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Abstract
Federated learning with differential privacy,001
i.e. private federated learning (PFL), makes it002
possible to train models on private data dis-003
tributed across users’ devices without harming004
privacy. However, it is only known how to do005
this for models, such as neural networks, that006
have a fixed number of parameters, and thus a007
fixed-dimensional gradient vector. Such mod-008
els include neural-net language models, but009
not n-gram language models or, indeed, tok-010
enizers, the topic of this work. Training a to-011
kenizer normally requires access to the train-012
ing data. An alternative is to train the to-013
kenizer on publicly available data, but this,014
we show, degrades accuracy for a next-word015
prediction task by 10–20 % across different016
datasets and models. We propose to take a tok-017
enizer built on public data, use it to train a lan-018
guage model with PFL, and sample from the019
language model to find a new tokenizer. Re-020
training with the new tokenizer brings perfor-021
mance to within 2 % of the oracle tokenizer,022
without expending additional privacy budget.023
Finally, we build a new federated pipeline to024
update the tokenizer during model training by025
modifying affected model embeddings.026

1 Introduction027

Learning a language model (LM) requires a dataset028

that in many situations is private, resides on peo-029

ple’s devices, and should stay there. In federated030

learning (McMahan et al., 2017), a central server031

learns a model by receiving statistics, like param-032

eter updates, from many devices. Though devices033

send only statistics and not the raw data, federated034

learning by itself can leak information about the035

data (Shokri et al., 2017; Song et al., 2017). Private036

Federated Learning (PFL) (McMahan et al., 2018;037

Geyer et al., 2017) uses differential privacy (Dwork038

et al., 2006, 2014) to mitigate the privacy leaks by039

limiting the user’s impact on the final model.040

It is known how to train neural-net language041

models using PFL (McMahan et al., 2018). How-042

ever, an important part of language modeling is to- 043

kenization: turning text into a sequence of symbols 044

from a fixed-size symbol set. To obtain a tokenizer, 045

published research on private federated learning 046

of language models uses either of two approaches, 047

neither of which are satisfactory. One approach 048

is to train the tokenizer on user data directly. The 049

commonly-used LEAF dataset (Caldas et al., 2018) 050

and works relying on it (Li et al., 2021; Hu et al., 051

2021; Yu et al., 2020) assume access to the training 052

data to create the tokenizer. This is not relevant 053

to real-world use cases and undermines user pri- 054

vacy. The other approach is to use public unrelated 055

data to obtain the tokenizer (McMahan et al., 2018). 056

This is sensible from a privacy perspective, but as 057

we show the resulting distribution mismatch harms 058

performance, resulting in 10%-20% drop compared 059

to using an “oracle” tokenizer trained directly on 060

users’ private data. 061

There are two common types of tokenization, 062

which are affected by mismatched distributions 063

in different ways: word and sub-word tokeniza- 064

tion. Word-level tokenization assigns an out-of- 065

vocabulary token (OOV) to each unseen word. Text 066

from mismatched distributions will generally con- 067

tain unseen words, which means the correct word 068

cannot be predicted, and the context becomes less 069

meaningful when predicting the next word. It’s pos- 070

sible to discover new words with the character-level 071

model (Beaufays et al., 2019), however this method 072

requires a separate model, training run, and a dedi- 073

cated privacy budget. Sub-word tokenization splits 074

some words into multiple smaller tokens. This type 075

of tokenization is generally chosen to minimize 076

the average number of tokens per word. Current 077

centrally trained models use sub-word tokenization 078

such as Byte-Pair Encoding (Sennrich et al., 2016), 079

SentencePiece (Kudo and Richardson, 2018), or 080

WordPieces (Schuster and Nakajima, 2012). Nev- 081

ertheless, mismatched tokenizations in sub-word 082

methods cause an increase in the number of tokens 083
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per word, and thus decrease the amount of context084

the model can use to predict the distribution of the085

next word.086

In this work we present a general framework to087

approach training language models in private fed-088

erated learning by including tokenization as part of089

the training pipeline. Our contributions are: (1) we090

uncover the performance gaps when the models use091

the tokenizer obtained from a different distribution092

vs the tokenizer obtained from the underlying dis-093

tribution. For word-level tokenization we show that094

a tokenizer trained on public data reduces the next-095

word prediction accuracy of 10–20 % compared to096

a tokenizer estimated on user data. (2) We demon-097

strate significant benefits of switching tokenizers098

from word to sub-word level, thus eliminating the099

out-of-vocabulary problem. (3) We propose a new100

method that samples data from an existing model101

and uses the data to initialize a new tokenizer and102

update the model.103

2 Tokenization in language modeling104

A language model is a model that assigns proba-105

bilities to sequences of tokens. In this paper, it106

is always an autoregressive model with parame-107

ters θ: Pθ(s) = Pθ(t2|t1 = BOS) · Pθ(t3|t1 =108

BOS, t2) · · ·Pθ(tn = EOS|t1 = BOS, . . . , tn−1),109

where each term in this equation is normalized110

over all possible values of the current token. Lo-111

cal normalization is useful when decoding input,112

like in speech recognition or a soft keyboard (Hard113

et al., 2018).114

For this paper, assume that a corpus is segmented115

into sentences. A tokenizer τ then converts each116

sentence s in the dataset into a sequence of n to-117

kens τ(s) = [BOS, t2, .., tn−1,EOS]. There are118

two broad types of tokenizers for language mod-119

elling. A word-level tokenizer produces whole120

words as tokens. This implies a closed vocabu-121

lary, in which new words cannot be represented.122

Sub-word tokenizers, on the other hand, split some123

words into smaller pieces. Some types of sub-word124

tokenizers can allow an open vocabulary, where any125

unseen word can still be represented by a sequence126

of tokens.127

2.1 Word-level tokenization128

Papers that study language models in feder-129

ated learning commonly use word-level tokeniza-130

tion (McMahan et al., 2017). For a vocabulary of131

size N the tokenizer assigns a unique token for top-132

N most popular words in the dataset while other 133

words receive an out-of-vocabulary token OOV. 134

Some papers (e.g. McMahan et al., 2018) build 135

the tokenizer from a publicly available dataset, oth- 136

ers including the LEAF benchmark (Caldas et al., 137

2018) build the tokenizer from users’ training data. 138

Word-level schemes can be negatively affected 139

by the high number of OOVs in the test data, reduc- 140

ing essential context that language models need. 141

Private federated learning further complicates the 142

problem as the training data distribution is un- 143

known to the central server: the model inputs have 144

only few non-OOV tokens during training. For ex- 145

ample, in Section 5 we observe an increase in OOV 146

share from 5 % to 13 % for the Reddit dataset and 147

from 2 % to 10 % for the StackOverflow dataset 148

when initializing the N = 10, 000-word vocabu- 149

lary using Wikipedia data. Although Wikipedia 150

articles look far from the data in both datasets, it is 151

fair to assume that real-life applications can diverge 152

even more when participants are using different 153

dialects, topics, and contexts (we further explore 154

other datasets in Appendix A). 155

2.2 Sub-word tokenization 156

There are two popular schemes for sub-word to- 157

kenization: byte-pair encoding (BPE) (Sennrich 158

et al., 2016) and WordPieces (Schuster and Naka- 159

jima, 2012). We focus on BPE which unlike Word- 160

Pieces guarantees the absence of OOVs as there 161

exists a token for every byte. However, the number 162

of tokens required to encode each word can change 163

significantly depending on the dataset that the to- 164

kenizer was trained on. For example, a tokenizer 165

trained on data before the COVID-19 pandemic 166

would not assign the word “covid” a separate token 167

and instead split the word into multiple parts. 168

Generating longer token sequences has signifi- 169

cant implications when training language models. 170

The greater the number of tokens, the longer the 171

context a language model needs to keep track of. 172

Even LSTMs and other RNNs, which in theory can 173

use arbitrarily long history, have imperfect memory. 174

Therefore, the model performance can degrade due 175

to a lack of context as the mismatched tokenizer 176

splits words into more tokens than optimal. 177

2.3 Comparing across tokenizations 178

Comparing language models across tokenizations 179

is a complex problem. For example, when compar- 180

ing word-level language models using perplexity, 181

often OOVs are ignored which gives an edge to the 182
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language model with more OOVs, which is the op-183

posite of what is desired. The following sections184

detail the problems when comparing sub-word lan-185

guage models.186

2.3.1 Comparing word-level with sub-word187

Since a word-level language model has a closed188

vocabulary, it outputs probabilities only for the spe-189

cific set of words. An open-vocabulary language190

model can output the probability of any sequence.191

This distinction artificially lowers the perplexity of192

closed-vocabulary LMs, particularly on data with a193

large number of OOVs.194

One alternative is to compute the perplexity195

on the sub-word model trained on the dataset196

with words removed that are OOV for the other197

model. That allows us to train the model on the198

same data that the word-level tokenizer would pro-199

duce. However, it disadvantages the sub-word200

system, which assigns probability mass to out-of-201

vocabulary words.202

A better alternative, which this paper will use,203

is to compare model performance the word-level204

accuracy. The most accurate way would be to find205

the word with the highest probability by summing206

over sequences of tokens. However, we choose a207

simpler, though less accurate method (similar to208

Likhomanenko et al., 2019): repeatedly generate209

the best tokens within each word’s bounds and only210

accept the word as accurate if all generated tokens211

were correct.212

2.3.2 Comparing sub-word with sub-word213

It is possible to meaningfully compare perplexities214

of two language models with different sub-word215

tokenizations, although with one niggle and one216

tweak (Mielke, 2019).217

First, the niggle. A language model assigns prob-218

ability mass to all token sequences. However, a219

single sentence can have multiple corresponding to-220

ken sequences, one of which will be chosen by the221

tokenizer. Some of the probability mass will there-222

fore be lost to never-occurring token sequences.223

However, it is unfeasible to sum over all token224

sequences (Likhomanenko et al., 2019).225

Second, the tweak. The danger with comparing226

perplexities directly is that since models with dif-227

ferent tokenizers operate on different sets of tokens228

the number of tokens needed to encode each sen-229

tence is different in general (Mielke, 2019). How-230

ever, note that all models assign a probability to a231

sentence (with the niggle above). For the model232

θ trained with the tokenizer τ , and a sentence s 233

that contains tokens t1, .., tn where t1 = BOS and 234

tn = EOS: 235

Pθ,τ (s) '
n∏
i

p(ti|t1...ti−1) = 236

p(t2|BOS) · ... · p(EOS|BOS, .., tn−1) (1) 237

Similarly the model θ′ trained with the tokenizer τ ′ 238

would output Pθ′,τ ′(s) = Pθ′(t
′
1, . . . , t

′
n′), where 239

n 6= n′ in general. Both Pθ,τ (s) and Pθ′,τ ′(s) rep- 240

resent the probability of outputting the same sen- 241

tence s regardless of the tokenization methods or 242

the model and thus are comparable. 243

The tweak, then, is to use the same denominator 244

in computing the perplexity: the number of words 245

in the sentence instead of number of tokens, which 246

depends on the tokenizer. Therefore we define the 247

perplexity as: 248

pplθ,τ (s) = exp

(
− log(Pθ,τ (s))

‖s‖w

)
(2) 249

where ‖s‖w counts the number of words in the sen- 250

tence s. For a dataset containing many sentences, 251

the probabilities multiply across sentences. To gen- 252

eralize (2), the log-probabilities can be summed 253

and the whole divided by the total word count in 254

the dataset. 255

3 Private federated learning 256

In many scenarios, text data is private and con- 257

tained on people’s devices, and should stay there. 258

Learning a central model is then possible only with 259

federated learning (McMahan et al., 2017). This 260

involves devices sending not the data, but statistics 261

derived from the data (e.g. gradients). However, 262

even from just the statistics, it is often still possible 263

derive private information including user partici- 264

pation in training (Shokri et al., 2017; Song et al., 265

2017; Melis et al., 2019). 266

To mitigate this threat we can combine feder- 267

ated learning with differential privacy (DP) (Dwork 268

et al., 2006, 2014), to give private federate learn- 269

ing (McMahan et al., 2018). Differential privacy 270

gives a strong guarantee: it limits the advantage that 271

a computationally unconstrained adversary has in 272

inferring whether an individual’s data is contained 273

in the data set that the statistics are computed from. 274

(ε, δ)-differential privacy parametrizes this advan- 275

tage by ε (the maximum privacy loss) and δ (a slack 276

term). 277
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The common mechanism to provide differen-278

tial privacy in a federated setting is the Gaussian279

mechanism that uses moments accountant (Abadi280

et al., 2016). This can be used in “local differen-281

tial privacy”, where each device is responsible for282

adding sufficient noise, or “central differential pri-283

vacy”, where a trusted third party collects data from284

individuals and outputs noisy statistics. Central285

DP is attractive since it does not require adding as286

much noise. However, for machine learning tasks,287

a trusted third party is usually unavailable. Luckily,288

it is known how to replace the trusted third party289

can be replaced by secure multiparty computation290

for one particular type of statistic (Goryczka and291

Xiong, 2015; Bonawitz et al., 2017): a noisy sum292

over individual contributions that are fixed-length293

vectors. Phrasing an algorithm for federated learn-294

ing in terms of such a sum can therefore enable295

central DP instead of local DP, greatly improving296

utility in practice.297

Examples of algorithms for federated learning298

that perform gradient-based learning, e.g. for neu-299

ral networks, are federated SGD and federated av-300

eraging (McMahan et al., 2017). In federated SGD,301

the server holds a model and sends it to a cohort302

of devices. Each device computes a gradient on its303

data and sends this gradient back. Critically, each304

device’s gradient has the same dimensionality, so305

that the sum of the gradients can be noised to pro-306

vide differential privacy. The server then updates307

the model in the direction of the average gradient.308

Federated averaging (McMahan et al., 2017) is a309

generalization of federated SGD where each de-310

vice takes multiple gradient steps and contributes311

the sum of these gradients. Other techniques for312

federated optimization (Wang et al., 2021) can fur-313

ther improve performance, however for this paper314

will use federated averaging, since it works well in315

practice, and combine it with differential privacy.316

3.1 Privately finding vocabulary items317

To perform federated learning on data that is not318

straightforwardly described as summable vectors,319

custom algorithms are needed. There exist differ-320

entially private algorithms to compute a histogram321

over multisets of elements (e.g. words) distributed322

over devices. These are called “heavy hitters” algo-323

rithms (Bassily et al., 2017; Zhu et al., 2020; Apple,324

2017). However, heavy hitters algorithms require a325

separate privacy budget (since εs essentially add up326

in DP) and in Section 5 we show that the created327

vocabulary does not provide a significant perfor- 328

mance boost. 329

Another way of finding vocabulary items pri- 330

vately is to train a neural-net generative model. Bea- 331

ufays et al. (2019) trains a separate, character-level 332

LSTM model to generate the new words. However, 333

the proposed method only works to discover OOVs 334

in a word-level model and also requires separate 335

training and a privacy budget. 336

New techniques exist to improve tokenization 337

(Xu et al., 2021; Park et al., 2021; Guo et al., 2021), 338

but they require access to training data. 339

4 Learning a tokenizer with private 340

federated learning 341

We focus on a common application of federated 342

learning: training a language model, parameterized 343

by θ, using federated learning with differential pri- 344

vacy. In our setting each user ui has a dataset di of 345

private texts from a private distribution of user data 346

D. The trained model will be evaluated against a 347

held-out dataset Dtest, e.g. a mix of all user data, 348

which in practice must be replaced by federated 349

evaluation. 350

We assume that the central server does not have 351

access to the user data distribution D and can only 352

approximate it with the publicly available dataset 353

Dpub. We assume the public data is some com- 354

monly available dataset, such as Wikipedia (Merity 355

et al., 2017). The tokenizer trained on this public 356

data will be τpub. For comparison we assume the 357

existence of an oracle tokenizer τo initialized on 358

users’ training data D. 359

Papers that study language models in feder- 360

ated learning commonly use word-level tokeniza- 361

tion. While some papers (e.g. McMahan et al., 362

2018), build the vocabulary using publicly avail- 363

able dataset, others (e.g. Yu et al., 2020; Caldas 364

et al., 2018) explicitly use the federated training 365

data, even though in real-world scenarios the anal- 366

ogous data would be unavailable and it violates 367

privacy guarantees when used in PFL (Li et al., 368

2021). 369

Problem definition. We aim to obtain a tokenizer 370

that works well on users’ federated data without 371

compromising user privacy. First, we aim to find 372

the appropriate tokenization scheme, and second, 373

given the tokenization scheme obtain the right ap- 374

proximation of user data to train the tokenizer. 375

Proposed solution. We pick a sub-word tokenizer 376

with an open vocabulary that allows the language 377
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Figure 1: New pipeline for updating the tokenizer through model sampling.

model trained with such a tokenizer to represent378

any word, if inefficiently. It is then possible to379

query the language model to find new words. This380

is the core of the Algorithm 1 that this paper intro-381

duces.382

Figure 1 shows the proposed pipeline. A lan-383

guage model is trained with private federated learn-384

ing. This results (on the left) in a model matched385

with an old, stale tokenizer. The next block queries386

the language model to produce a better tokenizer,387

with a method that section 4.1 will detail. The block388

after that updates the language model for the new389

tokenizer, using reasonable guesses for the new390

parameters. This results in a new LM-tokenizer391

combination that can be trained further with PFL.392

We assume that the language model obtained393

with the stale tokenizer is trained with a certain394

privacy budget. The postprocessing guarantee of395

differential privacy means that the steps other than396

private federated learning do not consume any fur-397

ther budget. The function UPDATE in Algorithm 1398

performs the on-server steps. The following sec-399

tions will give more detail.400

4.1 New tokenizer from a trained LM401

Training a tokenizer requires text data. Since the402

raw data is not available, we propose to instead sam-403

ple from the LM matched with the stale tokenizer,404

as detailed in Algorithm 1. The SAMPLETOKENS405

function samples from the language model, draw-406

ing sequences of tokens according to the probabili-407

ties that the model assigns to them. The SAMPLE408

function then converts these sequences in the old to-409

kenization into word sequences, by decoding with410

τpub. Once a large enough corpus of word-level411

sentences has been produced, training a tokenizer412

proceeds as normally (the TRAINTOKENIZER func-413

tion is not specified).414

4.2 Changing tokenizer on an existing model 415

After a new tokenizer τ has been trained, the lan- 416

guage model, trained with τpub, must be updated 417

to work with the new tokenizer. Neural-net lan- 418

guage models use an embedding layer to convert 419

the provided tokens into multi-dimensional vectors. 420

It is the embedding vectors that are most important 421

to modify when changing the tokenization. The 422

rest of the model only consumes the embedding 423

vector. It is not possible to find the optimal param- 424

eters without further training of both embeddings 425

and other layers, but we propose an algorithm to 426

find a reasonable starting point, in the function 427

REMAP(τ, τpub) in Algorithm 1. 428

REMAP iterates over the tokens from the new to- 429

kenizer τ and creates the mapping from the tokens’ 430

embedding in the public tokenizer τpub to the new 431

token’s embedding. In some cases it is a one-to- 432

one mapping, but when the new token accumulates 433

multiple tokens in τpub we split the weight equally 434

between each token. 435

Once we have the mapping map we modify 436

the embedding layer of the model by perform- 437

ing matrix multiplication, i.e. θ.embedding = 438

map · θ.embedding. The resulting model can ac- 439

cept the tokens from the new tokenizer τ , and can 440

participate in future training in federated learning. 441

5 Experiments 442

We evaluate effects of tokenizers trained on the 443

distributions matched and mismatched to real data, 444

we test the proposed approach on different datasets 445

for federated learning. 446

5.1 Experimental setup. 447

We use two datasets common in the federated learn- 448

ing literature (Kairouz et al., 2019). While both 449

use English, there is nothing about our experiments 450

that is specific to this language, and multilingual 451

5



Algorithm 1 Model sampling algorithm

Inputs: model θ, current sentence s, new tok-
enizer τ , public tokenizer τpub, size of the sam-
pled dataset corpus_size.
function SAMPLETOKENS(θ, s)

tnext ∼θ tk|s
if tnext = EOS then

return s++ tnext
else

return SAMPLETOKENS(θ, s++ tnext)

function SAMPLE(θ, τ )
return τ.decode(

SAMPLETOKENS(θ, [BOS]))

function REMAP(τpub, τ )
map = zeros(τ.size, τpub.size)
for token, tid← τ.vocab do

tokens = τpub.decode(token)
for token← tokens do

tidpub = τpub.vocab[token]
map[tidpub, tid] = 1/len(tokens)

return map

function UPDATE(θ, τpub)
while len(corpus) < corpus_size do

corpus← SAMPLE(θ, ∅, lmax)

τ = TRAINTOKENIZER(corpus)
map = REMAP(τpub, τ)
θ.embedding = map · θ.embedding
return θ, τ

datasets can further benefit from using Sentence-452

Piece tokenization (Kudo and Richardson, 2018),.453

• Reddit data – this dataset is taken from the454

LEAF benchmark (Caldas et al., 2018) and455

contains over a million users that have multi-456

ple posts on the Reddit platform. As proposed457

by LEAF, we limit each user to contain at458

most 1600 tokens and use 10 % of users for459

faster training.460

• StackOverflow data – this data is taken from461

Kaggle (Kaggle, 2021) and processed with the462

TensorFlow Federated framework. The train463

split of the dataset contains 342k users and we464

select at most 1600 tokens per user.465

Model parameters. We use an LSTM model with466

3 layers, and total parameters of 14M. We also use467

a transformer language model with 6 layers and the468

same total number of parameters as the LSTM (see 469

Appendix A). Each model is trained from scratch. 470

Hyper-parameters. We set the privacy budget to 471

ε = 2 and δ = 10−6 and clipping bound to 0.5. 472

The overall population for the moments accountant 473

is assumed to be 10m. We use a cohort size of 474

20,000 and train all models for 5,000 iterations. 475

We use Adam (Kingma and Ba, 2015) for central 476

optimization with learning rate set to 0.5. For the 477

clients’ local SGD, we train one local epoch with 478

batch size set to 16 and local learning rate set to 479

0.1. 480

Vocabulary size. We assume that the tokenizer has 481

a moderate vocabulary size such as 10,000 tokens 482

(we experiment with larger vocabularies in Ap- 483

pendix A). Smaller vocabularies reduce model size 484

and, therefore, might be better for deployment on 485

devices and communication with the global server. 486

Tokenizer details. To train an initial tokenizer we 487

use a popular and public Wikipedia dataset (Merity 488

et al., 2017). It may seem like the distribution of 489

Wikipedia data is artificially far from the distribu- 490

tions of Reddit and StackOverflow data. However, 491

in real-world scenarios it is unknown how different 492

private data is from public data, and it is important 493

to understand the effects of using disparate distri- 494

butions on the algorithm we propose. Also, when 495

running the same algorithm with a Reddit tokenizer 496

to find a StackOverflow tokenizer and vice versa, 497

those distributions similarly turn out to be far away 498

from each other. Appendix A shows this. 499

We use BPE tokenization from the HuggingFace 500

Tokenizer library (Huggingface, 2021) to train the 501

tokenizer. Each user post is surrounded by special 502

tokens BOS and EOS. We also tried WordPieces 503

tokenization which has slightly better performance 504

than BPE but cannot encode all words and is there- 505

fore less applicable in a FL setting. 506

Note on splitting data. Whereas the original 507

LEAF dataset for Reddit proposes to split each 508

user’s data we argue that in real life not every user 509

might have a chance to participate in the training. 510

Therefore, we split users into two distinct training 511

and test sets and evaluate the model on data from 512

the users who have never participated in the train- 513

ing. This results in notably increased test perplex- 514

ity but provides a clear separation between training 515

and inference modes. 516
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Reddit

i would love to know why we may already live in a

consolation subreddit and the aforementioned it will

almost always be done on the warrior sheet shows

from the west . i

StackOverflow

json results are : can anyone provide a complete

sample response ( lists of descendants list ) to my

page depending on future python functions . in web

apps that require patient for many

Figure 2: Example of sampling data from the model.

5.2 Comparing tokenization schemes517

Table 1 summarizes experiments that use differ-518

ent tokenization schemes. For comparison we use519

word-level accuracy and perplexity as described in520

Section 2.3. We also compute statistics on tokeniz-521

ers: average share of OOV tokens for the word-level522

scheme and an average number of tokens required523

to encode one word for the sub-word scheme. The524

“wiki” tokenizers are trained on the Wikipedia data,525

and the “oracle” tokenizers directly on the training526

data.527

Word-level tokenization provides very high528

word-level accuracy when it is trained using “ora-529

cle” user training data. However, when the word-530

level has access to only public “wiki” dataset the531

performance significantly drops: by 26 % for Red-532

dit and 10 % for StackOverflow with a significant533

increase in out-of-vocabulary share. However, BPE534

tokenizers that use public data perform more con-535

sistently and outperform the word-level models536

trained on public data, but still require large num-537

ber of tokens per each word.538

5.3 Learning tokenizer with model sampling539

A key part of the proposed algorithm is the sam-540

pling from a model that uses a public tokenizer541

τpub, but is trained with private federated learning542

and should represent the words in the actual data.543

The sampling is implemented as in Algorithm 1.544

First, Figure 2 shows samples from the language545

models on the two data sets. Although clearly the546

samples are less coherent than the underlying data,547

it seems plausible that the word occurrences match548

that data.549

Second, Table 1 further investigates the proper-550

ties of the sampled text. The “BPE sample” rows551

refer to the method proposed in this paper. A lan-552

guage model with the “wiki” tokenizer is trained553

Table 1: The quality of the sampled data.

τ LM
τ Data Data OOV Tokens Acc. Perp.

KLD (%) p/word (%)

Reddit
WL wiki 13.0 1.00 17.7
WL oracle 5.5 1.00 24.1

BPE wiki 0.78 0.0 1.32 22.2 276.5
BPE oracle 0 0.0 1.22 22.5 256.9

BPE sample 0.02 0.0 1.22 22.5 257.7
BPE HH 0.09 0.0 1.30 22.1 274.2

StackOverflow
WL wiki 9.8 1.00 30.0
WL oracle 2.0 1.00 33.0

BPE wiki 1.06 0.0 1.41 31.8 124.6
BPE oracle 0 0.0 1.24 32.4 108.2

BPE sample 0.01 0.0 1.23 32.4 108.7
BPE HH 0.10 0.0 1.29 32.1 115.9

with PFL on the first half of the training data. Then 554

samples are drawn from this language model. Then, 555

the language model is trained from scratch on the 556

second half of the training data. 557

The “BPE HH” rows refer to training with a dif- 558

ferentially private “heavy hitters” algorithm (Apple, 559

2017). Each of the population of the users from the 560

first half of the training set contributes three words 561

from the from the Wikipedia dataset, with a local 562

privacy budget of ε = 8. Just like for the sampling 563

approach, the language model is then trained from 564

scratch on the second half of the training data. 565

First, we examine the difference between the 566

real training data and the data used to train the 567

tokenizers. The column “Data KLD” shows the KL 568

divergence from the training data to the sampled 569

data. The KL divergence is computed from the 570

unigram counts, which are relevant for training a 571

tokenizer, by assuming add-1 smoothing and using 572

the top 10,000 words from the training data. The 573

KL divergence to the training data itself, which the 574

oracle tokenizer is trained on, is 0 by definition. 575

The KL divergence between the actual data and 576

the Wikipedia data, on the other hand, is around 1, 577

for both datasets. Both the heavy hitters algorithm 578

and the algorithm we propose in this paper find a 579

distribution close to the real distribution. 580

For sub-word tokenizers, the number of tokens 581

per word is relevant. Even though they can repre- 582

sent unseen words by multiple tokens, the language 583

models trained on top of that have a harder task 584

given the longer context on average. The oracle to- 585

kenizer has the lowest number of tokens per words 586

7



260
270
280
290
300
310
320
330
340

Pe
rp
le
xi
ty

1000 2000 3000 4000 5000
Central iteration

Baseline

1k 2k 3k 4k

(a) Reddit dataset

110

120

130

140

Pe
rp
le
xi
ty

1000 2000 3000 4000 5000
Central iteration

Baseline

1k 2k 3k 4k

(b) StackOverflow dataset

Figure 3: Perplexity for switching the tokenizer at different numbers of iterations.

and the “wiki” tokenizer the highest. The “BPE587

sample” tokenizer comes very close to the oracle588

tokenizer.589

However, heavy hitters experiment shows much590

smaller gain in performance, i.e. better than “wiki”591

tokenizer but still worse than our proposed sam-592

pling method. Furthermore, it requires a separate593

privacy budget allocated for the run, while sam-594

pling can operate on existing prior model.595

5.4 Iterative updates596

This part implements Algorithm 1 completely. We597

again initialize the tokenizer on publicly available598

data. We then train the language model with PFL.599

At a point during training, we retrain the tokenizer600

by sampling. Unlike in the previous section, we601

update the language model by remapping its em-602

bedding layer, and continue training. We sample603

the same data before and after changing the tok-604

enizer.605

Figure 3 shows the results for changing tokeniz-606

ers at different times. The “Wiki” curve represents607

the baseline system using public tokenizer τpub.608

Each of the other curves takes the system from the609

“wiki” curve at a different iteration. As expected,610

the initial remapping of the embedding layer is not611

perfect and needs finetuning. The graph also shows612

the tradeoff in when to change tokenizers: too early,613

e.g. after only 1000 iterations, and the tokenizer is614

not representative enough yet; too late, e.g. after615

4000 iterations, and there is not enough time to616

converge again.617

6 Conclusion618

This paper has proposed a method that allows a619

tokenizer to be found together with a language620

model using private federated learning. First, it 621

has shown that a mismatched tokenizer can cause 622

a significant performance degradation. The key to 623

improving this is to use a sub-word tokenizer which 624

allows new words to be represented as a sequence 625

of tokens. Then, a language model trained with 626

PFL can represent the private data. This paper has 627

presented a method to produce a new tokenizer 628

from that model, and to convert the model to work 629

with the new tokenizer. When this is trained further 630

with private federated learning, it outperforms the 631

language model with the mismatched tokenizer, 632

and gets close to one with the oracle tokenizer. 633

Personalization and Fairness. The problem of 634

out-of-vocabulary words might be more acute for 635

some users that use unique vocabulary, such as 636

dialect, and impact individual performance. There- 637

fore good tokenizers can benefit personalization in 638

federated models (Li et al., 2021; Yu et al., 2020). 639
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A Impact of hyperparameters778

This section examines different hyperparameters.779

A.1 Experimental design780

First, consider the choice to train the public tok-781

enizer on Wikipedia data. To examine the effect782

of using a more conversational style corpus. To do783

this, Table 2 takes a subset of the numbers from784

Table 1 and adds a scenario where a tokenizer on785

StackOverflow data is used with Reddit data and786

vice versa. The cross-dataset numbers are high-787

lighted bold in the table.788

First, in terms of the KL divergence the Stack-789

Overflow data seems a slightly better model for790

the Reddit distribution than the Wikipedia data is.791

However, when using PFL to train on Reddit data,792

but with a StackOverflow-trained tokenizer, the793

perplexity deteriorates compared to the Wikipedia-794

trained tokenizer. Second, the reverse experiment795

looks a bit better but not hugely better. Though796

the KL divergence from the StackOverflow data797

to the Reddit data is significantly better than the798

KL divergence to the Wikipedia data, some of that799

advantage disappears in the final trained model.800

Table 2: The effect of using the Wikipedia corpus
against the results in Table 1.

τ Data Data LM
KLD perp.

Reddit
BPE Wikipedia 0.7826 276.5
BPE StackOverflow 0.6046 283.6
BPE Reddit 0 256.9

BPE sample 0.0212 257.7

StackOverflow
BPE Wikipedia 1.0629 124.6
BPE Reddit 0.5315 118.8
BPE StackOverflow 0 108.2

BPE sample 0.0089 108.7

Table 3: The effect of varying the vocabulary size.

Vocab size Reddit StackOverflow
Wiki Oracle Wiki Oracle

5,000 304.3 282.2 136.3 116.8
10,000 276.5 256.9 124.6 108.2
50,000 243.9 225.4 111.5 101.5
100,000 231.2 217.9 108.9 100.5

Then, consider the choice of vocabulary size, 801

here the number of distinct tokens. Table 3 shows 802

the perplexities for the baseline (“Wiki”) and ceil- 803

ing (“oracle”) experiments. Though the absolute 804

numbers change, the trends do not change. 805

Similarly for changing model architectures. This 806

paper has presented results on an LSTM model. Ta- 807

ble 4 shows results on a Transformer model. Again, 808

though the absolute numbers change, the trends do 809

not change. 810

A.2 Other hyperparameters 811

We consider two hyperparameter choices for exper- 812

iments: first, the privacy budget, and secondly, the 813

cohort size. 814

Figure 4 shows the effect of different privacy 815

Table 4: The effect of changing model architectures.

Model Reddit StackOverflow
architecture Wiki Oracle Wiki Oracle

Transformer 261.9 244.8 117.4 107.0
LSTM 276.5 256.9 124.6 108.2
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parameters. The effects are not huge, but clearly816

differential privacy does impede learning some-817

what.818

Figure 5 shows the effect of differing cohort819

sizes. A larger cohort size implies a better signal-to-820

noise ratio when training with differential privacy.821

However, for practical reasons it is preferable for822

cohorts to be smaller. 10,000 is a happy medium823

between good performance and practicality. Also,824

again, though the absolute numbers change, the825

trends do not change.826
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