1 GPU, and 90 GB memory.

2https://github.com/marcotcr/lime
3https://github.com/d909b/cxplain
4https://github.com/iancovert/sage

9



Baseline Comparisons We compared GRIDS with against several feature importance explanation
methods, including global and local: (1) Random, a naive baseline that randomly selects global
important features to perturb the model input. (2) Saliency [Simonyan et al., 2014], a widely
used model interpretation method utilizing the gradient information w.r.t the input feature to select
the most effective ones. We aggregate local feature importance scores to generate global ones.
(3) LIME [Ribeiro et al., 2016], a local explanation method. It uses the submodular pick algorithm
to convert local feature importance scores into global ones. (4) SmoothGrad [Smilkov et al., 2017],
a method commonly used in computer vision which samples noise to generate neighbor samples and
evaluate global feature importance via the average gradient saliency map, (5) FIMAP [Chapman-
Rounds et al., 2021], a neural network based approach that learns the feature importance through
finding minimal adversarial perturbation. (6) CXPlain [Schwab and Karlen, 2019], a global approach
that involves training a surrogate model for explanations. This method perturbs features with
perturbation values to determine their importance scores. (7) SAGE [Covert et al., 2020], extends
the SHAP method [Lundberg and Lee, 2017] to offer global explanations based on approximated
Shapley values by sampling important subsets.
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