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ABSTRACT

Scaling of deep neural networks, especially Transformers, is pivotal for their surg-
ing performance and has further led to the emergence of sophisticated reasoning
capabilities in foundation models. Such scaling generally requires training large
models from scratch with random initialization, failing to leverage the knowl-
edge acquired by their smaller counterparts, which are already resource-intensive
to obtain. To tackle this inefficiency, we present LosslEss MOdel ExpansioN
(LEMON), a recipe to initialize scaled models using the weights of their smaller
but pre-trained counterparts. This is followed by model training with an optimized
learning rate scheduler tailored explicitly for the scaled models, substantially re-
ducing the training time compared to training from scratch. Notably, LEMON
is versatile, ensuring compatibility with various network structures, including
models like Vision Transformers and BERT. Our empirical results demonstrate
that LEMON reduces computational costs by 56.7% for Vision Transformers and
33.2% for BERT when compared to training from scratch.

1 INTRODUCTION

Deep neural networks (DNNs) have become increasingly
popular, showcasing their adaptability across natural lan-
guage processing (Liu & Lapata, 2019; |Achiam et al.|
2023)), computer vision (Chen et al., [2023azb), and code
generation (Yu et al., [2023). Recent advances in archi-
tectural design, especially Transformers, have further en-
hanced the scalability of DNNs. However, it is a com-
mon practice to train large-scaled models from scratch,
discarding the learned knowledge in their smaller coun-
terparts. Such an approach can be highly inefficient, es-
pecially given the intensive computational resources re-
quired to train large language models such as Generative
Pre-trained Transformer (GPT) (Brown et al., |2020), and
the resultant huge carbon footprints. For instance, train-
ing GPT-3 incurs costs around $4.6M (Li, 2020). Given
these challenges, researchers are keenly exploring ways
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Figure 1: Comparison between training
from scratch and model expansion. In
model expansion, a smaller pre-trained
model is expanded to a larger model
without any performance drop, requir-
ing significantly less training time than
training from scratch.

to leverage the prior knowledge of smaller models for more efficient scaling.

Knowledge inheritance and model expansion are two primary methodologies to achieve this goal.
Knowledge inheritance (Qin et al.,|2021)), the reverse of knowledge distillation (Hinton et al.,|2015)),
allows the large model to learn the predictions of a smaller pre-trained model. However, this method
often necessitates additional computational resources and modifications to the training pipeline due
to the involvement of a ‘teacher network.” In contrast, model expansion directly utilizes the weights
from the pre-trained small source network, either without training (Chen et al., 2015 2021a; [Yang
et al.} 2020; |Shen et al., |2022)) or with negligible training (Wang et al., 2023a). Hence, our work
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mainly focuses on model expansion due to its minimal impact on the training pipeline and negligible
computational overhead.

A compelling requirement for model expansion is to ensure it is ‘lossless,” meaning no information
from the source model is lost. Specifically, the goal is for the larger target model to inherit the exact
functional mapping as the smaller source model, thus preserving the performance. Net2Net (Chen
et al.| [2015) represents a foundational study of lossless model expansion for convolutional networks
(CNNs) and multi-layer perceptrons (MLPs) where it duplicates neurons and averages their fan-
out weights. However, a challenge arises with the ‘weight symmetry’ issue. This problem occurs
when duplicated neurons in expanded layers introduce redundancy, which persists during subsequent
training. In this sense, the expanded model will never gain more capacity than the source model. To
counteract this problem, previous researchers introduced additional noise into the expansion process,
leading to a shift away from a genuine lossless expansion.

Transformers, despite their rising popularity in modern deep learning, introduce additional complex-
ities in achieving lossless expansion that goes beyond traditional issues like weight symmetry. One
key obstacle arises from the intricacy of the LayerNorm, which was evident when bert2BERT (Chen
et al., 2021a) tried extending the Net2Net approach to Transformers, leading to lossy outcomes.
Staged training (Shen et al.,2022)) demonstrated the feasibility of lossless model expansion, but with
a specific constraint: doubling the width during expansion and only for a variant of Transformers
known as Pre-Layer Normalization (Pre-LN) Transformers. However, real-world applications often
require width increases in the expanded model that are indivisible by the smaller source model’s
width, highlighting a limitation in existing methodologies. A typical scenario involves expanding
the hidden dimension from 512 to 768.

In exploring the possibilities of lossless model expansion, our research focuses on the ability to
break weight symmetry, handle indivisible width and depth increments, and remain compatible
with almost all Transformer varieties. We have discovered affirmative answers, revealing that mul-
tiple solutions exist, enabling the selection of an optimal candidate to break the weight symmetry
or find an initialization point with specific properties. Specifically, we break the weight symme-
try of replicated neurons by setting their fan-out weights to be unequal, and we introduce average
expansion to deal with LayerNorm for indivisible width increment.

In addition to lossless model expansion techniques, our study also delves into training recipes for
the expanded models. It is often overlooked whether applying the original training recipe remains
optimal or whether the expanded models necessitate tailored approaches. Our empirical studies
reveal two key insights: expanded models can benefit from utilizing a default maximum learning
rate and, intriguingly, a learning rate scheduler that decays more rapidly.

Our contributions are summarized as follows:

1. We propose LEMON, a suite of algorithms designed for lossless model expansion across a
variety of architectures, ensuring compatibility with indivisible width and depth increments.

2. Drawing inspiration from our empirical results, we propose an optimized learning rate sched-
uler for the expanded models. This scheduler maintains the maximum learning rate used by
training from scratch, but features accelerated decay rates.

3. LEMON reduces the computational costs by up to 56.7% for Vision Transformers and 33.2%
for BERT compared to training from scratch, thereby setting a new benchmark in performance.

2 RELATED WORKS

From small models to larger models. There are two main approaches to transferring the knowledge
of the smaller models to larger models: knowledge inheritance and model expansion. Knowledge
inheritance (Qin et al., [2021)) enables a student network to learn the logits provided by a teacher
network. Net2Net (Chen et al.l 2015) was the first work to explore the idea of model expansion.
It involves randomly duplicating neurons while preserving the output values through proper nor-
malization and increasing depth by adding identity layers. However, Net2Net resorts to introducing
weight perturbations to overcome weight symmetry, resulting in performance deterioration. Follow-
up work bert2BERT (Chen et al., 2021a) extends Net2Net to Transformer while others study depth
growth (Gong et al., 2019; Yang et al., [2020; [Chang et al., 2017; Dong et al., 2020). Staged training
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Table 1: Overview of model expansion or knowledge inheritance methods. In the first three columns,
we use symbols v/, X, and N/A to denote whether the method is (1) lossless, (2) non-lossless, or (3)
not applicable in the given scenarios. Here, ‘Depth’ represents the scenario where the large model
has more layers than the smaller model, and ‘Width (divisible/indivisible)’ denotes whether the large
model’s hidden dimension is a multiple of the smaller model’s. In the subsequent columns, ‘Non-
unique Expansion’ denotes whether the expansion is unique (e.g., produce target models to break
weight symmetry). ‘Data-free’ specifies whether the algorithm requires training data. LEMON is
the most versatile method compared to previous methods.

Method Depth  Width (divisible) Width (indivisible) Non-unique Expansion Data-free
KI|Qin et al. (2021} X X X No No
StackBERT (Gong et al.}2019} X N/A N/A No Yes
MSLT (Yang et al.|2020} X N/A N/A No Yes
bert2BERT (Chen et al.|2021a) X v X No Yes
Staged Training (Shen et al.|[2022) v v N/A No Yes
LiGO (Wang et al.]|2023a} X X X Yes No
LEMON (Ours) v v v Yes Yes

(Shen et al.l [2022)) made significant progress by proposing a lossless model expansion method for
Pre-LN Transformer, but with the constraint of width doubling. LiGO (Wang et al., |2023a)) sug-
gests employing multiple training steps to find an appropriate linear combination of weights from
the source networks. Despite these advancements, all existing methods still face the challenge of the
performance drop or strict restrictions on the model width. [Table T|compares the related methods.

Network initialization. Numerous studies aim to seek optimal initialization methods for neural net-
works, primarily focusing on regulating the norm of network parameters (Glorot & Bengio, 2010;
He et al., [2015). Theoretical works try to study these methods through dynamical isometry (Saxe
et al., 2013) or mean field theory (Poole et al., 2016). Orthogonal initialization, which supports
layer-wise dynamical isometry in fully-connected layers, has been extended to CNNs via Delta or-
thogonal initialization (Xiao et al.|[2018). However, there has been limited research on initialization
methods specifically for Transformers. Most of these works focus on theoretical approaches to train
Transformers without skip connections or normalization layers (Noci et al., [2022; He et al., [2023)).
Mimetic initialization (Trockman & Kolter,[2023)) seeks to initialize attention based on the principles
of pre-trained Transformers.

Continual pre-training. Recent research explores adapting pre-trained networks for new or im-
proved datasets. While some target datasets from different domains (Scialom et al., 2022} |[Ke et al.,
2022; Gupta et al., [2023;|Qin et al., 2022), others focus on datasets that evolve over time (Han et al.}
2020; |Jang et al.l 2021} [Loureiro et al., 2022). Model expansion is similar to continual pre-training,
with the distinction being a change in the model size rather than the data distribution.

3 PRELIMINARIES

Model expansion aims to initialize a large model with the weights from its smaller pre-trained
counterparts. Concretely, suppose we have pre-trained weights 6 in a source network fs(-; Gtsra‘“ed),

our goal is to design a mapping #5P"**! = M (9%7ed) where the expanded weights initialize the

target network as fr(-; 05°"%%). Since these expanded weights contain knowledge acquired by the

small pre-trained model, it should accelerate the training of fr compared to random initialization.
Moreover, we call a model expansion algorithm lossless if f7(x; 9;’5‘”“‘13‘1) = fs(x; 051d) vx.
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An example for model expansion is to use a pre- =
trained ResNet-50 (He et all 2016) or BERT-Small C me )| (Craenom ]
(fs) to facilitate the training of WideResNet-110 or (merom )| ([ mr )
BERT-Base (fr), respectively. Instead of training
the larger models from scratch, the idea is to initial- Cwna )| (CrayeNom ]
ize them with the weights of their smaller pre-trained (mevom )| ([ wa_)
counterparts, i.e., ResNet-50 or BERT-Small. nt 0
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Transformer architecture, introduced by Vaswani
et al.|(2017), consists of multiple Transformer blocks
g(-), where each block is a stack of two modules, a
multi-head attention (MHA) and a two-layer MLP.
Depending on the location of LayerNorm, Trans-

Figure 2: Varieties of attention blocks. (a)
Post-LN block. (b) Pre-LN block. (¢) Res-
Post-Norm block.
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former blocks can be categorized as (1) Post-LN block used by the original BERT (Devlin et al.,
2019) where LN is applied after the residual block, i.e., g(z) = LN(Module(z) + x), (2) Pre-LN
used by GPT (Brown et al., 2020), Pre-LN BERT, Vision Transformers (Dosovitskiy et al., |2021)),
and SWin Transformer (Liu et al., 2021b)) where LN is applied inside the residual connection and
before all other transformations, i.e., g(z) =  + Module(LN(x)), and (3) Res-Post-Norm used by
SWin Transformer V2 (Liu et al., |2022)) where LN is applied inside the residual connection and after
all other transformations, i.e., g(x) =  + LN(Module(z)). See|Figure 2|for an illustration.

Multi-head attention (MHA) uses multiple self-attention heads to attend to information from dif-
ferent representation subspaces of the input. Given an input sequence X € R¥*P where F is the
sequence length, and D is the embedding dimension, each head projects the inputs into different sub-
spaces using linear transformations. For the i-th head, its query is defined as Q; = XWZ-Q, its key
as K; = XWX and its values as V; = XW/', where WZQ, WE ¢ RP*dx and WY € RD>dv,
Here, di and dy represent the dimensions of the key and value, respectively. Each head then
computes the attention with Head; = Attention(Q,;, K;, V;) = softmax (Q,KZT / \/@) V,;. The
outputs from all A heads are concatenated and linearly transformed to yield the final output:

MHA(X) = Concat [head;, - - - , head;] WO,

where WO e RHdv xD ig the weight matrix. Please refer to|Vaswani et al.| (2017) for more details.

Weight symmetry. Consider a two-layer MLP with two hidden neurons in the form of MLP(x) =
vTo(Wix) = vio (w1121 + w1 222) + v20(wa 121 + wa 2x2), where o is the nonlinear activation,
and vy, v are the weights associated with the hidden neurons. If the weights are initialized such
that v1 = vy, wi,;1 = Wa,1,W1,2 = Wa,2, the two neurons will always compute identical values
throughout training. This symmetry results from the fact that, at each iteration, the gradients for the
corresponding weights are the same, i.e., wi,1 = W2 1, W12 = W2 2. Weight symmetry is detrimental
as it implies that the two symmetric neurons do not contribute independently to the model’s learning,
potentially harming the model’s expressive power and learning capability.

4 LOSSLESS MODEL EXPANSION

0000 000000

Projection Projection ]

8958 g8csds

Concat Concat )

—
- T \ \

@ 6 @ G @@ [ Head, ][ Head. ]—»[ Head, ][ Head, ]
] K1, Qi Vs 1<1,:52,v2 K Q‘W,V‘ l<1,<‘gz,v2 K;, Qi1
= 27 TR Tk

X X

(b) Expand the number of heads in
(a) Width expansion of MLP from 2 to 4 (left) or 5 (right). MHA from 2 to 3.

Figure 3: Lossless width expansion with weight symmetry breaking for multi-layer perceptron
(MLP) and multi-head attention (MHA). (a) Left: MLP expansion with divisible width. We replicate
neurons hy /hy to ki /h3 and set o + 3 = 1 with v # 3. Right: MLP expansion with indivisible
width. We further replicate the neuron hy to A}* and set o« + § + v = 1 with o« # 8 # 7. (b)
MHA expansion with head dimension unchanged. We duplicate Head; to Head] (i.e., duplicate
key/query/value projections) and expand the projection layer as in an MLP module.

We decompose the expansion operator M to two operators, i.e. the depth expansion operator D and
the width expansion operator W, each applied to individual layers.

Our expansion method mainly consists of three main components, i.e., (1) general lossless width
expansion with symmetry breaking, (2) average width expansion for LayerNorm, and (3) lossless
depth expansion. In the expansion process, each layer is independently subjected to these methods,
ensuring a layer-level lossless expansion. This entails a systematic, recursive application of dupli-
cating inputs for each layer in a lossless manner, and every layer, in turn, guarantees the lossless
duplication of its output.
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4.1 GENERAL LOSSLESS WIDTH EXPANSION WITH SYMMETRY BREAKING

We first show how to apply lossless expansion with symmetry breaking for (1) fully-connected layers
(FC-layers) and (2) multi-head attention (MHA).

Lossless width expansion for FC-layers. Transformers consist of a set of FC-layers. We first use
MLP as an example to show the basic width expansion operator for the FC-layers.

For width expansion, we create copies of neurons similar to Net2Net and bert2BERT, as this step
is necessary due to the nonlinear activation used in MLP. However, the essential difference is that
we do NOT set the fan-out weights of replicated neurons to be equal. Out of simplicity, we use
a single-hidden-layer MLP for illustration, and we show it on the left half in [Figure 3a]. We first
replicate neurons Ay, ho to k7, h3 in a circular pattern. Consider the same neurons h; and hj in the
plot with the original fan-out weight v 1; we can set the expanded fan-out weights to be avy 1 and
Bv1,1 where a 4+ 8 = 1 to ensure lossless expansion.

The selection of («, 3) corresponds to a specific lossless model expansion algorithm, and our method
can be considered as a generalization of existing model expansion methods. Specifically, Net2Net
and bert2BERT perform width expansion by setting « = 5 = 1/2. However, such a choice causes
weight symmetry problems where two neurons learn the exact same representations when it is ini-
tialized and for the subsequent training. We introduce a simple modification to fix the issue, i.e., by
setting av # f3 is enough to break weight symmetry for commonly-used nonlinear activation o. This
concept extends to cases where neurons are replicated more than twice, illustrated on the right half
of [Figure 3al In such cases, we set coefficients such that « + 3+~ = 1 and e # 3 # 7.

MHA expansion. We make sure that we directly copy the entire head in a circular pattern similar
to FC-layers as mentioned in the previous section. We then perform width expansion for the cor-
responding key, query, and value matrices. Then, it reduces to a case similar to MLP due to the
following projection matrix. Symmetry breaking is realized by setting the corresponding fan-out
weights in the projection matrix differently. We illustrate the process in

4.2 AVERAGE WIDTH EXPANSION FOR LAYERNORM

When dealing with indivisible width increments, we need to design a specific expansion method for
the LayerNorm layer. In this section, we demonstrate that achieving a lossless expansion is feasible
provided that FC-layers are positioned before the LayerNorm layer.

Average width expansion. We first show that it

is easy to perform the average expansion method @ @ @ @ @
such that the output of FC-layers is padded (LaeNorm ] [ LayerNorm )
with its average. We do so by adding neurons

whose weights are the average of existing neu-
rons. Specifically, we pad the original weight

W e RP=*Dn with rows 1/Doy 3.0 Wi,
and pad bias b € RP» with 1/ Doy 7™ bi][]
See for an illustration.

LayerNorm layer. We now show that if the in- Figure 4: Lossless average expansion. When
put of LayerNorm is average expanded, lossless the fully-connected layer right before Layer-
width expansion is possible. Specifically, con- Norm is average expanded, the output of Lay-
sider LayerNorm layer with element-wise affine- erNorm is expanded with zeros.

transformation in the form of LN(+; i, b) = p ® Norm(-) + b, where u, b € RPs and Dy < 2Dg.
Define average expanded of x € RPs to be x* € RP7. Tt can be shown that LN(x*; u*, b*) =
Concat [LN(x; , b), 0] if u* = Concat [nu, ¢] and b* = Concat [b, 0], where 0 € RP7—Ds
is a zero vector, { € RP7=Ds i an arbitrary vector, and n = /(Ds/Dr) is a scalar. See
for results and proof with a more generalized case where D1 > Dg.

4.3 LOSSLESS DEPTH EXPANSION

In this section, we detail our approach for increasing model depth in a lossless manner.

"Input dimension should be expanded as well depending on how inputs are expanded.
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(a) Arrangement of block stacking. (b) Type-1 depth expansion. (c) Type-2 depth expansion.

Figure 5: Lossless depth expansion. (a) We place a new block next to the block where it originates.
(b) For type-1 depth expansion, we set the weights of the last fully-connected layer to zeros. (c)
For type-2 depth expansion, we specify the weights of the last fully-connected layer so that the
contributions from replicated neurons cancel each other. For example, assume A7 is a duplicate of
h1, we set their fan-out weights to be vy ; and —awy ; to enforce zero output.

Arrangement of added layers. Similar to how Chang et al.[| (2017); |Dong et al.| (2020) deal
with ResNet, we put added layers directly next to the source layer. For example, when expand-
ing two-layer network with blocks {g1, g2}, we perform depth expansion with the resulting model

{Wig1], DIWIg1]], W|ga], D[W|g2]]}. See for an illustration.

Lossless depth expansion. We now provide two ways to perform lossless depth expansion. Firstly,
we can simply set the output of each module (MLP or MHA) to be zero, i.e. « = 5 = 0. Hence, the
residual branch does not contribute to the output. This choice gives great flexibility to the rest of the
parameters since we can (1) copy weights from other layers or (2) randomly initialize the weights.
See for an illustration. Secondly, we can enforce the output to be zero by setting the
summation of fan-out weights for replicated neurons to zero. With the example shown in [Figure 3a
we can set the fan-out weights of replicated neurons to be &« = —f # 0 to ensure all outputs are
zeros[| See for an illustration.

4.4 A SUMMARY OF IMPLEMENTING MODEL EXPANSION

We summarize the procedure of model expansion for Pre-LN Transformer architecture with both
depth and width increments. We first average expand the embedding weights. Then, make sure the
output of each layer is average expanded. Hence, the input to the decoder layer is the original output
padded with zeros after the last LayerNorm. We provide a detailed description of our expansion
method in|section C.1| Furthermore, we explain how to use our method for Post-LN and Res-Post-

Norm architectures in Aﬁﬁenglx Dl

5 HOW TO TRAIN THE EXPANDED MODELS

In this section, we delve into the influence of different factors in the training recipe, in particular the
maximum learning rate and the learning rate scheduler, when training expanded models.

Experiment setup. Throughout this study, we adopt ViT (Dosovitskiy et al., 2021) as our exem-
plary model and train it on the standard ImageNet-1k dataset. In particular, we choose to expand
ViT(6,512) to ViT(12, 768), where 6 /12 represent the number of attention blocks and 512 /768 de-
note the hidden dimensions. When training these models from scratch, we apply a default maximum
learning rate of 1 x 10~ and run the training for 300 epochs with a batch size of 1024. We use a
cosine learning rate scheduler that decays to a minimum learning rate of 10~°. However, we will
modify this training recipe for continual training of the expanded model ViT (12, 768).

5.1 THE EFFECTS OF MAXIMUM LEARNING RATE

Suppose we have an expanded model, fr, that maintains the same accuracy as a smaller source
model, A(fs). One might naturally opt for a smaller learning rate, expecting the validation accu-
racy of the expanded model to continue to decrease. If this were the case, we could smooth the

?If neurons are not replicated, then we have to set the fan-out weights to be zero.
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Figure 6: Influence of maximum learning rate (LR; a,b) and learning rate scheduler (Sched; c,d) for
training expanded Vision Transformers. Dashed and solid horizontal lines represent the validation
accuracy of small and large models, when trained from scratch. (a) Train loss when changing
maximum LR, (b) validation accuracy when changing maximum LR, (c¢) different LR scheduler
used in experiments, (d) validation accuracy when changing LR scheduler. We find that (1) using
a smaller maximum LR results in smaller training loss but yields worse validation accuracy; (2)
expanded models require significantly fewer epochs to match the performance of the larger model.

transition between the training processes of the small model and the expanded model. However, our
investigations reveal that the relationship is more complex than it initially seems.

We conducted experiments with three different maximum learning rates: 1 x 10~ (default), 2 x
10~%, and 1 x 10~*, maintaining a consistent minimum learning rate of 1 x 10~° across all cases.
The results are shown in We summarize our findings in the following paragraphs.

Performance drop early at training. An interesting observation is the immediate decrease in
validation accuracy experienced by all three expanded models early during the learning rate warm-
upE] This performance drop is correlated with the magnitude of the learning rate; the larger it is, the
more pronounced the drop. This aligns with our anticipation as smaller learning rates are critical
for model convergence, especially when the source model is already near local optima. Adopting
a larger learning rate can displace the weights from this local minimum, leading to an increase in
training loss.

Maximum learning rate and model generalization. We observe that maintaining the default max-
imum learning rate is pivotal to recovering the performance of the large model. To investigate
whether adopting smaller learning rates hinders model learning, we also examine the training loss
of all cases, as illustrated in The results show that models trained with reduced learning
rates incur smaller training losses compared to training from scratch. Hence, we postulate that the
deterioration in performance, induced by a smaller maximum learning rate, is detrimental to the gen-
eralization capability of the expanded networks rather than the optimization capability. This concept
is also theoretically examined by [Li et al.| (2020), illustrating how the learning rate can influence the
sequence of learning varied patterns, thereby affecting generalization capacities.

5.2 HOW FAST THE LEARNING RATE SHOULD DECAY

After settling the maximum learning rate, the next important parameter to consider is the total num-
ber of epochs. Most works use the default learning rate scheduler (Wang et al., [2023a; |Chen et al.|
2021al), maintaining the same number of epochs as if the model were training from scratch. We,
however, note that the expanded model, having inherited knowledge from the source model, starts
with a small training loss — this holds true even when accounting for the significant loss drop dur-
ing warm-up. This indicates the expanded model is closer to the local optimum, requiring a smaller
learning rate for continued loss reduction. Thus, we should adopt a learning rate scheduler where
the learning rate decays faster.

We examine four different epoch totals Ty 130, 150, 200, and 300, with the corresponding learn-

ing rate schedulers illustrated in[Figure 6c Experiment results are shown in

3We tried to change the number of warm-up steps, but the results were not greatly affected.
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Expanded model necessitates faster learning rate decay. As depicted in a notable
observation is that employing a learning rate scheduler with faster decay enables the expanded model
to quickly attain the performance of the corresponding large target model. Remarkably, the expanded
model requires only 130 epochs of training to match the performance of the target model that was
trained from scratch, translating to a computational cost saving of up to 56.67%. This corroborates
our earlier conjecture that expanded models need a learning rate scheduler that decays faster.

In summary, we recommend employing the same maximum learning rate as is used for training from
scratch but with accelerated decay.

6 MAIN EXPERIMENTS
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Figure 7: Results of ViT on ImageNet (a,b) and BERT on English Wiki (c,d). Dashed and solid
horizontal lines represent the validation accuracy/MLM loss of the trained small model and target
model. LEMON outperforms baselines, yielding computational savings of 56.7%, 56.7%, 25.5%,
and 33.2% in panels (a), (b), (c), and (d) compared to training from scratch, respectively.

In this section, we compare our method with existing model expansion algorithms on Vision Trans-
formers and BERT. We name our method LosslEss MOdel ExpansioN (LEMON), which uses the
expansion algorithm explained in [section 4] with an optimized learning rate scheduler that decays
faster, as suggested in[section 5|

Baselines. We consider several baselines to compare with our proposed method: (1) training the
target model from scratch, (2) bert2BERT-FPI (Chen et al.l 2015)), a generalization of Net2Net, (3)
bert2BERT-AKI (Chen et al.||2021a), which uses advanced knowledge initialization (AKI) to break
weight symmetry, (3) soft KI (Qin et al., 2021) which learns the output of the source model by min-
imizing the KL-divergence of the two distributions, and (4) hard KI which learns the predictions of
the source model. We do not include StackBERT (Gong et al.|[2019)),[Yang et al.|(2020)), and Staged
training (Shen et al., 2022)) as they are not compatible with indivisible width expansion. LiGO
(Wang et al.l |2023a) is unavailable for direct comparison due to the absence of open-source code;
hence, comparisons are made using reported values on ViT(12,512) to ViT(12,768) in[section F.1}
Experiments of CNN and Post-LN BERT can be found in|section F.2|and |section F.3| respectively.

6.1 VISION TRANSFORMERS

Experiment setting. We adopt the default experimental setup described in unless stated
otherwise. For LEMON, the learning rate is decayed to its minimum value over 7., = 130 epochs
in both experiments. Parameters choices of LEMON are discussed in

Experiment results. As demonstrated in [Figure 7a| and [Figure 7bf LEMON is able to achieve
lossless model expansion. For both experiment settings, LEMON is able to recover the performance
of the target model in 130 epochs, outperforming other baselines.

Several additional observations were made during the study. First, both bert2BERT-FPI and
bert2BERT-AKI exhibited performance inferior to training from scratch. Second, consistent with
the observations in|Chen et al.[(2021a) and |[Wang et al.|(2023al), soft KI did not enhance the training
speed of the target model, while hard KI did, possibly by functioning akin to curriculum learning
and filtering out the challenging training samples for the target model early at training.
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Table 2: Downstream performance of BERT(12, 768) on the GLUE dataset: Large model expanded
from BERT(6,384) achieves the best downstream performance. A potential reason for outperforming
BERT(6,512) may be its longer training duration (165k) compared to the BERT(6,512) (132k).

Total Dataset STS-B MRPC CoLA SST-2 QNLI MNLI MNLI-mm QQP
training steps  (Metric) (Corr.) (Acc.) (Mcc.) (Ace.) (Ace) (Acc) (Acc.) (Acc.)
220k Train from scratch 0.744 83.33 0.19 88.88 87.80  80.28 81.17 89.62
132k LEMON (Ours), from BERT(6,512)  0.848 83.82 0.36 90.14  88.76  80.92 81.57 89.91
165k LEMON (Ours), from BERT(6,384)  0.866 85.54 0.38 90.94 89.33 81.81 81.81 90.40

6.2 LANGUAGE MODELS

Experiment setting. For our experiments, we train Pre-LN BERT (Xiong et al., 2020) on masked
language modeling task. The model is trained on the English Wiki corpus as per the methods in
Tan & Bansal (2020) for 220k iterations with 5k warmup steps and a batch size of 256. We use a
maximum learning rate of 2 x 10~* and a cosine learning rate scheduler which decreases the learning
rate to 2 x 1072, Following [Liu et al.| (2019), we remove the next sentence prediction task and use
a fixed sequence length of 128 for model pre-training.

We consider the following expansion procedure: (1) BERT(6,384) to BERT(12,768), and (2)
BERT(6, 512) to BERT(12, 768). We remove KI as our baseline. For LEMON, we decay the learn-
ing rate to the minimum values in 165k and 132k iterations for BERT(6, 384) and BERT(6, 512),
respectively. Parameters choices of LEMON are discussed in[section C.4] We report the number of
iterations needed to achieve a log validation MLM loss of 1.64.

Experiment results. As shown in [Figure 7c| and [Figure 7d| LEMON successfully expands smaller
models without incurring loss. It outperforms baselines and achieve computational cost savings of
25.5% and 33.2% for BERT(6, 384) and BERT(6, 512), respectively.

Downstream task. We also present downstream performance of BERT trained by LEMON on the
GLUE (Wang et al.| 2018)) dataset. We report correlation for the STS-B dataset and Matthews cor-
relation coefficient for the CoLA dataset. Accuracy is reported for the remaining datasets. The
results reveal that BERT(12,768) exhibits superior downstream performance when expanded from
BERT(6,384) as opposed to being trained from scratch or being expanded from BERT(6,512). This
likely stems from its more extensive training duration (165k iterations) compared to the model ex-
panded from BERT(6,512) (132k iterations).

6.3 ABLATION STUDIES: THE EFFECTS OF THE TRAINING RECIPE

To study the effects of our proposed train-
ing recipe on baselines, we conduct an ab-
lation study where we apply our training
recipe on them. The results are shown in
It is shown that expanded mod-
els indeed require faster learning rate de-
cay. Additionally, LEMON continues to
outperform other baselines under the same sl T
modified training recipe. Training Epochs Training Epochs

(a) VIT(6,384) — (12,768). (b) ViT(6,512) — (12, 768).

S /A

bert2BERT-FPI+Our recipe

—— bert2BERT-AKI+Our recipe

—— soft KI+Our recipe

—— hard KI+Our recipe
Scratch+Our recipe

— scratch

— ours

bert2BERT-FPI+Our recipe
Our reci

Scratch+Our recipe
— Scratch
— ours

Validation Accuracy (%)

Validation Accuracy (%)

7 CONCLUSION . .
Figure 8: LEMON outperforms other baselines even

when they employ the same optimized learning rate

In this paper, we propose LEMON, a schedulers.

method that combines lossless model ex-
pansion and optimized learning rate scheduler, showing compatibility and significant performance
improvements for a variety of Transformer architectures. However, LEMON does have its limita-
tions, including the need for tuning the total number of training epochs, and our evaluation scale was
constrained by available computational resources. Looking ahead, we are working on extending the
application of LEMON to larger models and on developing methodologies for selecting optimal free
parameters when initializing LEMON.
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OVERVIEW OF THE APPENDIX

The Appendix is organized as follows:

* [Appendix Alintroduces the general experiment setup.
* [Appendix BJprovides backgrounds and notations for model expansion.

. shows details for applying LEMON on Pre-LN Transformers.

. shows details for applying LEMON on other architectures.
* [Append provides related proofs.

. provides additional experiments.
. provides additional related works for efficient deep learning.

A  EXPERIMENT SETUP

We conduct all experiments with NVIDIA-V100 and NVIDIA-A100 GPUs. We use the official
code base of DeiT[’| (Touvron et al., [2021) for training Vision Transformers and the code base of
VLME] (Tan & Bansal, [2020) for training BERT. For CNN experiments, we adopt the code provided
by Pytorch (Paszke et al., 2019ﬂ

A.1 NETWORK ARCHITECTURE

For Vision Transformers, we use the default network architecture adopted in [Touvron et al.| (2021).
We implemented Pre-LN BERT in Huggingface’s Transformers package (Wolf et al., 2019) such
that:

* Within the residual branch of each Transformer block, we positioned LayerNorm to precede
both the multi-head attention (MHA) and multi-layer perception (MLP) modules.

* For the MLM classification head, we use only one fully-connected layer (shared with the
embedding).

We implemented Post-LN BERT in Huggingface’s Transformers package (Wolf et al., |2019) such
that:

* For the MLM classification head, we use only one fully-connected layer (shared with the
embedding).

A.2 DETAILED TRAINING CONFIGURATIONS

Vision Transformers. We train Vision Transformers on the ImageNet-1k (Deng et al., [2009)
dataset. When training Vision Transformers from scratch, we apply a maximum learning rate of
1 x 1073 and run the training for 300 epochs with a batch size of 1024. We use AdamW (Loshchilov
& Hutter, 2017)) as the optimizer. We use a cosine learning rate scheduler that decays to a minimum
learning rate of 10~° with 5 warm-up epochs.

BERT pre-training. We train BERT (Devlin et al., 2019; Xiong et al.,|2020) on masked language
modeling task. The model is trained on the English Wiki corpus as per the methods in Tan & Bansal
(2020) for 220k iterations with Sk warmup steps and a batch size of 256. We use AdamW as the
optimizer. We use a maximum learning rate of 2 x 10~ and a cosine learning rate scheduler which
decreases the learning rate to 2 x 10-°, Following |Liu et al.| (2019), we remove the next sentence
prediction task and use a fixed sequence length of 128 for model pre-training.

BERT fine-tuning. For fine-tuning task of BERT on the GLUE (Wang et al., 2018)) dataset, we train
3 epochs with a learning rate of 1 x 10~ and a batch size of 32 for all tasks. We report correlation for

‘nttps://github.com/facebookresearch/deit/tree/main
Shttps://github.com/airsplay/vokenization
®https://github.com/pytorch/vision/tree/main/references/classification
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the STS-B dataset and Matthews correlation coefficient for the CoLA dataset. Accuracy is reported
for the remaining datasets.

Convolutional neural networks. We train ResNets (He et al.| | 2016) and WideResNets (Zagoruyko
& Komodakis, |2017) on the ImageNet-1k dataset for 90 epochs using SGD with an initial learning
rate of 0.1. We set the batch size to be 128. Learning rate is decreased by 10 times at epochs 30 and
60.

A.3 DETAILS OF BASELINES

We provide our implementation details of knowledge inheritance (KI) (Qin et al., [2021) in this
section. Given a training dataset denoted as D = (x;, y;)?_, we define the total 10ss Ly as:

Lroa(frifs, D)= Y (1= a)Lear(fr(x:),¥:) + alia(fr, fs,%i)
(xi,y:i)€ED
where « is a scalar controlling the strength of KI; The functions fg and f7, respectively represent
the small source model and the large target model; The loss function L computes the standard
training loss, such as cross-entropy, between the prediction f7,(x;) and the actual label y;. For soft
KI, we set L1 = KL(fL(Xi)Hfs(XZ‘)). For hard KI, we set Lg; = KL(fL(Xi)Heargmax fS(xi))’
where KL stands for Kullback—Leibler divergence, and e is the standard basis vector.

During the KI process, we start with an initial « value of 0.5 and linearly decrease it to zero.

B NOTATIONS AND BACKGROUNDS

In this section, we introduce basic notations in[section B.1] the definition of some normalization lay-

ers injsection B.2| lossless expansion in vector space in|section B.3| lossless expansion for operators
(layers) in and the rule of consecutive application of lossless expansion methods for

consecutive layers in|section B.4.

B.1 NOTATIONS

All vectors are assumed to be column vectors. We define 0,4 to be a zero vector of dimension d.
We use bold-faced letters for vectors, matrices, and tensors. For a vector v, let v[i] be its i-th entry
and v[: 4] be its first ¢ entries. For a matrix M, let M[z, 5], M[i, :], and M[:, j] be its (7, j)-th entry,
i-th row, and j-th column, respectively. Moreover, let M[: 4,:] and M[:,: j] be its first ¢ rows and
first j columns, respectively. We use MT to denote the matrix transpose of M. We use [n] where
n € Z4 todenote {1,--- ,n}. We use Id to denote identity mapping. We use Concat [-] to denote
horizontal concatenation.

B.2 MODEL LAYERS

In this section, we give the formal definition of LayerNorm LN(-) and RMS Norm RMS(-).
Definition 1 (LayerNorm). LayerNorm LN(-; v, B, €) of dimension D is defined as:
x — E[x]

= o+,
Var[x] + € wt P

LN(x; , 3, €) =

where x, u, 3 € RP.
Definition 2 (RMSNorm). RMS Norm RMS(-; p, €) of dimension D is defined as:

RMS(x; p, € O WM,

)= X
1 D 1\ 2
Vb SL (i) + ¢
where x, i € R,

Remark. In neural networks, inputs of normalization layers are usually high dimension tensors. In
this case, LayerNorm and RMSNorm normally apply to the last dimension separately.
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B.3 LOSSLESS EXPANSION IN VECTOR SPACE

In this section, we first give the general definition of lossless expansion in vector space.

Definition 3 (Lossless expansion in vector space). Given S and T are two vector spaces where the
dimensions satisfy dim(T) > dim(S) , a vector space expansion V : S — T is said to be lossless if
it is invertible.

Remark. Note that the identity function Id is lossless with its inverse being itself.

Then we give a few examples of lossless vector space expansions. These examples will also be used
in LEMON.

Example B.3.1 (Vector average expansion Vyye). Let x € RPs be a vector of dimension Dg and its

*
avg

average Avg(x) = E[x] = %s ZiDS x[i]. x
with Dy > Dsg if

is called the average expanded x of dimension Dt

T

X Vag(X) = Concat |xT,--- ,xT,Avg(x), -+ ,Avg(x)| € RPT,

avg ~

|Dr/Ds]| D7 mod Dg

* .

Example B.3.2 (Vector zero expansion V). Let x € RPs be a vector of dimension Dg. X7, is
called the zero expanded x of dimension Dy with Dy > Dg if

Xyo = Veero(X) = Concat |xT,--- x7, 0,---,0 € RP7,
—_—— ——
LDT/DSJ DT mod DS

Example B.3.3 (Vector circular expansion V). Let x € RPs be a vector of dimension Dg. X
is called the circular expanded x of dimension Dt with D > Dg if
T

*

X = Veire(X) = Concat |xT,---  xT,xT[: Dy mod Dg]| € RPT.
——

[Dr/Ds]

Example B.3.4 (Vector random expansion Viang). Let x € RPs pe a vector of dimension Dg. x
is called the random expanded x of dimension Dt with D > Dg if

*
rand

T

*

Xrand =

Vrand(x;C) = Concat XT7"' 7XT7CT ERDT?
———
|Dr/Ds|
where ¢ € RPT m0d Ds s qn arbitrary vector.

Remark. (1) All vector expansion examples above follow the same pattern. Specifically, when ex-
panding from dimension Dg to Dr, all vector expansion methods pad first | Dy /Dg | Dg entries by
repeating X | Dy / Dg | number of times. Each method deals with the remaining Dt mod Dg entries
differently. (2) The random vector € in vector random expansion is arbitrary, 50 Vavg, Vzero, Veire C
Vyana- (3) Here all three examples are expansion methods for vectors. In practice, neural networks
like Transformers are dealing high dimensional tensors. These tensors can essentially be thought of
as collections of vectors. In such scenarios, we can apply the expansion methods separately to the
last dimension of these tensors.

In the following claim, we show that vectors expanded by these operators are lossless.

Claim 1. Vector average expansion Ve, vector zero expansion Ve, vector circular expansion
Veire, and vector random expansion V,,nq are all lossless expansion for vectors.

Proof. The inverse function V=1 : RPT — RPs of these vector expansion methods is
V~H(x) = x[: Dgs].
[

Remark. In practice, we want inverse mapping of expansion methods to be easily computed just
like the example above.
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B.4 LOSSLESS EXPANSION FOR OPERATORS

We then give the definition of lossless expansion for operators. These operators apply on tensors,
hence our definition of lossless operator expansion is based on lossless expansion in vector space.
These operators can be different layers used in Transformer architectures, including LayerNorm,
convolutional layers, and fully-connected layers, etc.

Definition 4 (Lossless expansion for operators). Consider vector spaces S™, S, T™ and T°" such
that dim(8™) < dim(T™) and dim(S°") < dim(T°"). Moreover, suppose the operator is denoted
with g(+) : 8™ — 8. We say the operator expansion € is (Vip, Vour)-lossless for g(-) if there exist
lossless input vector space expansion V;, : S™ — T™ and lossless output vector space expansion
Vour + S — T such that Vi, (g(x)) = E[g](Vin(x)), Vx € S™.

Remark. (1) Intuitively, a lossless operator expansion can be understood as follows: when using V;,
losslessly expanded input, the output of the £ expanded operator is also a V,,; losslessly expanded
version of the original output. (2) For conciseness, we use ‘E[g] is (Vin, Vour)-lossless’ and ‘€ is
(Vins Vour)-lossless for g(+)” interchangeably. (3) We only require the vector expansions Vi, and Ve,
to be invertible, we do not have restrictions on the operator expansion E.

B.4.1 LOSSLESS EXPANSION FOR MATRIX MULTIPLICATION

Then we give a few examples of lossless expansion for operators. We give examples for matrix
multiplication since fully-connected layers are building blocks for Transformers. We first start by
introducing the following three lossless operator expansion methods for matrix multiplication as-
suming that the input dimension is unchanged so Vi, = Id.

Example B.4.1 (Matrix row-average expansion Erow,avg). Let M € RPs*P be q matrix of dimension
Dg x P and its row average m = ﬁs ZZDS M[i,:]. M
M of dimension Dy x P with Dp > Dg if

X .
rowavg 18 called the row-average expanded

T

row,avg

* Eromarg(M) = Concat |[MT,--. MT,m,--- ,m| €RPT*P
—_— —
LDT/DSJ DT mod DS
Moreover, E oy avg 15 (Id, Vayg)-lossless for M.

Example B.4.2 (Matrix row-zero expansion Eowzero). Let M € RPS*F be a matrix of dimension
Dg x P. M* is called the row-zero expanded M of dimension D x P with Dy > Dg if

row,zero

T

M = Eromzero(M) = Concat |MT,--- MT,0p,--- ,0p| € RPT*F,

row,zero

|Dr/Ds]  Dr mod Ds

Moreover;, E oy zero 15 (Id, Viero)-lossless for M.

Example B.4.3 (Matrix row-circular expansion Eowire). Let M € RPS*F be a matrix of dimension
Dg x P. M* is called the row-circular expanded M of dimension D1 x P with Dy > Dg if

row,circ
T
* = Eromeire(M) = Concat |MT,---  MT (M[: Dy mod Dg,:])T| € RP>F,

row,circ
———
[Dr/Ds|

Moreover, Epyavg is (I, Veire)-lossless for M.

Remark. Similar to vector expansion examples, these matrix row-expansion methods follow the
same pattern. Specifically, when expanding the number of rows from dimension Dg to Dy, these
expansion methods pad first | D /Dgs | Dg rows by repeating M | D/ Dg | number of times. Each
method deals with the remaining D1 mod Dg rows differently.

The following two lossless operator expansion methods assume that the output dimension is un-
changed so Vo, = Id.
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Example B.4.4 (Matrix column-random expansion o rang)- Let M € RE*Ps be a matrix of dimen-

sion Px Dg and ¢ € RP>*(Pr mod Ds) js apn arbitrary matrix. MY, ana is called the column-random
expanded M of dimension P x Dt with Dy > Dg if

M:ol,mnd = Ecol,rand(M; C) = Concat Mla e aMLDT/DSJ ) C € RPXDTv

[Dr/Ds|

where
[D7/Ds|

Z M’ = M.

Moreover;, Eolrand i (Veero, Id)-lossless for M.

Example B.4.5 (Matrix column-circular expansion Eojcirc). Let M € RP*Ps be a matrix of di-
mension P x Dg and M™ = M[:,: Dy mod Dg] € RF*(Prmed Ds) - Nf* | “is called the
column-circular expanded M of dimension P x D with Dy > Dg if

M:ol,circ = gcol,circ(M) = Concat Mla e 7MLDT/DSJ s M| € RPXDT»
[Dr/Ds]
where
[Pr/Ds]
Y Z M'[:,: D mod Dg] = M[:,: Dy mod Dg),
i=1
and
[Dr/Ds]

Z M'[:, Dy mod Dg :] = M[:, Dy mod Ds :].

i=1

Moreover, E.oprana i Veire, Id)-lossless for M.

Note that lossless matrix row expansion and lossless matrix column expansion can be used together
with the following claim.

Claim 2. Consider matrix column expansion &y is (V,o1, Id)-lossless for M, and matrix row ex-

pansion Eyy is (Id, Vyw )-lossless for M. E.1 0 Erpyy and E iy © Ecor are both (Veo, Viow )-lossless for
M.

The claim is easy to prove since rows and columns are expanded independently.

B.4.2 LOSSLESS EXPANSION FOR BIAS

Note that the fully-connected layer consists of a matrix multiplication followed by a bias operator.
We now give examples for the bias operator 5(x; b) = x + b.

Example B.4.6 (Bias average expansion Epiasavg). Consider the bias operator B(x;b) = x+ b
where b € RPs. ias.avg (3 Phias.avg) = Ebiasavg[B(;b)] is called the average expanded B of di-
mension Dr with Dy > Dg if by, . = Vavg(b). Moreover, Epiasavg i Vavg, Vavg)-lossless for

B.

Remark. Note that we can easily extend Epias,avg 10 Epias,cire AN Epigs zero by expanding b 10 Veire(b)
and Ve, (b), respectively. Moreover, Epigs, cire and Epias zero are Veires Veire)-lossless and (V,ero, Viero )-
lossless for B, respectively.

B.4.3 CONSECUTIVE APPLICATION OF LOSSLESS EXPANSION FOR OPERATORS

In previous sections we give examples of lossless expansion methods for single operators. Now, to
ensure lossless when applying expansion methods to consecutive layers/operators, we introduce the
following claim:
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Figure 9: Illustration of LayerNorm expansion & n and MHA expansion Eypa. We assume d =
dx = dy. We transpose weight matrices so that they can be considered left multiplied with vectors.
The vectors in black font color indicate the intermediate values of inputs while the matrices in white
color indicate parameters of the module. Biases are ignored for better illustration.

Claim 3 (Lossless of consecutive application). If &1 is (V,, Vy)-lossless for g1 and Ey is (Vy, Ve)-
lossless for ga. Then Ez(ga) o E1]g1] is (Va, Ve)-lossless for g2 o g1.

Proof. This is easily obtained if input x is V, losslessly expanded, then the output of & [g1](+),
Xmia = &1[91](Va(x)), is Vp lossless by definition. Using the fact that E3[g2](+) is (Vs, V.)-lossless
and the input x4 is V;, losslessly expanded, we conclude the proof. O

Remark. By leveraging we can separately apply lossless expansion methods to various
layers/operators in a larger network. The only requirement is that the output vector space expansion
of one expansion method matches the input vector space expansion of the subsequent expansion
method.

C DETAILS OF LEMON FOR PRE-LN TRANSFORMERS

In this section, we provide detailed explanation of applying LEMON on Pre-LN Transformer archi-
tecture. By we can deal with different modules separately. In the following sections, we
delve into the details of applying expansion methods to these modules.

C.1 WIDTH EXPANSION FOR PRE-LN TRANSFORMER BLOCKS

We first recap the Pre-LN Transformer architecture. It usually consists of (1) the embedding layer,
(2) several Pre-LN Transformer blocks, (3) the final LayerNorm layer, and (4) a decoder layer.

Suppose that the hidden dimension D of the transformer is increased from Dg to Dr. The head
dimension d is unchanged during expansion. Hence, the number of heads is increased from Dg/d

to Dr/d. We use WX, W?, W/ to denote the key, query, and value weight matrix for i-th head

T
Head; in the MHA module. We use W to denote the projection matrix.

We use Epiock to denote the width expansion of Pre-LN Transformer blocks. Epocx can be decom-
posed into (1) LayerNorm expansion £y, (2) MHA module expansion Eviga, and (3) MLP module
expansion Eyrp. We introduce these expansion methods in the following paragraphs. We provide

an illustration of & y and Evma in[Figure 9]

(1) LayerNorm expansion with & n. We define the expansion procedure for LN as follows. We use
LN(5 s Bieros €F) Where p* 1 = nVeana (1) € RPT, B0 = Viero(B) € RPT, and €* = n’e with
n = |Dr/Dg] * (Ds/Dr) to expand the original LayerNorm layer LN(-; t, 3, €). The expansion
is lossless and the proof is given in Moreover, EiN is (Vave, Vsero)-lossless for LN(-).
In[Figure 9] we omit € and 3 for better illustration.
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(2) MHA expansion with Eyga. We explain how to expand MHA as follow:

s WK WZQ, W/ in self attention. We consider the affine transformations applied to a
single token x € RPs min a sequence in self attention in the form of k;(x; WX bX) =
(WIOTx4bI, il W, bE) = (W) Tx+b, and vi(x; WY, bY') = (W) Tx+b)
where (WX)T (W)T (WY)T € R¥x*Ds and bX b% b)Y e Rix.

During expansion, we increase the dimension of (WZX)T (W®)T (WY)T from
Réx*xDs o RIx*D71 and bZK,biQ,blV unchanged. Since the number of rows for
(WE)T (W) (WY)T is unchanged, we only increase the number of columns by
applying column-random expansion E.ojng defined in to its transpose
for each head, i.e., we use {Eolana [(WF)T;¢5]}T, {Eml,mnd {(W?)T@ﬂ }T, and

{Ecotrand [(WY)T;¢Y]}T for the expanded weights of WX , W2 and WY, where
iK, CiQ, CZ-V € Raxx (D1 mod Ds) gre random matrices. Biases are unchanged.

* Heads in self attention. We increase the number of heads in a circular pattern.
See for an illustration. Note that (1) When |Dr/Dg| > 1, we can set
W1, ... WLPr/Dsl differently for replicated heads to break weight symmetry; (2) Addi-
tionally, when D7 mod Dg # 0, random matrices (X, CiQ ,¢Y can be chosen differently
for replicated heads to break weight symmetry. Please see[Example B.4.4]for definitions of
W WLPr/Psland ¢, ¢, ¢

* Projection matrix in self attention. For the projection transformation in the form of
WSx + bo where W/, € RPsxPs and bg € RPS, we use Eqolcire and Erow,avg defined

in [Example B.4.5] and [Example B.4.1] to expand the weights and biases. Specifically, we
use {Eeolcire [Erowave(WH)] ] € RPTXPT for the expanded weight of W. We then use

Vave(bo) € RPT for the expanded bias of bg.

Moreover, Evina 18 (Viero, Vavg )-lossless for MHA(-).

(3) MLP expansion with &y p. Consider the MLP in the form of MLP(x) = W0 (Wie1x+byer) +
bg.» where o is the non-linear activation. We explain how to expand MLP as follow:

* For the first fully-connected layer, we increase the columns by random expansion and in-
crease the rows by circular expansion. Specifically, we use Ecolrand [Erow.cire (Wier)] and
Veire(bye1 ) for the expanded weight and bias.

* For the second fully-connected layer, we increase the columns by circular expansion and
increase the rows by average expansion. Specifically, we use Ecolcirc [Erowave (Wie2)] and
Vavg (bie2) for the expanded weight and bias.

Moreover, Emip iS (Vzero, Vavg)-10ssless for MLP(-).

C.2 WIDTH EXPANSION OF OTHER LAYERS

In this section, we explain how to expand the rest of the layers, i.e., embedding layers and decoder
layers.

Embeddings expansion with V,,,. We first average expand the embedding for each token x by
adding its average, i.e., with V,,. For Vision Transformers, we do so by adding averaged channels
for patch embeddings.

Decoder layer expansion with Ege.. For Vision Transformers, the decoder layer is a fully-connected
layer with the form Dec(x) = WX + b. We increase the rows of the matrix by applying column-
random expansion to its transpose, i.e., we use Ecolrand(Wec) for the expanded weights. The bias is
unchanged.

"In the formulation of MHA in WK, W?, W/ are right matrix multiplied with the input sequence
matrix X € R®*PSs Here we use the form of ‘W ;x for better illustration.
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For language models, the decoder layer is shared with the embedding layer. So we have to instead
scale the weight and bias of the LayerNorm before the decoder layer by 1/| Dy /Dg|. Moreover,
Eaec 18 (Viero, Id)-lossless for Dec.

C.3 DEPTH EXPANSION
Depth expansion is explained in the

C.4 PARAMETER CHOICES

We consider the case D < 2D for better illustrationﬁ There are mainly the following parameters
to choose for LEMON. For the non-divisible case, we set the random parameter ¢ in the LayerNorm
such that ¢ ~ Unif(—1, 1). When using matrix column-random expansion Ec, ;ang for the indivisible

case, we use (i ; - N(0,0.022).

Vision transformers. For the width expansion parameters of the Vision Transformers, we set W"™*
for indivisible case and W2 for divisible case to be %Wg + ®, where ® € RPsx(Pr=Ds) g

randomly initialized and ®; ; % N(0,0.022).

For the depth expansion parameters, we set the free parameters that are used to cancel out replicated
neurons following the distribution A/(0,0.022).

ResNets. For the width expansion parameters of the ResNet, we set W' for indivisible case and
W2 for divisible case to be %W(T) + ®, where ® € RPsx(Dr—Ds) g randomly initialized and ®
follow the distribution used by the default implementation.

Language models. For the width expansion parameters of BERT, we set W' for indivisible case
and W? for divisible case to ®, where ® € RPs*(Pr=Ds) js randomly initialized and D; i
N(0,0.0022).

For the depth expansion parameters, we set the projection matrix of the MHA block and the sec-
ond fully-connected layer of the MLP block to be zero matrices. Moreover, inspired by advanced
knowledge initialization (AKI) (Chen et al., [2021a), we append heads/neurons from the next adja-
cent layerﬂ

D LEMON FOR OTHER ARCHITECTURES

Though we haven’t included experiments for Res-Post-Norm and Post-LN blocks in our main exper-
iments, we show that LEMON is able to perform lossless model expansion for these scenarios. We
then briefly discuss how to handle RMS norm (Zhang & Sennrich, 2019), which is used in LLaMa
(Touvron et al., [2023)). We also discuss how to apply LEMON on convolutional neural networks.

D.1 RES-POST-NORM TRANSFORMERS

We consider the Transformer with the following architecture: (1) an embedding layer, (2) several
Res-Post-Norm blocks, and (3) the final decoder layer@]

D.1.1 WIDTH EXPANSION

The only difference between the expansion methods of Res-Post-Norm Transformers and Pre-LN
Transformers is that we zero expand embedding vector for each token with V.

For the MHA and MLP modules, we use the exact same expansion introduced in[section C.I| where
it is (Vseros Vavg)-lossless for MHA and MLP. Consequently, our expansion is (Vsero, Viero)-lossless

81n fact we only need to deal with such cases in our experiments.

This is still lossless since the last layer is a left-multiplied with a zero matrix followed by adding a zero
vector.

1We assume there is no final LayerNorm before the final decoder layer.
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for Res-Post-Norm Transformer blocks. Since the last decoder expansion is (V,ero, Id)-lossless for
Dec, our expansion method is strict lossless.

D.1.2 DEPTH EXPANSION

For increasing depth, we only need to set the weights and bias of the LayerNorm for each added
layer to be all zeros.

D.2 PoOST-LN TRANSFORMERS

For Post-LN Transformers, we can only deal with divisible cases, i.e., Dy mod Dg = 0. Sup-
pose Dr/Dg = n, in this case, all the embedding and outputs of modules (MLP and MHA) are
duplicated n times and hence lossless. The only difficulty is to deal with depth expansion.

Depth expansion. Suppose we are given a pre-trained Post-LN Transformer block ¢1(x) =
LNj(Module(x) + x) = p1 © Norm(Module(x) + x) + b;. First we expand Module; to
Module}™ so that it outputs zeros. Then we can create two expanded layers g7, g5 where g} (x*) =
1GNorm(Module!™ (x*)+x*)+0 = Norm(x*) and g§ (x*) = piONorm(Module} (x*)+x*)+
bi. Ttis easy to show that g3 og; is lossless where we use the fact that Norm(Norm(x)) = Norm(x).

D.3 TRANSFORMERS WITH RMS NORM

RMS Norm (Zhang & Sennrich, 2019)) is used by foundation models like LLaMa (Touvron et al.,
2023) and Baichuan (Yang et al., [2023)). See [Definition 2|for the definition of RMS Norm. Suppose
we want to expand the RMS Norm from dimension Dg to D7, we use the following expansion.

RMS Norm expansion with Egms. We use RMS (- p g, €°) where 4 = nVrana (1) € RPT, and
€* = n?e withn = |Dr/Ds| * (Ds/Dr) to expand the original RMS Norm layer LN(-; u, 3, €).
The expansion i (V,ero, Viero)-lossless for RMS(+). The proof is provided in

D.4 CONVOLUTIONAL NEURAL NETWORKS: RESNET

We use Conv(k x k, Ciy, Cou ) to denote convolutional layer with C;, in-channels, C, out-channels,
and kernel size k x k . We assume the kernel weight is W € RCouxCinxkxk and bias b € R,
We use BN and ReLU to denote BatchNorm and ReLU, respectively. ResNet and WideResNet
with more than 50 layers consist of multiple Bottleneck blocks, where there are 3 sub-blocks: (1)
Conv(D, Dg,1x1)-BN-ReLU, (2) Conv(Dg, Dg, 3 % 3)-BN-ReLU, and (3) Conv(Dg, D, 1 x 1)-
BN in the residual branch.

We consider expanding ResNet to WideResNet.
Width expansion. To apply width expansion, we do the following:

(1) For the first sub-block, increase the number of out-channels of the first convolutional layer from
Dg to Dr. Specifically, the expanded weight satisfies W*[4,:,:,:] = W[i mod Dg,:,:,:],Vi €
[Dr], and b*[i] = b[i mod Dg],Vi € [Dr]. The output of the convolutional layer will be also in
a circular pattern in the channel dimension. This also holds true after the application of BatchNorm
and ReLU since the statistics of BatchNorm are computed within channels.

(2) For the second sub-block, increase the number of out-channels and in-channels of the first con-
volutional layer from Dg to Dp. We apply the same operation to the out-channels dimension similar
to (1). For the in-channel dimension, we need to make sure that the weights of replicated channels
sum up to the original weight. Specifically, suppose that the replicated channels indices are denoted
C, = {ili mod Dg = z}. Then we need to set ;... W*[i,:,:,:] = W[k, :,:,:] for lossless ex-
pansion. Moreover, we need to make sure W*[i, a, b, c] # W*[j,a,b,c|,Vi,j € C,,a € [Cyn],b €
[k] ,c € [K], z € [Cou] for symmetry breaking.

(3) For the last sub-block, increase the number of in-channels of the first convolutional layer from
Dg to D similar to (2).

Depth expansion. For depth expansion, we simply set the weight and bias of the last BatchNorm
layers in the increased layers to be zeros.

23



Published as a conference paper at ICLR 2024

E PROOFS

E.1 PROOFS FOR TRANSFORMERS WITH LAYERNORM

In this section, we first show that three main components & n, Evua, and Eypp are lossless. Then,
we prove that LEMON defined in[Appendix Clis lossless.
We first start by showing that our LayerNorm expansion &y defined in [section C.1]is lossless.

Proposition 1 (Lossless expansion for LayerNorm &N). Consider LN(-; w, 3, €) of dimension Dg
where p, 3 € RPS. Define average expanded of x € RPs of dimension D to be Xavg = Vavg (x) €
RPT, where Dy > Dg. If iy = MVrana(p) € RPT, B2, = Vier(B) € RP7T, and € = n’e,
where ) = \/|Dr/Dgs] * (Dg/Dr), then

LN( Xavg’ I‘I’mndﬂ Ig;erm 6*) = Vzem(LN(X; H, /ga 6))

Proof. Since E[x;,,] = %T D i Xaveli] = %T ( Dy /Dg] >.7° x[i] + (Dpr mod Ds)E[a?D =

E[z] and Var[x avg] = DL |Dr/Ds| DSVar[X] (D1 mod DS) 0) = n*Var[x],

e For1 S ) S LDT/DSJD

* * * EN\T - X:v [Z} - E[X:v }
LN(Xan; Hrand> /Bzerm € )[Z] ==
Var[x;‘vg] + €*

] Dg|—E
_ x[imod Ds] ZE] i 1nod Dg] + B[ mod Ds]

Var[x] + €

= Viero (LN(x; 1, B, €)) 1]

 For |Dr/Dg|Ds <i < Dr:

© N;kand [Z] + lg:ero M

avg avg

Xavgli] — B[]

LN(XZVg; ”:and’ IBZerw 6*) [Z] = © I“”;kand [l] + B;ero[i]

Var[xz,] + €*
_ Ex -Elx ,
= Va1 ©n¢li mod Dg] 4+ 0
=0

= Vzero(LN(X; M, ﬂ’ 6))[7/]

Hence, LN( Xavg> i Bgands Beros € ) = VZBIO(LN()Q w, B, 6)) O

Remark. When Dr is divisible by Dg, then n = 1. Hence, it explains why simply circularly
expanding LayerNorm is lossless in such a scenario.

naturally leads to the following corollary.
Corollary 1. &y introduced in[Definition 1|is (Vavg, Veero)-lossless for LN(-).

Using [Claim 3] we are ready to prove that Eyipa and Eyyp are lossless. We first show that Eyya is
lossless in
Proposition 2 (Lossless of Eyipa). Eyma defined in is (Vzero, Vavg)-lossless for MHA.

Proof. Consider a sequence input X € RF*Ps s expanded losslessly by Vyero to X, € REXDPT,

We expand the source small MHA such that the target large model is MHA* = Eypa (MHA).

We first check the key, query, and value of each head Head] such that i < H = D,/d
for the large model MHA*. We denote them as K!, Q, Vi € RFXIx_ Note that biases

bX ,biQ,bZV € RIx are not expanded. Hence, these outputs are identical to the output of
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the small source model K;,Q;,V; € REXIx gince (WE)T (W?)T (WY)T are expanded
by Ec rand, Which is (Vyero, Id)-lossless. Consequently, Head] = Attention(Q}, K}, V¥) =
softmax (Q} (K})T/V/dk) V} is identical to the output of i-th head of the MHA in the source
small model, which is Head;.

Since heads are circularly expanded, the output of MHA* is also V.. lossless.

Finally, since W, is expanded by Ecolcire and Erowave, Which is (Vire, Vave)-lossless. With the fact
that bias b is not expanded (unchanged), we obtain the result that Evpa 1S (Vsero, Vavg )-lossless for
MHA. O

We then show that Eyy p is lossless in

Proposition 3 (Lossless of Eyip). This is easily obtained since the first fully-connected layer is
(Veeros Veire)-lossless. Hence, the output is Ve, losslessly expanded. After applying element-wise
nonlinear activation, the output is still V... losslessly expanded. Since the second fully-connected
layer is (Vzero, Veire)-lossless, we conclude the proof that Eyip is (Vzero, Vavg)-lossless for MLP.

Hence, using [Proposition 2] and [Proposition 3| along with [Claim 3} we obtain the following
lary 2] and [Corollary

Corollary 2. The expanded Pre-LN MHA module Eypa(MHA) 0 Ern(LN) is (Vavg, Vavg)-lossless for
MHA o LN.

Proof. Since EiN i (Vave, Vsero)-lossless for LN, and Evia i (Viero, Vavg)-l0ssless for MHA. The
result is obtained by O

Corollary 3. The expanded Pre-LN MLP module Eypp(MLP) 0 Ern(LN) is (Vavg, Vave)-lossless for
MLP o LN.

By incorporating the residual connection, we obtain the following corollary.

Corollary 4. The expanded Pre-LN modules (Pre-LN MHA/MLP) with residual connections are
(Vavgs Vavg)-lossless for the original Pre-LN modules with residual connections.

Once again using[Claim 3| we naturally obtain the following corollary.
Corollary 5. The width-expanded Pre-LN Transformer layer Epjock is (Vavg, Vavg)-lossless for g.

Finally, by considering the embedding layers and encoder layers, we show that LEMON is lossless.

Corollary 6. LEMON introduced in is (Id, 1d)-lossless for Pre-LN Transformers, i.e.,
strict lossless or identical.

Proof. Since embeddings are average expanded, the output of Pre-LN Transformer blocks are av-
erage expanded. Hence, outputs of the final LN before the encoder is zero expanded. Since the
decoder layer expansion is (V,e, Id)-lossless for Dec(-), we obtain the result that LEMON is
(1d, 1d)-lossless. O

E.2 PROOFS FOR TRANSFORMERS WITH RMS NORM

In this section, we show that Egys defined in[section D.J]is lossless.

Proposition 4 (Lossless expansion for RMS Norm Erms). Consider RMS(-; w,€) of dimension
Dg where € RPs.  Define zero expanded of x € RPs of dimension Dt to be x,, =

zero

Veeo(x) € RPT, where Dy > Dsg. If 18 = MWVraa(pt) € RP7, and ¢ = n?c, where
n = +/|Dr/Ds| * (Ds/Dr), then

RMS(X;';Y(); l"’;kand? 6*) = VZer(I(RMS(X; l’l'7 E))'
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Proof. » For1 <i<|Dr/Dg|Ds:
* * K\ [ o X:ero { * .
RMS (Xzem; Hrands € )[Z] = 1 Dr [ ] © Hrand [Z}
\/D7T z:i:l(X;Kem)2 +e*
x[¢ mod D
-~ /D |Dr/D J[ D ; © npli mod D]
VDDl 5D (i) + e
x[¢ mod D ;
- - [ = sl © npli mod Dg]
7 25 ()2 + e
= Vzero(RMS (X§ K, 6)) [Z]
e For |_DT/D5JDS <1< Dr:
* * N X;ero[i] * .
RMS (Xzem; Hrands € )[Z] = 1 Dr © Hrand [Z}
\/D7T z:i:l(X;ero)2 +e*
0 N
= 1 Do © Mrand M
\/D7T Zi:l(x;ero)2 +e*
=0
= Vzero(RMS (X; K, 6)) [Z]
Hence, RMS (Xero; Hiings €°) = Vaero(RMS(X; p, €)). O

naturally leads to the following corollary.
Corollary 7. Erys introduced in[section D-3|is (Vzero, Vier)-lossless for RMS(-).

F ADDITIONAL EXPERIMENTS

F.1 COMPARISON WITH LIGO

—— Scratch
—— Ours

Validation Accuracy (%)

55

0 50 100 150 200 250 300

Training Epochs

Figure 10: We expand ViT(12, 384) to ViT(12, 768). Our expanded model recovers the performance
of the target model with 85 epochs (28.3% compared to training from scratch).

LiGO (Wang et al., [2023a) is unavailable for direct comparison due to the absence of open-source
code. Hence, we compare them with their reported values. Note that our method is lossless
only for Pre-LN Transformer architecture while LiGO reports their results for language models
mainly on Post-LN BERT and RoBerTa. As a consequence, we compare our results with LiGO on
ViT(12,384) (ViT-Small) — ViT(12, 768) (ViT-Base)['T| The result is shown in

"Note that DeiT without distillation is exactly ViT.
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Our method is able to recover the performance of the target model with 85 epochs, leading to a
71.67% computational saving. It is higher than the reported value of 55.40% for LiGOE]

F.2 CONVOLUTIONAL NEURAL NETWORKS
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Validation Accuracy (%)
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Figure 11: We expand ResNet-50 to WideResNet-110. Our expanded model (Ours Epoch60; red)
recovers the performance of the target model within 60 epochs (33.3% compared to training from
scratch). bert2BERT-AKI (bert2BERT-AKI Epoch60; green) is unable to accelerate the training
compared training from scratch (scratch Epoch60; ). Note that LEMON is lossless. How-
ever, the accuracy of the model expanded by LEMON decreases after one epoch since there is
no learning rate warm-up phase.

We expand ResNet-50 to WideResNet-110 to assess the versatility and efficiency of LEMON in
comparison to the bert2BERT-AKI method, known for its performance in the main manuscript. We

utilized an optimized learning rate scheduler with a maximum rate of 0.1 (default), decaying at the
20th and 40th epochs.

Results. We show the result in LEMON is able to recover the performance of the large
network in 60 epochs, achieving 33% computational savings. Note that bert2BERT-AKI shows
inferior performance compared to training from scratch. We hypothesize that this might be due to a
lack of compatibility of bert2BERT-AKI with the ResNet architecture

2Note that DeiT-Base (ViT-Base) has a final validation accuracy of 81.00% for LiGO, which is lower than
the ~ 81.70% reported value of the official DeiT and our implementation.
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Figure 12: Training loss (a) and test accuracy (b) comparison of training from scratch with the max-
imum learning rate 0.1 (Training from scratch; blue), model expanded by LEMON trained with
the maximum learning rate 0.1 (Expanded, default Ir; purple), and model expanded by LEMON
trained with the maximum learning rate 0.01 (Expanded, 0.1 * default Ir; red). Using smaller
learning rate leads to smaller training loss but worse generalization performance.

Effects of maximum learning rate. To understand how different maximum learning rates impact
the performance of model expansion, we conducted similar experiments. Specifically, we compared
the following setups: (1) Training a model from scratch with a maximum learning rate of 0.1,
referred to as ‘Training from scratch’; (2) A model expanded using LEMON and trained with the
default maximum learning rate of 0.1, denoted as ‘Expanded, default Ir’; and (3) A model expanded
using LEMON but trained with a reduced maximum learning rate of 0.01, termed ‘Expanded, 0.1 *
default Ir’.

In line with the observations in Transformer architectures, we noticed that a smaller learning rate
tends to result in lower training loss but potentially affects generalization performance adversely.

F.3 PoST-LN BERT

2.4

—— Training from scratch
2.3 bert2BERT-AKI

—— bert2BERT-FPI
2.2 —— LEMON (Ours)

N
=
T
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1
1
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©
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Figure 13: We expand Post-LN BERT(6, 384) to BERT(12, 768). Our expanded model achieves

a log validation loss of 1.67 within 137k steps (63.43% compared to 216k steps for training from
scratch).
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In this section, we present our experiments conducted on Post-Layer Normalization (Post-LN) BERT
models to further validate the effectiveness of LEMON. Specifically, we focused on expanding
BERT(6, 384) to BERT(12,768). We set a target log validation MLM loss of 1.67 for this ex-
periment.

We trained the expanded model using LEMON for 143k steps. The results, as detailed in|[Figure 13]
demonstrate that LEMON was able to achieve the targeted log validation MLLM loss of 1.67 within
just 137k steps. This result translates to a computational cost saving of 36.57%, compared to training
BERT(12, 768) from scratch.

G MORE RELATED WORKS

Efficiency in deep learning can be achieved in multiple ways. In this section we provide a brief
overview of efficient deep learning regarding model training and inference, distinguishing it from
methods addressing data efficiency (Gong et al., 2021; Wu et al., 2023agb).

Efficient deep learning. In the realm of deep learning, the drive for efficiency has led researchers
to develop a multitude of methods aimed at optimizing model efficiency. Techniques such as neural
architecture search (NAS) (Zoph & Lel 2016; |[Liu et al., |2018)) have been employed to automate
the discovery of optimal network architecture. Quantization (Rastegari et al.| 2016; Hubara et al.,
2017) refines the numeric precision of model parameters to boost computational speed. Knowledge
distillation (Hinton et al.| [2015)) and knowledge inheritance (Qin et al., 2021) allow target models
to inherit the knowledge of their source counterparts. Neural network pruning (LeCun et al., |1989)
involves removing unnecessary connections to accelerate model training or inference. Finally, model
growth methods (Chen et al., [2015) directly use the weights of source models to initialize the large
target models.

Neural architecture search (NAS) has emerged as a promising solution for automating the pro-
cess of neural architecture design, eliminating the need for labor-intensive manual designs across
various deep learning tasks. Initial methodologies leveraged reinforcement learning (Zoph & Le,
2016; Baker et al.,[2016) and evolutionary algorithms (Real et al.|[2019) to identify high-performing
architectures. Despite their success, a significant drawback was their computational demands. Ad-
dressing this, DARTS (Liu et al.|[2018]) introduced a continuous relaxation of architectural represen-
tation, allowing for search via gradient descent. However, DARTS can be challenging to optimize,
and its weight-sharing approach has been criticized for potential performance degradation (Yu et al.,
2019; Wang et al., 2020b)). Seeking further efficiency, Mellor et al. (Mellor et al., 2021) introduced
a training-free NAS, which evaluates randomly initialized architectures, thus fully eliminating neu-
ral network training during the search phase. Subsequent training-free methods explored searches
using Neural Tangent Kernel (NTK) (Xu et al., 2021;|Chen et al., 202 1b; Wang et al., 2022a), linear
regions (Chen et al.,|2021b)), and criteria related to pruning (Abdelfattah et al., [2021]).

When considered alongside model expansion, NAS holds potential for determining the optimal num-
ber of layers and hidden dimension of the large target model.

Neural network pruning. Pruning techniques can be broadly classified based on their timing into
three categories: post-hoc pruning, pruning-at-initialization methods, and pruning-during-training
methods. (1) Post-hoc pruning method removes certain weights of a fully-trained neural network.
Post-hoc pruning was initially proposed to accelerate model inference (LeCun et al., |1989; |Hassibi
et al.l 1993} Han et al.| |2015), while lottery ticket works (Frankle & Carbinl 2018} [Renda et al.,
2020) shifted towards uncovering trainable sub-networks. (2) SNIP (Lee et al., 2018) is one of the
pioneering works of pruning-at-initialization methods that aim to find trainable sub-networks with-
out any training. Subsequent research (Wang et al.| |2020a; [Tanaka et al.,[2020; |de Jorge et al.,2020;
Lee et al.l[2019;|Wang et al.| | 2022b)) introduced varying metrics for pruning at the network initializa-
tion stage. (3) Finally, pruning-during-training methods prune or adjust DNNs throughout training.
Early works incorporate explicit ¢y (Louizos et al. 2017) or ¢; (Wen et al., 2016) regularization
terms to encourage sparsity, hence mitigating performance degradation commonly associated with
post-hoc pruning. More recent techniques like DST methods (Bellec et al.l 2017; Mocanu et al.|
2018; [Evci et al.| [2020; [Liu et al., 2021a; [Wang et al., 2023b)) allow for adaptive mask modifications
during training while adhering to specified parameter constraints.
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Neural network pruning has potential synergies with model expansion, akin to the dynamics of DST.
A combined approach could involve iterative increases and decreases in hidden dimensions or layers
during training, potentially accelerating training speed.
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