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ABSTRACT

Conformational ensembles of protein structures are immensely important to un-
derstanding protein function. Current techniques for sampling ensembles are com-
putationally inefficient, or do not transfer to systems outside their training data.
We present walk-Jump Accelerated Molecular ensembles with Universal Noise
(JAMUN), a step towards the goal of efficiently sampling the Boltzmann distri-
bution of arbitrary proteins. By extending Walk-Jump Sampling to point clouds,
JAMUN enables ensemble generation at orders of magnitude faster rates than tra-
ditional molecular dynamics or state-of-the-art generators. Further, JAMUN is
able to predict the stable basins of small peptides that were not seen during train-
ing.

1 INTRODUCTION

Molecules are not static. They move, and these movements can be vitally important. Protein motion
is required for myglobin to bind oxygen and move it around the body.Miller & Phillips (2021) Drug
discovery on protein kinases depends on characterizing kinase conformational ensembles.Gough
& Kalodimos (2024) The search for druggable “cryptic pockets” requires understanding protein
dynamics.Colombo (2023) However, while machine learning (ML) methods for molecular structure
prediction have experienced enormous success recently, ML methods for dynamics have yet to have
similar impact. ML models for generating molecular ensembles are widely considered the “next
frontier” (Bowman, 2024; Miller & Phillips, 2021; Zheng et al., 2023). In this work, we present
JAMUN (walk-Jump Accelerated Molecular ensembles with Universal Noise), a generative ML
model which advances this frontier by demonstrating improvements in both speed and transferability
over previous approaches.

While the importance of protein dynamics is well-established, it can be exceedingly difficult to
sufficiently sample large biomolecular systems. The most common sampling method is molecular
dynamics (MD), but it is limited by the need for very short time-steps of 1-2 femtoseconds. Many
important protein dynamic phenomena occur on the timescale of milliseconds. Simulating with this
resolution is “...equivalent to tracking the advance and retreat of the glaciers of the last Ice Age—tens
of thousands of years—by noting their locations each and every second.”Borhani & Shaw (2012)
Importantly, there is nothing fundamental about this small time-step limitation; it is an artifact of
high-frequency motions, such as bond vibrations, that have little to no effect on protein ensembles.
Leimkuhler & Matthews (2015) Enhanced sampling methods have been developed in an attempt to
accelerate sampling, but they often require expert user input, and, more importantly, do not address
the underlying time-step problem. Other sampling methods, such as Monte Carlo-based methods,
exist, but have seen limited success for large biomolecular systems.Vitalis & Pappu (2009)

A large number of generative models have been developed to address the sampling inefficiency
problems of MD using machine learning, including continuous normalizing flows, diffusion, and
flow-matching.Noé et al. (2019); Arts et al. (2023); Klein et al. (2024b;a); Zheng et al. (2024);
Jing et al. (2024); Kim et al. (2024) These models have been applied to a variety of MD datasets
from small molecules to peptides to full proteins. However, none of these models have proven

*These authors contributed equally to this work.
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Figure 1: Overview of Walk-Jump Sampling.

to be transferable. They do not work well beyond their training data. (One notable exception is
the recent Transferable Boltzmann Generators (Klein & Noé, 2024) model, with which we provide
extensive comparison.) While the developments in this field have been immense, transferability
remains a grand challenge. Without it the usefulness of any ML model is extremely limited. For a
true breakthrough in this area, an ML model must be able to generate conformational ensembles for
molecules that are not in its training set.

We set out to solve this problem of transferability by developing an ML model informed by the
physical priors of molecular dynamics data. JAMUN is a Walk-Jump Sampler (WJS) Saremi &
Hyvärinen (2019) for point clouds parameterized with an SE(3)-equivariant denoiser. In WJS noise
is added to clean data and a denoising neural network is trained to recover the clean samples. This
denoiser defines the score function of the noisy manifold which we sample using Langevin dynamics
(walk step) and allows us to periodically project back to the original data distribution (jump step).
This framework is a natural fit for MD data. In MD, unlike for natural images or other settings
where generative modeling is commonly applied, we typically are interested in sampling an ensem-
ble of representative states rather than drawing single samples. In this setting it is advantageous to
generate samples from trajectories that efficiently traverse the smoothed space, rather than starting
over from an uninformative Gaussian prior for each sample as is commonly done in diffusion and
flow matching. By adding partial noise, WJS simply smooths out the distribution enough to resolve
sampling difficulties without fully destroying the information present in the data distribution. More-
over, the use of Langevin dynamics, the same algorithm commonly used for MD simulations, on the
smoothed noisy manifold lends itself to simple, physical interpretations of model behavior.

We train JAMUN on a large dataset of MD simulations of two amino acid peptides. We demonstrate
that this model can generalize to a holdout set of unseen peptides. In all of these cases, generation
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with JAMUN yields converged sampling of the conformational ensemble faster than MD with a
standard force field. These results suggest that this transferability is a consequence of retaining the
physical priors inherent in MD data. By smoothing out the underlying data distribution, JAMUN is
able to produce the first transferable generative model for molecular conformational ensembles that
is dramatically faster than MD simulation.

2 RELATED WORK

The goal of building machine learning models that can generate conformational ensembles of molec-
ular systems is not new. While a full overview of this field is beyond the scope of this work (see
Aranganathan et al. (2024) for a recent review), we note a few relevant previous efforts. Boltzmann
Generators (Noé et al., 2019) introduced the idea that a neural network could be used to transform the
underlying data distribution into an easier-to-sample Gaussian distribution. There have been follow-
on efforts which used diffusion models (Arts et al., 2023), flow-matching (Klein et al., 2024b), and
continuous normalizing flows (Klein & Noé, 2024). The commonality in these models is the choice
of target distribution; they all attempt to transform the MD data distribution into a simple Gaussian.
This is a key difference between prior work and our model. Notably, no previous model in this area
except Klein & Noé (2024) has been transferable.

There have also been efforts to build ML models for taking longer MD time-steps (Klein et al.,
2024a; Schreiner et al., 2023; Hsu et al., 2024) and for approximating conformations of large pro-
teins (Zheng et al., 2024; Jing et al., 2024). These methods rely on hand-crafted featurizations (eg.
backbone torsion angles). In practice, this has made generalization to unseen molecules challenging
for these models as well.

The above models are often classified as Boltzmann Generators or Boltzmann Emulators. Models
in the former class are guaranteed to draw unbiased samples from the Boltzmann distribution, while
models in the latter class do not have this guarantee. Strictly speaking, JAMUN is a Boltzmann
Emulator, although in practical terms, as our results show, the difference is minimal.

JAMUN is a Walk-Jump Sampling method which uses an SE(3)-equivariant neural network for
denoising. WJS is built on the seminal work of Neural Empirical Bayes (Saremi & Hyvärinen,
2019), and has been used in voxelized molecule generation (Pinheiro et al., 2024b;a) and protein
sequence generation (Frey et al., 2023). Our work is the first to our knowledge to apply WJS to
point clouds. The equivariant denoising network we use is built with the e3nn library (Geiger &
Smidt, 2022). For a survey of equivariant models for 3D atomic systems, see Duval et al. (2023).

3 METHODS

3.1 WALK-JUMP SAMPLING

JAMUN operates by performing Walk-Jump sampling on molecular systems represented as 3D point
clouds. A conceptual overview of the process is illustrated in Figure 1. Given an initial sample x(0)

from the clean data distribution pX where x(0) ∈ RN×3 represents the 3D coordinates of each of
the N atoms, Walk-Jump performs the following steps:

1. Construct initial sample y(0) from the noisy data distribution pY by adding noise with
magnitude σ drawn from the normal distribution N :

y(0) = x(0) + ση(0) where η(0) ∼ N (0, IN×3) (1)

2. Walk to obtain samples y(1), . . . , y(N) from pY using Langevin dynamics which conists of
numerically solving the following Stochastic Differential Equation (SDE):

dy = vydt (2)

dvy = ∇y log pY (y)dt− γvydt+M− 1
2

√
2dBt (3)

where vy represents the particle velocity, ∇y log pY (y) is the gradient of the log of the
probability density function (the learned score function), γ is friction, M is the mass, and
Bt is the standard Wiener process in N × 3-dimensions: Bt ∼ N (0, tIN×3). In practice,
we employ the BAOAB solver (Appendix G) to integrate Equation 2 numerically.
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Figure 2: Adding noise to an initial conformation x(0) to obtain y(0) ∼ pY .

Figure 3: One iteration of BAOAB-discretized Langevin dynamics (Equation 2 and Equation 67)
starting from y(t) ∼ pY leads to a new sample y(t+1) ∼ pY .

3. Jump back to pX to obtain samples x̂1, . . . , x̂N :

x̂i = x̂(yi) = E[X | Y = yi] (4)

x̂(·) ≡ E[X | Y = ·] is called the denoiser. It corresponds to the minimizer (Appendix E)
of the ℓ2-loss between clean samples X and samples denoised back from Y = X + ση.

x̂(·) = argmin
f :RN×3→RN×3

EX∼pX ,η∼N (0,IN×3)
Y=X+ση

[∥f(Y )−X∥2] (5)

As shown by Robbins (1956); Miyasawa (1960) (Appendix F), the denoiser x̂ is closely
linked to the score ∇y log pY :

x̂(y) = y + σ2∇y log pY (y) (6)

Figure 4: Denoising of y(t) according to Equation 6 gives us new samples x̂(t).

Importantly, the score function∇y log pY shows up in both the walk and jump steps.

3.2 LEARNING TO DENOISE

In order to run Walk-Jump Sampling as outlined above, we must train a parameterized denoising
model which takes in noisy samples y and outputs clean samples x̂. We have the choice of modelling

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

either the score∇y log pY or the denoiser x̂ as they are equivalent by Equation 6. Here, we follow the
recommendations of Karras et al. (2022; 2024), originally developed for diffusion models in images
to model the denoiser as a neural network x̂θ(y, σ) ≈ x̂(y) parameterized by model parameters θ.
We appropriately modify their construction for the point cloud context as detailed in Section 3.3.
Note that while the normalization is applicable for any noise level, we only need to learn a model
at a single, fixed noise level σ. This is unlike training diffusion and flow-matching models where a
large range of noise levels are required for sampling.

As described in Algorithm 1, we use an SE(3)-equivariant model to parametrize the denoiser
Thomas et al. (2018). This is in contrast to existing methods (Hoogeboom et al., 2022; Klein & Noé,
2024; Klein et al., 2024a) that utilize the E(3)-equivariant EGNN model (Satorras et al., 2022). As
rightly pointed out by Dumitrescu et al. (2024), E(3) models are equivariant under parity, which
means that are forced to transform mirrored structures identically. When we experimented with
such architectures, we found symmetric Ramachandran plots which arise from the unnecessary par-
ity constraint of the denoising network. For this reason, Klein & Noé (2024); Klein et al. (2024a)
use a ‘chirality checker’ to post-hoc fix the generated structures from their model; for JAMUN, such
post-processing is unnecessary because our model can distinguish between chiral structures.

Training the denoiser x̂θ consists of solving the following optimization problem:

θ∗ = argmin
θ

EX∼pX ,η∼N (0,IN×3)
Y=X+ση

∥x̂θ(Y, σ)−X∥2 (7)

to obtain θ∗, the optimal model parameters. We approximate the expectation in Equation 7 by
sampling X ∼ pX and η ∼ N (0, IN×3), as is standard in the empirical risk minimzation (ERM)
(Vapnik, 1991) setting. We minimize the loss as a function of model parameters θ using the first-
order optimizer Adam (Kingma & Ba, 2017) in PyTorch 2.0 (Ansel et al., 2024; Falcon & The
PyTorch Lightning team, 2019).

Algorithm 1 Operations of our SE(3)-Equivariant Denoiser Fθ

Require: Sample y, Noise Level σ, Message Passing Iterations T , Cutoff dmax, Spherical Harmonic
Degree ℓ, Tensor Product ⊗
Compute neighbor lists for each atom in y:

(u, v) ∈ E ⇐⇒ ∥yu − yv∥ ≤ dmax

for v ∈ V do:
h
(0)
v ← INITIALATOMEMBEDDING(v)

for t = 1, 2, . . . , T do:
for v ∈ V do:

h
(t)
v ← 1

|N (v)|
∑

u∈N (v) MLP(∥yu − yv∥)× LINEAR(h
(t−1)
u ⊗ Yℓ(ru − rv))

h
(t)
v ← GATE(h

(t)
v )

h
(t)
v ← CONCATENATE([h

(t−1)
v , h

(t)
v ])

h
(t)
v ← LINEAR(h

(t)
v )

h
(t)
v ← NOISECONDITIONALSCALING(h

(t)
v , σ)

for v ∈ V do:
fv ← LINEAR(h

(T )
v )

return {fv}v∈V

Similar to Klein & Noé (2024), the initial embedding of each atom (represented by INI-
TIALATOMEMBEDDING in Algorithm 1) is given by embedding its atomic number, the atom type
as provided by the PDB, the type of its associated residue, and the sequence index of the associated
residue.

3.3 PARAMETRIZATION OF THE DENOISER NETWORK

We describe the parametrization of the denoiser network x̂θ(y, σ) which will approximate x̂(y).
While we fix a noise level σ here, we describe the general construction for an arbitrary noise level σ,
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which could be useful for training E(3) and SE(3) equivariant diffusion and flow-matching models
as well.

We adapt the analysis and choices of Karras et al. (2022; 2024) for the point-cloud setting:

x̂θ(y, σ) = cskip(σ)y + cout(σ)Fθ(cin(σ)y, cnoise(σ)) (8)

where Fθ is the SE(3)-equivariant graph neural network (GNN) model, parameterized by θ.
cskip(σ), cout(σ), cin(σ), cnoise(σ) are fixed functions from R+ to R, chosen to normalize the effec-
tive inputs and outputs to Fθ. Further, these coefficients encourage re-use of the input y at low noise
levels, but the opposite at high noise levels. Next, we describe the exact form of these functions.

3.4 NORMALIZATION

As the noise level σ is increased, y = x + ση where η ∼ N (0, ID×N ) expands in space. Let ỹ
represent the ‘normalized’ input y, as seen by the network Fθ:

ỹ = cin(σ)y (9)

To control the expansion of y, cin(σ) is chosen such that the following property holds:

E(i,j)∼Uniform(E)
η∼N (0,ID×N )

[∥ỹi − ỹj∥2] = 1 at all noise levels σ. (10)

Note that this is distinct from the normalization chosen by (Karras et al., 2022; 2024), which nor-
malizes ∥y∥ directly. The intuition behind this normalization is that the GNN model Fθ does not
operate on atom positions y directly, but instead uses the relative vectors yi−yj to account for trans-
lation invariance, and controlling this object directly ensures that the topology of the graph does not
change with varying noise level σ.

To achieve this, we compute:

cin(σ) =
1√

C + 2Dσ2
(11)

Where D is the number of particles and C = E(i,j)∼Uniform(E) ∥xi − xj∥
2 can be easily estimated

from the true data distribution. The full derivation can be found in Appendix C.

As the input is now appropriately normalized, the target output of the network Fθ should also be
appropriately normalized. A full derivation, found in Appendix D, leads to:

cskip(σ) =
C

C + 2Dσ2
(12)

cout(σ) =

√
C · 2Dσ2

C + 2Dσ2
(13)

cnoise(σ) = log10 σ (14)

The noise normalization is a scaled version of the recommendation of 1
4 lnσ for images in Karras

et al. (2022; 2024).

3.5 ROTATIONAL ALIGNMENT

As described in Algorithm 2, we use the Kabsch-Umeyama algorithm (Kabsch, 1976; Umeyama,
1991) to rotationally align y to x before calling the denoiser.

Note that both y and x are mean-centered to respect translational equivariance:
N∑
i=1

yi = 0⃗ ∈ R3 (15)

N∑
i=1

xi = 0⃗ ∈ R3 (16)

so there is no net translation.
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Algorithm 2 Rotational Alignment with the Kabsch-Umeyama Algorithm
Require: Noisy Sample y ∈ RN×3, True Sample x ∈ RN×3.
H ← xT y ▷ H ∈ R3×3

U, S, V T ← SVD(H) ▷ U, V ∈ R3×3

R∗ ← Udiag[1, 1,det(U) det(V )]V T

return y(R∗)T

4 DATASET

We demonstrate our method on two datasets: (i) the uncapped amino acids used in Timewarp (Klein
et al., 2024a), specifically the 2AA-huge dataset consisting of 380 diamines split into 200 train, 80
validation and 100 test diamines, and (ii) capped amino acids simulated in water following the same
splits used in (i). The molecules in (i) have a single peptide bond between amino acids of varying
identities. This results in a distribution well represented by two dihedral angles, the ϕ angle of the
second residue and the ψ angle of the first residue. The termini are zwitterionic amino and carboxyl
groups. These are not ideal analogues of amino acids in proteins due to local charge interactions as
well as lack of steric effects. However, for consistency in benchmarking, we run all experiments on
these to compare against Transferable Boltzman Generators (Klein & Noé, 2024).

Figure 5: A side-by-side comparison of uncapped (left) compared to capped (right) ALA-CYS.
The acetyl (ACE) and N-methyl (NME) capping groups provide steric hindrance and prevent local
charge interactions on the N-terminal and C-terminal ends respectively.

As is common in molecular dynamics simulations of very small peptides, we also generate a similar
dataset with ACE (acetyl) and NME (N-methyl amide) caps. These are essentially peptide bonds
with the first and last residue, bonded to methyl groups. These peptide bonds remove the need for the
zwitterion, while the methyl group provides some steric interactions. This results in a distribution
which requires at least 4 dihedrals to be well-represented: the ϕ and ψ angles of both residues.
We find this is a significantly richer set of distributions. We ensure that our unbiased molecular
dynamics runs are converged or representative by comparing against biased molecular dynamics
runs using Non-equilibrium Umbrella Sampling (NEUS)Dinner et al. (2018); Vani et al. (2022), a
trajectory stratification based enhanced sampling algorithm.

5 RESULTS

We find that JAMUN samples conformational ensembles of short peptides faster than conventional
MD while remaining reasonably faithful to thermodynamics. It does this despite being quite small by
ML model standards (8.2M parameters). We note it requires no a priori knowledge or hand-crafted
featurization for transferable exploration–for instance, it generates diversity in ϕ and ψ dihedrals
without explicit inputs regarding these variables. We also show a remarkable speedup relative to
transferable Boltzmann generators. However, unlike the transferable Boltzmann generator, we only
have access to the score of the distribution, and thus cannot precisely reweight it, making this a
Boltzmann emulator.

7
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Figure 6: -log probabilities of outputs from four example diamines from the test set. These, along
with Figure 9, are chosen to represent the diversity of states as well as subtle perturbations from
single-point amino acid changes in the dataset. Each pair of Ramachandran plots show the distribu-
tion for a single diamine, with each row corresponding to diamine identity. The first column shows
the fully converged molecular dynamics distribution. The second shows sixty four thousand samples
from JAMUN. The third column shows a distribution obtained from an MD trajectory run for the
exact same amount of time as the JAMUN sampler.

In Figure 6 and Figure 9 we show, for eight test peptides in the challenging capped dataset, distri-
butions generated using both molecular dynamics and JAMUN. As the molecular dynamics serves
as our ground truth, we show the full dataset. However, for demonstrative purposes, we also show
the distribution when it has been run for the same amount of GPU time as JAMUN requires to sam-
ple 640000 points. This number was chosen to reflect reasonable sampling for validation diamines.
This can be variable, for the specific 8 diamines we choose here, the sampling time with JAMUN
is: 1) ASP-TRP: 38 minutes, 2) GLU-THR: 27 minutes, 3) PHE-ALA: 28 minutes, 4) ASN-GLU:
29 minutes, 5) CYS-TRP: 34 minutes, 6) GLY-ASN: 22 minutes, 7) HIS-PRO: 30 minutes, and 8)
ILE-GLY: 22 minutes. In terms of MD simulation time, this is between 100ps and 300ps.

These results clearly show that JAMUN is sampling the conformational ensembles of unseen pep-
tides with high accuracy. The vast majority of low-energy basins in the Ramachandran plot are
captured by the model. Moreover, JAMUN is sampling these states much faster than conventional
MD. Comparing the ”JAMUN” and ”Benchmark Molecular Dynamics” columns of Figure 6 and
Figure 9 shows that MD lags dramatically behind. At the point where JAMUN has sampled the
entire distribution, MD is often still stuck sampling a single basin.

While the capped dataset represents higher diversity and fidelity to true peptide thermodynamics, we
also wish to compare against the transferable Boltzmann generator, as it has already shown success
for short peptides. To this end, we also train our model on the timewarp dataset, although please note
that our hyperparameters are optimized for the capped diamines. Nevertheless, we show in Figure 7
a significant improvement in sampling. For the two machine learning methods, we simulate using
an equal amount of compute-time, including post-processing steps such as chirality checks. It is
clear, by visual inspection, that JAMUN samples all states, where transferable Boltzmann Generators
misses a basin in the given time.

8
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Figure 7: -log probabilities of outputs from two example diamines from the uncapped test set.
These are chosen to show two examples of different distributions from this dataset which has limited
conformational diversity. Each Ramachandran plot shows the distribution for a single diamine, with
each row corresponding to diamine identity. The first column shows the full distribution from the
timewarp dataset. The second shows sixty four thousand samples from JAMUN. The third column
shows a distribution obtained from a transferable Boltzman generator run for the exact same amount
of time as the JAMUN sampler. The fourth shows results from the transferable Boltzman generator
run for five thousand samples (run for roughly 10 times as long as JAMUN).

Figure 8: Shannon Jensen divergences plotted along time. (left) A comparison between JAMUN and
molecular Dynamics where the x-axis is a trajectory progress coordinate such that all JAMUN runs
are for 640,000 samples while molecular Dynamics runs are truncated to be the same GPU time.
(right) Shannon-Jensen divergence of a long fully converged molecular dynamics trajectory.

As a convergence metric, we look at Shannon-Jensen divergence in Figure 8. This allows us to
compare the rate at which JAMUN and MD converge to the ”correct” distribution. We calculate the
Shannon-Jensen divergence for molecular dynamics and JAMUN runs of equal GPU time (using the
data generated for Figure 6 and Figure 9). We also analyze fully converged molecular dynamics runs
for reference. It appears that while JAMUN converges quicker than MD, and samples relevant states
faster, it does not ever converge to the same accuracy. It is likely that part of the discrepency is from
JAMUN’s oversampling of rare and transition regions. In particular, we see from the Ramachandran
plots that occasionally the standard transition paths are not the most frequent and instead spurious
transition paths are sampled along. JAMUN is not trained on kinetics and cannot faithfully re-
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produce them. This is a well-understood phenomena in stochastic processes in a rough to smooth
surface.Zwanzig (1988) It is also evident from the smooth nature of JAMUN’s Shannon-Jensen time
series, as compared to the step-wise behavior of MD that JAMUN has a more natural mixing of
states without kinetic traps. However, much of the spurious sampling can be avoided with smaller
noise values at the cost of sampling efficiency. As such, this Langevin dynamics on a noised surface
provides an interesting avenue of research from a stochastic processes point of view.

From a biological and drug-design standpoint, we are relatively uninterested in kinetics or even the
exact distribution. However, we are extremely interested in the sampling of diverse metastable states
with some sense of their relative stabilities. To this end, JAMUN does an impressive job of sampling
metastable states particular to specific diamines with thermodynamic fidelity. We demonstrate this
with the use of Markov State Models trained on converged MD data in Appendix B. The figures
demonstrate that across the test set of capped peptides JAMUN (i) captures the precise shape of states
extremely well, and (ii) samples nuanced states that are not obvious by eye in a Ramachandran plot
with high accuracy.

6 CONCLUSION

We present JAMUN, a Walk-Jump Sampling model for generating ensembles of molecular con-
formations. The model is trained on molecular dynamics data from two amino acid peptides and
is transferable to peptides outside of its training set. It produces accurate conformational ensem-
bles faster than MD or previous ML approaches. This represents an important first step toward the
ultimate goal of a transferable generative model for protein conformational ensembles.

The model has some limitations that motivate future work. While it is highly transferable in the
space of two amino acid peptides, we have not tested the model’s ability to transfer to larger proteins.
We leave exploring this important direction to future work. Additionally, while the current SE(3)-
equivariant denoiser architecture works well, further development of the denoising network could
speed up sampling. Alternative ”jump” methods, such as Walk-Diffuse, could also serve to sharpen
generation. Lastly, a promising direction that has not yet been explored is the application of classical
enhanced sampling methods, such as metadynamics, for traversing the noisy space.

JAMUN is the first model to use Walk-Jump Sampling on point clouds, and the first to apply Walk-
Jump Sampling to molecular dynamics data. This paradigm gives the model a clear physics inter-
pretation. By adding noise, JAMUN is able to simulate on a smoother manifold than ordinary MD.
Sampling on this smooth surface enables the model to generate accurate molecular conformational
ensembles faster than both MD and previous ML models.
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Garg, and Harri Lähdesmäki. Field-based Molecule Generation, 2024. URL https://arxiv.
org/abs/2402.15864.

Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago Miret,
Fragkiskos D Malliaros, Taco Cohen, Pietro Lio, Yoshua Bengio, and Michael Bron-
stein. A Hitchhiker’s Guide to Geometric GNNs for 3D Atomic Systems. arXiv preprint
arXiv:2312.07511, 2023.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019. URL https:
//github.com/Lightning-AI/lightning.

Nathan C Frey, Daniel Berenberg, Karina Zadorozhny, Joseph Kleinhenz, Julien Lafrance-Vanasse,
Isidro Hotzel, Yan Wu, Stephen Ra, Richard Bonneau, Kyunghyun Cho, et al. Protein discovery
with discrete walk-jump sampling. arXiv preprint arXiv:2306.12360, 2023.

Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. arXiv preprint arXiv:2207.09453,
2022.

Nancy R Gough and Charalampos G Kalodimos. Exploring the conformational landscape of protein
kinases. Current Opinion in Structural Biology, 88:102890, 2024.

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant Diffu-
sion for Molecule Generation in 3D, 2022. URL https://arxiv.org/abs/2203.17003.

Tim Hsu, Babak Sadigh, Vasily Bulatov, and Fei Zhou. Score dynamics: Scaling molecular dynam-
ics with picoseconds time steps via conditional diffusion model. Journal of Chemical Theory and
Computation, 20(6):2335–2348, 2024.

Bowen Jing, Bonnie Berger, and Tommi Jaakkola. AlphaFold meets flow matching for generating
protein ensembles. arXiv preprint arXiv:2402.04845, 2024.

W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystallographica
Section A, 32(5):922–923, Sep 1976. doi: 10.1107/S0567739476001873. URL https://doi.
org/10.1107/S0567739476001873.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of
Diffusion-Based Generative Models. In Proc. NeurIPS, 2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and Improving the Training Dynamics of Diffusion Models. In Proc. CVPR, 2024.

Stefanie Kieninger and Bettina G. Keller. GROMACS Stochastic Dynamics and BAOAB Are Equiv-
alent Configurational Sampling Algorithms. Journal of Chemical Theory and Computation, 18
(10):5792–5798, 2022.

Joseph C Kim, David Bloore, Karan Kapoor, Jun Feng, Ming-Hong Hao, and Mengdi Wang.
Scalable normalizing flows enable boltzmann generators for macromolecules. arXiv preprint
arXiv:2401.04246, 2024.

11

https://arxiv.org/abs/2402.15864
https://arxiv.org/abs/2402.15864
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://arxiv.org/abs/2203.17003
https://doi.org/10.1107/S0567739476001873
https://doi.org/10.1107/S0567739476001873


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.
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A CODE AVAILABILITY

We will be releasing all the code and data necessary to reproduce this paper.

B DISTRIBUTION ANALYSES

We demonstrate the quantitative gain in sampling through metrics like the Shannon-Jensen diver-
gence and the clear qualitative gain in sampling diversity. Here we show this visually by employ-
ing Markov state models (MSMs) Pande et al. (2010) to characterize metastability. MSMs are the
most commonly used clustering algorithm for times series in molecular dynamics. They function
by first projecting on a low-dimensional manifold, most commonly the Time-lagged Independent
Component Analysis (TICA), finely clustering the samples and then solving for the eigenvalues of a
transition probability matrix. Here we use the PYEMMA2 Scherer et al. (2015) implementation. We
use a lag time of ten steps, five tics, 200 k-means clusters to obtain 10 macrostates for the unbiased
well-sampled molecular dynamics trajectories. We perform an implied timescales analysis to ensure
that these states are a reasonable representation. We can then use this representation to better under-
stand the features of our space and qualitatively evaluate JAMUN. In figures 10-16, we plot PMFs
(potential of mean force) in grayscale for JAMUN’s samples with the Markov state model histogram
superimposed in color. Each pair of Ramachandran plots correspond to a single metastable state.

In particular, note that oblong metastable basins corresponding to the−π region in ϕ, small metasta-
bility in the (−π, π) area and even the specific shapes of commonly occuring basins can be signa-
tures particular to specific diamine pairs and are well-emulated by JAMUN.

C INPUT NORMALIZATION

Fix an (i, j) ∈ E from Equation 10. As ηi, ηj
iid∼ N (0, ID), we have ηi − ηj ∼ N (0, 2ID)

from the closure of the multivariate Gaussian under linear combinations. Thus, for each component
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Figure 9: -log probabilities of outputs from four example diamines from the test set. These, along
with 6, are chosen to represent the diversity of states as well as subtle perturbations from single-
point amino acid changes in the dataset. Each pair of Ramachandran plots show the distribution for
a single diamine, with each row corresponding to diamine identity. The first column shows the fully
converged molecular dynamics distribution. The second shows sixty four thousand samples from
JAMUN. The third column shows a distribution obtained from an MD trajectory run for the exact
same amount of time as the JAMUN sampler.
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Figure 10: Markov states superimposed on sampled PMFs for CYS-TRP. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.
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Figure 11: Markov states superimposed on sampled PMFs for ASP-THR. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.
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Figure 12: Markov states superimposed on sampled PMFs for GLU-THR. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.
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Figure 13: Markov states superimposed on sampled PMFs for PHE-ALA. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.
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Figure 14: Markov states superimposed on sampled PMFs for GLY-ASN. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.
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Figure 15: Markov states superimposed on sampled PMFs for HIS-PRO. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.
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Figure 16: Markov states superimposed on sampled PMFs for ILE-GLY. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.
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Figure 17: Markov states superimposed on sampled PMFs for ASN-GLU. This figure shows the
results of running JAMUN with Markov state model negative log histograms superimposed on them.
The MSMs are trained on fully converged MD data and represent metastable states. Each pair of
Ramachandran plots correspond to a single metastable basin. Note that the gray-scale represents
JAMUN samples while the colored is from molecular dynamics.
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d ∈ {1, . . . D}, we have: (ηi − ηj)(d) ∼ N (0, 2) and hence:

Eη∼N (0,ID×N )[(xi − xj)T (ηi − ηj)] =
D∑

d=1

(xi − xj)(d)E[(ηi − ηj)(d)] = 0 (17)

Eη∼N (0,ID×N )[∥ηi − ηj∥
2
] =

D∑
d=1

E[(ηi − ηj)2(d)] = 2D (18)

We can now compute:

Ez[∥ỹi − ỹj∥2]
= cin(σ)

2Ez[∥yi − yj∥2]
= cin(σ)

2Ez[∥xi − xj + σ(ηi − ηj)∥2]

= cin(σ)
2
(
∥xi − xj∥2 + 2σEz[(xi − xj)T (ηi − ηj)] + σ2Ez[∥ηi − ηj∥2]

)
= cin(σ)

2
(
∥xi − xj∥2 + σ2Ez[∥ηi − ηj∥2]

)
= cin(σ)

2
(
∥xi − xj∥2 + 2Dσ2

)
. (19)

Now, taking the expectation over all (i, j) ∈ E uniformly:

E(i,j)∼Uniform(E)
η∼N (0,ID×N )

[∥ỹi − ỹj∥2] = E(i,j)∼Uniform(E)[Ez[∥ỹi − ỹj∥2]]

= cin(σ)
2
(
E(i,j)∼Uniform(E) ∥xi − xj∥

2
+ 2Dσ2

)
(20)

Let C = E(i,j)∼Uniform(E) ∥xi − xj∥
2, which we estimate from the true data distribution. Then,

from Equation 20 and our intended normalization given by Equation 10:

cin(σ) =
1√

C + 2Dσ2
(21)

D OUTPUT NORMALIZATION

The derivation here is identical that of (Karras et al., 2022; 2024), but with our normalization. The
denoising loss at a single noise level is:

L(x̂θ, σ) = Ex∼px
Eη∼N (0,I)[∥x̂θ(x+ ση, σ)− x∥2] (22)

which gets weighted across a distribution pσ of noise levels by (unnormalized) weights λ(σ):

L(x̂θ) = Eσ∼pσ
[λ(σ)L(x̂θ, σ)]

= Eσ∼pσ
Ex∼px

Eη∼N (0,I)[λ(σ) ∥x̂θ(x+ ση, σ)− x∥2]

= Eσ∼pσ
Ex∼px

Ey∼N (x,σ2I)[λ(σ) ∥x̂θ(y, σ)− x∥
2
]

= Eσ∼pσEx∼pxEy∼N (x,σ2I)[λ(σ) ∥cskip(σ)y + cout(σ)Fθ(cin(σ)y, cnoise(σ))− x∥2]

= Eσ∼pσEx∼pxEy∼N (x,σ2I)

[
λ(σ)cout(σ)

2

∥∥∥∥Fθ(cin(σ)y, cnoise(σ))−
x− cskip(σ)y

cout(σ)

∥∥∥∥2
]

= Eσ∼pσ
Ex∼px

Ey∼N (x,σ2I)

[
λ(σ)cout(σ)

2 ∥Fθ(cin(σ)y, cnoise(σ))− F∥2
]

(23)

where:

F =
x− cskip(σ)y

cout(σ)
(24)

is the effective training target for the network Fθ. We want to normalize F similarly as the network
input:

E(i,j)∼Uniform(E)
η∼N (0,ID×N )

[∥Fi − Fj∥2] = 1 at all noise levels σ. (25)
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Again, for a fixed (i, j) ∈ E, we have:

Ez ∥Fi − Fj∥2 =
Ez ∥(xi − xj)− cskip(σ)(yi − yj)∥2

cout(σ)2

=
Ez ∥(1− cskip(σ))(xi − xj)− cskip(σ)σ · (ηi − ηj)∥2

cout(σ)2

=
(1− cskip(σ))

2 ∥xi − xj∥2 + cskip(σ)
2 · 2Dσ2

cout(σ)2
(26)

and hence:

E(i,j)∼Uniform(E)
η∼N (0,ID×N )

[∥Fi − Fj∥2] = 1

=⇒
(1− cskip(σ))

2 · C + cskip(σ)
2 · 2Dσ2

cout(σ)2
= 1

=⇒ cout(σ)
2 = (1− cskip(σ))

2 · C + cskip(σ)
2 · 2Dσ2 (27)

where C was defined above. Now, to minimize cout(σ) to maximize reuse and avoid amplifying
network errors, as recommended by Karras et al. (2022; 2024):

d

dcskip(σ)
cout(σ)

2 = 0

=⇒ −2(1− cskip(σ)) · C + 2cskip(σ) · 2Dσ2 = 0

=⇒ cskip(σ) =
C

C + 2Dσ2
(28)

Substituting into Equation 27, we get after some routine simplification:

cout(σ) =

√
C · 2Dσ2

C + 2Dσ2
(29)

The noise normalization is chosen as cnoise(σ) = log10 σ, a scaled version of the recommendation
of 1

4 lnσ for images in Karras et al. (2022; 2024).

From Equation 23, we set λ(σ) = 1
cout(σ)2

.

E THE DENOISER MINIMIZES THE EXPECTED LOSS

Here, we prove Equation 5, rewritten here for clarity:

x̂(·) ≡ E[X | Y = ·] = argmin
a:RN×3→RN×3

EX∼pX ,η∼N (0,IN×3)
Y=X+ση

[∥a(Y )−X∥2] (30)

First, we can decompose the loss over the domain RN×3 of Y :

EX∼pX ,η∼N (0,IN×3)
Y=X+ση

[∥a(Y )−X∥2] = EX∼pX ,Y∼pY
[∥a(Y )−X∥2] (31)

=

∫
RN×3

∫
RN×3

∥a(y)− x∥2 pX,Y (x, y)dxdy (32)

=

∫
RN×3

∫
RN×3

∥a(y)− x∥2 pY |X(y | x)pX(x)dx︸ ︷︷ ︸
l(a,y)

dy (33)

=

∫
RN×3

l(a, y)dy (34)

and hence, any minimizer a∗ must minimize the local denoising loss l(a∗, y) at each point y ∈
RN×3. For a fixed y ∈ RN×3, the loss l(a, y) is convex, and hence, the global minimizer can be
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found by finding the critical points of l(a, y) as a function of a(y):

∇a(y)l(a, y) = 0 (35)

=⇒ ∇a(y)

∫
RN×3

∥a(y)− x∥2 pY |X(y | x)pX(x)dx = 0 (36)

=⇒
∫
RN×3

2(a∗(y)− x)pY |X(y | x)pX(x)dx = 0 (37)

Rearranging:

a∗(y) =

∫
RN×3 x pY |X(y | x)pX(x)dx∫
RN×3 pY |X(y | x)pX(x)dx

(38)

=

∫
RN×3 x pY |X(y | x)pX(x)dx

pY (y)
(39)

=

∫
RN×3

x
pY |X(y | x)pX(x)

pY (y)
dx (40)

=

∫
RN×3

x pX|Y (x | y)dx (41)

= E[X | Y = y] (42)
= x̂(y) (43)

by Bayes’ rule. Hence, the denoiser as defined by Equation 4 is indeed the minimzer of the denoising
loss:

x̂(·) ≡ E[X | Y = ·] = argmin
a:RN×3→RN×3

EX∼pX ,η∼N (0,IN×3)
Y=X+ση

[∥a(Y )−X∥2] (44)

as claimed.

F RELATING THE SCORE AND THE DENOISER

Here, we rederive Equation 6, relating the score function∇ log pY and the denoiser x̂, as first shown
by Robbins (1956); Miyasawa (1960).

Let X ∼ pX defined over RN×3 and η ∼ N (0, IN×3). Let Y = X + ση, which means:

pY |X(y | x) = N (y;x, IN×3) =
1

(2πσ2)
3N
2

exp

(
−∥y − x∥

2

2σ2

)
(45)

Then:

E[X | Y = y] = y + σ2∇y log pY (y) (46)

To prove this:

∇ypY |X(y | x) = −y − x
σ2

pY |X(y | x) (47)

=⇒ (x− y)pY |X(y | x) = σ2∇ypY |X(y | x) (48)

=⇒
∫
RN×3

(x− y)pY |X(y | x) pX(x)dx =

∫
RN×3

σ2∇ypY |X(y | x) pX(x)dx (49)

By Bayes’ rule:

pY |X(y | x)pX(x) = pX,Y (x, y) = pX|Y (x|y)pY (y) (50)

and, by definition of the marginals:∫
RN×3

pX,Y (x, y)dx = pY (y) (51)
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For the left-hand side, we have:∫
RN×3

(x− y)pY |X(y | x)pX(x)dx =

∫
RN×3

(x− y)pX,Y (x, y)dx (52)

=

∫
RN×3

xpX,Y (x, y)dx−
∫
RN×3

ypX,Y (x, y)dx (53)

= pY (y)

(∫
RN×3

xpX|Y (x | y)dx− y
∫
RN×3

pX|Y (x | y)dx
)

(54)
= pY (y) (E[X | Y = y]− y) (55)

For the right-hand side, we have:

σ2

∫
RN×3

∇ypY |X(y | x)pX(x)dx = σ2∇y

∫
RN×3

pY |X(y | x)pX(x)dx (56)

= σ2∇y

∫
RN×3

pX,Y (x, y)dx (57)

= σ2∇ypY (y) (58)

Thus,

pY (y) (E[X | Y = y]− y) = σ2∇ypY (y) (59)

=⇒ E[X | Y = y] = y + σ2∇ypY (y)

pY (y)
(60)

= y + σ2∇y log pY (y) (61)

as claimed.

G NUMERICAL SOLVERS FOR LANGEVIN DYNAMICS

As mentioned in Section 3.1, solving the Stochastic Differential Equation corresponding to Langevin
dynamics is often performed numerically. In particular, BAOAB (Leimkuhler & Matthews, 2012;
2015; Sachs et al., 2017) refers to a ‘splitting method’ that solves the Langevin dynamics SDE by
splitting it into three different components labelled by A, B and O below:

dy = vydt︸︷︷︸
A

(62)

dvy =M−1∇y log pY (y)dt︸ ︷︷ ︸
B

− γvydt+
√
2γM− 1

2 dBt︸ ︷︷ ︸
O

(63)

where both y, vy ∈ Rd. This leads to the following update operators:

A∆t

[
y
vy

]
=

[
y + vy∆t

vy

]
(64)

B∆t

[
y
vy

]
=

[
y

vy +M−1∇y log pY (y)∆t

]
(65)

O∆t

[
y
vy

]
=

[
y

e−γ∆tvy +M− 1
2

√
1− e−2γ∆tB

]
(66)

where B ∼ N (0, Id) is resampled every iteration. As highlighted by Kieninger & Keller (2022), the
A and B updates are obtained by simply discretizing the updates highlighted in Equation 62 by the
Euler method. The O update refers to a explicit solution of the Ornstein-Uhlenbeck process, which
we rederive for completeness in Appendix H.

Finally, the iterates of the BAOAB algorithm are given by a composition of these update steps
matching the name of the method:[

y(t+1)

v
(t+1)
y

]
= B∆t

2
A∆t

2
O∆tA∆t

2
B∆t

2

[
y(t)

v
(t)
y

]
(67)
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H THE ORNSTEIN-UHLENBECK PROCESS

For completeness, we discuss the distributional solution of the Ornstein-Uhlenbeck process, taken
directly from the excellent Leimkuhler & Matthews (2015). The Ornstein-Uhlenbeck Process cor-
responds to the following Stochastic Differential Equation (SDE):

dvy = −γvydt+
√

2γM− 1
2 dBt (68)

Multiplying both sides by the integrating factor eγt:

eγtdvy = −γeγt(vydt+ eγt
√
2γM− 1

2 dBt (69)

=⇒ eγt(dvy + γvydt) = eγt
√
2γM− 1

2 dBt (70)

and identifying:

eγt(dvy + γvydt) = d(eγtvy) (71)

We get after integrating from t1 to t2, two adjacent time steps of our integration grid:

d(eγtvy) = eγt
√
2γM− 1

2 dBt (72)

=⇒
∫ t2

t1

d(eγtvy) =

∫ t2

t1

eγt
√
2γM− 1

2 dBt (73)

=⇒ eγt2vy(t2)− eγt1vy(t1) =
√
2γM− 1

2

∫ t2

t1

eγtdBt (74)

Now, for a Wiener process Bt, if g(t) is a deterministic function,
∫ t2
t1
g(t)dBt is distributed as

N
(
0,
∫ t2
t1
g(t)2dt

)
by Itô’s integral. Thus, applying this result to g(t) = eγt, we get:

eγt2vy(t2)− eγt1vy(t1) =
√
2γM− 1

2N
(
0,
e2γt2 − e2γt1

2γ

)
(75)

=⇒ vy(t2) = e−γ(t2−t1)vy(t1) +
√

2γM− 1
2 e−γt2N

(
0,
e2γt2 − e2γt1

2γ

)
(76)

= e−γ(t2−t1)vy(t1) +
√

2γM− 1
2

√
1− e2γ(t1−t2)

2γ
N (0, 1) (77)

= e−γ(t2−t1)vy(t1) +M− 1
2

√
1− e2γ(t1−t2)N (0, 1) (78)

The analysis above is performed in one dimension, but readily applies to the N × 3 dimensional
case as the Wiener processes are all independent of each other:

vy(t2) = e−γ(t2−t1)vy(t1) +M− 1
2

√
1− e2γ(t1−t2)N (0, IN×3) (79)

Setting ∆t = t2 − t1, we get the form of the O operator (Equation 64) of the BAOAB integrator in
Appendix G.

I HYPERPARAMETERS

All the models trained in this work are SE(3)-equivariant networks

We use a uniform distribution of noise with a range of .01 to .1, There are four hidden layers. Graphs
are constructed using bonds as well as neighbors within radius of five. We use ADAM with learning
rate .002. For the capped diamines we use 320,000 snapshots for 200 training diamines, whereas for
the uncapped we use the timewarp-Large dataset. Models are trained with six parallel processing
GPUs and a batch size of forty-two. The model has 8.2 million parameters. For the hidden layers of
the network we use 120 scalar and 32 pseudovector features per node and spherical harmonics up to
l = 1 The output is 1 vector per node.

For sampling capped diamines, we use σ = .04, whereas for uncapped we use σ = .06. We always
use friction of γ = 0.1 and a Langevin dynamics step size of δ = σ.
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