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Abstract

Leveraging the power of Large Language Models (LLMs) through preference
optimization is crucial for aligning model outputs with human values. Direct
Preference Optimization (DPO) has recently emerged as a simple yet effective
method by directly optimizing on preference data without the need for explicit
reward models. However, DPO typically relies on human-labeled preference data,
which can limit its scalability. Self-Play Fine-Tuning (SPIN) addresses this by
allowing models to generate their own rejected samples, reducing the dependence
on human annotations. Nevertheless, SPIN uniformly applies learning signals
across all tokens, ignoring the fine-grained quality variations within responses. As
the model improves, rejected samples increasingly contain high-quality tokens,
making the uniform treatment of tokens suboptimal. In this paper, we propose
SWIFT (Self-Play Weighted Fine-Tuning), a fine-grained self-refinement method
that assigns token-level importance weights estimated from a stronger teacher
model. Beyond alignment, we also demonstrate that SWIFT serves as an effective
knowledge distillation strategy by using the teacher not for logits matching, but for
reward-guided token weighting. Extensive experiments on diverse benchmarks and
settings demonstrate that SWIFT consistently surpasses both existing alignment
approaches and conventional knowledge distillation methods.

1 Introduction

Large Language Models (LLMs) [1, 2, 3, 4, 5] have demonstrated strong generalization across diverse
tasks, including text summarization [6, 7], code generation [8, 9], and instruction following [10, 11].
However, they can also produce harmful content [12], hallucinate [13], or reinforce sociocultural bi-
ases [14, 11], underscoring the need for alignment with human values. To address this, Reinforcement
Learning from Human Feedback (RLHF) [11] has emerged as the standard approach for preference
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alignment. RLHF typically involves collecting human feedback on model outputs to train a reward
model, which is then used to fine-tune the base model using reinforcement learning techniques such as
Proximal Policy Optimization (PPO) [15]. While effective, RLHF is complex and resource-intensive,
requiring extensive high-quality human feedback. To address these challenges, Direct Preference
Optimization (DPO) [16] simplifies the process by directly optimizing on preference data, bypassing
explicit reward modeling. Nevertheless, DPO still depends heavily on costly human annotations,
limiting scalability.

To better balance alignment performance and generation diversity by controlling the KL divergence
at the token level, Token-level DPO (TDPO) [17] redefines the objective as maximizing restricted
rewards in a sequential manner using the advantage function. Building on TDPO, TIS-DPO [18]
argues that different tokens should not be treated equally and proposes principled methods for
estimating token weights by contrasting two LLMs: one biased toward high-reward tokens and
another favoring low-reward tokens. However, this approach requires training two additional LLMs,
which can be prohibitively expensive in terms of computation.

To reduce reliance on costly human preference annotations, Self-Play Fine-Tuning (SPIN) [19] trains
models to generate rejected responses using earlier versions of themselves. These are paired with
human-annotated SFT samples to form synthetic preference pairs for iterative fine-tuning, eliminating
the need for explicit reward models and preference data. However, SPIN applies uniform learning
signals across all tokens, overlooking that both chosen and rejected responses may contain a mix of
high- and low-quality tokens—weakening token-level gradients as the model improves. Technically,
SPIN matches distributions through a self-play adversarial game to generate outputs close to ground-
truth sentences, but this limits its ability to perform fine-grained, token-level alignment, which
typically requires to leverage with the advantage function and token-based reward functions from
reinforcement learning.

In this work, we adopt a token-level perspective for matching the distributions of interest, which
naturally leads to the formulation of token-level reward functions. Notably, our approach to token-
level distribution matching reveals a strong connection to the objective of maximizing the advantage
function, thereby enabling the incorporation of token-level weighting. However, this formulation
inherently resembles teacher forcing. To transform it into a token-level self-play framework, we
recast the problem using the student forcing mechanism [20], ultimately deriving our final objective
function. For the token weight estimation, we leverage a teacher model to provide fine-grained
token-level reward signals, enabling the student model to focus more on informative tokens during
learning.

In summary, we propose SWIFT (Self-Play Weighted Fine-Tuning), an extension of SPIN that
incorporates token-level importance weights estimated from a stronger teacher model. Unlike
conventional distillation methods [21] that match logits or hidden states, SWIFT leverages fine-
grained token-level rewards to guide the student model’s attention toward more informative tokens.
To address tokenizer mismatches between teacher and student, we introduce a general token mapping
strategy based on shared surface segments, enabling accurate weight transfer without compromising
alignment. While SWIFT benefits from access to a strong teacher, in scenarios where we do not have
access to such a model, we observe that assigning uniform token weights or applying contrastive
token importance estimation as proposed in [18] still provides meaningful improvements, as shown in
our ablation study (Table 3). We validate SWIFT through extensive experiments under both alignment
and knowledge distillation settings across multiple benchmarks, consistently demonstrating its
effectiveness and efficiency in aligning LLMs with human preferences.

Our main contributions can be summarized as follows:

• We propose SWIFT, a fine-grained self-alignment and distillation method that leverages
teacher models to provide token-level importance signals.

• We introduce a practical solution to handle tokenizer mismatches, enabling reliable token-
level weight transfer between teacher and student models.

• We conduct comprehensive experiments on multiple benchmarks and settings, showing that
SWIFT consistently outperforms existing alignment and distillation methods.
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2 Preliminaries

2.1 Preference-Based Alignment in LLMs

Let πθ denote a Large Language Model (LLM) parameterized by θ. Preference-based alignment aims
to adjust πθ to prefer human-preferred responses over less desirable ones. Formally, we consider
a dataset of triplets D = {(x, yw, yl)}, where x is the prompt, and yw and yl are the preferred
(winning) and less preferred (losing) responses, respectively, such that yw ≻ yl. The objective is
to optimize πθ such that it assigns higher likelihood to yw than yl. Direct Preference Optimization
(DPO) [16] addresses this by directly optimizing the model on preference data, bypassing explicit
reward modeling. Despite its simplicity, DPO still requires high-quality preference annotations,
which are costly to obtain.

2.2 Self-Play Fine-Tuning (SPIN)

To overcome the reliance on external annotations, Self-Play Fine-Tuning (SPIN) [19] introduces a self-
play paradigm, enabling the model to iteratively refine itself without access to additional preference
data. SPIN starts from a Supervised Fine-Tuned (SFT) model trained on a dataset S = {(x, y)},
where y is a high-quality human-annotated response to prompt x.

At each iteration t, the model πθt generates synthetic responses y′ for prompts sampled from S . These
are paired with the corresponding human-annotated responses to create preference pairs (x, y, y′).
The updated model πθt+1

is then trained to distinguish between these pairs, encouraging the model to
prefer human-written responses over its own previous generations. Formally, SPIN optimizes the
following objective:

LSPIN(πθt+1
, πθt) = E(x,y)∼pdata, y′∼πθt (·|x)

[
ℓ

(
β log

πθt+1
(y | x)

πθt(y | x)
− β log

πθt+1
(y′ | x)

πθt(y
′ | x)

)]
, (1)

where ℓ(·) is a convex decreasing loss function (e.g., logistic loss), and β is a scaling factor.

While SPIN enables iterative self-improvement at the sequence level, it applies uniform learning
signals across all tokens, overlooking token-level quality variations. As the model improves, this
inefficiency grows, as rejected responses may still contain valuable tokens. To address this, we
propose SWIFT, a token-level refinement framework that incorporates importance-aware token
weighting.

3 Our Proposed Self-Play Weighted Fine-Tuning

3.1 Problem Setting

We are given a supervised training set D = {(xi, yi)}Ni=1 where xi and yi are the input/output
sequence of the tokens. Let θT denote the parameters of the teacher model, and θS the parameters of
the student model to be trained. We denote the student model at iteration k as θSk . At the outset, we
emphasize that the student model is primarily trained via weighted token-level self-play, with the
teacher model providing guidance solely for estimating token importance.

We need to train the student LLM πθS (y | x) to incorporate the knowledge from dataset D and
use the guidance from the teacher model for the token weight estimation. Let us denote Pd as the
distribution of the ground-truth pair (x, y), while PθS as the distribution of the synthetic pair (x, y′),
where y′ ∼ πθS (· | x) with a ground-truth input x. Our task is to learn πθS so that the distribution
PθS remains closely related to the data distribution Pd.

3.2 Our Proposed Approach

In what follows, we present the theoretical framework for our SWIFT. We denote pd(x, y) and
pθS (x, y) where y = [y1, . . . , yT ] are the density functions of Pd and PθS . The following lemma
characterizes the necessary and sufficient conditions in order to Pd = PθS .

Lemma 3.1. The necessary and sufficient conditions for Pd = PθS are pd(yt | x, y<t) = pθS (yt |
x, y<t) for all t ≤ T .
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We note that, similar to the distribution matching in SPIN [19], we assume that y and y′ from
Pd and PθS have the same length T (e.g., the maximum sequence length). This is standard in
sequential training, where padding is typically used to align sequences to the maximum length.
Moreover, inscribed in Lemma 3.1, we need to estimate the divergence between pd(yt | x, y<t) and
pθS (yt | x, y<t). To this end, we examine the following Integral Probabilistic Metric (IPM) [22, 19]

∀t : max
rt∈Rk

t

E[x,y≤t]∼D

[
rt ([x, y<t] , yt)− Ey′

t∼π
θS
k (·|x,y<t)

[rt [x, y<t] , y
′
t]
]
, (2)

where rt ([x, y<t], z) is the t-th token-based reward model belonging in a function familyRk
t . Here

we note that the index k specifies the current iteration with the current student model θSk , while the
index t specifies the t-th token. We name rt ([x, y<t], z) as a token-based reward function because it
offers a high reward value for a ground-truth token z = yt, while offering a low reward value for a
synthetic token z = y′t with y′t ∼ πθS

k
(· | x, y<t).

Additionally, we can express the token-level reward model [rt]t using a sequence-level reward function
r(x, ỹ) for any output sequence ỹ, where each token-level reward is given by rt ([x, y<t] , yt) =
r (x, y≤t). To support variable-length inputs when computing reward outputs, we represent r either
with a dedicated transformer-based model or implicitly through our LLM, following approaches
similar to DPO [16] or Self-Play [19]. We denote the function family for r as Rk. We assume the
function familyRk is consistent with the token-based function families [Rk

t ]t as follows.

Definition 3.2. (Consistency) The function familyRk is said to be consistent with the token-level
function families [Rk

t ]t if, for any sequence of functions [rt ∈ Rk
t ]t, there exists a function r ∈ Rk

such that
r (x, y≤t) = rt ([x, y<t] , yt) , ∀[x, y<t] ∼ D.

Conversely, for any r ∈ Rk, there exists a corresponding sequence [rt ∈ Rk
t ]t that satisfies the same

equality, ensuring bidirectional consistency.

In addition, we represent r and [rt]t as implicit functions parameterized by the LLM πS
θ , which

is assumed to have infinite capacity (i.e., it can approximate any measurable function to arbitrary
precision). As a result, the consistency property is inherently satisfied. Leveraging the consistency
property, we can reformulate the original optimization problem (OP) in (2) into a more tractable form.
Theorem 3.3. Assume the consistency property betweenRk and [Rk

t ]t, we can equivalently reformu-
late the original OP in (2) into the following OP

max
r∈Rk

E(x,y)∼D,y′∼π
θS
k
(·|x)

[∑
t

γt−1r ([x, y<t], yt)−
∑
t

γt−1r ([x, y<t], y
′
t)

]
, (3)

where γ ∈ [0, 1] is the discount factor.

In particular, the OP in (3) aims to align pθS (yt | x, y<t) with pd(yt | x, y<t) for all t, which
in turn drives the joint distribution pθS (x, y) to match the data distribution pd(x, y) for (x, y) ∼
D. Additionally, the optimization problem in (3) follows the teacher-forcing paradigm. We can
reformulate it into an equivalent student-forcing objective [20], which achieves the same goal of
aligning the joint distribution pθS (x, y) with the data distribution pd(x, y), as follows.

max
r∈Rk

E(x,y)∼D,y′∼π
θS
k
(·|x)

[∑
t

γt−1r ([x, y<t], yt)−
∑
t

γt−1r ([x, y′<t], y
′
t)

]
. (4)

Denote the reward function R (x, y) =
∑

t γ
t−1r ([x, y<t], yt) =

∑
t γ

t−1r (x, y≤t) as the sum of
the token-based reward functions, we can rewrite the OP in (4) as

max
r∈Rk

E(x,y)∼D,y′∼π
θS
k
(·|x) [R (x, y)−R(x, y′)] . (5)

It is evident that (5) defines an IPM between the two distributions of interest, pd(x, y) and pθS (x, y),
which serves the same purpose as the objective in (3), as demonstrated in the following theorem.
Theorem 3.4. Assume that the function classRk is symmetric (i.e., if r ∈ Rk, then −r ∈ Rk), and
that the distribution family {pθS (x, y) : θS ∈ Θ} includes the data distribution pd(x, y). Under these
conditions, optimizing the objective in either (3) or (5) to learn the student model θS is equivalent.
Mathematically, the minimization over θS using (3) or (5) yields the same optimal solution.
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To generalize the optimization problem in (5), we consider a broader objective in the same spirit,
formulated as follows:

min
r∈Rk

E(x,y) ∼ D, y′ ∼ πθS
k (·|x) [l (R (x, y)−R(x, y′))] . (6)

where l is a non-increasing function (e.g., l(t) = log(1 + exp(−t))).
Inspired by [17, 18], we consider the following alternative token-level objective function involving
the advantage function:

max
πθS

Ex,y<t∼D,y′
t∼πθS (·|x,y<t)

[
ωtAπ

θS
k

([x, y<t] , y
′
t)
]
−βDKL

(
πθS (· | [x, y<t]) ∥πθS

k
(· | [x, y<t])

)
.

(7)
where the advantage function Aπ ([x, y<t] , y

′
t) := Qπ ([x, y<t] , y

′
t) − Vπ ([x, y<t]) with the state-

action value function Qπ and state value function Vπ, DKL is the KL divergence, and [ωt]t are the
token weights representing the importance of the tokens.

We now explain why the objective function in (7) assists us in learning a good new student model πS
θ .

Considering rolling out one-step for Vπ , we can approximate

Aπ
θS
k

([x, y<t] , y
′
t) ≈ r ([x, y<t] , y

′
t)− Ey′∼π

θS
k
(·|[x,y<t]) [r ([x, y<t] , y

′)] (8)

Linking to the maximization in (7), by maximizing the advantage function, we effectively maximize
r ([x, y<t] , y

′
t), where y′t ∼ πθS (· | [x, y<t]). This encourages the student model to generate synthetic

tokens with high reward values. From (2), this process implicitly pushes pθS (· | x, y<t) closer to
pd(· | x, y<t), as desired. Moreover, the second term, Ey′∼π

θS
k
(·|x,y<t) [r ([x, y<t] , y

′)], is likely to
remain moderately high due to the previous update, thereby exerting a stronger effect in guiding pθS

toward pd.

Similar to [17, 18], we have the following lemma.

Lemma 3.5. The optimization problem in (7) admits the following closed-form solution:

π∗
θS (z | x, y<t) =

πθS
k
(z | x, y<t) exp

{
ωt

β QπS
θk

([x, y<t], z)
}

Z ([x, y<t];ωt, β)
, (9)

where Z ([x, y<t];ωt, β) is the partition function. Consequently, the Q-function can be expressed as:

QπS
θk

([x, y<t], z) = ωtβ log
π∗
θS (z | x, y<t)

πθS
k
(z | x, y<t)

+ ωtβ logZ ([x, y<t];ωt, β) . (10)

The optimal solution in (9) and (10) hints us how to define the family functionRk. Specifically, this
is defined as

Rk =

{
r : ∃θS ∈ Θ ∧QπS

θk

([x, y<t], z) = ωtβ log
πθS (z | x, y<t)

πθS
k
(z | x, y<t)

+ ωtβ logZ ([x, y<t];β)

}
.

(11)
Certainly, the reward functions r, and hence R, are implicit functions of the policy πθS . To derive
the objective for updating πθS , we need to substitute this dependency into (6). We now rewrite the
objective function in (6) as presented in the following lemma.

Lemma 3.6. The objective function in (6) can be further derived as presented in the following lemma.

l (R (x, y)−R(x, y′)) = l

(∑
t

γt−1AπθS
([x, y<t], yt)−

∑
t

γt−1AπθS
([x, y′<t], y

′
t)

)
. (12)

Based on Lemma 3.6, we can reformulate the OP of interest as shown in the following theorem.

Theorem 3.7. The objective function of interest in (6) can be reformulated to

l (u (x, y, y′, πθS , ω)− v (x, y, y′, πθS , ω)) ,
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where we have defined

u (x, y, y′, πθS , ω) :=
∑
t

β

ωt

[
log

πθS (yt | x, y<t)

πθS
k
(yt | x, y<t)

]
−
∑
t

β

ωt

[
log

πθS (y′t | x, y′<t)

πθS
k
(y′t | x, y′<t)

]
,

v (x, y, y′, πθS , ω) := βDSeqKL

(
x, y, ω;πθS∥πθS

k

)
− βDSeqKL

(
x, y′, ω;πθS∥πθS

k

)
with the weighted sequence KL divergence being defined

DSeqKL (x, y, ω;π1∥π2) :=
∑
t

ω−1
t DKL (π1 (· | x, y<t) ∥π2 (· | x, y<t)) .

Finally, the objective function to train our approach is

min
πθS

E(x,y)∼D,y′∼π
θS
k
(·|x,y) [l (u (x, y, y

′, πθS , ω)− v (x, y, y′, πθS , ω))] , (13)

where l (t) = log (1 + exp (−t)) is a non-increasing function.

Pseudo-code for our method can be found in Appendix B.4 in the supplementary material.

3.3 Teacher-Guided Token Importance Estimation

Our aim is to develop an efficient mechanism to estimate the importance weight of each token.
Intuitively, a well-trained teacher—having been trained on more data with higher model capacity—can
better signal which tokens carry higher “reward”. In this section, we present a principled method to
distill token-level reward signals from a teacher model θT and transfer them to a student model θS .
Due to space limitations, we leave a detailed explanation of this mechanism in Appendix B.5.

Inspired by TIS-DPO [18], we first estimate the raw importance weight for the tth token in a response
y = (y1, . . . , yT ) as

ωraw
t = k · exp

(
µ · clamp

(
log

πθT (yt | x, y<t)

πθS (yt | x, y<t)
, L, U

))
, (14)

where clamp(a, L, U) = min
(
max(a, L), U

)
truncates the log-odds to [L,U ] to reduce variance

and stabilize optimization. Here k > 0 and µ are constant; L and U are lower and upper clipping
bounds.

However, this formulation assumes that the teacher and student models share the same tokenizer and
vocabulary. In practice, this assumption rarely holds. A sequence y might be tokenized by the teacher
model as [yT1 , y

T
2 , . . . , y

T
t ], and by the student as a different sequence [yS1 , y

S
2 , . . . , y

S
s ], making direct

token-to-token alignment in (14) infeasible. To address the misalignment issue caused by differing
tokenizers, we propose a generalizable token mapping strategy based on shared surface segments.

Case 1: Shared Tokenizer. In the scenario where both the teacher and student models utilize an
identical tokenizer, the alignment between their respective token sequences is inherently preserved.
Specifically, each token yt generated by the student model corresponds directly to a token produced
by the teacher model at the same position, thereby eliminating the need for additional alignment
mechanisms. As a result, the distillation weight ωt associated with each token position t can be
directly adopted from the unprocessed or raw weighting scheme. Formally, we define:

ωt = ωraw
t , (15)

where ωraw
t represents the original distillation weight derived from the teacher model’s outputs as in

Eq 14 without any post-processing or re-alignment.

Case 2: Different Tokenizers. When tokenizers differ, direct index alignment between tokens
becomes unreliable. Rather than aligning tokens individually, we instead leverage a common
structural unit shared across both tokenizations. Most modern tokenization algorithms, including
BPE [23], SentencePiece [24], and WordPiece [25], segment text into subwords while generally
respecting word boundaries. This means that each token strictly belongs to either a single word
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or the whitespace separating words, making word spans a natural and reliable basis for alignment.
Leveraging this property, we segment the original text into coarse-grained units corresponding to
complete words and their leading whitespace, resulting in a sequence of shared components
{c1, c2, . . . , cK}. This ensures that every token from both teacher and student sequences can be
assigned to one of these shared components, which are small enough to preserve local semantics but
broad enough to encompass all subword variations.

Suppose student token ySi belongs to component ch, and the teacher tokens in that segment are
T (ch) = {yTj , yTj+1, . . . , y

T
j+ℓ}. Assuming all tokens within a shared component contribute equally,

we define the student’s token importance as the average of the teacher tokens’ weights in the
corresponding component ch:

ωS
i =

1

|T (ch)|
∑

yT
r ∈T (ch)

k · exp
(
µ · clamp

(
log

πθT (yTr | x, yT<r)

πθS (ySi | x, yS<i)
, L, U

))
. (16)

Comparison with Prior Work. Compared to the contrastive-based token weighting in [18], our
method is significantly more computationally efficient, as it does not require training separate positive
and negative models. We validate this by providing a direct comparison of the total time cost between
SWIFT and the contrastive-based token weighting approach (TIS-DPO) in Appendix C.1 in the
supplementary material. Furthermore, as shown in Table 3, our teacher-guided estimation consistently
achieves superior performance, confirming both its efficacy and practicality.

4 Experiments

We evaluate SWIFT through extensive experiments across diverse settings, highlighting several key
findings. (1) SWIFT consistently outperforms existing alignment methods on multiple benchmarks.
(2) Since SWIFT relies only on an SFT dataset without preference-labeled data, we also compare it
with knowledge distillation baselines, where it similarly outperforms, demonstrating the effectiveness
of token-level importance estimation for distilling teacher knowledge. (3) Furthermore, ablation
studies confirm that using the teacher to estimate token weights yields significant gains over alternative
weighting methods.

4.1 Experiment Setup

We conduct two experimental settings to evaluate SWIFT: Alignment and Knowledge Distillation.
The Alignment setting compares SWIFT with existing alignment methods, while the Knowledge
Distillation setting assesses its effectiveness against existing knowledge distillation methods.

For the Alignment setting, We use Qwen1.5-1.8B [26] as the base model. As the teacher model,
we adopt Zephyr-7B-SFT-Full [27], which is based on Mistral-7B [28] and further fine-tuned on
the Ultrachat200k dataset1 provided by HuggingFace. We follow the procedure in [19], 50,000
prompts are randomly sampled from Ultrachat200k and generate synthetic responses using the base
model. For evaluation, we adopt the HuggingFace Open LLM Leaderboard [29], which is commonly
used to assess the underlying capabilities of models through few-shot evaluation. Additionally, we
evaluated the output quality of the LLM using MT-bench [30] with its provided dataset, we use the
API of GPT-4 as the judge.

For the Knowledge Distillation setting. We use GPT2-1.5B [31] as the base model and Qwen2.5-
7B-Instruct [32] as the teacher. Four datasets are selected for evaluation: DATABRICKSDOLLY-15K
(Dolly) [33], ALPACA (Alpaca) [34], S-NI (S-NI) [35], and DIALOGSUM (Dialogsum) [36]. Final
performance is reported using the ROUGE-L metric [37] between generated outputs and human-
annotated references.

We perform 4 iterations, each iteration consisting of 2 epochs of training. Additional implementation
details are provided in Appendix B in the supplementary material.

1https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
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Table 1: Performance of SWIFT based on Qwen1.5-1.8B across HuggingFace Open LLM Leader-
board datasets, compared with all baselines. * Methods trained on Ultrachat200k SFT data. †
Methods trained on UltraFeedback Binarized preference data [39].

Methods Arc TruthfulQA Winogrande GSM8k MMLU HellaSwag Avg

Teacher 60.41 43.73 74.19 26.76 60.92 82.85 58.14

SFT* 39.08 38.42 58.64 19.03 41.30 60.09 42.76
DPO† 39.33 38.37 59.12 19.18 41.30 61.74 43.17
IPO† 37.29 38.09 61.04 32.52 44.40 60.62 45.66
TDPO† 39.08 38.12 58.47 20.70 41.29 61.22 43.15
TIS-DPO† 40.44 39.09 61.27 30.71 41.61 61.66 45.80
SPIN* 39.93 40.46 58.17 18.42 40.81 61.42 43.20
SWIFT* 39.78 39.12 61.48 37.93 44.84 61.63 47.46

(a) SWIFT vs baselines on MT-Bench.

0 20 40 60 80 100

SWIFT
vs 

SPIN

SWIFT
vs 

DPO

SWIFT
vs 

SFT

44.4% 38.1% 17.5%

41.9% 39.4% 18.8%

44.4% 41.2% 14.4%

SWIFT Wins Tie Baseline Wins

(b) Training reward comparison.
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Figure 1: The left figure compares SWIFT with SFT, DPO, and SPIN on MT-Bench, evaluated by
GPT-4. The right figure shows the trends of chosen and rejected rewards for SWIFT and SPIN during
iteration 0.

4.2 Main Results

4.2.1 Comparison with Alignment Methods

Table 1 compares SWIFT with SFT and alignment baselines, including DPO [16], IPO [38],
TDPO [17], TIS-DPO [18], and SPIN [19]. Following [19], DPO, IPO, TDPO, and TIS-DPO
are trained on the UltraFeedback Binarized dataset [39], which contains 62k GPT-4-labeled pref-
erence samples, incurring significant data collection costs. Across six Open LLM Leaderboard
benchmarks, SWIFT achieves the highest average score (47.46), surpassing the strong baseline
TIS-DPO by a margin of +1.66, with strong gains on GSM8k (+7.22) and MMLU (+4.03) over
SPIN. Complementing the leaderboard results, MT-Bench pairwise comparisons with GPT-4 as the
judge (Figure 1a) show SWIFT consistently outperforming SFT, DPO, and SPIN, achieving win
rates of 44.4% against SPIN and SFT, and 41.9% against DPO, confirming its advantage in response
quality.

Figure 2 further supports this by illustrating performance trends across multiple iterations. While both
SWIFT and SPIN start from the same SFT baseline, SWIFT demonstrates a clear upward trajectory
across iterations, especially on MMLU and HellaSwag.

4.2.2 Evaluation against Knowledge Distillation Baselines

To further validate the effectiveness of our proposed method, we evaluate SWIFT under a knowledge
distillation (KD) setting, where a smaller student model is distilled from a larger teacher model. As
shown in Table 2, we compare SWIFT against Supervised Fine Tuning (SFT) and several existing
KD baselines, including ULD [40], MinED [41], DSKD [42]. The teacher model is Qwen2.5-7B-
Instruct, while the student is GPT2-1.5B. Across all benchmarks, SWIFT achieves the highest average
ROUGE-L score (29.20), consistently outperforming previous distillation methods.
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Figure 2: The average score of SPIN and SWIFT at different iterations on the HuggingFace Open
LLM leaderboard datasets.
Table 2: Evaluation results of Qwen2.5-7B-Instruct distilled to GPT2-1.5B on four benchmarks and
the averaged performance

Qwen2.5-7B-Instruct→ GPT2-1.5B

Methods Dolly Alpaca S-NI Dialogue Sum Avg

Teacher 28.49± 0.21 35.75± 0.25 32.35± 0.24 35.24± 0.08 32.96

SFT 21.83± 0.28 27.15± 0.31 23.16± 0.15 30.74± 0.17 25.72

ULD 24.52± 0.28 29.17± 0.22 24.18± 0.08 32.74± 0.35 27.65

MinED 25.52± 0.44 30.41± 0.56 25.09± 0.25 33.83± 0.24 28.71

DSKD 25.38± 0.46 30.48± 0.38 25.92± 0.18 33.82± 0.23 28.90

SWIFT 25.94± 0.32 30.69± 0.33 26.43± 0.19 33.74± 0.13 29.20

These results highlight an alternative way to leverage teacher models by estimating token-level
importance weights, rather than relying solely on logits or hidden states. Moreover, the consistent
gains across diverse datasets further demonstrate the robustness of our approach. Furthermore, unlike
conventional knowledge distillation, which requires online teacher access and incurs high memory
and compute overhead, SWIFT computes token weights in a single offline pass, significantly reducing
training costs while retaining the benefits of distillation.

4.3 Ablation Studies

Table 3: Ablation study for token weight estimation
on Qwen1.5-1.8B.

Methods iter 0 iter 1 iter 2 iter 3

rand weight 40.37 39.71 38.85 34.95
equal weight 42.74 43.05 43.11 43.23
contrastive weight 44.75 45.03 45.11 45.27
reverse weight 33.21 31.05 27.88 25.43
SWIFT 46.94 47.12 47.02 47.46

We conduct ablation studies to investigate the
influence of different token weighting strate-
gies on the performance of SWIFT. Table 3
reports results over four self-play iterations us-
ing Qwen1.5-1.8B as the student model under
various token importance estimation methods.

We experiment with several token weighting
strategies: random weight, where weights are
uniformly sampled from [−0.5, 1.5]; equal
weight, where all tokens are assigned a con-
stant value of 1; contrastive weight, follow-
ing TIS-DPO [18] by training separate pos-
itive and negative models to infer token importance; reverse weight, which inverts the weights
computed by our method. Specifically, if SWIFT assigns a weight w to a token t in sequence y,
the reverse weighting assigns it 1− w; and SWIFT, our default setting where token importance is
estimated via a teacher model as described in 3.3.

As shown in Table 3, our method (SWIFT) consistently achieves the best performance across all
iterations. Equal weighting performs reasonably but is clearly outperformed by importance-aware
alternatives. Contrastive weighting provides moderate gains but still trails behind our approach,
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while both random and reverse weighting lead to substantial performance degradation. These results
underscore the importance of accurate token importance estimation, and confirm the advantage of
using a teacher-guided approach as in SWIFT.

We further examine the evolution of chosen and rejected rewards throughout training, as depicted
in Figure 1b. Inspire by [18], in our approach, the chosen reward is computed by incorporating
token-level weights into the DPO reward formulation, specifically:

∑Tw

i=1 w
w
i β log

π∗
θ (y

w
i |x,yw

<i)

πref (yw
i |x,yw

<i)
. In

SPIN, both chosen and rejected rewards decline over time, reflecting ineffective learning of preferred
responses. In contrast, when applying our token weighting strategy, the chosen reward increases
steadily while the rejected reward decreases, indicating that incorporating token-level importance
helps guide the model toward more effective optimization.

5 Conclusion

We presented SWIFT, an effective method for token-level importance-aware fine-tuning via teacher-
guided distillation. By estimating token weights from a stronger teacher model, SWIFT improves
model alignment and generation quality. Our results across multiple benchmarks and settings validate
the effectiveness and flexibility of this approach. However, using the teacher model repeatedly across
multiple self-play iterations may introduce additional overhead. Future work may explore more
efficient strategies, as well as deeper analysis on how token weighting influences learning dynamics.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: We discuss limitations in Section 5.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
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For example, a facial recognition algorithm may perform poorly when image resolution
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Justification: Please refer to Section 3.2 for our assumptions.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided detailed descriptions of the experimental setup in 4.1 and
methods in 3 to ensure that our experiment can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We released our code and datasets.
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• The answer NA means that paper does not include experiments requiring code.
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We presented experiment settings and details in Section 4.1 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conducted the experiment five times independently with different random
seeds and reported the mean and standard derivation of the result. The other experiment
setups follow the protocol of prior well-known work.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention about compute resources in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is a methodological paper to improve preference optimization
algorithms and does not have direct societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve releasing data or models that have a high risk for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used in our paper are public.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There is no new assets introduced in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There are no crowdsourcing experiments and research with human subjects in
this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Background

We consider a Large Language Model (LLM) parameterized by parameters θ, and denote its output
distribution as πθ. Given an input sequence x, commonly known as the prompt, the model generates
a response sequence y. In preference-based alignment, the training dataset is made up of triplets
D = {(x, yw, yl)}, where yw and yl are two possible responses. Among them, yw is considered
better than yl, which we write as yw ≻ yl. We refer to yw as the chosen (winning) response and yl
as the rejected (losing) one. In the following sections, we provide a brief overview of DPO, SPIN,
recent token-level extensions of DPO and traditional knowledge distillation approaches.

Direct Preference Optimization (DPO). DPO [16] provides an elegant and efficient alternative to
RLHF [11] by avoiding explicit reward model training. Instead, it reformulates the reward function
r(x, y) using a closed-form expression based on the ratio between the policy model and a fixed
reference model:

r(x, y) = β log
πθ(y | x)
πref(y | x)

+ β logZ(x), (17)

where πθ is the current policy model, πref is a static reference policy, and Z(x) is a partition
function independent of the policy. By plugging this reward into the Bradley-Terry framework
[43], the preference probability between two responses yw and yl is modeled as p(yw ≻ yl |
x) = σ (r(x, yw)− r(x, yl)) , where σ(·) denotes the sigmoid function. This leads to the DPO loss
function, which optimizes the policy directly using preference data:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
, (18)

This formulation enables the model to directly incorporate human preference signals into policy
learning without needing an explicit reward model or reinforcement learning.

Self-Play Fine-Tuning. Inspired by Generative Adversarial Networks (GAN) [44], Self-Play fIne-
tuNing (SPIN) [19] proposes an iterative self-play framework where a language model fine-tunes
itself by generating synthetic responses and learning to distinguish them from human-annotated data.
Specifically, at each iteration t, the current model πθt generates a response y′ for a given prompt x,
forming a synthetic preference pair (x, y ≻ y′), where y is the ground-truth response. The model is
then updated by minimizing:

LSPIN(πθt+1 , πθt) = Ex,y∼pdata,y′∼πθt

[
ℓ

(
β log

πθt+1
(y | x)

πθt(y | x)
− β log

πθt+1
(y′ | x)

πθt(y
′ | x)

)]
, (19)

where ℓ(·) is a convex decreasing loss (e.g., logistic loss), and β is a scaling factor. This formulation
encourages the updated model to assign higher likelihood to responses resembling the ground-truth
and lower likelihood to its own earlier responses. This self-play process eliminates the need for
explicit reward models or preference-labeled data.

Token-Level DPO. Recent works have recognized the value of fine-grained feedback. Rafailov et al.
[16] theoretically demonstrate that DPO can represent any dense reward function by reparameterizing
it as an optimal advantage function within a token-level Markov Decision Process. This formulation
enables DPO to effectively optimize policies at the token level. Building upon this, TDPO [17]
introduces forward Kullback-Leibler divergence constraints and leverages the Bradley-Terry model to
convert sentence-level preferences into token-level rewards, allowing the model to adjust its strategy
dynamically during generation. Furthermore, TIS-DPO [18] enhances this approach by estimating
token importance weights based on differences in prediction probabilities from contrastive language
models, enabling importance sampling that approximates the optimal distribution by assigning
weights to each token according to its estimated reward.
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Traditional Knowledge Distillation Approaches. Knowledge distillation (KD) is a widely
used technique to transfer knowledge from a larger teacher model to a smaller student model.
Traditionally, KD employs the Kullback-Leibler (KL) divergence to minimize the difference
between the teacher and student probability distributions [21]). Given a sequence x, the stu-
dent model learns to match the teacher’s output distribution by minimizing the following loss:
LKD =

∑
i DKL(p(xi | x<i, τ) ∥ qθ(xi | x<i, τ)), where DKL(· ∥ ·) denotes the KL divergence and

τ is the temperature to control the smoothness of the distributions.

B Implementation Details and Algorithm

B.1 Experiments Setup

We conduct two experimental settings to evaluate SWIFT: Alignment and Knowledge Distillation.
The Alignment setting compares SWIFT with existing alignment methods, while the Knowledge
Distillation setting assesses its effectiveness against existing knowledge distillation methods.

For the Alignment setting, we use Qwen1.5-1.8B [26] as the base model. As the teacher model, we
adopt Zephyr-7B-SFT-Full [27], which is based on Mistral-7B [28] and further fine-tuned on the
Ultrachat200k dataset2 provided by HuggingFace. Ultrachat200k is a curated 200k subset of
the UltraChat corpus [45], which consists of approximately 1.4 million high-quality instructional
dialogues generated via OpenAI’s Turbo API. We follow the procedure in [19], 50,000 prompts are
randomly sampled from Ultrachat200k and generate synthetic responses using the base model. For
evaluation, we adopt the HuggingFace Open LLM Leaderboard [29], implemented via the Language
Model Evaluation Harness [46]. The leaderboard covers six representative benchmarks targeting
different capabilities of LLMs: commonsense reasoning (ARC [47], HellaSwag [48], Winogrande
[49]), multi-task language understanding (MMLU [50]), resistance to misinformation (TruthfulQA
[51]), and mathematical reasoning (GSM8k [52]). These benchmarks collectively provide a rigorous
and diverse framework for evaluating both alignment quality and generalization. Additionally, we
evaluated the output quality of the LLM using MT-bench [30] with its provided dataset, we use the
API of GPT-4 as the judge. The details of the benchmarks are provided in table 4 below.

Table 4: Details of the HuggingFace Open LLM Leaderboard evaluation datasets, including the
number of few-shot examples and the evaluation metric for each.

Dataset Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU

# Few-shot 25 0 5 5 10 5
Metric acc_norm mc2 acc acc acc_norm acc

For the Knowledge Distillation setting. We use GPT2-1.5B [31] as the base model and Qwen2.5-
7B-Instruct [32] as the teacher. Four datasets are selected for evaluation: DATABRICKSDOLLY-15K
(Dolly) [33], ALPACA (Alpaca) [34], S-NI (S-NI) [35], and DIALOGSUM (Dialogsum) [36]. Final
performance is reported using the ROUGE-L metric [37] between generated outputs and human-
annotated references. In the state-of-the-art method DSKD [42], distillation is typically performed on
a single dataset, while evaluation is conducted across multiple datasets spanning different domains
or tasks. In contrast, we construct separate training, validation, and testing splits for each domain,
allowing for a more targeted evaluation of knowledge distillation within the same domain. The details
of the datasets are provided in table 5 below.

Table 5: Dataset Statistics

Dataset Train Validation Test
Dolly 11,435 1,000 500
Alpaca 10,396 500 500
S-NI 10,414 500 1,902
DialogSum 12,460 500 1,500

2https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
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B.2 Hyperparameters

To reduce training costs and memory consumption, we employ DeepSpeed ZeRO-3 [53] and
FlashAttention-2 [54] throughout all training iterations. Models are trained using the RMSProp
optimizer [55] without weight decay, following standard practice for LLM alignment fine-tuning.
We set the global batch size to 2, use bfloat16 precision, and apply a 10% linear warmup at the start
of each iteration. The peak learning rate is set to 5× 10−7 for iterations 0 and 1, and 1× 10−7 for
iterations 2 and 3 as training approaches convergence. Each iteration is trained for 2 epochs with a
maximum sequence length of 2048 tokens. For token importance estimation as defined in equation
14 in main paper, we set µ = 1, with lower and upper clipping bounds L = −0.5 and U = 1.5,
respectively. The hypeparameter k is fixed to 1. All experiments are conducted on 2× NVIDIA RTX
4090 GPUs.

B.3 Synthetic Data Generation

We generate synthetic rejected responses using the library vLLM [56] to speed up inference
with distributed inference over multiple GPUs. We use a sampling decoding strategy to gener-
ate responses, with a temperature of 1.0 and top_p of 1.0. We consider the prompting template
\n\n<Human>:{prompt}\n\n<Assistant>:.

B.4 Algorithm

We provided the pseudocode of our proposed SWIFT (Self-Play Weighted Fine-Tuning) method in
Algorithm 1.

Algorithm 1 Self-Play Weighted Fine-Tuning (SWIFT)

Require: {(xi, yi)}i∈[N ]: SFT dataset, πθ0 : LLM with initial parameters θ0, πθT : teacher model,
M : number of iterations.

1: for t = 0, . . . ,M − 1 do
2: for i = 1, . . . , N do
3: Generate synthetic data y′i ∼ πθt(·|xi).
4: end for
5: Compute token importance weights ω using πθT and πθt
6: θt+1 = argminθ∈Θ

∑
i∈[N ] [l (u (x, y, y

′, πθS , ω)− v (x, y, y′, πθS , ω))]

7: end for
8: return θT .

B.5 Details of Teacher-Guided Token Importance Estimation

In this section, we provide a detailed explanation of the method described in Section 3.3 (Teacher-
Guided Token Importance Estimation) of the main paper, addressing how token-level importance
weights are distilled from a teacher model and mapped to student tokens, especially in the presence
of tokenizer mismatches. We also include the full algorithm, computational analysis, and illustrative
examples to enhance clarity.

B.5.1 Overview of the Method

Our aim is to develop an efficient mechanism to estimate the importance weight of each token.
Intuitively, a well-trained teacher—having been trained on more data with higher model capacity—can
better signal which tokens carry higher “reward”. In this section, we present a principled method to
distill token-level reward signals from a teacher model θT and transfer them to a student model θS .

Inspired by TIS-DPO [18], we first estimate the raw importance weight for the tth token in a response
y = (y1, . . . , yT ) as

ωraw
t = k · exp

(
µ · clamp

(
log

πθT (yt | x, y<t)

πθS (yt | x, y<t)
, L, U

))
, (20)
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where clamp(a, L, U) = min
(
max(a, L), U

)
truncates the log-odds to [L,U ] to reduce variance

and stabilize optimization. Here k > 0 and µ are constant; L and U are lower and upper clipping
bounds.

However, this formulation assumes that the teacher and student models share the same tokenizer and
vocabulary. In practice, this assumption rarely holds. A sequence y might be tokenized by the teacher
model as [yT1 , y

T
2 , . . . , y

T
t ], and by the student as a different sequence [yS1 , y

S
2 , . . . , y

S
s ], making direct

token-to-token alignment in (20) infeasible. To address the misalignment issue caused by differing
tokenizers, we propose a generalizable token mapping strategy based on shared surface segments.

Case 1: Shared Tokenizer. In the scenario where both the teacher and student models utilize an
identical tokenizer, the alignment between their respective token sequences is inherently preserved.
Specifically, each token yt generated by the student model corresponds directly to a token produced
by the teacher model at the same position, thereby eliminating the need for additional alignment
mechanisms. As a result, the distillation weight ωt associated with each token position t can be
directly adopted from the unprocessed or raw weighting scheme. Formally, we define:

ωt = ωraw
t , (21)

where ωraw
t represents the original distillation weight derived from the teacher model’s outputs as in

20 without any post-processing or re-alignment.

Case 2: Different Tokenizers. When tokenizers differ, direct index alignment between tokens
becomes unreliable. Rather than aligning tokens individually, we instead leverage a common
structural unit shared across both tokenizations. Most modern tokenization algorithms, including
BPE [23], SentencePiece [24], and WordPiece [25], segment text into subwords while generally
respecting word boundaries. This means that each token strictly belongs to either a single word
or the whitespace separating words, making word spans a natural and reliable basis for alignment.
Leveraging this property, we segment the original text into coarse-grained units corresponding to
complete words and their leading whitespace, resulting in a sequence of shared components
{c1, c2, . . . , cK}. This ensures that every token from both teacher and student sequences can be
assigned to one of these shared components, which are small enough to preserve local semantics but
broad enough to encompass all subword variations.

Suppose student token ySi belongs to component ch, and the teacher tokens in that segment are
T (ch) = {yTj , yTj+1, . . . , y

T
j+ℓ}. Assuming all tokens within a shared component contribute equally,

we define the student’s token importance as the average of the teacher tokens’ weights in the
corresponding component ch:

ωS
i =

1

|T (ch)|
∑

yT
r ∈T (ch)

k · exp
(
µ · clamp

(
log

πθT (yTr | x, yT<r)

πθS (ySi | x, yS<i)
, L, U

))
. (22)

B.5.2 Pseudo-Code and Computational analysis for Teacher-Guided Token Weight
Estimation

The complete process of the Teacher-Guided Token Weight Estimation method is described in
Algorithm 2.

Given a text response y, we first tokenize it using the teacher tokenizer tokT and the student tokenizer
tokS to obtain token sequences Y T and Y S , respectively. In addition, the raw text y is segmented
into a sequence of shared components C, where each component consists of a full word along with its
leading whitespace. This segmentation has a time complexity of O(n), where n is the number of
characters in the input y.

For each component c ∈ C, we define T (c) and S(c) as the sets of teacher and student tokens that
belong to c. We then will estimate the weight for all the student tokens belonging to this component
c. Since each token belongs to exactly one component, the algorithm processes each student token
only once.

The core computation involves measuring the discrepancy between the teacher and student log-
likelihoods. For each student token i ∈ S(c), we compute the log-probability under the student
model, and for each teacher token t ∈ T (c), we compute its log-probability under the teacher
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Algorithm 2 Teacher-Guided Token Importance Estimation

Require: Teacher model πθT , student model πθS , teacher tokenizer tokT , student tokenizer tokS ,
hyperparameters (k, µ, L, U), response y.

Ensure: Importance weights ωS
1:|yS | for student tokens.

1: Y T ← tokT (y), Y S ← tokS(y)
2: C ← WORDSEGMENTS(y) ▷ Segment raw text into word-level spans
3: for each component c in C do
4: T (c)← { t : Y T

t ⊂ c}, S(c)← { i : Y S
i ⊂ c}

5: for each t ∈ T (c) do
6: at← log(πθT (Y

T
t | x, Y T

<t))
7: end for
8: for each i ∈ S(c) do
9: bi← log(πθS (Y

S
i | x, Y S

<i))
10: for each t ∈ T (c) do
11: ℓt;i←at − bi
12: ωraw

t ←k · exp
(
µ · clamp(ℓt;i, L, U)

)
13: end for
14: ωS

i ← 1
|T (c)|

∑
t∈T (c) ω

raw
t ▷ eq 22

15: end for
16: end for
17: return {ωS

i }
|Y S |
i=1

model. The weight for student token i is then obtained by averaging the clamped exponential of the
log-probability differences between the teacher and student tokens within the same component, as
formalized in Equation 22.

This design has two critical efficiency advantages: (i) the decoupled log probability computation
allows for only a single forward pass per model per response, and (ii) the local averaging over
shared components yields robust token importance estimates. These properties make the algorithm
both scalable and robust to differences in tokenization schemes between teacher and student models.

B.5.3 Illustrative Examples

Figure 3 illustrates our Teacher-Guided Token Weight Estimation method applied to the input
"Taylor Swift is a singer not an AI algorithm". The sentence is segmented into shared
components (green), which serve as alignment components between teacher tokens (red) and student
tokens (blue). For each component, token-level log-probabilities are computed from both models. Stu-
dent token weights are then computed using a divergence function D(x) = k ·exp(µ·clamp(x, L, U))
over the difference between teacher and student log-probabilities. In cases where multiple tokens
align to the same component, weights are averaged across the corresponding pairs.

Note that, there may be more than one whitespace character between two words, or including newline
characters (e.g., \n). Importantly, modern tokenizers do not tokenize words alone—they also treat
sequences of whitespace (spaces, tabs, or newlines) as separate tokens. In our implementation, we
preserve these segments as standalone components, denoted as [SPACE].

B.5.4 Comparison with Prior Work.

Compared to the contrastive-based token weighting in [18], our method is significantly more compu-
tationally efficient, as it does not require training separate positive and negative models. We validate
this by providing a direct comparison of the total time cost between SWIFT and the contrastive-based
token weighting approach (TIS-DPO) in Appendix C.1 . Furthermore, as shown in Table 3 in main
paper, our teacher-guided estimation consistently achieves superior performance, confirming both its
efficacy and practicality.
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y = “Taylor Swift is a singer not an AI algorithm”  

'rithm''Taylor' 'ĠSwift' 'ĠAI' 'Ġalgo' 

'Tay' 'lor' 'ĠAI' 'Ġalgorithm' 'ĠSwift'

Taylor Swift AI Algorithm

𝑎𝑡
1 𝑎𝑡

2 𝑎𝑡
10 𝑎𝑡

11 𝑎𝑡
12

𝑏𝑠
1 𝑏𝑠

2 𝑏𝑠
12 𝑏𝑠

13𝑏𝑠
3

𝑤𝑠
1

=
D(𝑎𝑡1- 𝑏𝑠1)

𝑤𝑠
2

=
D(𝑎𝑡1- 𝑏𝑠2)

𝑤𝑠
3

=
D(𝑎𝑡2- 𝑏𝑠3)

𝑤𝑠
12

=
D(𝑎𝑡10- 𝑏𝑠12)

𝑤𝑠
13

=
D(𝑎𝑡11− 𝑏𝑠13) + D(𝑎𝑡12− 𝑏𝑠13) 

2

…

...

...

Teacher token log-prob

Teacher token

Shared component C

Student token

Student token log-prob

Token weight

Figure 3: An example of our Teacher-Guided Token Weight Estimation method where D(x) =
k · exp

(
µ · clamp(x, L, U)

)
C Additional Experiment Result

C.1 Training Overhead

To further examine the computational efficiency of our method, we compare the total runtime of
the full training pipeline between SWIFT and the contrastive-based token weighting approach (TIS-
DPO), as introduced in [18]. The TIS-DPO framework comprises three strategies for estimating
token weights: (1) TIS-DPO (P), which guides the original LLM with contrastive prompts; (2)
TIS-DPO (S), which involves training two separate LLMs via SFT on winning and losing responses,
respectively; and (3) TIS-DPO (D), which performs both forward and reverse DPO training using
winning and losing responses. Among these, [18] report that TIS-DPO (D) achieves the strongest
empirical performance, and thus we adopt it for our comparison.

Table 6: Total times for different iterations under SWIFT and TIS-DPO compute weight method.

Iteration SWIFT TIS-DPO (D)

Generation Compute Weight Training Generation Compute Weight Training

Iter 0 0.52h 3.08h 6.03h 0.52h 15.33h 6.16h
Iter 1 0.51h 3.05h 6.13h 0.52h 15.24h 6.10h
Iter 2 0.52h 3.10h 6.01h 0.50h 15.15h 6.08h
Iter 3 0.49h 3.05h 6.10h 0.51h 15.28h 6.06h

Table 6 presents the generation, weight computation, and training times for both SWIFT and TIS-DPO
(D) across different self-play iterations. Notably, while generation and training times are comparable
between the two approaches, SWIFT demonstrates a significant reduction in weight computation
time. This efficiency gain arises because TIS-DPO (D) requires training two distinct models to obtain
token weights. This highlights the superior computational efficiency of our approach over TIS-DPO
(D). Moreover, as shown in Table 3 in main paper, SWIFT not only offers reduced overhead but also
achieves better overall performance.

To further quantify the computational overhead of SWIFT, we report the GPU-hours required for
each stage of the SWIFT pipeline on the 50k Ultrachat subset using a single NVIDIA H100 GPU.
The main phases include: (1) response generation, (2) token weight computation (which includes the
teacher forward pass), and (3) training. The breakdown per iteration is shown below:

As shown, the teacher forward pass (offline, single forward) only takes 0̃.19 hours 1̃1 minutes for
50k samples, which we believe is quite efficient and does not contribute significantly to the overall
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Table 7: GPU-hours per iteration for each stage of SWIFT on 50k Ultrachat samples.

Iteration Generation (1) Compute Weight (2) Training (3) Teacher Forward Overall

0 0.24 h 0.58 h 1.45 h 0.19 h 2.27 h
1 0.23 h 0.57 h 1.42 h 0.19 h 2.22 h
2 0.24 h 0.58 h 1.43 h 0.19 h 2.25 h
3 0.22 h 0.55 h 1.40 h 0.18 h 2.17 h

training cost. Notably, in this table, we only used sequential (single-process) inference for simplicity;
parallel inference would further reduce this time substantially.

To compare efficiency with distillation baselines, we report the training time per sample and peak
GPU memory usage across SFT, ULD, DSKD, and SWIFT. However, we would like to note that
our distillation codebase is based on DSKD, which uses a different training library than our SWIFT
codebase, making direct comparisons challenging. However, we made every effort to fairly compare
the training time per sample and peak GPU memory usage across these baselines in the table below:

Table 8: Training time per sample and peak GPU memory usage.

Method Training Time / Sample (s) Peak GPU Memory (GB)

SFT 0.26 51.08
ULD 0.60 70.20
DSKD 0.54 66.63
SWIFT 0.30 55.39

These results show that SWIFT is comparable to SFT in runtime and memory usage, while more
efficient than typical distillation baselines.

C.2 Robustness to Noisy Guidance

To examine the stability of SWIFT under imperfect guidance, we inject uniform noise in the range
[−0.2, 0.2] into the teacher-estimated token weights. As shown in Table 9, performance decreases
slightly under noise, but SWIFT remains stable across iterations, indicating resilience to moderate
perturbations in teacher signals.

Table 9: Performance comparison under 20% annotation noise

Noise Iter Arc TruthfulQA Winogrande GSM8k MMLU HellaSwag Avg

0 ite0 39.16 41.01 61.96 33.43 44.41 61.69 46.94
0 ite1 38.91 38.93 61.80 37.91 43.83 61.32 47.12
0 ite2 39.76 40.02 62.04 33.60 44.61 62.07 47.02
0 ite3 39.78 39.12 61.48 37.93 44.84 61.63 47.46

±0.2 ite0 37.07 38.37 62.09 32.22 44.06 60.60 45.74
±0.2 ite1 37.58 38.95 61.75 34.51 43.45 60.85 46.18
±0.2 ite2 37.63 39.54 62.13 33.19 44.17 61.48 46.36
±0.2 ite3 38.06 39.08 62.01 35.18 44.09 61.53 46.66

Moreover, we would like to clarify why our method might actually have an advantage in lower-data
regimes. A crucial premise of this paper is that ground truth can contain some low-reward tokens.
These tokens can be understood as noise in SPIN [19]. By introducing token-level importance
estimation, SWIFT can effectively identify and filter out such noisy tokens, optimizing primarily the
high-quality parts of responses.

C.3 Extended Evaluation on Reasoning and Agentic Tasks

To further evaluate the applicability of SWIFT beyond preference alignment, we conduct experiments
on reasoning-intensive and agentic settings. For reasoning, we use two challenging benchmarks:
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Big-Bench-Hard (BBH) [57] and Discrete Reasoning Over Paragraphs (DROP) [58]. The
student model is Qwen2.5-7B Instruct and the teacher model is Qwen3-32B. Results show that
SWIFT consistently improves over baselines on reasoning tasks.

Table 10: Performance on reasoning benchmarks (higher is better).

Benchmark Base DPO SPIN SWIFT

BBH 65.07 64.23 64.85 66.01
DROP 59.28 59.10 58.62 62.03

For agentic capabilities, we evaluate on the ToolBench [59] benchmark, which measures performance
in tool-augmented interaction tasks. SWIFT again demonstrates consistent improvements.

Table 11: ToolBench evaluation on agentic interaction tasks.

Metric Base DPO SPIN SWIFT

Act.EM ↑ 46.69 46.12 47.01 48.36
F1 ↑ 40.51 40.63 40.73 42.08
HalluRate ↓ 1.60 1.44 1.42 1.40
Rouge-L ↑ 4.35 4.57 4.40 4.61

These additional results confirm that SWIFT extends effectively to both complex reasoning tasks and
real-world agentic interaction scenarios.

C.4 Evaluation on Larger Backbone Models

To assess the scalability of SWIFT beyond Qwen1.5-1.8B we conduct experiments on recent,
stronger instruction-tuned and reasoning-capable backbones. We evaluate two student-teacher config-
urations: Qwen3-32B → Mistral-7B-v0.1 and Qwen3-32B → Qwen2.5-7B-Instruct. Re-
sults in table 12 below confirm that SWIFT continues to deliver meaningful performance gains even
with newer and stronger instruction and reasoning models.

Table 12: Scaling analysis with larger backbone models.

Setting Model Arc Truthful Wino GSM8k MMLU HellaSwag Avg

Qwen3-32B 71.08 59.29 76.95 80.97 81.53 83.96 75.63

→ Mistral-7B-v0.1

Base 59.90 42.65 77.43 31.99 60.60 83.47 59.34
DPO 60.70 42.11 76.59 32.65 61.30 83.92 59.55
SPIN 61.73 44.63 77.07 33.14 62.76 81.68 60.17

SWIFT 63.06 51.25 78.20 42.20 65.17 81.13 63.50

→ Qwen2.5-7B-Instruct

Base 65.96 64.70 75.06 68.61 73.49 81.45 71.55
DPO 66.12 63.50 74.19 67.49 73.02 81.67 71.00
SPIN 66.53 65.76 75.17 69.35 72.38 82.30 71.92

SWIFT 66.98 66.21 75.53 73.95 73.36 82.45 73.08

C.5 Teacher Quality Dependence

To assess the sensitivity of SWIFT to teacher quality, we experiment with multiple teacher models of
varying strength and report the resulting student performance after training with each teacher model.

These results show that while stronger teachers yield slightly better student performance, the gains
are not strongly correlated with teacher capability. This is because the teacher is only used to estimate
the importance weight of token, not to directly control what the model generates. As a result, SWIFT
maintains stable and effective performance across diverse teacher–student pairs and does not depend
heavily on highly capable teachers.
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Table 13: Effect of different teacher models on student performance.

Setting Arc Truthful Wino GSM8k MMLU HellaSwag Avg

Zephyr-7B-SFT-Full 60.41 43.73 74.19 26.76 60.92 82.85 58.14
→ Qwen1.5-1.8B 39.78 39.12 61.48 37.93 44.84 61.63 47.46

Qwen2.5-7B-Instruct 65.96 64.70 75.06 68.61 73.49 81.45 71.54
→ Qwen1.5-1.8B 39.91 40.11 62.43 37.56 44.50 62.43 47.82

Qwen3-32B 71.08 59.29 76.95 80.97 81.53 83.96 75.63
→ Qwen1.5-1.8B 40.27 38.96 63.51 38.83 44.69 62.19 48.07

C.6 Qualitative Analysis on MMLU benchmarks

To further analyze how SWIFT impacts different knowledge domains, we conducted a qualitative
analysis using the MMLU benchmark, which covers diverse knowledge domains. MMLU comprises
four major sub-domains: Humanities, Social Sciences, STEM, and Other. Results across iterations
are reported in Table 14 below.

Table 14: MMLU subdomain analysis across SWIFT iterations.

Domain Base Ite 0 Ite 1 Ite 2 Ite 3

Humanities 39.85 40.89 40.13 40.70 40.78
SocialSci. 47.43 48.29 47.90 48.88 49.59
STEM 34.61 36.76 37.08 37.93 38.12
Other 50.08 52.08 52.11 51.75 52.14

The results show clear and consistent improvements, especially in STEM and Social Sciences, which
suggests the model is getting better at reasoning and logical thinking. Meanwhile, performance in
Humanities and Other domains remains stable or improved, showing that the model’s reasoning gains
didn’t hurt its general knowledge or overall quality.

C.7 Qualitative Comparison Between Teacher-Guided and Contrastive Token Weighting

To provide further insight into how SWIFT differs from contrastive token weighting (TIS-DPO [18]),
we conduct a qualitative analysis comparing the most influential tokens selected by each method.

Specifically, at each iteration, the contrastive weighting strategy adopted from TIS-DPO relies
on two separate student models (a positive and a negative model), which are trained via DPO
on pairs constructed from (ground_truth, model_response) and (model_response, ground_truth).
Token importance is then estimated based on the difference in logits between these two models.
While effective initially, this approach faces an inherent limitation as iterations progress: as the
model improves over time, its generated responses become increasingly similar to ground truth.
Consequently, the distinction between the ground truth and model response training pairs diminishes
in later iterations, weakening the contrastive signal and thereby potentially reducing the quality of
token importance estimates. In contrast, our proposed SWIFT method employs a fixed, external
teacher model and it is unaffected by the student’s iterative improvement, it provides stable, high-
quality importance signals across iterations.

Furthermore, we performed an additional qualitative analysis, comparing the top 20 highest-weighted
tokens from each method. Token rankings were computed based on the average importance per
appearance, defined by:

score(t) =
∑

importance weights assigned to t

number of appearances of t
. (23)

The results are presented below:

Top 20 Tokens of SWIFT:
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["Serve", "tering", "antibiotic", "intermittent", "evaluates", "destroys",
"Wealth", "FDA", "angelo", "onne", "visited", "paralyzed", "aken",
"toughest", "Pricing", "CLA", ".dequeue", "avenous", "plings", "specifies"]

Top 20 Tokens of TIS-DPO:

["FACE", "[@", "LANG", ".dest", "ReturnValue", "baseUrl", "êPrint",
"keycode", "-has", "HG", "repaint", "Denver", "FINAL", "simil", "ï½s",
"{/*", "owler", ".des", "Teens", "ÃĞ"]

SWIFT selects semantically meaningful and contextually relevant tokens (e.g., antibiotic, FDA),
reflecting focus on factual and domain-rich content. In contrast, TIS-DPO often prioritizes tokens
resembling code artifacts or noise (e.g., ReturnValue, @), suggesting less semantic alignment.

However, we understand that our subjective judgment alone might not be sufficiently convincing,
we further conducted an objective evaluation using GPT-4o as an external evaluator to assess each
method’s top-20 tokens. We designed the following targeted prompt for GPT-4o:

Prompt

Below, I will provide the top 20 most important tokens across an entire dataset, as identified
by two different methods. Please evaluate which method is better based on key criteria for
token importance in a sentence, such as: semantic relevance (how meaningful or content-rich
the token is), syntactic role (its grammatical contribution), contextual influence (how much it
affects the surrounding content), and task-specific utility (its contribution to downstream tasks
like classification or retrieval). Here are these tokens:
- top_20_tokens_of_method1: {top_20_tokens_of_SWIFT}
- top_20_tokens_of_method2: {top_20_tokens_of_TIS-DPO}

GPT-4o provided the following summarized judgment:

LLM response

Method 1 is clearly better overall than Method 2. It includes more semantically rich, syn-
tactically functional, and contextually influential tokens, many of which are likely to be
task-relevant (e.g., medical, procedural, or evaluative terms). Method 2 appears to highlight
code artifacts, UI labels, or tokenization noise, which are often less useful for language tasks.

C.8 Generation Examples

Tables 15, 16, and 17 present additional generation examples produced by our SWIFT fine-tuned
model across different training iterations. Table 15 showcases examples from math problems, Table 16
focuses on code-generation tasks, and Table 17 includes general instruction-following cases. These
examples illustrate a clear improvement in response quality compared to the outputs from the initial
SFT checkpoint. Notably, as the number of iterations increases, the model’s responses become
more concise and better aligned with the ground-truth completions. For clarity, in each prompt,
the responses generated by SFT, iteration 0, iteration 1, and iteration 2 are respectively labeled as
Response 1, Response 2, Response 3, and Response 4.

30



Table 15: Generation example of our fine-tuned model by SWIFT at different iterations. GPT-4
chooses SWIFT iteration 2 over SFT, and iteration 0, 1.

Prompt <Human>:If the year is divisible by both 4 and 100, it is not a leap year, unless
it is also divisible by 400.
<Assistant>:

Ground truth This is a true statement. For example, the year 1900 was divisible by both 4
and 100 but not by 400, so it was not a leap year. However, the year 2000 was
divisible by both 4 and 100 and also by 400, so it was a leap year.

SFT This is true. For example, the year 1900 was divisible by both 4 and 100 but not
by 400, so it was not a leap year. However, 1904 was divisible by 4, but not by
100, so it was a leap year. The same applies to the year 2000, 2004, and 2008.

Iteration 0 True. For example, the year 1900 was divisible by both 4 and 100 but not by
400, so it was not a leap year. However, the year 2000 was divisible by both 4
and 100 and also by 400, so it was a leap year.

Iteration 1 This is a true statement. For example, the year 1900 was divisible by both 4
and 100 but not by 400, so it was not a leap year. However, the year 2000 was
divisible by both 4 and 100 and also by 400, so it was a leap year.

Iteration 2 This is a true statement. For example, the year 1900 was divisible by both 4
and 100 but not by 400, so it was not a leap year. However, the year 2000 was
divisible by both 4 and 100 as well as 400, so it was a leap year.

Judgment Comparison: Response 3 = Response 4 > Response 2 > Response 1.
Explanation: Responses 3 and 4 are identical and fully match the ground truth
both in correctness and clarity, providing the textbook explanation and appro-
priate examples (1900 and 2000) without unnecessary additions. Response 2 is
also correct and concise but slightly less formal in tone by starting with "True"
instead of a complete sentence, which slightly reduces its explanatory quality.
Response 1, while factually correct in its individual statements, introduces un-
necessary examples (1904, 2004, 2008) that deviate from the prompt’s focus
on the specific exception rule involving divisibility by 100 and 400, potentially
confusing the reader by adding standard leap year cases that do not illustrate the
special condition described in the prompt.
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Table 16: Generation example of our fine-tuned model by SWIFT at different iterations. GPT-4
chooses SWIFT iteration 2 over SFT, and iteration 0, 1.

Prompt <Human>:Write a Python program that prompts the user to enter a string and
then counts the number of characters in the entered string. The program should
print the total number of characters in the string.
<Assistant>:

Ground truth String = input("Enter a string: ")
count = 0
for character in string:

count += 1
print("The total number of characters in the string is:", count)

SFT Here’s a possible solution:
string = input("Enter a string: ")
count = 0
for character in string:

count += 1
print("The total number of characters in the string is:", count)
Here’s how the program works:
1. We prompt the user to enter a string using the input() function and store the
string in the variable string.
2. We initialize a variable count to 0, which will be used to keep track of the
number of characters in the string.
3. We use a for loop to iterate over each character in the string. The loop iterates
over each character in the string using string[”], which gives us a slice of the
string that starts at the current position and goes up to (but not including) the end
of the string. We add 1 to the count variable to increment it for each character
we encounter.
4. We use the print() function to output the result to the screen. We use string
interpolation to embed the count variable in the output string, so it’s easy to see
how many characters are in the string.
5. The program terminates when the user enters a string, so we use a while loop
to wait for user input before printing the final result.

Iteration 0 String = input("Enter a string: ")
count = 0
for character in string:

count += 1
print("Total number of characters in the entered string is: ", count)

Iteration 1 String = input("Enter a string: ")
count = 0
for char in string:

count += 1
print("The total number of characters in the string is:", count)

Iteration 2 String = input("Enter a string: ")
count = 0
for character in string:

count += 1
print("The total number of characters in the string is:", count)

Judgment Comparison: Response 4 = Response 3 > Response 2 > Response 1.
Explanation: Responses 4 and 3 are functionally identical to the ground truth,
only differing slightly in variable naming (“char” vs. “character”) but maintain-
ing correct, concise, and syntactically sound code. Response 2 is also correct but
has a minor stylistic difference in the output string (“Total number of characters
in the entered string is”) that deviates from the ground truth and slightly affects
alignment. Response 1, while technically correct in the code block, contains
multiple issues in the explanation: it introduces confusion by mentioning a
nonexistent while loop and incorrectly describes the use of string[”], which is
invalid syntax and misrepresents how the loop operates. These inaccuracies
make it the least reliable response.
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Table 17: Generation example of our fine-tuned model by SWIFT at different iterations. GPT-4
chooses SWIFT iteration 2 over SFT, and iteration 0, 1.

Prompt <Human>:Given the text: During The Daily Show’s “Between the Scenes”
segment on April 10, Noah asked television mogul Winfrey if there was any
sense of normalcy left in her life. The answer, quite simply, was no. Even when
she tried to dig up a passable answer, she hilariously failed. The avocado orchard
is tucked away on the property of Winfrey’s 23,000-square-foot Montecito home,
which she purchased for $50 million back in 2001. The home also boasts a
5,000-square-foot ranch-style house, a pool, horse stables, an equestrian ring,
a fruit orchard, and more. Simply put, Oprah’s home — much like guacamole
— is extra. Get it? Could you provide more information about the features of
Oprah Winfrey’s Montecito property, including the size of her home and other
amenities?
<Assistant>:

Ground truth Yes, Oprah Winfrey’s Montecito property is 23,000-square-foot in size and in-
cludes a 5,000-square-foot ranch-style house, a pool, horse stables, an equestrian
ring, a fruit orchard, and an avocado orchard. The property was purchased for
$50 million in 2001.

SFT Yes, the text mentions that Oprah Winfrey purchased her 23,000-square-foot
Montecito home for $50 million in 2001. It also states that the home has a
5,000-square-foot ranch-style house, a pool, horse stables, an equestrian ring, a
fruit orchard, and an avocado orchard. Therefore, the size of Oprah’s home is
not given in the text.

Iteration 0 According to the text, Oprah Winfrey purchased her Montecito property for
$50 million in 2001. The property consists of a 23,000-square-foot Montecito
home and a 5,000-square-foot ranch-style house, an irrigation pond, natural
stone walkways, a fountain, tailgating capability, and more. Additionally, the
property includes a fruit orchard and an avocado orchard.

Iteration 1 Of course! Oprah Winfrey’s Montecito property is 23,000-square-foot in size
and was purchased for $50 million in 2001. The property also includes a 5,000-
square-foot Ranch-style house, a pool, horse stables, an equestrian ring, a fruit
orchard, and an avocado orchard. It is truly a sprawling estate that puts even
avocado-curious minds to shame.

Iteration 2 Yes, Oprah Winfrey’s Montecito property is 23,000-square-foot in size and
includes a 5,000-square-foot ranch-style house, pool, horse stables, an equestrian
ring, a fruit orchard, and an avocado orchard. She purchased the property for
$50 million in 2001.

Judgment Comparison: Response 4 > Response 3 > Response 2 > Response 1.
Explanation: Response 4 is the most accurate, concise, and directly mirrors
the ground truth in both factual details and structure, making it the clearest
and most reliable answer. Response 3 is similarly factually correct and well-
structured but adds unnecessary embellishment ("puts even avocado-curious
minds to shame") that, while engaging, introduces subjective commentary not
present in the ground truth. Response 2 includes factual inaccuracies (mentions
"irrigation pond, natural stone walkways, fountain, tailgating capability") that are
not supported by the text, thereby reducing its reliability. Response 1 contains
a clear contradiction—despite correctly listing most amenities, it confusingly
states "the size of Oprah’s home is not given in the text," which is factually
incorrect, making it the weakest response.
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D All Proof

Proof of Lemma 3.1

We prove by induction. First, for t = 1, we have

pd (y1 | x) =
pd (x, y1)

pd (x)
and pθS (y1 | x)=

pθS (x, y1)

pd (x)
. (24)

From Eq. (24), we reach the conclusion for t = 1. Assume that we have the conclusion for i ≤ t− 1.
We further derive

pd (x, y≤t) = pd (yt | x, y<t) pd (x)

t−1∏
i=1

pd (yi | x, y<i) ,

pθS (x, y≤t) = pθS (yt | x, y<t) pd (x)

t−1∏
i=1

pθS (yi | x, y<i) . (25)

From Eq. (25), we reach the conclusion for t.

Proof of Theorem 3.3

Let r∗t ∈ Rk
t be the solution of

∀t : max
rt∈Rk

t

E[x,y≤t]∼D

[
rt ([x, y<t] , yt)− Ey′

t∼π
θS
k (·|x,y<t)

[rt [x, y<t] , y
′
t]
]
. (26)

According to the consistency property, there exists r∗ ∈ Rk such that ∀t : r∗t ([x, y<t] , yt) =
r∗ (x, y≤t). We now prove that r∗ is the solution of the following OP:

max
r∈Rk

E(x,y)∼D,y′∼π
θS
k
(·|x)

[∑
t

γt−1r ([x, y<t], yt)−
∑
t

γt−1r ([x, y<t], y
′
t)

]
, (27)

where we denote r ([x, y<t] , yt) = r (x, y≤t).

Let r̄∗ ∈ Rk be the solution of the OP in (27). We have∑
t

γt−1r̄∗ ([x, y<t] , yt)−
∑
t

γt−1r̄∗ ([x, y<t] , y
′
t) =

∑
t

γt−1 [r̄∗ ([x, y<t] , yt)− r̄∗ ([x, y<t] , y
′
t)]

=
∑
t

γt−1 [r̄∗t ([x, y<t] , yt)− r̄∗t ([x, y<t] , y
′
t)] ≤

∑
t

γt−1 [r∗t ([x, y<t] , yt)− r∗t ([x, y<t] , y
′
t)]

=
∑
t

γt−1 [r∗ ([x, y<t] , yt)− r∗ ([x, y<t] , y
′
t)] , (28)

where r̄∗t ∈ Rk
t are the consistent versions of r̄∗ ∈ Rk in the token-level families.

Finally, (28) indicates that r∗ is the solution of the OP in (27).

Proof of Theorem 3.4

We consider

d1 (Pd,PθS ) := max
r∈Rk

E(x,y)∼D,y′∼π
θS
k
(·|x) [R (x, y)−R(x, y′)] . (29)

Because if r ∈ Rk then −r ∈ Rk, we have d1 (Pd,PθS ) ≥ 0 and minθS∈Θ d1 (Pd,PθS ) ≥ 0.
Moreover, the minimization is obtained at 0 for θ̄S such that Pθ̄S = Pd.

We now consider

d2 (Pd,PθS ) := max
r∈Rk

E(x,y)∼D,y′∼π
θS
k
(·|x)

[∑
t

γt−1r ([x, y<t], yt)−
∑
t

γt−1r ([x, y<t], y
′
t)

]
,

(30)
Because if r ∈ Rk then −r ∈ Rk, we have d2 (Pd,PθS ) ≥ 0 and minθS∈Θ d2 (Pd,PθS ) ≥ 0.
Moreover, the minimization is obtained at 0 for θ̄S such that Pθ̄S = Pd according to Lemma 1.
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Proof of Lemma 3.5

Our proof is adopted from the proof of Lemma 4.2 in [17].

max
πθS

Ex,y<t∼D,y′
t∼πθS (·|x,y<t)

[
ωtAπ

θS
k

([x, y<t] , y
′
t)
]
− βDKL

(
πθS (· | [x, y<t]) ∥πθS

k
(· | [x, y<t])

)
=max

πθS

Ex,y<t∼D,y′
t∼πθS (·|x,y<t)

[
ωtQπ

θS
k

([x, y<t] , y
′
t)− ωtVπ

θS
k

([x, y<t])− β log
πθS (y′t | [x, y<t])

πθS
k
(y′t | [x, y<t])

]

=max
πθS

Ex,y<t∼D,y′
t∼πθS (·|x,y<t)

[
β log

πθS
k
(y′t | [x, y<t]) exp

{
ωt

β Qπ
θS
k

([x, y<t] , y
′
t)
}

πθS (y′t | [x, y<t])Z ([x, y<t];ωt, β)

−ωtVπ
θS
k

([x, y<t]) + logZ ([x, y<t];ωt, β)
]

=max
πθS

Ex,y<t∼D,y′
t∼πθS (·|x,y<t)

[
−βDKL

πθS (y′t | [x, y<t]) ∥
πθS

k
(y′t | [x, y<t]) exp

{
ωt

β Qπ
θS
k

([x, y<t] , y
′
t)
}

Z ([x, y<t];ωt, β)


−ωtVπ

θS
k

([x, y<t]) + logZ ([x, y<t];ωt, β)
]
.

This concludes our proof.

Proof of Lemma 3.6

Using the same derivations as in [17], we gain

R (x, y) = Vπ

([
x, y<1

])
− γTVπ ([x, y<T+1])

+

T∑
t=1

[
γt−1 (r ([x, y<t] , yt) + γVπ ([x, y<t+1]))− Vπ ([x, y<t])

]
= Vπ

([
x, y<1

])
− Vπ ([x, y<T+1])

+

T∑
t=1

[r ([x, y<t] , yt) + Vπ ([x, y<t+1])− Vπ ([x, y<t])] ,

since γ = 1.

We further have

Qπ ([x, y<t] , yt) = r ([x, y<t] , yt) + Vπ ([x, y<t+1]) ,

Aπ ([x, y<t] , yt) = Qπ ([x, y<t] , yt)− Vπ ([x, y<t])

= r ([x, y<t] , yt) + Vπ ([x, y<t+1])− Vπ ([x, y<t]) .

By noting that

Vπ ([x, y<T+1]) = 0 andVπ

([
x, y<1

])
= Vπ

([
x, y′<1

])
= Vπ ([x, []]) ,

we gain

l (R (x, y)−R (x, y′)) = l

(∑
t

Aπ ([x, y<t] , yt)−
∑
t

Aπ ([x, y
′
<t] , y

′
t)

)
.

Proof of Theorem 3.7

We have

QπS
θk

([x, y<t], z) = ω−1
t β log

π∗
θS (z | x, y<t)

πθS
k
(z | x, y<t)

+ ω−1
t β logZ ([x, y<t];ωt, β) . (31)

We also have

l (R (x, y)−R (x, y′)) = l

(∑
t

γt−1Aπ
θS
k

([x, y<t] , yt)−
∑
t

γt−1Aπ
θS
k

([x, y′<t] , y
′
t)

)
. (32)
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We further derive as∑
t

γt−1Aπ
θS
k

([x, y<t] , yt) =
∑
t

γt−1
[
Qπ

θS
k

([x, y<t] , yt)− Vπ
θS
k

([x, y<t])
]

=
∑
t

γt−1
[
Qπ

θS
k

([x, y<t] , yt)− Ey′
t∼π

θS
k

[
Qπ

θS
k

([x, y<t] , y
′
t)
]]

=
∑
t

γt−1

[
ω−1
t β log

π∗
θS (yt | x, y<t)

πθS
k
(yt | x, y<t)

+ ω−1
t β logZ ([x, y<t];ωt, β)

Ey′
t∼π

θS
k

[
ω−1
t β log

π∗
θS (y′t | x, y<t)

πθS
k
(y′t | x, y<t)

+ ω−1
t β logZ ([x, y<t];ωt, β)

]]

=
∑
t

γt−1

[
ω−1
t β log

π∗
θS (yt | x, y<t)

πθS
k
(yt | x, y<t)

− Ey′
t∼π

θS
k

[
ω−1
t β log

π∗
θS (y′t | x, y<t)

πθS
k
(y′t | x, y<t)

]]

=
∑
t

γt−1

[
ω−1
t β log

π∗
θS (yt | x, y<t)

πθS
k
(yt | x, y<t)

+ ω−1
t βDKL

(
π∗
θS (· | x, y<t) ∥πθS

k
(· | x, y<t)

)]

=β
∑
t

γt−1ω−1
t log

π∗
θS (yt | x, y<t)

πθS
k
(yt | x, y<t)

+ β
∑
t

ω−1
t γt−1DKL

(
π∗
θS (· | x, y<t) ∥πθS

k
(· | x, y<t)

)
.

Finally, substituting to Eq. (32), we gain the conclusion.
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