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Abstract

Using feature attributions for post-hoc explana-
tions is a common practice to understand and ver-
ify the predictions of opaque machine learning
models. Despite the numerous techniques avail-
able, individual methods often produce inconsis-
tent and unstable results, putting their overall reli-
ability into question. In this work, we aim to sys-
tematically improve the quality of feature attribu-
tions by combining multiple explanations across
distinct methods or their variations. For this pur-
pose, we propose a novel approach to derive opti-
mal convex combinations of feature attributions
that yield provable improvements of desired qual-
ity criteria such as robustness or faithfulness to the
model behavior. Through extensive experiments
involving various model architectures and popu-
lar feature attribution techniques, we demonstrate
that our combination strategy consistently outper-
forms individual methods and existing baselines.

1. Introduction

The practice of quantifying the influence of individual fea-
tures through attribution methods has been established as a
popular paradigm to enhance the transparency of complex
machine learning models. These approaches typically pro-
duce heatmaps highlighting individual input features, such
as pixels or image regions, relevant to a specific model pre-
diction (see Figure 1, left). However, while a multitude of
techniques has been developed for this purpose, concerns
and doubts regarding the reliability of individual methods
persist (Adebayo et al., 2018; 2020; Zhou et al., 2022). For
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instance, empirical evidence has revealed that single meth-
ods often exhibit unreasonable sensitivity to input perturba-
tions (Kindermans et al., 2019; Alvarez-Melis & Jaakkola,
2018; Dombrowski et al., 2019; Ghorbani et al., 2019; Lin
et al., 2023) and critically depend on the concrete hyperpa-
rameter choice (Bansal et al., 2020; Sturmfels et al., 2020;
Pahde et al., 2023). This lack of explanation robustness
not only causes unstable attribution results but can even be
exploited for malicious manipulations (Baniecki & Biecek,
2023). On top of that, some methods may fail to identify
relevant features (Hooker et al., 2019; Zhou et al., 2022) and
different techniques frequently disagree substantially when
explaining the same prediction (Krishna et al., 2022; Neely
et al., 2021). These findings contest the actual fidelity of a
single attribution result for the purpose model explainability.
In addition to these observations, there is a growing body of
theoretical work that highlights the limitations of individual
attribution methods (Nie et al., 2018; Sixt et al., 2020; Ku-
mar et al., 2021; Bilodeau et al., 2024; Fokkema et al., 2023).
More specifically, in (Han et al., 2022), the authors establish
a ’no-free lunch” theorem for model explanations, which
implies that a single attribution method cannot universally
approximate the behavior of any model faithfully.
Nevertheless, each feature attribution method derives im-
portance based on different mechanisms and each can be
associated with individual benefits and shortcomings. As
a consequence, the question arises of how to best combine
them to attain better explainability of opaque predictions.
In this work, we explore the capabilities of convex combi-
nations across different attribution results to improve the
overall reliability of explanations. Guided by established
quality criteria for feature attributions (Nauta et al., 2023),
we propose an effective strategy to derive convex weight-
ings such that the corresponding aggregation of different
outcomes yields significant improvements in robustness and
faithfulness. This is underpinned by a theoretical analysis
showing that the improvements in relevant quality metrics
are provable and even close to optimal with high probability.
Our specific contributions are the following:

* We introduce an innovative approach for combining the
results generated by various feature attribution methods
or different variants of the same method.
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tives about which particular features of an input x are important for an opaque model prediction f(z). Oftentimes they tend to disagree
causing ambiguity about which inputs truly matter. Our Optimized Aggregation approach (right): We study how to combine all
individual attribution results fruitfully to attain better explanations. We propose a novel aggregation approach to retrieve optimal convex
weights w; such that the aggregated feature attribution ¢~ = 3. w;® is provably more robust and more faithful to the underlying model.

* We show that our method can be effectively employed to
optimize explanations according to commonly used mea-
sures of quality, including robustness and faithfulness to
the model’s behavior based on a unifying framework.

* We conduct a rigorous theoretical analysis establishing
provable improvements of explanation quality and corre-
sponding optimality bounds for our approach.

* We manifest these findings through a series of experi-
ments involving popular feature attribution techniques
and model architectures, consistently outperforming ex-
isting baselines and individual methods.

2. Problem Setup

Our goal is to enhance the reliability of explanations by de-
veloping effective strategies for combining diverse feature
attribution results. To illustrate, let’s consider explaining
a prediction, denoted as f(z), of a classification model
f: RY — R, for an input instance x € R4, A feature
attribution method ¢ : R? — [0, 1]%, explains the prediction
f(z) by associating to each separate input x; a normal-
ized importance score ¢;(x). Suppose we have access to k
different attribution methods, denoted by ¢!, ..., ¢*, each
offering a distinct perspective. Further, let w, ..., wy be
scalar weights such that )", w; = 1, and each weight is
non-negative (w; > 0). To aggregate distinct attribution out-
comes we consider the weighted sum Y, w; ¢’ () yielding
a novel explanation that combines individual insights. Our
objective is to determine prediction-specific weights w; in a
manner that provably improves desired quality metrics. This
ultimately leads to more reliable and better explanations via

aggregation (see Figure 1, right).

3. Background and Related Work

3.1. Measuring attribution quality

Evaluating the fidelity of explanations is a challenging en-
deavor due to missing knowledge about an objective ground
truth. However, several quantitative metrics have been pro-
posed to assess different aspects concerning the quality of
feature attribution results (Nauta et al., 2023; Hedstrom
et al., 2023a). In our study, we focus on two prominent
categories of explanation quality:

Robustness Many explanation methods exhibit instabil-
ities under small input perturbations (Alvarez-Melis &
Jaakkola, 2018) leading to significantly different feature
attribution results for almost identical inputs. While this
not only casts doubts regarding the explanatory integrity of
the considered technique, it might further be exploited to
manipulate explanations intentionally (Baniecki & Biecek,
2023). A popular metric to quantitatively measure attribu-
tion robustness is Max-Sensitivity (Yeh et al., 2019):

lp(z) — oz + &)

SENSMAX o Imax
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This quantity is typically estimated using a Monte Carlo

approach by sampling a fixed number of small perturba-

tions, evaluating the explanations, and storing the maximal

distortion. An alternative metric for attribution robustness
is Average-Sensitivity (Bhatt et al., 2021):

SENSvc : Ec [[[o(x) — ¢(x +¢)]]
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where € ~ P, is a small random input perturbation, typically
either Gaussian or uniformly distributed with mean zero.

Faithfulness The goal of faithfulness metrics is to mea-
sure how aligned an attribution result is with the actual
model behavior in the sense that perturbing important fea-
tures should also alter the model prediction accordingly.
While different mathematical formulations have been pro-
posed, a prominent choice is Infidelity (Yeh et al., 2019):

INFD : Ef [(I"¢(x) = (f(2) = f(z —1)))*]

Here, I € R? describes a probabilistic perturbation such as
replacing random parts of x with a fixed baseline value or
Gaussian noise (Yeh et al., 2019). Similarly, (Bhatt et al.,
2021) proposed to quantify faithfulness to the model’s be-
havior using a correlation measure:

FCOR : corr (I7¢(x), (f(z) — f(a —1)))

Thus, Faithfulness Correlation (FCOR) measures how cor-
related the attribution scores are with prediction changes
under corresponding input modifications.

Other metrics Beyond robustness and faithfulness, ad-
ditional dimensions of explanation quality have also been
investigated in the literature. Alignment metrics (Arras et al.,
2022; Decker et al., 2023) measure to which extent an ex-
planation matches a desirable ground truth derived from
domain knowledge and randomization-based sanity checks
(Adebayo et al., 2018; Hedstrom et al., 2023b) ensure a
sufficient dependence of the attribution result on the exam-
ined model. Moreover, Complexity metrics (Bhatt et al.,
2021; Chalasani et al., 2020) quantify how comprehensi-
ble a model explanation is given the premise that sparser
attributions are more informative to humans due to reduced
cognitive load. Please refer to (Nauta et al., 2023) for a
more comprehensive overview of available metrics.

3.2. Aggregating explanations

The idea of aggregating multiple feature attribution results
within the same method is already anchored in popular ex-
plainability techniques. SmoothGrad (Smilkov et al., 2017)
and UniformGrad (Wang et al., 2020) combine gradients
in the proximity of the input and VarGrad (Adebayo et al.,
2018) uses the variance of gradients within a neighborhood
to derive feature importance. Similarly, Integrated Gradi-
ents (Sundararajan et al., 2017) and GradSHAP (Erion et al.,
2021) aggregate gradients along a specific path towards pre-
determined baseline values. While such techniques combine
gradients following input perturbation, NoiseGrad (Bykov
et al., 2022) averages gradients under model parameter mod-
ifications to form a final explanation. In (Rebulffi et al., 2020)
the authors analyze how the combination of attribution re-
sults obtained from different layers can improve the final

explanation. The authors of (Bhatt et al., 2021) propose to
enhance explanations by combining the Shapley Values of
an instance with the ones obtained from its nearest neigh-
bors in the training dataset.

On the other hand, the idea of aggregating attribution results
across distinct methods has received considerably less at-
tention. In (Rieger & Hansen, 2019), the authors propose
two basic ways to combine distinct explanations which are
defined as follows. AGGypun = % Zle ¢'(x) simply aver-
ages different attribution outcomes and AGGy,, incorporates
also feature-wise variability to downgrade the importance
of features where methods tend to disagree on:

1L ¢ (z)
AGGvar_Ei:ZIU(¢1,...,¢k)+E

where o (¢!, ..., ¢*) € R? describes the feature-wise stan-
dard deviation across the different attribution results and e
is a small constant promoting numerical stability.
Nevertheless, a theoretically grounded strategy of how to
best combine different attribution results for desired im-
provements is still missing and we aim to address this gap
in the remainder of this paper.

4. Optimizing Explanations with Aggregation

Generalized L2 metrics for explanations In this sec-
tion, we introduce a general class of quality metrics for
explanation methods that can efficiently be improved via
cross-method combination as shown later.

Definition 4.1. Let Q : R? — R a be a quality metric for
feature attribution results. Then, Q belongs to the class
of generalized L2 metrics if there exist suitable random
variables y; € R9*% and v, € RY such that :

Qp(x)) = Eny o [116(2) — 72]3]

Conceptually, any such metric evaluates the quality of an at-
tribution result ¢(z) using the following intuitive principle.
First, a linear query ~y; is applied to extract certain infor-
mation from the attribution results. Second, the obtained
information content is compared to a desired query outcome
v2 using the squared Euclidean distance. Thus, a smaller
value of Q implies a better attribution result according to
the considered criteria. Evaluating such metrics can simply
be performed by estimating the expectation with a finite set
of metric evaluation samples denoted by {('yy ), éj )) m,.
Note that common quality metrics introduced above are
generalized L2 metrics. For example, Average-Sensitivity
can be recovered in the following way: Let Z; be the d-
dimensional identity matrix, then setting 73 = Z; and
Yo = ¢(x+¢) with e ~ P, results in SENS 4y with respect
to the squared Euclidean norm. Similarly, Infidelity can be
obtained by choosing v; = I and 5 = f(x) — f(z — I).
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We further show in Appendix B how other categories of
quality metrics can be expressed within this framework.

In conclusion, many established quality criteria for model
explanations can be assessed based on a corresponding L2
formulation. Next, we show that enhancing such metrics
through convex combinations leads to a well-posed opti-
mization problem.

Deriving optimal weights Remember that our goal is to
combine multiple attribution results to provably improve
desired quality criteria. Suppose k different attribution out-
comes ¢! (z) ... ¢*(x) for which we seek optimal convex
weight factors w = (w1, ...,wy). First, note that evaluat-
ing an aggregated attribution result ¢* = ). w;d! via a
generalized L2 metric Q reads:

Q(¢*) =E [Iln1¢* — 12ll3] = E [(n®)w — 2l3]

where & € R¥*F describes the matrix of stacked individual
attribution results ® = (¢', ..., ¢*). Therefore, optimizing
for convex weights w reduces to solving:

k
min B[|(n@w—lf] st w20, Y w=1
=1

To ease the notation, we denote the set of feasible aggrega-
tion weights by Q = {w € R¥ : w; > 0, YF_ w; = 1}
and define v 1. € R9*F as matrix storing k copies of 7y,
in its columns. By setting T' := (71® — yo.1.) € R9*K it
holds within the set of feasible weights €2 that:

min Q(¢*)

& min W E[I"T]w

weN weN

Hence, searching for the best way to aggregate different
attribution outcomes ends up in a constrained quadratic
program with convex constraints. This exhibits a global
optimum and can efficiently be solved using corresponding
numerical solvers (Boyd & Vandenberghe, 2004). On top of
that, this observation also enables us to optimize multiple
generalized L2 metrics simultaneously as quadratic forms
are additive. Suppose we seek to improve ¢ independent
metrics Q1, ... Q, with associated parameters I'; as defined
above. Then, for any scalers A, ... A\, we have:

q q
D AQi(¢%) =w E | D O NIIT; | w
j=1 j=1

This implies that searching for convex weights that directly
improve multiple metrics prioritized by \; can also be ex-
pressed as a single constrained quadratic program and thus
efficiently be solved.

In addition to its numerical appeal, optimizing explanations
via aggregation in this way also comes with theoretical ben-
efits in the form of provable improvement guarantees and
probabilistic optimality bounds.

Provable improvement through aggregation The fol-
lowing theorem allows us to precisely quantify the gain in
explanation quality induced via convex aggregation.

Theorem 4.2. Let ¢“ = . w;¢" be the aggregated expla-
nation, then the quality metric of ¢* is always at least as
good as the weighted metrics of the individual attributions:

Q(¢*) = Zwigwi) ~E,, Zwinmm — )3

Note that this result can be related to the error ambigu-
ity decomposition for ensemble learning introduced in
(Krogh & Vedelsby, 1994) and we conduct the proof
in Appendix A. The achievable gain via aggregation
E., [X; willvi(¢: — ¢*)||3] > 0 depends on how diverse
the different explanations behave under queries v; compared
to the aggregated one. Moreover, its non-negativity ensures
that the quality of the aggregated explanation is at least
as good as the equivalently weighted individual attribution
qualities since lower values of Q imply improvements.

Generalization bounds for estimated weights Obtain-
ing optimal weights usually requires approximating the ob-
jective based on a limited set of metric evaluation sam-
ples {(71”,75”
arg mingeq - > 5y 79 ¢ — 45712 may deviate from
the ideal combination weights as it might not generalize
well to unseen metric evaluations. As a consequence, it
would be desirable to ensure that the quality improvement
with estimated aggregation weights is close enough to the
best possible strategy concerning the entire quality metric Q.
The following theorem establishes a corresponding result.

)} .. Hence, the resulting estimate & =

Theorem 4.3. Consider a generalized L2 metric denoted by
Q withmax., ||71]]1 < ¢1 and max, ., || 716" —72]|3 < ca.
Additionally, let ) represent the set of feasible weights w and
¥ = Zle w;@* denote an aggregated feature attribution
result. Suppose w is an estimate of aggregation weights
obtained from m metric evaluation samples given by:

o L e )2
@ = arg min mj; i7" — v [I3

Then there exist a constant C(cy, ca) > 0 depending on ¢,
and co such that with probability of at least (1 — §):

O(¢%) — min Q(¢*) < C 4log(16k/0)

weN m

To prove this statement, we develop appropriate bounds
on the Rademacher complexity of vector-valued functions
based on a concentration result from (Maurer, 2016) and the
specific properties of generalized L2 metrics over convex
combinations of normalized feature attribution results. The
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Table 1. SENSavc (Save) and SENSmax (Smax) results for gradient-based attribution methods and different aggregation strategies across
several model architectures. Our approach AGG,p.s: consistently outperforms all other techniques followed by AGG,,, as second best.

Feature VGG16 AlexNet ResNet18 MobileNetV2 MLPMixer
Attribution Swve L Smaxd | Saved Smaxd | Save ! Smax ! | Savel Swmaxl | Saved  Smax
Saliency 0.994 1.214 0.800 0.942 0.964 1.163 1.022 1.265 1.200 1.591
Guided BP 0.515 0.650 0.430 0.512 0.483 0.611 0.832 1.060 - -
DeepLift 0.893 1.090 0.791 0.932 0.857 0.999 0.894 1.075 0.961 1.165
IntGrad 0.888 1.065 0.724 0.854 0.838 0.991 0.910 1.084 0.941 1.141
InputxGrad 0.988 1.214 0.807 0.957 0.956 1.157 1.029 1.292 1.107 1,419
SmoothGrad 0.784 0.913 0.622 0.719 0.779 0.898 0.858 0.992 0.643 0.739
VarGrad 0.599 0.949 0.571 0.914 0.553 0.829 0.747 1.183 0.554 0.910
AGGyeun 0.596 0.734 0.480 0.583 0.529 0.644 0.586 0.724 0.663 0.853
AGGy,, 0.582 0.700 0.476 0.574 0.518 0.618 0.568 0.686 0.631 0.788
AGGgy, (ours) 0.644 0.833 0.535 0.679 0.471 0.578 0.792 1.036 0.696 0.892
AGG,,; (ours) 0.456 0.584 0.364 0.449 0.427 0.538 0.536 0.701 0.483 0.642
AGG,,p,s: (ours) | 0.424 0.543 0.349 0.426 0.410 0.513 0.505 0.654 0.473 0.634

full derivation and the precise expression for the constant C'
are given in Appendix A. Intuitively, theorem 4.3 guarantees
that the maximum potential deviation of our aggregation ap-
proach from the optimal improvement can be bounded with
high probability. Moreover, the worst-case performance gap
diminishes with order O(1/+/m) for increasing number of
metric evaluation samples m.

Optimal aggregation for desired improvements Based
on the generalized framework above we propose different
aggregation strategies to intentionally enhance specific prop-
erties of feature attribution results. To explicitly enhance ex-
planation robustness we obtain combination weights ™!
by optimizing Average-Sensitivity as related L2 metric.

AGG, s : W™ = argmin SENSy6(¢0*)

weN
Equivalently, to optimize for faithfulness we can compute
W/ by considering Infidelity as underlying objective:

AGGpy WM™ = arg min INFD(¢*)
we

As a default strategy to increase explanation quality via
aggregation, we further propose improving both metrics
simultaneously. We coin this approach AGG,,, optimizing
for better feature attributions more generically:

AGGy :  w™ =arg mig INFD(¢*) + SENS4y6(6)
we

S. Experiments

We conducted a multifaceted empirical evaluation to inves-
tigate the capacities of our proposed aggregation strategies
to intentionally enhance desired properties of explanations.
All our aggregation strategies are optimized using only a

small amount of metric evaluation samples to approximate
the underlying metric (myg, = 50). We explicitly test how
well the improvements generalize to a larger sample of
novel metric evaluations (m,,,; = 200) and if they trans-
fer to alternative quality measures. The findings presented
in this section are based on the ImageNet ILSVRC2012
dataset and concrete implementation details are documented
in Appendix C. Accompanying source code is released at
https://github.com/thomdeck/aggopt.

5.1. Quantitative evaluation of quality improvements

Increasing robustness via AGGypur and AGG,,; We
examine to which extent our aggregation approach can mit-
igate typically encountered instabilities of gradient-based
explanations on convolutional models. For this purpose,
we consider seven corresponding attribution techniques as
well as four different ways of combining them including
the two simple baselines AGGyeq, and AGGy,, and our
proposed strategies AGG yp, and AGG,,. All resulting
explanations are computed for 500 random samples from
ImageNet across five popular computer vision models and
we evaluated their robustness based on the metrics SENS avg
and SENSyax. The corresponding results in Table 1 indi-
cate that our approach AGG,,p,; consistently outperforms
all individual attribution methods as well as all other ag-
gregations followed by AGG,,;, which is almost always
second best. Remember that AGG,,p,s; directly optimizes
for SENS4y¢ using a small number of metric evaluations.
Thus, the generalization performance for this metric, now
evaluated with a higher number of unseen metric evaluation
samples, is in line with our theoretical framework. On top
of that, the additional superiority in terms of the alterna-
tive metric SENSy4x demonstrates that our approach also
improves attribution robustness in general.
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Table 2. INFD and FCOR results for different attribution methods and aggregation strategies across several model architectures. Our
approach AGGyi consistently outperforms all other techniques and AGG,,, is either second best or comparable.

Feature DenseNet121 ResNet18 MobileNetV2 DeiT SwinT
Attribution INFD | FCORT | INFD| FCORTt | INFD| FCOR? | INFD| FCORT | INFD| FCOR 1
GradSHAP 2.846 0.303 3.196 0.369 0.509 0.261 0.512 0.120 0.446 0.094

IntGrad 2913 0.263 3.371 0.312 0.522 0.223 0.507 0.122 0.444 0.094
InputxGrad 3.097 0.205 3.587 0.259 0.538 0.192 0.516 0.113 0.446 0.079

SmoothGrad 2.604 0.388 2.916 0.444 0.494 0.296 0.392 0.297 0.367 0.208
GradCAM 2.646 0.388 2.922 0.459 0.478 0.319 0.385 0.311 0.373 0.227
GradCAM++ 2.687 0.376 2.988 0.438 0.484 0.306 0.487 0.213 0.394 0.187
EigenCAM 3.044 0.251 3.381 0.347 0.538 0.231 0.568 0.058 0.439 0.107
AGGyean 2.661 0.370 2.928 0.444 0.479 0.293 0.449 0.237 0.377 0.213
AGGy,, 2.675 0.368 2.945 0.442 0.481 0.294 0.447 0.238 0.381 0.212
AGG, s (0Uurs) | 2.678 0.339 2.956 0.415 0.483 0.282 0.407 0.288 0.366 0.224
AGG,,; (ours) | 2.514 0.380 2.729 0.458 0.467 0.304 0.339 0.368 0.341 0.265
AGGp, (ours) | 2.390 0.406 2.595 0.481 0.443 0.325 0.335 0.372 0.335 0.275

Increasing faithfulness via AGGp;, and AGG,
Similar to the robustness experiments, we evaluate the
metrics Infidelity INFD and Faithfulness correlation
FCOR to validate the capabilities of our approach for
improving attribution fidelity. For both metrics, features
are perturbed by replacing randomly selected pixels with
the corresponding values of a blurred image version. More
details regarding the precise design of these metrics and
the underlying perturbations are specified in Appendix
C1. We again considered five popular model architectures
including two transformer-based ones and selected seven
applicable attribution methods. Table 2 summarizes the
results and shows that our dedicated aggregation approach
AGGpy;, performs best in every scenario, followed again
by AGG,,; being either second best or comparable. The
consistent superiority for INFD again supports our theory
that optimizing aggregation using only a small amount of
evaluation samples is enough to attain sustainable quality
enhancement generalizing to novel out-of-sample metric
evaluations unseen during optimization. Interestingly, the
additional improvement concerning FCOR seems to be
particularly strong for the two transformer-based models.

Improving additional quality metrics To further
substantiate the benefits of our proposed methods, we also
investigated how well the improvements generalize to
additional quality metrics that express alternative notions
of robustness and faithfulness. Stability metrics (Agarwal
et al., 2022a) offer a complementary approach to evaluating
the robustness of explanations by quantifying the sensitivity
of attribution results relative to changes in various quantities
of interest. More specifically, Relative Input Stability (RIS)
assesses how explanations vary relative to input changes,
Relative Representation Stability (RRS) examines variations
relative to changes in the model’s internal representations,

and Relative Output Stability (ROS) evaluates sensitivity
relative to changes in output prediction probabilities. The
corresponding results in Table 3 over 500 samples on a
ResNet18 show that our dedicated approach AGG;p,ss also
significantly improves all stability metrics. During the
experiments above, we used blurring as base perturbation
when optimizing aggregation for faithfulness and when
evaluating Infidelity and Faithfulness correlation. To check
how well the improvements generalize to slightly altering
notions of faithfulness, we computed variations of these
metrics based on alternative corruptions (Hedstrom et al.,
2023a) such as pixel value replacement with zeros (INFDq
and FCOR() and the image mean (INFDz; and FCORj).
Even though we explicitly kept blurring as perturbation
during weight optimization for AGG,,, and AGGyy, the
resulting explanations still perform best when evaluated
with different corruptions. Finally, we computed the
Remove and Debias (ROAD) metric (Rong et al., 2022) that
assesses the fidelity of explanations by removing the top
features identified by an attribution method and estimating
the subsequent decrease in prediction confidence. In Table
3 we report the outcomes of ablating the most relevant
p = 10,20, 30 percent of pixels in an image (MoRF,)
while additional percentiles are deferred to Appendix
D1. All results consistently indicate that also this metric
can be improved by relying on one of our proposed methods.

Overall, the results of all experiments manifest that our
aggregation techniques achieve desired and generalizing
improvements in explanation quality in line with our the-
oretical analysis. They also suggest that the aggregation
strategy AGG,,,, which optimizes for faithfulness and ro-
bustness simultaneously, is an effective default approach
to attain better explainability via aggregation when both
criteria matter. All these findings are confirmed on four
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Table 3. Additional quality metric results on a ResNet18 for different attribution methods and aggregation strategies. Across all evaluations,
one of our proposed approaches performs best, and AGG,,; is consistently at least second best or comparable.

Feature Stability | Infidelity | Faith. Corr. 1 ROAD |
Attribution RIS RRS ROS | INFD, INFD; | FCOR, FCOR; | MoRF;; MoRFy MoRFsg
Deeplift 8.10 526 892 | 3.59 3.64 0.33 0.32 -1.10 -2.02 -3.02
VarGrad 722 473 786 | 3.18 3.12 0.42 0.42 -2.37 -4.69 -6.79
GuidedBP 3.61 231 391 | 321 3.10 0.44 0.45 -3.09 -4.86 -6.31
IntGrad 7.69 488 828 | 3.14 3.12 0.43 0.43 -0.85 -1.79 -2.82
SmoothGrad | 8.18 543 932 | 3.61 3.61 0.33 0.32 -1.57 272 -3.84
InputxGrad 947 6.08 1028 | 3.84 3.90 0.27 0.27 -0.63 -1.34 224
Saliency 9.13 589 999 | 3.50 3.52 0.34 0.36 -0.58 -1.24 2.04
AGGean 533 341 575 | 3.16 3.23 0.43 0.41 221 -3.98 -5.68
AGGy,, 519 333 561 | 3.18 3.22 0.42 0.42 221 -3.98 -5.69
AGGpy (ours) | 573 370 625 | 2.82 2.78 0.47 0.48 -2.66 -4.50 -6.12
AGG, (ours) | 3.62 233 396 | 2.83 2.80 0.49 0.47 -3.30 -5.41 -7.14
AGG,pus (0urs) | 3.27 2.09 355 | 297 2.93 0.46 0.46 -3.36 -5.48 -7.17

additional datasets in Appendix D2. Furthermore, we pro-
vide supplementary ablation studies in Appendix D4, which
imply beneficial effects resulting from an increasing number
of combined explanations and greater method diversity.

5.2. Understanding how optimized aggregation helps

In Figure 2 we display seven concrete examples with cor-
responding individual and aggregated attribution results to
gain further insights into how optimized aggregation suc-
ceeds in improving explanations. Notice that our generic
aggregation approach AGG,,,; enhances feature attributions
essentially via two mechanisms. Particularly in the first two
images, all considered methods highlight intuitively rele-
vant but diverging regions causing ambiguity about which
pixels truly matter. AGG,,; improves the explanations by
combining all perspectives to complement each other, which
also leads to a visually more convincing explanation. In the
last two images, some individual methods seem to fail by
producing rather deteriorated results. For such instances
AGG,,, performs automatic method selections intrinsically
and aggregates only valid attribution outcomes to form an
enhanced explanation that is more representative of the un-
derlying model. Consulting the distribution of aggregation
weights retrieved during both experiments in section 5.1
also reveals that the optimal weighting is highly model-
dependent and even exhibits strong variability across sam-
ples. In Figure 4 we present corresponding boxplots for
the weights of AGG,,; obtained for the two considered sets
of attribution techniques. For all methods, the allocated
weights during the experiments vary substantially among
samples covering oftentimes even the entire possible range
between 0 and 1. Moreover, the distribution of allocated
weights does not transfer across models as for different ar-

chitectures other methods are most favored. This provides
further evidence that a single attribution method seems un-
able to explain every prediction for all model architectures
faithfully and supports our approach to rather aggregate
them in an optimizing manner.

5.3. Enhancing individual methods via aggregation

Many feature attribution methods rely on several hyperpa-
rameters and their concrete choice can greatly impact the re-
sulting explanation (Bansal et al., 2020). A popular example
is LIME (Ribeiro et al., 2016), which derives feature impor-
tance by fitting a linear surrogate model to approximate the
model behavior in the vicinity of an input. When applied
to image data, LIME typically computes attributions at the
level of superpixels and incorporates an L1 regularization to
enforce a certain level of sparsity via LASSO (Ribeiro et al.,
2016; Garreau & Mardaoui, 2021). However, the require-
ment of fixing the regularization strength in advance might
result in inferior explanations in cases where the number of
important features does not match the enforced level of spar-
sity. To evaluate if optimized aggregation can effectively
mediate this critical hyperparameter choice, we conducted
the following experiment. We aggregate six different ver-
sions of LIME covering two different superpixel algorithms
(SLIC (Achanta et al., 2012) and squared patches), each
exhibiting either no, low, or high level of sparsity regular-
ization. Using the available bounding box information for
ImageNet, we distinguish between images where the object
to be classified is particularly small (< 20% of the total
picture) or rather larger (> 60%). We randomly selected
200 images per object size and Figure 5 displays the average
weights allocated by AGG,,, to different variants of LIME
grouped by sparsity regularization. For both considered
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F1gure 2. Inleldual outcomes of dlfferent feature attribution methods as well as our approach AGG,,, (right column) for seven images
based on VGG16 (row 1-5) and DeiT (row 6-8). In addition to the quantitative improvements established in section 5.1 for robustness and
faithfulness, our aggregation strategy also produces visually more intuitive and convincing explanations. It succeeds in enhancing the
attribution results by combining several valid perspectives to complement each other (e.g rows 1 and 2) and by automatically discarding
seemingly deteriorated explanations (e.g. rows 7 and 8).
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Figure 3. Individual attribution results of different LIME variants varying by superpixel structure and sparsity regularization on VGG16.
The object to be classified is rather small and AGG,,; automatically combines only the sparsest explanations to enhance the explanation.
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Figure 4. Boxplots of aggregation weights obtained by AGG,,; for the two considered sets of
attribution methods during the evaluations in section 5.1 for robustness (top) and faithfulness
(bottom) based on 500 samples. For each method, the allocated weight differs substantially
among samples as most distributions cover almost the entire range between 0 and 1. There is
also high variability across models indicating that a single method alone is unable to provide

a reliable explanation for every prediction consistently.

models, significantly more weight is put on the explanations
resulting from higher sparsity regularization when the object
to be classified is small compared to larger ones. This is
also exemplified in Figure 3, where the prediction for an
image containing a rather small object is explained. AGG,,,
optimizes the results of all considered LIME variants by
aggregating only the two sparsest attributions matching the
location of interest.

This demonstrates that our proposed aggregation approach
also boosts the performance of individual attribution tech-
niques when combining different versions of the same
method.

6. Discussion and Conclusion

In this work, we provided the first theoretically grounded
approach to optimally leverage distinct feature attribution
results for improving explanations of opaque models. A
downside of our technique is the higher inference time espe-
cially compared to relying on a single method only. How-
ever, since the main purpose of explainability techniques is
to reliably increase the transparency of particularly critical
decisions we argue that the added computational costs are
minor (see Appendix D3) and well justified for the sake
of provably better results. Another limiting aspect is the
reliance on existing feature attribution methods and their

Figure 5. Average  aggregation
weights obtained by AGG,y
while optimizing the results from
different versions of LIME on
VGG16 (top) and ViT (bottom) in-
cluding 95% confidence intervals
as error bars. For smaller objects,
significantly more weight is put
on higher sparsity regularization.

EigenCAM GradCAM++

validity as any uniform weakness might also compromise
the aggregation. Hence, we recommend considering a suffi-
ciently diverse set of individual techniques and we provide
corresponding ablation studies in Appendix D4.

A natural extension of our work is to consider more so-
phisticated strategies beyond convex weighting to perform
aggregation, such as voting algorithms or other ensemble
methods. Furthermore, we specifically focused on combin-
ing fairly comparable feature attribution techniques. Future
work could also explore how to best incorporate supplemen-
tary insights derived from concept-based (Hitzler & Sarker,
2022), optimization-based (Dabkowski & Gal, 2017; Fong
et al., 2019; Jethani et al., 2021) or counterfactual explana-
tions (Guidotti, 2022) to even further enhance explainability
with aggregation.
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A. Theoretical Proofs

In this section, we conduct the proofs of the theoretical results presented in the main paper.

Probable Improvements via Aggregation

Theorem A.1. Let ¢* = ). w;@* be the aggregated explanation then the quality of ¢* is better than the the weighted
quality of the individual attribution results:

Q(¢”) = Z%‘Q(d?i) -E, lz wi|lv1(ps — ¢w)|§]

Proof. The proof is similar to a related result established in (Krogh & Vedelsby, 1994):
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Generalization Bound The proof of the generalization bound leverages the following result from (Shalev-Shwartz &
Ben-David, 2014), where we slightly adapted the notation to better match our setup:

Theorem A.2 (26.5.3 in (Shalev-Shwartz & Ben-David, 2014) ). Let (X X )) be a probability space and ¢ : X x ) — R
be a bounded loss function with {(x,y) < L. Let f = arg minger = S U(x;,y;) be an empirical estimator for the
minimum of L(f) =E [¢(f(X),Y)]. Also,for Rademacher variables €; € {—1, 1} the empirical Rademacher Complexity
of a function set F is defined by:

. 1 U
R (F) = —Ec |sup » &;f(z;)
Then, it holds with a probability of at least 1 — §:

; . 5 21n(8/4)
L(f)— L(f) <2R,, (¢ SLy| —————=

(f) —min £(f) < 2Rm (€0 F) + =
On top of that, we need the following Lemmas:

Lemma A.3. Suppose that for all z,y € S C RI we have ||z — y||2 < ¢ for a constant c. Then, the squared Euclidean
distance l(z,y) = ||z — yl|3 is Lipschitz continuous in its first argument with Lipschitz constant L = 2c.

Proof. The statement follows from quadratic factorization and the reverse triangular inequality.
For all z, z’,y € S it holds:

(2, y) = U, )| = lllz = yll5 — 12" = yll3|
= |(llz = yll2 + 2" = yll2) (lz = yll2 = 2" = yll2) |
<|(lz = yllz + =" = yll2)| |z —y — 2"+ yll2
<2 |z —a||2
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Lemma Ad4. Fori=1,...,m, letx; € R¥ and ¢; € {—1, 1} be Rademacher variables, so P(¢ = £1) = 1/2. Then:

||Z£zacz|001 < \F _max ||x1\|oo\/21n(2k)

i=1

Proof. The proof leverages Massart’s lemma and is for instance conducted within the proof of Lemma 26.11 in (Shalev-
Shwartz & Ben-David, 2014) L]

Now we are equipped to proof Theorem 4.3:

Theorem A.5. Let Q be a generalized L2 metric with max., || y1]1 < c1 and let ® = (¢1,..., ¢%) be the matrix of
stacked attribution outcomes to be aggregated into ¢* = Zle w;@'. Suppose that max, , ||716" — 2|3 < co as well as
|6|oo < 1foralli=1,... k. Also let §) be the set of feasible weights w and let & be an aggregation weight estimate

obtained from m metric evaluations given by

. LQm () e ()2
@ = arg min m; Im” 6% — 5|12

Then there exist a constant C(cy, ca) > 0 depending on ¢y and co such that with probability of at least (1 — 0):

o ) w In(16k/9)

Q(6%) ~min Q(¢*) < €4/

Proof. The theorem can be interpreted as an extension and adaptation of Theorem 26.15 in (Shalev-Shwartz & Ben-David,
2014) to the specifics of our setup. We develop appropriate bounds on the Rademacher complexity of vector-valued functions
based on a concentration result from (Maurer, 2016) and the specific properties of generalized L2 metrics over convex
combinations of normalized feature attribution results.

Let F = {f : RI** 5 RY, f(A) = Aw | w € 2}, then with Theorem A2 above we immediately get

21n(8/4)
T ®

Q(¢%) — min Q(¢*) < 2Ry (Lo F) +5c5

where [ is the squared Euclidean distance. To ease the notation in the following, define A" := vf)CI) and the j-th row of

A ag Ag) € R*. Using the assumption that max., -, [|v1¢" — 72/|3 < c2, we know from Lemma A.3 that [ is Lipschitz
continuous with constant L = 2,/c;. Therefore, we are able to leverage a corresponding result from (Maurer, 2016) (x) to
upper-bound the empirical Rademacher complexity of the vector-valued function set. More precisely, it holds:

Rn(loF) =Ec |sup Y &l f(AD) w)lzl < V2LE. Supzzgmfa AD)
feri 4 fer

i=1 j=1

m g
= 2v/2¢5E. supZst wj = 2/2¢5E, sup<225i’j‘4§f)7w>

| wS2i=1 j=1 weL \i=1 j=1

< 2V3GE. supnzzsz,jA“ o ol | = 2VB2E [13° 3 540

=1 j=1 =1 j=1

where ¢; as well as ¢; ; are Rademacher variables and the last two steps follow from the Holder inequality as well as the

TYL

constraints on w. Next, notice that the term ) " €4, JA(f) sums over all row of A’ across all samples. Hence we can

j 1
reindex the term as a sum over all consecutive rows in the sample denoted by a! € R* withl =1,..., gm.

Applying Lemma A .4 yields:

E. ||Zzsm A oo | = Ee

=1 j=1

nzezalw] < Vo o/ T
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Notice that bounding max;—1, . gm |la'||s requires to bound the maximal entry of ;@ that could be encountered while
computing the metric. Using the assumed constraints on ; and ® we obtain:

max la'll 0 < max|(1®)i5] < max|yi [y max]e’ oo < e

Therefore, we finally have an upper bound on the empirical Rademacher complexity given by:

21 Zk:
Ron(lo F) < 2¢1+/Zgcay | 2 ®)

Combining (1) and (2) and setting C' := max{4c;y/2gca, 5ca} gives:

2(6%) _ggg Q(6%) < 4c1+/2902 /21n7£l2k) + 5ey /21n7(:/6) <C /4ln(jsk‘/5)

where the last step utilizes the fact that \/a + vb < \/2(a + b) to merge the two square roots. O

B. Additional Generalized L2 Metrics for other Dimensions of Explanation Quality

In the main paper, we showed that popular metrics for feature attribution such as Infidelity and Average-Sensitivity are
generalized L2 metrics. Below we also show that metrics regarding other quality criteria can be expressed as such.

Alignment Metrics Alignment metrics, also referred to as localization metrics, measure to which extent an attribution
result corresponds to an expected explanation grounded in domain knowledge. For image classification models, such metrics
typically quantify how well important image regions overlap with the actual location of the classified object in the image. A
simple way to achieve this is to define 75 as desired attribution results and measure alignment via the squared Euclidean
distance: Q(¢(x)) = ||¢(x) —~3]|3. Another possibility that closely resembles the logic of localization metrics for computer
vision models is to measure if important features lie within a region of interest LetZ C {1,...d} be an index indicating the
position of an object to be detected by a model. Then Q(¢(x)) = ||¢(x) — ¢z (x)||2 is a generalized L2 metric that captures
how much attribution mass is allocated to the region of interest.

Randomization-based sanity checks Randomization-based sanity checks have been developed to verify that an attribution
result is not abstract and does indeed depend sufficiently on the model of interest. Typically they asses whether feature
attributions change if certain parameters of the model are randomized. If an attribution result is invariant to parameter
randomization it might not be reliably explain the examined model. To express this via a generalized L2 metric, suppose
we are interested in explaining the prediction of a model fy with parameters . Let ¢9(x) be a feature attribution result
obtained from the original model f5. Further, let f; denote the corresponding model where all parameters or a specific
subset is randomized based on 6 ~ IP;. Then, the variability of ¢ () under parameter randomization can be computed via
Q(pg(z)) = —E;z||pg(z) — ¢4(z)||3. Note that we incorporate a negative sign to indicate that invariant attribution results
correspond to lower quality.

Complexity To express complexity measures for feature attributions one can use the truncated L2 norm ||-||2,; as a sparsity
measure (Dicker, 2014). This implies that Q(¢(z)) = ||min{$(x), t}||2 where min{-, -} denotes the elementwise minimum
operator and ¢ a predefined noise threshold. Note that improving this metric Q requires pushing more entries of ¢(x) below
the threshold ¢ which also promotes sparsity and reduces complexity. To translate this metric to the generic formulation
proposed in Definition 4.1. one needs to set y; € R%*? and v5 € R like this:

()i s = i=j:1if[¢;| <telse0 (y2); = —tif |y >t
T i#j:0 2= 0 else
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C. Experimental Details
C.1. Metric Details

Robustness Throughout all experiments Average-Sensitivity (SENS,yc) and and Max-Sensitivity (SENSy4x) are com-
puted using uniformly distributed corruptions € ~ U[—0.1,0.1]:

SENSav : Ec [[¢(z) — ¢(z +e)];  and  SENSuy: max]|¢(z) — ¢ (z + £)]I3

To optimize the aggregation weights for AGG,p,s; and AGG,,,, the expectation is estimated using only 1m,,, samples for €.
During the evaluation in section 5.1, the metrics are computed using m,,,; = 200 unseen samples to explicitly check for
generalization. During evaluation both metrics are computed using the implementation provided by Quantus (Hedstrom
et al., 2023a).

Faithfulness To compute the Infidelity metric (INFD) we rely on original design principles proposed by the authors (Yeh
et al., 2019). In particular, we utilized binary perturbations I € {0, 1} that randomly select an image area of 20% such that
I7" ¢ equals the sum of attribution scores allocated to the selected region. From this quantity, we subtract the prediction
change caused by replacing the selected image area with the corresponding values of a blurred image version x. This can
be formalized using a map h : R? x R? x R? — R with h(x,xy,1); = (xp); if I; = 1 and h(z, 2y, 1); = x; else. We
also incorporated the normalization utilized by the authors in their implementation (Yeh et al., 2019). For the Faithfulness
correlation metric (FCOR) we use the same kind of perturbation and use the Pearson Correlation as correlation measure
corr as proposed in (Bhatt et al., 2021). This results in:

INFD : E; [(IT¢(z) — (f(z) — f(h(z, 20, 1)))?] and  FCOR : corr; (I ¢(z), f(z) — f(h(z, 2, 1)))

To optimize the aggregation weights for AGGy,;;, and AGG,,, the expectation and correlation is estimated using only mg,
samples of I. During the evaluation in section 5.1, the metrics are again computed using m,,,; = 200 fresh samples to
explicitly check for generalization.

Stability  All stability metrics have been computed based on their implementation in OpenXATI (Agarwal et al., 2022b).
For Relative Representation Stability (RRS) we used the activation of the final layer before the classification happens as
underlying representation to compute the metric.

ROAD To compute the Remove and Debias metric (Rong et al., 2022) we leveraged the implementation provided by
the pytorch—gradcam library (Gildenblat, 2021). Therefore, MoRF,, (Most relevant first) corresponds to the average
decrease in confidence for the correct class of an image resulting from removing the p percent of the most important pixels
as indicated by an attribution result. Note, that feature removal is performed using noisy linear imputation which has been
demonstrated to produce consistent results matching the outcomes of retaining-based metrics such as Remove and Retrain
(Hooker et al., 2019).

C.2. Feature Attribution Methods and Aggregations

Individual Methods During the experiments, we evaluated in total twelve different feature attribution techniques. The
methods Saliency (Simonyan et al., 2013), InputxGrad (Shrikumar et al., 2016), Guided Backpropagation(Springenberg
et al., 2014), DeepLift (Shrikumar et al., 2017), Integrated Gradients (Sundararajan et al., 2017), GradSHAP (Lundberg &
Lee, 2017), SmoothGrad (Smilkov et al., 2017), VarGrad (Adebayo et al., 2018), Shapley Values (Castro et al., 2009), LIME
(Ribeiro et al., 2016) and Feature Ablation are computed using the corresponding implementation provided by Captum
(Kokhlikyan et al., 2020). For the methods GradCAM (Selvaraju et al., 2017), EigenCAM (Muhammad & Yeasin, 2020) and
GradCAM++ (Chattopadhay et al., 2018) we utilized the pyt orch-gradcam (Gildenblat, 2021) library. All attribution
results are normalized to lie within the range [0, 1] by taking the absolute value and rescaling them based on the maximum
to ensure comparability.

Note that we excluded Guided Backpropagation when evaluating the MLPMixer architecture since the method was originally
designed only for networks with the ReL.U activation function.

For the experiments in section 5.3 we utilized Lime with three different LASSO regularization parameters A\. More precisely
high sparsity regularization corresponds to Auies = 0.1, medium to Ayeqivm = 0.01 and no regularization uses an ordinary
least square regression approach to estimate the Lime coefficients. For the SLIC variant we provided a feature mask using
the SLIC algorithm (Achanta et al., 2012) partitioning an image into approximately 100 superpixels.
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Optimized Aggregation The aggregation weights for our combination approaches are optimized by estimating the
underlying L2 metric using m metric evaluation samples yielding SENS4y¢ and INFD . In particular, we have:

SENSav6(6) = Z\W —¢*(z+Y)3
INFD(¢*) = ZH (19 % (2) — (f(x) — F(h(x, 2, TD))|3

and the weights are computed by solving:

AGG ppus © WP = arg mig S/I-EN\SAvg(¢“’)
we
AGGpy : W™ = arg misr% Iﬁﬁ)(gﬁ“’)
we

AGG,, : w” = arg mig Iﬁﬁ)(gﬁ)“’) + ﬁAVG(qﬁw)
we

All objectives are reformulated as constrained quadratic programs using the logic described in section 4 of the main paper and
optimized using the default solver provided by cvxpy (Diamond & Boyd, 2016). For AGG,,; we additionally normalized
both metrics using the Frobenius norm of the respective parameter matrix | T'|| = to ensure comparability between the two
considered metrics.

C.3. Model Details

We downloaded all convolutional models,including VGG in from (Simonyan et al., 2013), AlexNet (Krizhevsky et al., 2012),
ResNet18 (He et al., 2016), MobileNetV2 (Sandler et al., 2018) and DenseNet121 (Huang et al., 2017), from torchvison
with pre-trained weights. All transformer-based models are downloaded using the t imm library (Wightman, 2019). More
precisely, we utilized the following model variants:

DeiT (Touvron et al., 2021): deit_tiny patchl6.224.fb_inlk

ViT (Dosovitskiy et al., 2021): vit_tiny.patchl6.224.augreg_.in2lk_ft_inlk
SwinT (Liu et al., 2021): swin_tiny_patch4 window7.224.ms_inlk
MLPMixer (Tolstikhin et al., 2021): mixer bl6.224.goog_in21k_ft_inlk

D. Additional Experiments and Results
D.1. Extended results for ROAD

Table 4. Remove and Debiase (ROAD) metric results on a Resnet18 where MoRF,, evaluates the average decrease in confidence caused
by removing the top p percent of the most relevant pixels as indicated by the explanation method.

Method ‘MORFlo MoRF5y MoRF3; MoRFsy MoRF5y MoRFg; MoRF;3; MoRFg; MoRFy, \ Average |

Deeplift -1.10 -2.02 -3.02 -4.15 -5.42 -6.85 -8.56 -10.57 -13.03 -6.30
VarGrad -2.37 -4.69 -6.79 -8.45 -10.05 -11.35 -12.57 -13.63 -14.67 -9.84
GuidedBP -3.09 -4.86 -6.31 -7.62 -8.94 -10.17 -11.35 -12.59 -14.01 -9.77
IntGrad -0.85 -1.79 -2.82 -3.96 -5.31 -6.86 -8.67 -10.70 -13.13 -6.23
SmoothGrad -1.57 -2.72 -3.84 -4.94 -6.09 -7.35 -8.74 -10.38 -12.73 -6.82
InputxGrad -0.63 -1.34 -2.24 -3.37 -4.63 -6.18 -8.05 -10.23 -12.87 -5.72
Saliency -0.58 -1.24 -2.04 -3.10 -4.25 -5.65 -7.31 -9.33 -12.13 -5.18
AGGpsean -2.21 -3.98 -5.68 -7.33 -8.82 -10.27 -11.60 -12.92 -14.31 -9.57
AGGyy, -2.21 -3.98 -5.68 -7.33 -8.82 -10.28 -11.60 -12.93 -14.31 -9.57
AGGgi, -2.66 -4.50 -6.12 -7.49 -8.79 -9.99 -11.28 -12.57 -14.05 -9.50
AGG,p -3.30 -5.41 -7.14 -8.62 -9.96 -11.25 -12.45 -13.51 -14.58 -10.25
AGG,ppust -3.36 -5.48 =717 -8.78 -10.15 -11.40 -12.65 -13.70 -14.68 -10.37
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D.2. Results on other Datasets

To substantiate the findings in the main paper, we repeated the experiments in section 5.1 on four additional datasets, namely
CIFARI10 as well as three medical image datasets BloodMNIST, DermaMNIST and PathMNIST (Yang et al., 2023). Tables
5 and 6 summarize the corresponding results for the considered faithfulness and robustness metrics based on 500 images
evaluated with a pre-trained ResNet18 model.

Table 5. INFD and FCOR results for different attribution methods and aggregation strategies for a ResNet18 model. Our approach
AGGgy, consistently outperforms all other techniques and AGG,,, is either second best or comparable.

Feature CIFARI10 BloodMNIST DermaMNIST PathMNIST
Attribution INFD | FCOR? | INFD | FCOR{ | INFD | FCOR*t | INFD | FCOR
Saliency 4.129 0.159 11.60 0.393 0.324 0.321 5.394 0.152
DeepLift 3.928 0.252 15.12 0.278 0.354 0.233 5.294 0.159
IntGrad 4.016 0.229 12.97 0.290 0.321 0.309 5.145 0.190

InputxGrad 4.326 0.133 13.56 0.206 0.322 0.320 5.466 0.118
SmoothGrad 3.736 0.313 13.04 0.326 0.360 0.276 5.395 0.127

VarGrad 3.607 0.319 11.84 0.379 0.380 0.145 6.106 0.103
AGGyean 3.802 0.290 12.71 0.390 0.332 0.362 5.153 0.183
AGGy,, 3.817 0.290 12.73 0.391 0.335 0.361 5.132 0.186

AGG,,; (ours) 3.538 0.343 11.80 0.414 0.322 0.370 5.135 0.187
AGGy,;;, (ours) | 3.342 0.378 10.66 0.465 0.281 0.433 4.850 0.286

Table 6. SENSavG (Savg) and SENSmax (Smax) results for gradient-based attribution methods and different aggregation strategies for a
ResNet18 model. Our approach AGG;pus consistently outperforms all other techniques followed by AGG,,, as second best.

Feature CIFARI10 BloodMNIST DermaMNIST PathMNIST
Attribution Savc L Smax | Save ! Smax{ | Savad Smax | | Save | Smax |
Saliency 0.916 1.143 0.696 0.882 0.787 0.993 0.942 1.108
DeepLift 0.805 1.016 0.514 0.644 0.679 0.936 0.723 0.818
IntGrad 0.820 1.029 0.481 0.622 0.673 0.861 0.833 0.955

InputxGrad 0.910 1.152 0.708 0.893 0.795 1.000 0.932 1.076
SmoothGrad 0.818 0.978 0.549 0.683 0.566 0.694 0.828 1.000

VarGrad 0.617 0.953 0.449 0.677 0.390 0.606 0.583 0.961
AGGyean 0.553 0.699 0.384 0.526 0.475 0.615 0.537 0.655
AGGy,, 0.549 0.689 0.386 0.526 0.474 0.609 0.536 0.653

AGG,,; (ours) 0.492 0.657 0.343 0.485 0.411 0.567 0.457 0.619
AGG;pyst (ours) | 0.491 0.650 0.339 0.476 0.389 0.547 0.439 0.627

D.3. Computation times of different aggregation strategies

In Table 7 we report the time required to retrieve optimal aggregation weights across 7 explainers for different models
evaluated on an NVIDIA RTX A5000 GPU and averaged over 100 samples with corresponding standard deviations:

Table 7. Inference times to perform weight optimization based on seven explanation methods for AGGyuin and AGG,opus as average over
100 samples with corresponding standard deviation.

Time (s) VGG16 ResNetl8  MobileNetV2 DenseNetl121 DeiT SwinT
AGGyin, 0.79 £0.06  0.75 +0.06  0.77 £0.06 1.49 £0.51 1.33 £0.92  0.83 +£0.09

AGGjpyse  22.57 £0.13  7.54 £0.25 13.06 £0.35  37.22 £4.01 17.96 £1.78 33.34 £1.17
AGG,,, 23.39 +£0.14 831 +£0.23 1391 £0.27  38.52£3.28 19.39 £4.59 3447 +1.13
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We believe the additional computational cost imposed by our aggregation technique is minor compared to the strong
improvements in explanation metrics.

D.4. Ablation Studies regarding number and diversity of combined explanations

Varying the number of methods to be aggregated We anticipate that our method will benefit from an increasing
number of considered attributions by automatically down-weighting disadvantageous explanations. This behaviour is also
exemplified in the last two rows of Figure 2 where deteriorated results received zero weight. To further investigate this, we
performed a dedicated experiment in which we increased the number of feature attribution methods incrementally from 2 to
7 on a ResNet18 over 100 samples. The results in Table 8 and 9 show that the metrics do indeed get better for robustness
and faithfulness, but the improvements seem to saturate at a certain point. The ordered set of explainers that were used for
this experiment is: DeepLift, VarGrad, GuidedBackprop, SmoothGrad, IntGrad, InputxGrad, Saliency.

Table 8. Robustness metrics for AGG,opu: cOmbining an in- Table 9. Faithfulness metrics for AGGy,;, combining an in-
creasing number of explanation methods creasing number explanation methods
AGG, pust 2 3 4 5 6 7 AGGpim 2 3 4 5 6 7
Save 4 052 043 042 041 041 041 INFD | 269 246 244 243 243 243
Smax 4 0.68 054 052 052 051 0.50 FCORt 046 049 0.50 051 051 0.50

Combining different types of explanation techniques Concerning the diversity of explainers to use, we argue that
our approach can be applied to fruitfully combine all methods that output fairly comparable explanations. This includes
gradient-based and perturbation-based ones and we expect that also a higher diversity will be advantageous. To further
investigate this, we evaluated our method again on 100 samples with a ResNetl8 using 3 gradient-based methods, 3
perturbation-based methods, and a combination of all 6. The results in Tables 10 and 11 indicate that including both types
does also benefit our aggregation approach. For instance, the perturbation-based methods seem to be significantly more
robust than the gradient-based ones but by combining them, we can even further improve their robustness. We can also
enhance faithfulness this way. The gradient-based methods used in this experiment are DeepLift, SmoothGrad, InputxGrad
and the perturbation-based methods used in this experiment are Lime, Shapley Values and Feature Ablation.

All methods have been computed based on their default implementation in Captum (Kokhlikyan et al., 2020) while we
additionally used a feature mask of 16x16 patches for all perturbation-based methods.

Table 10. Robustness metrics for AGG,pusr combining differ- Table 11. Faithfulness metrics for AGGp» combining differ-
ent types of explanation methods ent types of explanation methods
AGG,,p,ss Grad.-based Pert.-based Both AGGy  Grad.-based Pert.-based Both
SavG 4 0.65 0.49 0.46 INFD | 2.82 2.92 2.76
Smax 4 0.77 0.61 0.57 FCOR 1t 0.46 0.44 0.47
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