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Abstract

Federated learning with differential privacy,
i.e. private federated learning (PFL), makes it
possible to train models on private data dis-
tributed across users’ devices without harming
privacy. However, it is only known how to do
this for models, such as neural networks, that
have a fixed number of parameters, and thus a
fixed-dimensional gradient vector. Such mod-
els include neural-net language models, but
not n-gram language models or, indeed, tok-
enizers, the topic of this work. Training a to-
kenizer normally requires access to the train-
ing data. An alternative is to train the to-
kenizer on publicly available data, but this,
we show, degrades accuracy for a next-word
prediction task by 10-20 % across different
datasets and models. We propose to take a tok-
enizer built on public data, use it to train a lan-
guage model with PFL, and sample from the
language model to find a new tokenizer. Re-
training with the new tokenizer brings perfor-
mance to within 2 % of the oracle tokenizer,
without expending additional privacy budget.
Finally, we build a new federated pipeline to
update the tokenizer during model training by
modifying affected model embeddings.

1 Introduction

Learning a language model (LM) requires a dataset
that in many situations is private, resides on peo-
ple’s devices, and should stay there. In federated
learning (McMabhan et al., 2017), a central server
learns a model by receiving statistics, like param-
eter updates, from many devices. Though devices
send only statistics and not the raw data, federated
learning by itself can leak information about the
data (Shokri et al., 2017; Song et al., 2017). Private
Federated Learning (PFL) (McMabhan et al., 2018;
Geyer et al., 2017) uses differential privacy (Dwork
et al., 2006, 2014) to mitigate the privacy leaks by
limiting the user’s impact on the final model.

It is known how to train neural-net language
models using PFL. (McMabhan et al., 2018). How-

ever, an important part of language modeling is to-
kenization: turning text into a sequence of symbols
from a fixed-size symbol set. To obtain a tokenizer,
published research on private federated learning
of language models uses either of two approaches,
neither of which are satisfactory. One approach
is to train the tokenizer on user data directly. The
commonly-used LEAF dataset (Caldas et al., 2018)
and works relying on it (Li et al., 2021; Hu et al.,
2021; Yu et al., 2020) assume access to the training
data to create the tokenizer. This is not relevant
to real-world use cases and undermines user pri-
vacy. The other approach is to use public unrelated
data to obtain the tokenizer (McMahan et al., 2018).
This is sensible from a privacy perspective, but as
we show the resulting distribution mismatch harms
performance, resulting in 10%-20% drop compared
to using an “oracle” tokenizer trained directly on
users’ private data.

There are two common types of tokenization,
which are affected by mismatched distributions
in different ways: word and sub-word tokeniza-
tion. Word-level tokenization assigns an out-of-
vocabulary token (OOV) to each unseen word. Text
from mismatched distributions will generally con-
tain unseen words, which means the correct word
cannot be predicted, and the context becomes less
meaningful when predicting the next word. It’s pos-
sible to discover new words with the character-level
model (Beaufays et al., 2019), however this method
requires a separate model, training run, and a dedi-
cated privacy budget. Sub-word tokenization splits
some words into multiple smaller tokens. This type
of tokenization is generally chosen to minimize
the average number of tokens per word. Current
centrally trained models use sub-word tokenization
such as Byte-Pair Encoding (Sennrich et al., 2016),
SentencePiece (Kudo and Richardson, 2018), or
WordPieces (Schuster and Nakajima, 2012). Nev-
ertheless, mismatched tokenizations in sub-word
methods cause an increase in the number of tokens



per word, and thus decrease the amount of context
the model can use to predict the distribution of the
next word.

In this work we present a general framework to
approach training language models in private fed-
erated learning by including tokenization as part of
the training pipeline. Our contributions are: (1) we
uncover the performance gaps when the models use
the tokenizer obtained from a different distribution
vs the tokenizer obtained from the underlying dis-
tribution. For word-level tokenization we show that
a tokenizer trained on public data reduces the next-
word prediction accuracy of 10-20 % compared to
a tokenizer estimated on user data. (2) We demon-
strate significant benefits of switching tokenizers
from word to sub-word level, thus eliminating the
out-of-vocabulary problem. (3) We propose a new
method that samples data from an existing model
and uses the data to initialize a new tokenizer and
update the model.

2 Tokenization in language modeling

A language model is a model that assigns proba-
bilities to sequences of tokens. In this paper, it
is always an autoregressive model with parame-
ters 0: Py(s) = Py(te|t1 = BOS) - Py(tslt1 =
BOS,t2) -+ Py(t, = EOS|t1 = BOS,...,tn—1),
where each term in this equation is normalized
over all possible values of the current token. Lo-
cal normalization is useful when decoding input,
like in speech recognition or a soft keyboard (Hard
etal., 2018).

For this paper, assume that a corpus is segmented
into sentences. A tokenizer 7 then converts each
sentence s in the dataset into a sequence of n to-
kens 7(s) = [BOS,tg,..,tn—1,E0S]. There are
two broad types of tokenizers for language mod-
elling. A word-level tokenizer produces whole
words as tokens. This implies a closed vocabu-
lary, in which new words cannot be represented.
Sub-word tokenizers, on the other hand, split some
words into smaller pieces. Some types of sub-word
tokenizers can allow an open vocabulary, where any
unseen word can still be represented by a sequence
of tokens.

2.1 Word-level tokenization

Papers that study language models in feder-
ated learning commonly use word-level tokeniza-
tion (McMabhan et al., 2017). For a vocabulary of
size N the tokenizer assigns a unique token for top-

N most popular words in the dataset while other
words receive an out-of-vocabulary token OOV.
Some papers (e.g. McMahan et al., 2018) build
the tokenizer from a publicly available dataset, oth-
ers including the LEAF benchmark (Caldas et al.,
2018) build the tokenizer from users’ training data.

Word-level schemes can be negatively affected
by the high number of OOVs in the test data, reduc-
ing essential context that language models need.
Private federated learning further complicates the
problem as the training data distribution is un-
known to the central server: the model inputs have
only few non-OOV tokens during training. For ex-
ample, in Section 5 we observe an increase in OOV
share from 5 % to 13 % for the Reddit dataset and
from 2 % to 10 % for the StackOverflow dataset
when initializing the N = 10, 000-word vocabu-
lary using Wikipedia data. Although Wikipedia
articles look far from the data in both datasets, it is
fair to assume that real-life applications can diverge
even more when participants are using different
dialects, topics, and contexts (we further explore
other datasets in Appendix A).

2.2  Sub-word tokenization

There are two popular schemes for sub-word to-
kenization: byte-pair encoding (BPE) (Sennrich
et al., 2016) and WordPieces (Schuster and Naka-
jima, 2012). We focus on BPE which unlike Word-
Pieces guarantees the absence of OOVs as there
exists a token for every byte. However, the number
of tokens required to encode each word can change
significantly depending on the dataset that the to-
kenizer was trained on. For example, a tokenizer
trained on data before the COVID-19 pandemic
would not assign the word “covid” a separate token
and instead split the word into multiple parts.

Generating longer token sequences has signifi-
cant implications when training language models.
The greater the number of tokens, the longer the
context a language model needs to keep track of.
Even LSTMs and other RNNs, which in theory can
use arbitrarily long history, have imperfect memory.
Therefore, the model performance can degrade due
to a lack of context as the mismatched tokenizer
splits words into more tokens than optimal.

2.3 Comparing across tokenizations

Comparing language models across tokenizations
is a complex problem. For example, when compar-
ing word-level language models using perplexity,
often OOVs are ignored which gives an edge to the



language model with more OOVs, which is the op-
posite of what is desired. The following sections
detail the problems when comparing sub-word lan-
guage models.

2.3.1 Comparing word-level with sub-word

Since a word-level language model has a closed
vocabulary, it outputs probabilities only for the spe-
cific set of words. An open-vocabulary language
model can output the probability of any sequence.
This distinction artificially lowers the perplexity of
closed-vocabulary LMs, particularly on data with a
large number of OOVs.

One alternative is to compute the perplexity
on the sub-word model trained on the dataset
with words removed that are OOV for the other
model. That allows us to train the model on the
same data that the word-level tokenizer would pro-
duce. However, it disadvantages the sub-word
system, which assigns probability mass to out-of-
vocabulary words.

A better alternative, which this paper will use,
is to compare model performance the word-level
accuracy. The most accurate way would be to find
the word with the highest probability by summing
over sequences of tokens. However, we choose a
simpler, though less accurate method (similar to
Likhomanenko et al., 2019): repeatedly generate
the best tokens within each word’s bounds and only
accept the word as accurate if all generated tokens
were correct.

2.3.2 Comparing sub-word with sub-word

It is possible to meaningfully compare perplexities
of two language models with different sub-word
tokenizations, although with one niggle and one
tweak (Mielke, 2019).

First, the niggle. A language model assigns prob-
ability mass to all token sequences. However, a
single sentence can have multiple corresponding to-
ken sequences, one of which will be chosen by the
tokenizer. Some of the probability mass will there-
fore be lost to never-occurring token sequences.
However, it is unfeasible to sum over all token
sequences (Likhomanenko et al., 2019).

Second, the tweak. The danger with comparing
perplexities directly is that since models with dif-
ferent tokenizers operate on different sets of tokens
the number of tokens needed to encode each sen-
tence is different in general (Mielke, 2019). How-
ever, note that all models assign a probability to a
sentence (with the niggle above). For the model

0 trained with the tokenizer 7, and a sentence s
that contains tokens ¢, .., t,, where t; = BOS and
t, = EOS:

n
ngT(s) ~ Hp(ti’tl---tifl) =
i

p(t2|BOS) - ... - p(EOS|BOS, .., th—1) (1)

Similarly the model ¢’ trained with the tokenizer 7/
would output Py (s) = Py/(t},...,t,,), where
n # n' in general. Both Py . (s) and Py ,/(s) rep-
resent the probability of outputting the same sen-
tence s regardless of the tokenization methods or
the model and thus are comparable.

The tweak, then, is to use the same denominator
in computing the perplexity: the number of words
in the sentence instead of number of tokens, which
depends on the tokenizer. Therefore we define the
perplexity as:

—10g(P97r(8))> Q)

oo 40 = s (=

where || s||,, counts the number of words in the sen-
tence s. For a dataset containing many sentences,
the probabilities multiply across sentences. To gen-
eralize (2), the log-probabilities can be summed
and the whole divided by the total word count in
the dataset.

3 Private federated learning

In many scenarios, text data is private and con-
tained on people’s devices, and should stay there.
Learning a central model is then possible only with
federated learning (McMahan et al., 2017). This
involves devices sending not the data, but statistics
derived from the data (e.g. gradients). However,
even from just the statistics, it is often still possible
derive private information including user partici-
pation in training (Shokri et al., 2017; Song et al.,
2017; Melis et al., 2019).

To mitigate this threat we can combine feder-
ated learning with differential privacy (DP) (Dwork
et al., 2006, 2014), to give private federate learn-
ing (McMabhan et al., 2018). Differential privacy
gives a strong guarantee: it limits the advantage that
a computationally unconstrained adversary has in
inferring whether an individual’s data is contained
in the data set that the statistics are computed from.
(e, 0)-differential privacy parametrizes this advan-
tage by € (the maximum privacy loss) and § (a slack
term).



The common mechanism to provide differen-
tial privacy in a federated setting is the Gaussian
mechanism that uses moments accountant (Abadi
et al., 2016). This can be used in “local differen-
tial privacy”, where each device is responsible for
adding sufficient noise, or “central differential pri-
vacy”, where a trusted third party collects data from
individuals and outputs noisy statistics. Central
DP is attractive since it does not require adding as
much noise. However, for machine learning tasks,
a trusted third party is usually unavailable. Luckily,
it is known how to replace the trusted third party
can be replaced by secure multiparty computation
for one particular type of statistic (Goryczka and
Xiong, 2015; Bonawitz et al., 2017): a noisy sum
over individual contributions that are fixed-length
vectors. Phrasing an algorithm for federated learn-
ing in terms of such a sum can therefore enable
central DP instead of local DP, greatly improving
utility in practice.

Examples of algorithms for federated learning
that perform gradient-based learning, e.g. for neu-
ral networks, are federated SGD and federated av-
eraging (McMabhan et al., 2017). In federated SGD,
the server holds a model and sends it to a cohort
of devices. Each device computes a gradient on its
data and sends this gradient back. Critically, each
device’s gradient has the same dimensionality, so
that the sum of the gradients can be noised to pro-
vide differential privacy. The server then updates
the model in the direction of the average gradient.
Federated averaging (McMahan et al., 2017) is a
generalization of federated SGD where each de-
vice takes multiple gradient steps and contributes
the sum of these gradients. Other techniques for
federated optimization (Wang et al., 2021) can fur-
ther improve performance, however for this paper
will use federated averaging, since it works well in
practice, and combine it with differential privacy.

3.1 Privately finding vocabulary items

To perform federated learning on data that is not
straightforwardly described as summable vectors,
custom algorithms are needed. There exist differ-
entially private algorithms to compute a histogram
over multisets of elements (e.g. words) distributed
over devices. These are called “heavy hitters” algo-
rithms (Bassily et al., 2017; Zhu et al., 2020; Apple,
2017). However, heavy hitters algorithms require a
separate privacy budget (since es essentially add up
in DP) and in Section 5 we show that the created

vocabulary does not provide a significant perfor-
mance boost.

Another way of finding vocabulary items pri-
vately is to train a neural-net generative model. Bea-
ufays et al. (2019) trains a separate, character-level
LSTM model to generate the new words. However,
the proposed method only works to discover OOVs
in a word-level model and also requires separate
training and a privacy budget.

New techniques exist to improve tokenization
(Xuetal., 2021; Park et al., 2021; Guo et al., 2021),
but they require access to training data.

4 Learning a tokenizer with private
federated learning

We focus on a common application of federated
learning: training a language model, parameterized
by 6, using federated learning with differential pri-
vacy. In our setting each user u; has a dataset d; of
private texts from a private distribution of user data
D. The trained model will be evaluated against a
held-out dataset D;.gt, €.2. a mix of all user data,
which in practice must be replaced by federated
evaluation.

We assume that the central server does not have
access to the user data distribution D and can only
approximate it with the publicly available dataset
D,yup. We assume the public data is some com-
monly available dataset, such as Wikipedia (Merity
et al., 2017). The tokenizer trained on this public
data will be 7. For comparison we assume the
existence of an oracle tokenizer 7, initialized on
users’ training data D.

Papers that study language models in feder-
ated learning commonly use word-level tokeniza-
tion. While some papers (e.g. McMahan et al.,
2018), build the vocabulary using publicly avail-
able dataset, others (e.g. Yu et al., 2020; Caldas
et al., 2018) explicitly use the federated training
data, even though in real-world scenarios the anal-
ogous data would be unavailable and it violates
privacy guarantees when used in PFL (Li et al.,
2021).

Problem definition. We aim to obtain a tokenizer
that works well on users’ federated data without
compromising user privacy. First, we aim to find
the appropriate tokenization scheme, and second,
given the tokenization scheme obtain the right ap-
proximation of user data to train the tokenizer.

Proposed solution. We pick a sub-word tokenizer
with an open vocabulary that allows the language
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Figure 1: New pipeline for updating the tokenizer through model sampling.

model trained with such a tokenizer to represent
any word, if inefficiently. It is then possible to
query the language model to find new words. This
is the core of the Algorithm 1 that this paper intro-
duces.

Figure 1 shows the proposed pipeline. A lan-
guage model is trained with private federated learn-
ing. This results (on the left) in a model matched
with an old, stale tokenizer. The next block queries
the language model to produce a better tokenizer,
with a method that section 4.1 will detail. The block
after that updates the language model for the new
tokenizer, using reasonable guesses for the new
parameters. This results in a new LM-tokenizer
combination that can be trained further with PFL.

We assume that the language model obtained
with the stale tokenizer is trained with a certain
privacy budget. The postprocessing guarantee of
differential privacy means that the steps other than
private federated learning do not consume any fur-
ther budget. The function UPDATE in Algorithm 1
performs the on-server steps. The following sec-
tions will give more detail.

4.1 New tokenizer from a trained LM

Training a tokenizer requires text data. Since the
raw data is not available, we propose to instead sam-
ple from the LM matched with the stale tokenizer,
as detailed in Algorithm 1. The SAMPLETOKENS
function samples from the language model, draw-
ing sequences of tokens according to the probabili-
ties that the model assigns to them. The SAMPLE
function then converts these sequences in the old to-
kenization into word sequences, by decoding with
Tpub- Once a large enough corpus of word-level
sentences has been produced, training a tokenizer
proceeds as normally (the TRAINTOKENIZER func-
tion is not specified).

4.2 Changing tokenizer on an existing model

After a new tokenizer 7 has been trained, the lan-
guage model, trained with 7;,,;, must be updated
to work with the new tokenizer. Neural-net lan-
guage models use an embedding layer to convert
the provided tokens into multi-dimensional vectors.
It is the embedding vectors that are most important
to modify when changing the tokenization. The
rest of the model only consumes the embedding
vector. It is not possible to find the optimal param-
eters without further training of both embeddings
and other layers, but we propose an algorithm to
find a reasonable starting point, in the function
REMAP(T, Tpyp) in Algorithm 1.

REMAP iterates over the tokens from the new to-
kenizer 7 and creates the mapping from the tokens’
embedding in the public tokenizer 7,,, to the new
token’s embedding. In some cases it is a one-to-
one mapping, but when the new token accumulates
multiple tokens in 7;,,;, we split the weight equally
between each token.

Once we have the mapping map we modify
the embedding layer of the model by perform-
ing matrix multiplication, i.e. f.embedding =
map - f.embedding. The resulting model can ac-
cept the tokens from the new tokenizer 7, and can
participate in future training in federated learning.

S Experiments

We evaluate effects of tokenizers trained on the
distributions matched and mismatched to real data,
we test the proposed approach on different datasets
for federated learning.

5.1 Experimental setup.

We use two datasets common in the federated learn-
ing literature (Kairouz et al., 2019). While both
use English, there is nothing about our experiments
that is specific to this language, and multilingual



Algorithm 1 Model sampling algorithm

Inputs: model 0, current sentence s, new tok-
enizer 7, public tokenizer 7, size of the sam-
pled dataset corpus_size.
function SAMPLETOKENS(, s)
tnest ™0 tk|5
if t,,c.: = EOS then
return s H-t,ext
else
return SAMPLETOKENS(#, s ++ tye0t)

function SAMPLE(A, 7)
return 7.decode(
SAMPLETOKENS(, [BOS]))

function REMAP(7y4, T)
map = zeros(7.size, Tpyp.size)
for token, tid < 7.vocab do
tokens = 7,,.decode(token)
for token + tokens do
tidpup = Tpup-vocab|token]
map(tidp.p, tid] = 1/len(tokens)
return map
function UPDATE(0, 7;,,5)
while len(corpus) < corpus_size do
corpus <~ SAMPLE(6, 0, lnaz)

7 = TRAINTOKENIZER (corpus)
map = REMAP (7, T)
f.embedding = map - #.embedding
return 6, 7

datasets can further benefit from using Sentence-
Piece tokenization (Kudo and Richardson, 2018),.

e Reddit data — this dataset is taken from the
LEAF benchmark (Caldas et al., 2018) and
contains over a million users that have multi-
ple posts on the Reddit platform. As proposed
by LEAF, we limit each user to contain at
most 1600 tokens and use 10 % of users for
faster training.

e StackOverflow data — this data is taken from
Kaggle (Kaggle, 2021) and processed with the
TensorFlow Federated framework. The train
split of the dataset contains 342k users and we
select at most 1600 tokens per user.

Model parameters. We use an LSTM model with
3 layers, and total parameters of 14M. We also use
a transformer language model with 6 layers and the

same total number of parameters as the LSTM (see
Appendix A). Each model is trained from scratch.

Hyper-parameters. We set the privacy budget to
¢ = 2and § = 107 and clipping bound to 0.5.
The overall population for the moments accountant
is assumed to be 10m. We use a cohort size of
20,000 and train all models for 5,000 iterations.
We use Adam (Kingma and Ba, 2015) for central
optimization with learning rate set to 0.5. For the
clients’ local SGD, we train one local epoch with
batch size set to 16 and local learning rate set to
0.1.

Vocabulary size. We assume that the tokenizer has
a moderate vocabulary size such as 10,000 tokens
(we experiment with larger vocabularies in Ap-
pendix A). Smaller vocabularies reduce model size
and, therefore, might be better for deployment on
devices and communication with the global server.

Tokenizer details. To train an initial tokenizer we
use a popular and public Wikipedia dataset (Merity
et al., 2017). It may seem like the distribution of
Wikipedia data is artificially far from the distribu-
tions of Reddit and StackOverflow data. However,
in real-world scenarios it is unknown how different
private data is from public data, and it is important
to understand the effects of using disparate distri-
butions on the algorithm we propose. Also, when
running the same algorithm with a Reddit tokenizer
to find a StackOverflow tokenizer and vice versa,
those distributions similarly turn out to be far away
from each other. Appendix A shows this.

We use BPE tokenization from the HuggingFace
Tokenizer library (Huggingface, 2021) to train the
tokenizer. Each user post is surrounded by special
tokens BOS and EOS. We also tried WordPieces
tokenization which has slightly better performance
than BPE but cannot encode all words and is there-
fore less applicable in a FL setting.

Note on splitting data. Whereas the original
LEAF dataset for Reddit proposes to split each
user’s data we argue that in real life not every user
might have a chance to participate in the training.
Therefore, we split users into two distinct training
and test sets and evaluate the model on data from
the users who have never participated in the train-
ing. This results in notably increased test perplex-
ity but provides a clear separation between training
and inference modes.
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Figure 2: Example of sampling data from the model.

5.2 Comparing tokenization schemes

Table 1 summarizes experiments that use differ-
ent tokenization schemes. For comparison we use
word-level accuracy and perplexity as described in
Section 2.3. We also compute statistics on tokeniz-
ers: average share of OOV tokens for the word-level
scheme and an average number of tokens required
to encode one word for the sub-word scheme. The
“wiki” tokenizers are trained on the Wikipedia data,
and the “oracle” tokenizers directly on the training
data.

Word-level tokenization provides very high
word-level accuracy when it is trained using “ora-
cle” user training data. However, when the word-
level has access to only public “wiki” dataset the
performance significantly drops: by 26 % for Red-
dit and 10 % for StackOverflow with a significant
increase in out-of-vocabulary share. However, BPE
tokenizers that use public data perform more con-
sistently and outperform the word-level models
trained on public data, but still require large num-
ber of tokens per each word.

5.3 Learning tokenizer with model sampling

A key part of the proposed algorithm is the sam-
pling from a model that uses a public tokenizer
Tpub, Dut is trained with private federated learning
and should represent the words in the actual data.
The sampling is implemented as in Algorithm 1.

First, Figure 2 shows samples from the language
models on the two data sets. Although clearly the
samples are less coherent than the underlying data,
it seems plausible that the word occurrences match
that data.

Second, Table 1 further investigates the proper-
ties of the sampled text. The “BPE sample” rows
refer to the method proposed in this paper. A lan-
guage model with the “wiki” tokenizer is trained

Table 1: The quality of the sampled data.

T LM

T Data Data OOV Tokens| Acc. Perp.

KLD | (%) p/word| (%)
Reddit
WL  wiki 13.0 1.00| 17.7
WL  oracle 5.5 1.00] 24.1
BPE  wiki 0.78 | 0.0 1.32] 22.2 2765
BPE oracle 0] 0.0 1.22| 22.5 256.9
BPE sample | 0.02 | 0.0 1.22| 225 257.7
BPE HH 0.09 | 0.0 1.30| 22.1 274.2
StackOverflow
WL  wiki 9.8 1.00| 30.0
WL  oracle 2.0 1.00| 33.0
BPE  wiki 1.06 | 0.0 1.41| 31.8 124.6
BPE oracle 0] 0.0 1.24| 32.4 108.2
BPE sample | 0.01 | 0.0 1.23| 324 108.7
BPE HH 0.10 | 0.0 1.29| 32.1 1159

with PFL on the first half of the training data. Then
samples are drawn from this language model. Then,
the language model is trained from scratch on the
second half of the training data.

The “BPE HH” rows refer to training with a dif-
ferentially private “heavy hitters” algorithm (Apple,
2017). Each of the population of the users from the
first half of the training set contributes three words
from the from the Wikipedia dataset, with a local
privacy budget of ¢ = 8. Just like for the sampling
approach, the language model is then trained from
scratch on the second half of the training data.

First, we examine the difference between the
real training data and the data used to train the
tokenizers. The column “Data KLD” shows the KL,
divergence from the training data to the sampled
data. The KL divergence is computed from the
unigram counts, which are relevant for training a
tokenizer, by assuming add-1 smoothing and using
the top 10,000 words from the training data. The
KL divergence to the training data itself, which the
oracle tokenizer is trained on, is O by definition.
The KL divergence between the actual data and
the Wikipedia data, on the other hand, is around 1,
for both datasets. Both the heavy hitters algorithm
and the algorithm we propose in this paper find a
distribution close to the real distribution.

For sub-word tokenizers, the number of tokens
per word is relevant. Even though they can repre-
sent unseen words by multiple tokens, the language
models trained on top of that have a harder task
given the longer context on average. The oracle to-
kenizer has the lowest number of tokens per words
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Figure 3: Perplexity for switching the tokenizer at different numbers of iterations.

and the “wiki” tokenizer the highest. The “BPE
sample” tokenizer comes very close to the oracle
tokenizer.

However, heavy hitters experiment shows much
smaller gain in performance, i.e. better than “wiki”
tokenizer but still worse than our proposed sam-
pling method. Furthermore, it requires a separate
privacy budget allocated for the run, while sam-
pling can operate on existing prior model.

5.4 Iterative updates

This part implements Algorithm 1 completely. We
again initialize the tokenizer on publicly available
data. We then train the language model with PFL.
At a point during training, we retrain the tokenizer
by sampling. Unlike in the previous section, we
update the language model by remapping its em-
bedding layer, and continue training. We sample
the same data before and after changing the tok-
enizer.

Figure 3 shows the results for changing tokeniz-
ers at different times. The “Wiki” curve represents
the baseline system using public tokenizer 7.
Each of the other curves takes the system from the
“wiki” curve at a different iteration. As expected,
the initial remapping of the embedding layer is not
perfect and needs finetuning. The graph also shows
the tradeoff in when to change tokenizers: too early,
e.g. after only 1000 iterations, and the tokenizer is
not representative enough yet; too late, e.g. after
4000 iterations, and there is not enough time to
converge again.

6 Conclusion

This paper has proposed a method that allows a
tokenizer to be found together with a language

model using private federated learning. First, it
has shown that a mismatched tokenizer can cause
a significant performance degradation. The key to
improving this is to use a sub-word tokenizer which
allows new words to be represented as a sequence
of tokens. Then, a language model trained with
PFL can represent the private data. This paper has
presented a method to produce a new tokenizer
from that model, and to convert the model to work
with the new tokenizer. When this is trained further
with private federated learning, it outperforms the
language model with the mismatched tokenizer,
and gets close to one with the oracle tokenizer.

Personalization and Fairness. The problem of
out-of-vocabulary words might be more acute for
some users that use unique vocabulary, such as
dialect, and impact individual performance. There-
fore good tokenizers can benefit personalization in
federated models (Li et al., 2021; Yu et al., 2020).
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Figure 5: Perplexity trained with different cohort sizes.

A Impact of hyperparameters
This section examines different hyperparameters.

A.1 Experimental design

First, consider the choice to train the public tok-
enizer on Wikipedia data. To examine the effect
of using a more conversational style corpus. To do
this, Table 2 takes a subset of the numbers from
Table 1 and adds a scenario where a tokenizer on
StackOverflow data is used with Reddit data and
vice versa. The cross-dataset numbers are high-
lighted bold in the table.

First, in terms of the KL divergence the Stack-
Overflow data seems a slightly better model for
the Reddit distribution than the Wikipedia data is.
However, when using PFL to train on Reddit data,
but with a StackOverflow-trained tokenizer, the
perplexity deteriorates compared to the Wikipedia-
trained tokenizer. Second, the reverse experiment
looks a bit better but not hugely better. Though
the KL divergence from the StackOverflow data
to the Reddit data is significantly better than the
KL divergence to the Wikipedia data, some of that
advantage disappears in the final trained model.

11

Table 2: The effect of using the Wikipedia corpus
against the results in Table 1.

T Data Data LM
KLD perp.
Reddit
BPE  Wikipedia 0.7826 | 276.5
BPE StackOverflow | 0.6046 | 283.6
BPE Reddit 0 256.9
BPE sample | 0.0212 | 257.7
StackOverflow
BPE  Wikipedia 1.0629 | 124.6
BPE Reddit 0.5315 | 1188
BPE StackOverflow | 0 108.2
BPE  sample | 0.0089 | 108.7

Table 3: The effect of varying the vocabulary size.

Vocab size Reddit StackOverflow

Wiki Oracle | Wiki Oracle
5,000 3043 2822 | 136.3 116.8
10,000 276.5 2569 | 124.6 108.2
50,000 2439 2254 | 111.5 1015
100,000 231.2 2179 | 108.9 100.5

Then, consider the choice of vocabulary size,
here the number of distinct tokens. Table 3 shows
the perplexities for the baseline (“Wiki”) and ceil-
ing (“oracle”) experiments. Though the absolute
numbers change, the trends do not change.

Similarly for changing model architectures. This
paper has presented results on an LSTM model. Ta-
ble 4 shows results on a Transformer model. Again,
though the absolute numbers change, the trends do
not change.

A.2 Other hyperparameters

We consider two hyperparameter choices for exper-
iments: first, the privacy budget, and secondly, the
cohort size.

Figure 4 shows the effect of different privacy

Table 4: The effect of changing model architectures.

Model Reddit StackOverflow
architecture Wiki Oracle | Wiki Oracle
Transformer | 261.9 2448 | 1174 107.0
LSTM 276.5 2569 | 1246 108.2




parameters. The effects are not huge, but clearly
differential privacy does impede learning some-
what.

Figure 5 shows the effect of differing cohort
sizes. A larger cohort size implies a better signal-to-
noise ratio when training with differential privacy.
However, for practical reasons it is preferable for
cohorts to be smaller. 10,000 is a happy medium
between good performance and practicality. Also,
again, though the absolute numbers change, the
trends do not change.

12



