
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

JAMUN: TRANSFERABLE MOLECULAR CONFORMA-
TIONAL ENSEMBLE GENERATION WITH WALK-JUMP
SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Conformational ensembles of protein structures are immensely important to un-
derstanding protein function. Current techniques for sampling ensembles are com-
putationally inefficient, or do not transfer to systems outside their training data.
We present walk-Jump Accelerated Molecular ensembles with Universal Noise
(JAMUN), a step towards the goal of efficiently sampling the Boltzmann distri-
bution of arbitrary proteins. By extending Walk-Jump Sampling to point clouds,
JAMUN enables ensemble generation at orders of magnitude faster rates than tra-
ditional molecular dynamics or state-of-the-art generators. Further, JAMUN is
able to predict the stable basins of small peptides that were not seen during train-
ing.

1 INTRODUCTION

Molecules are not static. They move, and these movements can be vitally important. Protein motion
is required for myglobin to bind oxygen and move it around the body.Miller & Phillips (2021) Drug
discovery on protein kinases depends on characterizing kinase conformational ensembles.Gough
& Kalodimos (2024) The search for druggable “cryptic pockets” requires understanding protein
dynamics.Colombo (2023) However, while machine learning (ML) methods for molecular structure
prediction have experienced enormous success recently, ML methods for dynamics have yet to have
similar impact. ML models for generating molecular ensembles are widely considered the “next
frontier” (Bowman, 2024; Miller & Phillips, 2021; Zheng et al., 2023). In this work, we present
JAMUN (walk-Jump Accelerated Molecular ensembles with Universal Noise), a generative ML
model which advances this frontier by demonstrating improvements in both speed and transferability
over previous approaches.

While the importance of protein dynamics is well-established, it can be exceedingly difficult to
sufficiently sample large biomolecular systems. The most common sampling method is molecular
dynamics (MD), but it is limited by the need for very short time-steps of 1-2 femtoseconds. Many
important protein dynamic phenomena occur on the timescale of milliseconds. Simulating with this
resolution is “...equivalent to tracking the advance and retreat of the glaciers of the last Ice Age—tens
of thousands of years—by noting their locations each and every second.”Borhani & Shaw (2012)
Importantly, there is nothing fundamental about this small time-step limitation; it is an artifact of
high-frequency motions, such as bond vibrations, that have little to no effect on protein ensembles.
Leimkuhler & Matthews (2015) Enhanced sampling methods have been developed in an attempt to
accelerate sampling, but they often require expert user input, and, more importantly, do not address
the underlying time-step problem. Other sampling methods, such as Monte Carlo-based methods,
exist, but have seen limited success for large biomolecular systems.Vitalis & Pappu (2009)

A large number of generative models have been developed to address the sampling inefficiency
problems of MD using machine learning, including continuous normalizing flows, diffusion, and
flow-matching.Noé et al. (2019); Arts et al. (2023); Klein et al. (2024b;a); Zheng et al. (2024);
Jing et al. (2024); Kim et al. (2024) These models have been applied to a variety of MD datasets
from small molecules to peptides to full proteins. However, none of these models have proven

*These authors contributed equally to this work.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of Walk-Jump Sampling.

to be transferable. They do not work well beyond their training data. (One notable exception is
the recent Transferable Boltzmann Generators (Klein & Noé, 2024) model, with which we provide
extensive comparison.) While the developments in this field have been immense, transferability
remains a grand challenge. Without it the usefulness of any ML model is extremely limited. For a
true breakthrough in this area, an ML model must be able to generate conformational ensembles for
molecules that are not in its training set.

We set out to solve this problem of transferability by developing an ML model informed by the
physical priors of molecular dynamics data. JAMUN is a Walk-Jump Sampler (WJS) Saremi &
Hyvärinen (2019) for point clouds parameterized with an SE(3)-equivariant denoiser. In WJS noise
is added to clean data and a denoising neural network is trained to recover the clean samples. This
denoiser defines the score function of the noisy manifold which we sample using Langevin dynamics
(walk step) and allows us to periodically project back to the original data distribution (jump step).
This framework is a natural fit for MD data. In MD, unlike for natural images or other settings
where generative modeling is commonly applied, we typically are interested in sampling an ensem-
ble of representative states rather than drawing single samples. In this setting it is advantageous to
generate samples from trajectories that efficiently traverse the smoothed space, rather than starting
over from an uninformative Gaussian prior for each sample as is commonly done in diffusion and
flow matching. By adding partial noise, WJS simply smooths out the distribution enough to resolve
sampling difficulties without fully destroying the information present in the data distribution. More-
over, the use of Langevin dynamics, the same algorithm commonly used for MD simulations, on the
smoothed noisy manifold lends itself to simple, physical interpretations of model behavior.

We train JAMUN on a large dataset of MD simulations of two amino acid peptides. We demonstrate
that this model can generalize to a holdout set of unseen peptides. In all of these cases, generation

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

with JAMUN yields converged sampling of the conformational ensemble faster than MD with a
standard force field. These results suggest that this transferability is a consequence of retaining the
physical priors inherent in MD data. By smoothing out the underlying data distribution, JAMUN is
able to produce the first transferable generative model for molecular conformational ensembles that
is dramatically faster than MD simulation.

2 RELATED WORK

The goal of building machine learning models that can generate conformational ensembles of molec-
ular systems is not new. While a full overview of this field is beyond the scope of this work (see
Aranganathan et al. (2024) for a recent review), we note a few relevant previous efforts. Boltzmann
Generators (Noé et al., 2019) introduced the idea that a neural network could be used to transform the
underlying data distribution into an easier-to-sample Gaussian distribution. There have been follow-
on efforts which used diffusion models (Arts et al., 2023), flow-matching (Klein et al., 2024b), and
continuous normalizing flows (Klein & Noé, 2024). The commonality in these models is the choice
of target distribution; they all attempt to transform the MD data distribution into a simple Gaussian.
This is a key difference between prior work and our model. Notably, no previous model in this area
except Klein & Noé (2024) has been transferable.

There have also been efforts to build ML models for taking longer MD time-steps (Klein et al.,
2024a; Schreiner et al., 2023; Hsu et al., 2024) and for approximating conformations of large pro-
teins (Zheng et al., 2024; Jing et al., 2024). These methods rely on hand-crafted featurizations (eg.
backbone torsion angles). In practice, this has made generalization to unseen molecules challenging
for these models as well.

The above models are often classified as Boltzmann Generators or Boltzmann Emulators. Models
in the former class are guaranteed to draw unbiased samples from the Boltzmann distribution, while
models in the latter class do not have this guarantee. Strictly speaking, JAMUN is a Boltzmann
Emulator, although in practical terms, as our results show, the difference is minimal.

JAMUN is a Walk-Jump Sampling method which uses an SE(3)-equivariant neural network for
denoising. WJS is built on the seminal work of Neural Empirical Bayes (Saremi & Hyvärinen,
2019), and has been used in voxelized molecule generation (Pinheiro et al., 2024b;a) and protein
sequence generation (Frey et al., 2023). Our work is the first to our knowledge to apply WJS to
point clouds. The equivariant denoising network we use is built with the e3nn library (Geiger &
Smidt, 2022). For a survey of equivariant models for 3D atomic systems, see Duval et al. (2023).

3 METHODS

3.1 WALK-JUMP SAMPLING

JAMUN operates by performing Walk-Jump sampling on molecular systems represented as 3D point
clouds. A conceptual overview of the process is illustrated in Figure 1. Given an initial sample x(0)

from the clean data distribution pX where x(0) ∈ RN×3 represents the 3D coordinates of each of
the N atoms, Walk-Jump performs the following steps:

1. Construct initial sample y(0) from the noisy data distribution pY by adding noise with
magnitude σ drawn from the normal distribution N :

y(0) = x(0) + ση(0) where η(0) ∼ N (0, IN×3) (1)

2. Walk to obtain samples y(1), . . . , y(N) from pY using Langevin dynamics which conists of
numerically solving the following Stochastic Differential Equation (SDE):

dy = vydt (2)

dvy = ∇y log pY (y)dt− γvydt+M− 1
2

√
2dBt (3)

where vy represents the particle velocity, ∇y log pY (y) is the gradient of the log of the
probability density function (the learned score function), γ is friction, M is the mass, and
Bt is the standard Wiener process in N × 3-dimensions: Bt ∼ N (0, tIN×3). In practice,
we employ the BAOAB solver (Appendix G) to integrate Equation 2 numerically.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Adding noise to an initial conformation x(0) to obtain y(0) ∼ pY .

Figure 3: One iteration of BAOAB-discretized Langevin dynamics (Equation 2 and Equation 67)
starting from y(t) ∼ pY leads to a new sample y(t+1) ∼ pY .

3. Jump back to pX to obtain samples x̂1, . . . , x̂N :

x̂i = x̂(yi) = E[X | Y = yi] (4)

x̂(·) ≡ E[X | Y = ·] is called the denoiser. It corresponds to the minimizer (Appendix E)
of the ℓ2-loss between clean samples X and samples denoised back from Y = X + ση.

x̂(·) = argmin
f :RN×3→RN×3

EX∼pX ,η∼N (0,IN×3)
Y=X+ση

[∥f(Y)−X∥2] (5)

As shown by Robbins (1956); Miyasawa (1960) (Appendix F), the denoiser x̂ is closely
linked to the score ∇y log pY :

x̂(y) = y + σ2∇y log pY (y) (6)

Figure 4: Denoising of y(t) according to Equation 6 gives us new samples x̂(t).

Importantly, the score function∇y log pY shows up in both the walk and jump steps.

3.2 LEARNING TO DENOISE

In order to run Walk-Jump Sampling as outlined above, we must train a parameterized denoising
model which takes in noisy samples y and outputs clean samples x̂. We have the choice of modelling

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

either the score∇y log pY or the denoiser x̂ as they are equivalent by Equation 6. Here, we follow the
recommendations of Karras et al. (2022; 2024), originally developed for diffusion models in images
to model the denoiser as a neural network x̂θ(y, σ) ≈ x̂(y) parameterized by model parameters θ.
We appropriately modify their construction for the point cloud context as detailed in Section 3.3.
Note that while the normalization is applicable for any noise level, we only need to learn a model
at a single, fixed noise level σ. This is unlike training diffusion and flow-matching models where a
large range of noise levels are required for sampling.

As described in Algorithm 1, we use an SE(3)-equivariant model to parametrize the denoiser
Thomas et al. (2018). This is in contrast to existing methods (Hoogeboom et al., 2022; Klein & Noé,
2024; Klein et al., 2024a) that utilize the E(3)-equivariant EGNN model (Satorras et al., 2022). As
rightly pointed out by Dumitrescu et al. (2024), E(3) models are equivariant under parity, which
means that are forced to transform mirrored structures identically. When we experimented with
such architectures, we found symmetric Ramachandran plots which arise from the unnecessary par-
ity constraint of the denoising network. For this reason, Klein & Noé (2024); Klein et al. (2024a)
use a ‘chirality checker’ to post-hoc fix the generated structures from their model; for JAMUN, such
post-processing is unnecessary because our model can distinguish between chiral structures.

Training the denoiser x̂θ consists of solving the following optimization problem:

θ∗ = argmin
θ

EX∼pX ,η∼N (0,IN×3)
Y=X+ση

∥x̂θ(Y, σ)−X∥2 (7)

to obtain θ∗, the optimal model parameters. We approximate the expectation in Equation 7 by
sampling X ∼ pX and η ∼ N (0, IN×3), as is standard in the empirical risk minimzation (ERM)
(Vapnik, 1991) setting. We minimize the loss as a function of model parameters θ using the first-
order optimizer Adam (Kingma & Ba, 2017) in PyTorch 2.0 (Ansel et al., 2024; Falcon & The
PyTorch Lightning team, 2019).

Algorithm 1 Operations of our SE(3)-Equivariant Denoiser Fθ

Require: Sample y, Noise Level σ, Message Passing Iterations T , Cutoff dmax, Spherical Harmonic
Degree ℓ, Tensor Product ⊗
Compute neighbor lists for each atom in y:

(u, v) ∈ E ⇐⇒ ∥yu − yv∥ ≤ dmax

for v ∈ V do:
h
(0)
v ← INITIALATOMEMBEDDING(v)

for t = 1, 2, . . . , T do:
for v ∈ V do:

h
(t)
v ← 1

|N (v)|
∑

u∈N (v) MLP(∥yu − yv∥)× LINEAR(h
(t−1)
u ⊗ Yℓ(ru − rv))

h
(t)
v ← GATE(h

(t)
v)

h
(t)
v ← CONCATENATE([h

(t−1)
v , h

(t)
v])

h
(t)
v ← LINEAR(h

(t)
v)

h
(t)
v ← NOISECONDITIONALSCALING(h

(t)
v , σ)

for v ∈ V do:
fv ← LINEAR(h

(T)
v)

return {fv}v∈V

Similar to Klein & Noé (2024), the initial embedding of each atom (represented by INI-
TIALATOMEMBEDDING in Algorithm 1) is given by embedding its atomic number, the atom type
as provided by the PDB, the type of its associated residue, and the sequence index of the associated
residue.

3.3 PARAMETRIZATION OF THE DENOISER NETWORK

We describe the parametrization of the denoiser network x̂θ(y, σ) which will approximate x̂(y).
While we fix a noise level σ here, we describe the general construction for an arbitrary noise level σ,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

which could be useful for training E(3) and SE(3) equivariant diffusion and flow-matching models
as well.

We adapt the analysis and choices of Karras et al. (2022; 2024) for the point-cloud setting:

x̂θ(y, σ) = cskip(σ)y + cout(σ)Fθ(cin(σ)y, cnoise(σ)) (8)

where Fθ is the SE(3)-equivariant graph neural network (GNN) model, parameterized by θ.
cskip(σ), cout(σ), cin(σ), cnoise(σ) are fixed functions from R+ to R, chosen to normalize the effec-
tive inputs and outputs to Fθ. Further, these coefficients encourage re-use of the input y at low noise
levels, but the opposite at high noise levels. Next, we describe the exact form of these functions.

3.4 NORMALIZATION

As the noise level σ is increased, y = x + ση where η ∼ N (0, ID×N) expands in space. Let ỹ
represent the ‘normalized’ input y, as seen by the network Fθ:

ỹ = cin(σ)y (9)

To control the expansion of y, cin(σ) is chosen such that the following property holds:

E(i,j)∼Uniform(E)
η∼N (0,ID×N)

[∥ỹi − ỹj∥2] = 1 at all noise levels σ. (10)

Note that this is distinct from the normalization chosen by (Karras et al., 2022; 2024), which nor-
malizes ∥y∥ directly. The intuition behind this normalization is that the GNN model Fθ does not
operate on atom positions y directly, but instead uses the relative vectors yi−yj to account for trans-
lation invariance, and controlling this object directly ensures that the topology of the graph does not
change with varying noise level σ.

To achieve this, we compute:

cin(σ) =
1√

C + 2Dσ2
(11)

Where D is the number of particles and C = E(i,j)∼Uniform(E) ∥xi − xj∥
2 can be easily estimated

from the true data distribution. The full derivation can be found in Appendix C.

As the input is now appropriately normalized, the target output of the network Fθ should also be
appropriately normalized. A full derivation, found in Appendix D, leads to:

cskip(σ) =
C

C + 2Dσ2
(12)

cout(σ) =

√
C · 2Dσ2

C + 2Dσ2
(13)

cnoise(σ) = log10 σ (14)

The noise normalization is a scaled version of the recommendation of 1
4 lnσ for images in Karras

et al. (2022; 2024).

3.5 ROTATIONAL ALIGNMENT

As described in Algorithm 2, we use the Kabsch-Umeyama algorithm (Kabsch, 1976; Umeyama,
1991) to rotationally align y to x before calling the denoiser.

Note that both y and x are mean-centered to respect translational equivariance:
N∑
i=1

yi = 0⃗ ∈ R3 (15)

N∑
i=1

xi = 0⃗ ∈ R3 (16)

so there is no net translation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Rotational Alignment with the Kabsch-Umeyama Algorithm
Require: Noisy Sample y ∈ RN×3, True Sample x ∈ RN×3.
H ← xT y ▷ H ∈ R3×3

U, S, V T ← SVD(H) ▷ U, V ∈ R3×3

R∗ ← Udiag[1, 1,det(U) det(V)]V T

return y(R∗)T

4 DATASET

We demonstrate our method on two datasets: (i) the uncapped amino acids used in Timewarp (Klein
et al., 2024a), specifically the 2AA-huge dataset consisting of 380 diamines split into 200 train, 80
validation and 100 test diamines, and (ii) capped amino acids simulated in water following the same
splits used in (i). The molecules in (i) have a single peptide bond between amino acids of varying
identities. This results in a distribution well represented by two dihedral angles, the ϕ angle of the
second residue and the ψ angle of the first residue. The termini are zwitterionic amino and carboxyl
groups. These are not ideal analogues of amino acids in proteins due to local charge interactions as
well as lack of steric effects. However, for consistency in benchmarking, we run all experiments on
these to compare against Transferable Boltzman Generators (Klein & Noé, 2024).

Figure 5: A side-by-side comparison of uncapped (left) compared to capped (right) ALA-CYS.
The acetyl (ACE) and N-methyl (NME) capping groups provide steric hindrance and prevent local
charge interactions on the N-terminal and C-terminal ends respectively.

As is common in molecular dynamics simulations of very small peptides, we also generate a similar
dataset with ACE (acetyl) and NME (N-methyl amide) caps. These are essentially peptide bonds
with the first and last residue, bonded to methyl groups. These peptide bonds remove the need for the
zwitterion, while the methyl group provides some steric interactions. This results in a distribution
which requires at least 4 dihedrals to be well-represented: the ϕ and ψ angles of both residues.
We find this is a significantly richer set of distributions. We ensure that our unbiased molecular
dynamics runs are converged or representative by comparing against biased molecular dynamics
runs using Non-equilibrium Umbrella Sampling (NEUS)Dinner et al. (2018); Vani et al. (2022), a
trajectory stratification based enhanced sampling algorithm.

5 RESULTS

We find that JAMUN samples conformational ensembles of short peptides faster than conventional
MD while remaining reasonably faithful to thermodynamics. It does this despite being quite small by
ML model standards (8.2M parameters). We note it requires no a priori knowledge or hand-crafted
featurization for transferable exploration–for instance, it generates diversity in ϕ and ψ dihedrals
without explicit inputs regarding these variables. We also show a remarkable speedup relative to
transferable Boltzmann generators. However, unlike the transferable Boltzmann generator, we only
have access to the score of the distribution, and thus cannot precisely reweight it, making this a
Boltzmann emulator.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: -log probabilities of outputs from four example diamines from the test set. These, along
with Figure 9, are chosen to represent the diversity of states as well as subtle perturbations from
single-point amino acid changes in the dataset. Each pair of Ramachandran plots show the distribu-
tion for a single diamine, with each row corresponding to diamine identity. The first column shows
the fully converged molecular dynamics distribution. The second shows sixty four thousand samples
from JAMUN. The third column shows a distribution obtained from an MD trajectory run for the
exact same amount of time as the JAMUN sampler.

In Figure 6 and Figure 9 we show, for eight test peptides in the challenging capped dataset, distri-
butions generated using both molecular dynamics and JAMUN. As the molecular dynamics serves
as our ground truth, we show the full dataset. However, for demonstrative purposes, we also show
the distribution when it has been run for the same amount of GPU time as JAMUN requires to sam-
ple 640000 points. This number was chosen to reflect reasonable sampling for validation diamines.
This can be variable, for the specific 8 diamines we choose here, the sampling time with JAMUN
is: 1) ASP-TRP: 38 minutes, 2) GLU-THR: 27 minutes, 3) PHE-ALA: 28 minutes, 4) ASN-GLU:
29 minutes, 5) CYS-TRP: 34 minutes, 6) GLY-ASN: 22 minutes, 7) HIS-PRO: 30 minutes, and 8)
ILE-GLY: 22 minutes. In terms of MD simulation time, this is between 100ps and 300ps.

These results clearly show that JAMUN is sampling the conformational ensembles of unseen pep-
tides with high accuracy. The vast majority of low-energy basins in the Ramachandran plot are
captured by the model. Moreover, JAMUN is sampling these states much faster than conventional
MD. Comparing the ”JAMUN” and ”Benchmark Molecular Dynamics” columns of Figure 6 and
Figure 9 shows that MD lags dramatically behind. At the point where JAMUN has sampled the
entire distribution, MD is often still stuck sampling a single basin.

While the capped dataset represents higher diversity and fidelity to true peptide thermodynamics, we
also wish to compare against the transferable Boltzmann generator, as it has already shown success
for short peptides. To this end, we also train our model on the timewarp dataset, although please note
that our hyperparameters are optimized for the capped diamines. Nevertheless, we show in Figure 7
a significant improvement in sampling. For the two machine learning methods, we simulate using
an equal amount of compute-time, including post-processing steps such as chirality checks. It is
clear, by visual inspection, that JAMUN samples all states, where transferable Boltzmann Generators
misses a basin in the given time.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: -log probabilities of outputs from two example diamines from the uncapped test set.
These are chosen to show two examples of different distributions from this dataset which has limited
conformational diversity. Each Ramachandran plot shows the distribution for a single diamine, with
each row corresponding to diamine identity. The first column shows the full distribution from the
timewarp dataset. The second shows sixty four thousand samples from JAMUN. The third column
shows a distribution obtained from a transferable Boltzman generator run for the exact same amount
of time as the JAMUN sampler. The fourth shows results from the transferable Boltzman generator
run for five thousand samples (run for roughly 10 times as long as JAMUN).

Figure 8: Shannon Jensen divergences plotted along time. (left) A comparison between JAMUN and
molecular Dynamics where the x-axis is a trajectory progress coordinate such that all JAMUN runs
are for 640,000 samples while molecular Dynamics runs are truncated to be the same GPU time.
(right) Shannon-Jensen divergence of a long fully converged molecular dynamics trajectory.

As a convergence metric, we look at Shannon-Jensen divergence in Figure 8. This allows us to
compare the rate at which JAMUN and MD converge to the ”correct” distribution. We calculate the
Shannon-Jensen divergence for molecular dynamics and JAMUN runs of equal GPU time (using the
data generated for Figure 6 and Figure 9). We also analyze fully converged molecular dynamics runs
for reference. It appears that while JAMUN converges quicker than MD, and samples relevant states
faster, it does not ever converge to the same accuracy. It is likely that part of the discrepency is from
JAMUN’s oversampling of rare and transition regions. In particular, we see from the Ramachandran
plots that occasionally the standard transition paths are not the most frequent and instead spurious
transition paths are sampled along. JAMUN is not trained on kinetics and cannot faithfully re-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

produce them. This is a well-understood phenomena in stochastic processes in a rough to smooth
surface.Zwanzig (1988) It is also evident from the smooth nature of JAMUN’s Shannon-Jensen time
series, as compared to the step-wise behavior of MD that JAMUN has a more natural mixing of
states without kinetic traps. However, much of the spurious sampling can be avoided with smaller
noise values at the cost of sampling efficiency. As such, this Langevin dynamics on a noised surface
provides an interesting avenue of research from a stochastic processes point of view.

From a biological and drug-design standpoint, we are relatively uninterested in kinetics or even the
exact distribution. However, we are extremely interested in the sampling of diverse metastable states
with some sense of their relative stabilities. To this end, JAMUN does an impressive job of sampling
metastable states particular to specific diamines with thermodynamic fidelity. We demonstrate this
with the use of Markov State Models trained on converged MD data in Appendix B. The figures
demonstrate that across the test set of capped peptides JAMUN (i) captures the precise shape of states
extremely well, and (ii) samples nuanced states that are not obvious by eye in a Ramachandran plot
with high accuracy.

6 CONCLUSION

We present JAMUN, a Walk-Jump Sampling model for generating ensembles of molecular con-
formations. The model is trained on molecular dynamics data from two amino acid peptides and
is transferable to peptides outside of its training set. It produces accurate conformational ensem-
bles faster than MD or previous ML approaches. This represents an important first step toward the
ultimate goal of a transferable generative model for protein conformational ensembles.

The model has some limitations that motivate future work. While it is highly transferable in the
space of two amino acid peptides, we have not tested the model’s ability to transfer to larger proteins.
We leave exploring this important direction to future work. Additionally, while the current SE(3)-
equivariant denoiser architecture works well, further development of the denoising network could
speed up sampling. Alternative ”jump” methods, such as Walk-Diffuse, could also serve to sharpen
generation. Lastly, a promising direction that has not yet been explored is the application of classical
enhanced sampling methods, such as metadynamics, for traversing the noisy space.

JAMUN is the first model to use Walk-Jump Sampling on point clouds, and the first to apply Walk-
Jump Sampling to molecular dynamics data. This paradigm gives the model a clear physics inter-
pretation. By adding noise, JAMUN is able to simulate on a smoother manifold than ordinary MD.
Sampling on this smooth surface enables the model to generate accurate molecular conformational
ensembles faster than both MD and previous ML models.

REFERENCES

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Chris-
tian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo,
Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation.
In 29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366.
URL https://pytorch.org/assets/pytorch2-2.pdf.

Akashnathan Aranganathan, Xinyu Gu, Dedi Wang, Bodhi Vani, and Pratyush Tiwary. Modeling
Boltzmann weighted structural ensembles of proteins using AI based methods. 2024.

Marloes Arts, Victor Garcia Satorras, Chin-Wei Huang, Daniel Zugner, Marco Federici, Cecilia
Clementi, Frank Noé, Robert Pinsler, and Rianne van den Berg. Two for one: Diffusion mod-
els and force fields for coarse-grained molecular dynamics. Journal of Chemical Theory and
Computation, 19(18):6151–6159, 2023.

10

https://pytorch.org/assets/pytorch2-2.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

David W Borhani and David E Shaw. The future of molecular dynamics simulations in drug discov-
ery. Journal of computer-aided molecular design, 26:15–26, 2012.

Gregory R Bowman. AlphaFold and Protein Folding: Not Dead Yet! The Frontier Is Conformational
Ensembles. Annual Review of Biomedical Data Science, 7, 2024.

Giorgio Colombo. Computing allostery: from the understanding of biomolecular regulation and the
discovery of cryptic sites to molecular design. Current Opinion in Structural Biology, 83:102702,
2023.

Aaron R Dinner, Jonathan C Mattingly, Jeremy O B Tempkin, Brian Van Koten, and Jonathan Weare.
Trajectory stratification of stochastic dynamics. SIAM Rev Soc Ind Appl Math, 60(4):909–938,
November 2018.

Alexandru Dumitrescu, Dani Korpela, Markus Heinonen, Yogesh Verma, Valerii Iakovlev, Vikas
Garg, and Harri Lähdesmäki. Field-based Molecule Generation, 2024. URL https://arxiv.
org/abs/2402.15864.

Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago Miret,
Fragkiskos D Malliaros, Taco Cohen, Pietro Lio, Yoshua Bengio, and Michael Bron-
stein. A Hitchhiker’s Guide to Geometric GNNs for 3D Atomic Systems. arXiv preprint
arXiv:2312.07511, 2023.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019. URL https:
//github.com/Lightning-AI/lightning.

Nathan C Frey, Daniel Berenberg, Karina Zadorozhny, Joseph Kleinhenz, Julien Lafrance-Vanasse,
Isidro Hotzel, Yan Wu, Stephen Ra, Richard Bonneau, Kyunghyun Cho, et al. Protein discovery
with discrete walk-jump sampling. arXiv preprint arXiv:2306.12360, 2023.

Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. arXiv preprint arXiv:2207.09453,
2022.

Nancy R Gough and Charalampos G Kalodimos. Exploring the conformational landscape of protein
kinases. Current Opinion in Structural Biology, 88:102890, 2024.

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant Diffu-
sion for Molecule Generation in 3D, 2022. URL https://arxiv.org/abs/2203.17003.

Tim Hsu, Babak Sadigh, Vasily Bulatov, and Fei Zhou. Score dynamics: Scaling molecular dynam-
ics with picoseconds time steps via conditional diffusion model. Journal of Chemical Theory and
Computation, 20(6):2335–2348, 2024.

Bowen Jing, Bonnie Berger, and Tommi Jaakkola. AlphaFold meets flow matching for generating
protein ensembles. arXiv preprint arXiv:2402.04845, 2024.

W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystallographica
Section A, 32(5):922–923, Sep 1976. doi: 10.1107/S0567739476001873. URL https://doi.
org/10.1107/S0567739476001873.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of
Diffusion-Based Generative Models. In Proc. NeurIPS, 2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and Improving the Training Dynamics of Diffusion Models. In Proc. CVPR, 2024.

Stefanie Kieninger and Bettina G. Keller. GROMACS Stochastic Dynamics and BAOAB Are Equiv-
alent Configurational Sampling Algorithms. Journal of Chemical Theory and Computation, 18
(10):5792–5798, 2022.

Joseph C Kim, David Bloore, Karan Kapoor, Jun Feng, Ming-Hong Hao, and Mengdi Wang.
Scalable normalizing flows enable boltzmann generators for macromolecules. arXiv preprint
arXiv:2401.04246, 2024.

11

https://arxiv.org/abs/2402.15864
https://arxiv.org/abs/2402.15864
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://arxiv.org/abs/2203.17003
https://doi.org/10.1107/S0567739476001873
https://doi.org/10.1107/S0567739476001873

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Leon Klein and Frank Noé. Transferable Boltzmann Generators. arXiv preprint arXiv:2406.14426,
2024.

Leon Klein, Andrew Foong, Tor Fjelde, Bruno Mlodozeniec, Marc Brockschmidt, Sebastian
Nowozin, Frank Noé, and Ryota Tomioka. Timewarp: Transferable acceleration of molecular
dynamics by learning time-coarsened dynamics. Advances in Neural Information Processing
Systems, 36, 2024a.

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36, 2024b.

Ben Leimkuhler and Charles Matthews. Molecular Dynamics: With Deterministic and Stochastic
Numerical Methods. Number 39 in Interdisciplinary Applied Mathematics. Springer International
Publishing : Imprint: Springer, Cham, 1st ed. 2015 edition, 2015. ISBN 978-3-319-16375-8.

Benedict Leimkuhler and Charles Matthews. Rational Construction of Stochastic Numerical Meth-
ods for Molecular Sampling. Applied Mathematics Research eXpress, 2013(1):34–56, June 2012.
ISSN 1687-1200. doi: 10.1093/amrx/abs010. URL https://doi.org/10.1093/amrx/
abs010. eprint: https://academic.oup.com/amrx/article-pdf/2013/1/34/397230/abs010.pdf.

Mitchell D Miller and George N Phillips. Moving beyond static snapshots: Protein dynamics and
the Protein Data Bank. Journal of Biological Chemistry, 296, 2021.

Koichi Miyasawa. An Empirial Bayes Estimator of the Mean of a Normal Population. Bulletin de
l’Institut international de statistique., 38(4):181–188, 1960.

Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium
states of many-body systems with deep learning. Science, 365(6457):eaaw1147, 2019.

Vijay S Pande, Kyle Beauchamp, and Gregory R Bowman. Everything you wanted to know about
markov state models but were afraid to ask. Methods, 52(1):99–105, June 2010.

Pedro O Pinheiro, Arian Jamasb, Omar Mahmood, Vishnu Sresht, and Saeed Saremi. Structure-
based Drug Design by Denoising Voxel Grids. arXiv preprint arXiv:2405.03961, 2024a.

Pedro O Pinheiro, Joshua Rackers, Joseph Kleinhenz, Michael Maser, Omar Mahmood, Andrew
Watkins, Stephen Ra, Vishnu Sresht, and Saeed Saremi. 3D molecule generation by denoising
voxel grids. Advances in Neural Information Processing Systems, 36, 2024b.

Herbert Robbins. An Empirical Bayes Approach to Statistics. In Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of
Statistics, volume 3.1, 1956.

Matthias Sachs, Benedict Leimkuhler, and Vincent Danos. Langevin dynamics with variable coeffi-
cients and nonconservative forces: from stationary states to numerical methods. Entropy, 19(12):
647, 2017.

Saeed Saremi and Aapo Hyvärinen. Neural empirical bayes. Journal of Machine Learning Research,
20(181):1–23, 2019.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) Equivariant Graph Neural Net-
works, 2022. URL https://arxiv.org/abs/2102.09844.

Martin K. Scherer, Benjamin Trendelkamp-Schroer, Fabian Paul, Guillermo Pérez-Hernández,
Moritz Hoffmann, Nuria Plattner, Christoph Wehmeyer, Jan-Hendrik Prinz, and Frank Noé.
Pyemma 2: A software package for estimation, validation, and analysis of markov models.
Journal of Chemical Theory and Computation, 11(11):5525–5542, 2015. doi: 10.1021/acs.jctc.
5b00743. URL https://doi.org/10.1021/acs.jctc.5b00743. PMID: 26574340.

Mathias Schreiner, Ole Winther, and Simon Olsson. Implicit transfer operator learning: multiple
time-resolution surrogates for molecular dynamics. arXiv preprint arXiv:2305.18046, 2023.

12

https://arxiv.org/abs/1412.6980
https://doi.org/10.1093/amrx/abs010
https://doi.org/10.1093/amrx/abs010
https://arxiv.org/abs/2102.09844
https://doi.org/10.1021/acs.jctc.5b00743

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

S. Umeyama. Least-squares estimation of transformation parameters between two point patterns.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(4):376–380, 1991. doi:
10.1109/34.88573.

Bodhi P Vani, Jonathan Weare, and Aaron R Dinner. Computing transition path theory quantities
with trajectory stratification. J Chem Phys, 157(3):034106, July 2022.

V. Vapnik. Principles of risk minimization for learning theory. In J. Moody, S. Hanson, and
R.P. Lippmann (eds.), Advances in Neural Information Processing Systems, volume 4. Morgan-
Kaufmann, 1991. URL https://proceedings.neurips.cc/paper_files/paper/
1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf.

Andreas Vitalis and Rohit V Pappu. Methods for monte carlo simulations of biomacromolecules.
Annual reports in computational chemistry, 5:49–76, 2009.

Li-E Zheng, Shrishti Barethiya, Erik Nordquist, and Jianhan Chen. Machine learning generation of
dynamic protein conformational ensembles. Molecules, 28(10):4047, 2023.

Shuxin Zheng, Jiyan He, Chang Liu, Yu Shi, Ziheng Lu, Weitao Feng, Fusong Ju, Jiaxi Wang,
Jianwei Zhu, Yaosen Min, et al. Predicting equilibrium distributions for molecular systems with
deep learning. Nature Machine Intelligence, pp. 1–10, 2024.

Robert Zwanzig. Diffusion in a rough potential. Proceedings of the National Academy of Sciences,
85(7):2029–2030, 1988.

A CODE AVAILABILITY

We will be releasing all the code and data necessary to reproduce this paper.

B DISTRIBUTION ANALYSES

We demonstrate the quantitative gain in sampling through metrics like the Shannon-Jensen diver-
gence and the clear qualitative gain in sampling diversity. Here we show this visually by employ-
ing Markov state models (MSMs) Pande et al. (2010) to characterize metastability. MSMs are the
most commonly used clustering algorithm for times series in molecular dynamics. They function
by first projecting on a low-dimensional manifold, most commonly the Time-lagged Independent
Component Analysis (TICA), finely clustering the samples and then solving for the eigenvalues of a
transition probability matrix. Here we use the PYEMMA2 Scherer et al. (2015) implementation. We
use a lag time of ten steps, five tics, 200 k-means clusters to obtain 10 macrostates for the unbiased
well-sampled molecular dynamics trajectories. We perform an implied timescales analysis to ensure
that these states are a reasonable representation. We can then use this representation to better under-
stand the features of our space and qualitatively evaluate JAMUN. In figures 10-16, we plot PMFs
(potential of mean force) in grayscale for JAMUN’s samples with the Markov state model histogram
superimposed in color. Each pair of Ramachandran plots correspond to a single metastable state.

In particular, note that oblong metastable basins corresponding to the−π region in ϕ, small metasta-
bility in the (−π, π) area and even the specific shapes of commonly occuring basins can be signa-
tures particular to specific diamine pairs and are well-emulated by JAMUN.

C INPUT NORMALIZATION

Fix an (i, j) ∈ E from Equation 10. As ηi, ηj
iid∼ N (0, ID), we have ηi − ηj ∼ N (0, 2ID)

from the closure of the multivariate Gaussian under linear combinations. Thus, for each component

13

https://proceedings.neurips.cc/paper_files/paper/1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/ff4d5fbbafdf976cfdc032e3bde78de5-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 9: -log probabilities of outputs from four example diamines from the test set. These, along
with 6, are chosen to represent the diversity of states as well as subtle perturbations from single-
point amino acid changes in the dataset. Each pair of Ramachandran plots show the distribution for
a single diamine, with each row corresponding to diamine identity. The first column shows the fully
converged molecular dynamics distribution. The second shows sixty four thousand samples from
JAMUN. The third column shows a distribution obtained from an MD trajectory run for the exact
same amount of time as the JAMUN sampler.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 10: Markov states superimposed on sampled PMFs for CYS-TRP. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 11: Markov states superimposed on sampled PMFs for ASP-THR. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 12: Markov states superimposed on sampled PMFs for GLU-THR. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 13: Markov states superimposed on sampled PMFs for PHE-ALA. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 14: Markov states superimposed on sampled PMFs for GLY-ASN. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 15: Markov states superimposed on sampled PMFs for HIS-PRO. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 16: Markov states superimposed on sampled PMFs for ILE-GLY. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 17: Markov states superimposed on sampled PMFs for ASN-GLU. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

d ∈ {1, . . . D}, we have: (ηi − ηj)(d) ∼ N (0, 2) and hence:

Eη∼N (0,ID×N)[(xi − xj)T (ηi − ηj)] =
D∑

d=1

(xi − xj)(d)E[(ηi − ηj)(d)] = 0 (17)

Eη∼N (0,ID×N)[∥ηi − ηj∥
2
] =

D∑
d=1

E[(ηi − ηj)2(d)] = 2D (18)

We can now compute:

Ez[∥ỹi − ỹj∥2]
= cin(σ)

2Ez[∥yi − yj∥2]
= cin(σ)

2Ez[∥xi − xj + σ(ηi − ηj)∥2]

= cin(σ)
2
(
∥xi − xj∥2 + 2σEz[(xi − xj)T (ηi − ηj)] + σ2Ez[∥ηi − ηj∥2]

)
= cin(σ)

2
(
∥xi − xj∥2 + σ2Ez[∥ηi − ηj∥2]

)
= cin(σ)

2
(
∥xi − xj∥2 + 2Dσ2

)
. (19)

Now, taking the expectation over all (i, j) ∈ E uniformly:

E(i,j)∼Uniform(E)
η∼N (0,ID×N)

[∥ỹi − ỹj∥2] = E(i,j)∼Uniform(E)[Ez[∥ỹi − ỹj∥2]]

= cin(σ)
2
(
E(i,j)∼Uniform(E) ∥xi − xj∥

2
+ 2Dσ2

)
(20)

Let C = E(i,j)∼Uniform(E) ∥xi − xj∥
2, which we estimate from the true data distribution. Then,

from Equation 20 and our intended normalization given by Equation 10:

cin(σ) =
1√

C + 2Dσ2
(21)

D OUTPUT NORMALIZATION

The derivation here is identical that of (Karras et al., 2022; 2024), but with our normalization. The
denoising loss at a single noise level is:

L(x̂θ, σ) = Ex∼px
Eη∼N (0,I)[∥x̂θ(x+ ση, σ)− x∥2] (22)

which gets weighted across a distribution pσ of noise levels by (unnormalized) weights λ(σ):

L(x̂θ) = Eσ∼pσ
[λ(σ)L(x̂θ, σ)]

= Eσ∼pσ
Ex∼px

Eη∼N (0,I)[λ(σ) ∥x̂θ(x+ ση, σ)− x∥2]

= Eσ∼pσ
Ex∼px

Ey∼N (x,σ2I)[λ(σ) ∥x̂θ(y, σ)− x∥
2
]

= Eσ∼pσEx∼pxEy∼N (x,σ2I)[λ(σ) ∥cskip(σ)y + cout(σ)Fθ(cin(σ)y, cnoise(σ))− x∥2]

= Eσ∼pσEx∼pxEy∼N (x,σ2I)

[
λ(σ)cout(σ)

2

∥∥∥∥Fθ(cin(σ)y, cnoise(σ))−
x− cskip(σ)y

cout(σ)

∥∥∥∥2
]

= Eσ∼pσ
Ex∼px

Ey∼N (x,σ2I)

[
λ(σ)cout(σ)

2 ∥Fθ(cin(σ)y, cnoise(σ))− F∥2
]

(23)

where:

F =
x− cskip(σ)y

cout(σ)
(24)

is the effective training target for the network Fθ. We want to normalize F similarly as the network
input:

E(i,j)∼Uniform(E)
η∼N (0,ID×N)

[∥Fi − Fj∥2] = 1 at all noise levels σ. (25)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Again, for a fixed (i, j) ∈ E, we have:

Ez ∥Fi − Fj∥2 =
Ez ∥(xi − xj)− cskip(σ)(yi − yj)∥2

cout(σ)2

=
Ez ∥(1− cskip(σ))(xi − xj)− cskip(σ)σ · (ηi − ηj)∥2

cout(σ)2

=
(1− cskip(σ))

2 ∥xi − xj∥2 + cskip(σ)
2 · 2Dσ2

cout(σ)2
(26)

and hence:

E(i,j)∼Uniform(E)
η∼N (0,ID×N)

[∥Fi − Fj∥2] = 1

=⇒
(1− cskip(σ))

2 · C + cskip(σ)
2 · 2Dσ2

cout(σ)2
= 1

=⇒ cout(σ)
2 = (1− cskip(σ))

2 · C + cskip(σ)
2 · 2Dσ2 (27)

where C was defined above. Now, to minimize cout(σ) to maximize reuse and avoid amplifying
network errors, as recommended by Karras et al. (2022; 2024):

d

dcskip(σ)
cout(σ)

2 = 0

=⇒ −2(1− cskip(σ)) · C + 2cskip(σ) · 2Dσ2 = 0

=⇒ cskip(σ) =
C

C + 2Dσ2
(28)

Substituting into Equation 27, we get after some routine simplification:

cout(σ) =

√
C · 2Dσ2

C + 2Dσ2
(29)

The noise normalization is chosen as cnoise(σ) = log10 σ, a scaled version of the recommendation
of 1

4 lnσ for images in Karras et al. (2022; 2024).

From Equation 23, we set λ(σ) = 1
cout(σ)2

.

E THE DENOISER MINIMIZES THE EXPECTED LOSS

Here, we prove Equation 5, rewritten here for clarity:

x̂(·) ≡ E[X | Y = ·] = argmin
a:RN×3→RN×3

EX∼pX ,η∼N (0,IN×3)
Y=X+ση

[∥a(Y)−X∥2] (30)

First, we can decompose the loss over the domain RN×3 of Y :

EX∼pX ,η∼N (0,IN×3)
Y=X+ση

[∥a(Y)−X∥2] = EX∼pX ,Y∼pY
[∥a(Y)−X∥2] (31)

=

∫
RN×3

∫
RN×3

∥a(y)− x∥2 pX,Y (x, y)dxdy (32)

=

∫
RN×3

∫
RN×3

∥a(y)− x∥2 pY |X(y | x)pX(x)dx︸ ︷︷ ︸
l(a,y)

dy (33)

=

∫
RN×3

l(a, y)dy (34)

and hence, any minimizer a∗ must minimize the local denoising loss l(a∗, y) at each point y ∈
RN×3. For a fixed y ∈ RN×3, the loss l(a, y) is convex, and hence, the global minimizer can be

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

found by finding the critical points of l(a, y) as a function of a(y):

∇a(y)l(a, y) = 0 (35)

=⇒ ∇a(y)

∫
RN×3

∥a(y)− x∥2 pY |X(y | x)pX(x)dx = 0 (36)

=⇒
∫
RN×3

2(a∗(y)− x)pY |X(y | x)pX(x)dx = 0 (37)

Rearranging:

a∗(y) =

∫
RN×3 x pY |X(y | x)pX(x)dx∫
RN×3 pY |X(y | x)pX(x)dx

(38)

=

∫
RN×3 x pY |X(y | x)pX(x)dx

pY (y)
(39)

=

∫
RN×3

x
pY |X(y | x)pX(x)

pY (y)
dx (40)

=

∫
RN×3

x pX|Y (x | y)dx (41)

= E[X | Y = y] (42)
= x̂(y) (43)

by Bayes’ rule. Hence, the denoiser as defined by Equation 4 is indeed the minimzer of the denoising
loss:

x̂(·) ≡ E[X | Y = ·] = argmin
a:RN×3→RN×3

EX∼pX ,η∼N (0,IN×3)
Y=X+ση

[∥a(Y)−X∥2] (44)

as claimed.

F RELATING THE SCORE AND THE DENOISER

Here, we rederive Equation 6, relating the score function∇ log pY and the denoiser x̂, as first shown
by Robbins (1956); Miyasawa (1960).

Let X ∼ pX defined over RN×3 and η ∼ N (0, IN×3). Let Y = X + ση, which means:

pY |X(y | x) = N (y;x, IN×3) =
1

(2πσ2)
3N
2

exp

(
−∥y − x∥

2

2σ2

)
(45)

Then:

E[X | Y = y] = y + σ2∇y log pY (y) (46)

To prove this:

∇ypY |X(y | x) = −y − x
σ2

pY |X(y | x) (47)

=⇒ (x− y)pY |X(y | x) = σ2∇ypY |X(y | x) (48)

=⇒
∫
RN×3

(x− y)pY |X(y | x) pX(x)dx =

∫
RN×3

σ2∇ypY |X(y | x) pX(x)dx (49)

By Bayes’ rule:

pY |X(y | x)pX(x) = pX,Y (x, y) = pX|Y (x|y)pY (y) (50)

and, by definition of the marginals:∫
RN×3

pX,Y (x, y)dx = pY (y) (51)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

For the left-hand side, we have:∫
RN×3

(x− y)pY |X(y | x)pX(x)dx =

∫
RN×3

(x− y)pX,Y (x, y)dx (52)

=

∫
RN×3

xpX,Y (x, y)dx−
∫
RN×3

ypX,Y (x, y)dx (53)

= pY (y)

(∫
RN×3

xpX|Y (x | y)dx− y
∫
RN×3

pX|Y (x | y)dx
)

(54)
= pY (y) (E[X | Y = y]− y) (55)

For the right-hand side, we have:

σ2

∫
RN×3

∇ypY |X(y | x)pX(x)dx = σ2∇y

∫
RN×3

pY |X(y | x)pX(x)dx (56)

= σ2∇y

∫
RN×3

pX,Y (x, y)dx (57)

= σ2∇ypY (y) (58)

Thus,

pY (y) (E[X | Y = y]− y) = σ2∇ypY (y) (59)

=⇒ E[X | Y = y] = y + σ2∇ypY (y)

pY (y)
(60)

= y + σ2∇y log pY (y) (61)

as claimed.

G NUMERICAL SOLVERS FOR LANGEVIN DYNAMICS

As mentioned in Section 3.1, solving the Stochastic Differential Equation corresponding to Langevin
dynamics is often performed numerically. In particular, BAOAB (Leimkuhler & Matthews, 2012;
2015; Sachs et al., 2017) refers to a ‘splitting method’ that solves the Langevin dynamics SDE by
splitting it into three different components labelled by A, B and O below:

dy = vydt︸︷︷︸
A

(62)

dvy =M−1∇y log pY (y)dt︸ ︷︷ ︸
B

− γvydt+
√
2γM− 1

2 dBt︸ ︷︷ ︸
O

(63)

where both y, vy ∈ Rd. This leads to the following update operators:

A∆t

[
y
vy

]
=

[
y + vy∆t

vy

]
(64)

B∆t

[
y
vy

]
=

[
y

vy +M−1∇y log pY (y)∆t

]
(65)

O∆t

[
y
vy

]
=

[
y

e−γ∆tvy +M− 1
2

√
1− e−2γ∆tB

]
(66)

where B ∼ N (0, Id) is resampled every iteration. As highlighted by Kieninger & Keller (2022), the
A and B updates are obtained by simply discretizing the updates highlighted in Equation 62 by the
Euler method. The O update refers to a explicit solution of the Ornstein-Uhlenbeck process, which
we rederive for completeness in Appendix H.

Finally, the iterates of the BAOAB algorithm are given by a composition of these update steps
matching the name of the method:[

y(t+1)

v
(t+1)
y

]
= B∆t

2
A∆t

2
O∆tA∆t

2
B∆t

2

[
y(t)

v
(t)
y

]
(67)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

H THE ORNSTEIN-UHLENBECK PROCESS

For completeness, we discuss the distributional solution of the Ornstein-Uhlenbeck process, taken
directly from the excellent Leimkuhler & Matthews (2015). The Ornstein-Uhlenbeck Process cor-
responds to the following Stochastic Differential Equation (SDE):

dvy = −γvydt+
√

2γM− 1
2 dBt (68)

Multiplying both sides by the integrating factor eγt:

eγtdvy = −γeγt(vydt+ eγt
√
2γM− 1

2 dBt (69)

=⇒ eγt(dvy + γvydt) = eγt
√
2γM− 1

2 dBt (70)

and identifying:

eγt(dvy + γvydt) = d(eγtvy) (71)

We get after integrating from t1 to t2, two adjacent time steps of our integration grid:

d(eγtvy) = eγt
√
2γM− 1

2 dBt (72)

=⇒
∫ t2

t1

d(eγtvy) =

∫ t2

t1

eγt
√
2γM− 1

2 dBt (73)

=⇒ eγt2vy(t2)− eγt1vy(t1) =
√
2γM− 1

2

∫ t2

t1

eγtdBt (74)

Now, for a Wiener process Bt, if g(t) is a deterministic function,
∫ t2
t1
g(t)dBt is distributed as

N
(
0,
∫ t2
t1
g(t)2dt

)
by Itô’s integral. Thus, applying this result to g(t) = eγt, we get:

eγt2vy(t2)− eγt1vy(t1) =
√
2γM− 1

2N
(
0,
e2γt2 − e2γt1

2γ

)
(75)

=⇒ vy(t2) = e−γ(t2−t1)vy(t1) +
√

2γM− 1
2 e−γt2N

(
0,
e2γt2 − e2γt1

2γ

)
(76)

= e−γ(t2−t1)vy(t1) +
√

2γM− 1
2

√
1− e2γ(t1−t2)

2γ
N (0, 1) (77)

= e−γ(t2−t1)vy(t1) +M− 1
2

√
1− e2γ(t1−t2)N (0, 1) (78)

The analysis above is performed in one dimension, but readily applies to the N × 3 dimensional
case as the Wiener processes are all independent of each other:

vy(t2) = e−γ(t2−t1)vy(t1) +M− 1
2

√
1− e2γ(t1−t2)N (0, IN×3) (79)

Setting ∆t = t2 − t1, we get the form of the O operator (Equation 64) of the BAOAB integrator in
Appendix G.

I HYPERPARAMETERS

All the models trained in this work are SE(3)-equivariant networks

We use a uniform distribution of noise with a range of .01 to .1, There are four hidden layers. Graphs
are constructed using bonds as well as neighbors within radius of five. We use ADAM with learning
rate .002. For the capped diamines we use 320,000 snapshots for 200 training diamines, whereas for
the uncapped we use the timewarp-Large dataset. Models are trained with six parallel processing
GPUs and a batch size of forty-two. The model has 8.2 million parameters. For the hidden layers of
the network we use 120 scalar and 32 pseudovector features per node and spherical harmonics up to
l = 1 The output is 1 vector per node.

For sampling capped diamines, we use σ = .04, whereas for uncapped we use σ = .06. We always
use friction of γ = 0.1 and a Langevin dynamics step size of δ = σ.

27

	Introduction
	Related Work
	Methods
	Walk-Jump Sampling
	Learning to Denoise
	Parametrization of the Denoiser Network
	Normalization
	Rotational Alignment

	Dataset
	Results
	Conclusion
	Code Availability
	Distribution analyses
	Input Normalization
	Output Normalization
	The Denoiser Minimizes the Expected Loss
	Relating the Score and the Denoiser
	Numerical Solvers for Langevin Dynamics
	The Ornstein-Uhlenbeck Process
	Hyperparameters

