
Neural Deep Operator Networks Representation of
Coherent Ising Machine Dynamics

Arsalan Taassob∗, † Aaron Lott∗ Davide Venturelli ∗

Abstract
Coherent Ising Machines (CIMs) are optical devices that employ parametric os-
cillators to tackle binary optimization problems, whose simplified dynamics are
described by a series of coupled ordinary differential equations (ODEs). In this
study, we setup a proof-of-concept experiment to learn the deterministic dynam-
ics of CIMs via the use of neural Deep Operator Networks (DeepONet). After
training successfully the systems over multiple initial conditions and problem in-
stances, we benchmark the comparative performance of the neural network ver-
sus the simulated ODEs on solving fully-connected quadratic binary optimization
problems. In our tests, the network is capable of delivering solutions to the opti-
mization problems of comparative quality to the exact dynamics up to 175 spins.
The CIM model used is very simple with respect to the state-of-art, but we do not
identify roadblocks to go further: given sufficient training resources more sophis-
ticated CIM solvers could successfully be represented by a neural network at a
large scale.

1 Introduction
As reviewed in [1], there is great interest in hardware implementation of physics dynamics capable
of converging to the low-energy configuration of disordered Ising spin models. More specifically,
many combinatorial problems of industrial relevance can be conveniently mapped to finding the
ground-state of an instance k of the following Hamiltonian:

Hk = ∑
i j

J(k)i j si s j (1)

where Ji j are real coefficients and si are binary ±1 variables3. One of such Ising machines employs
the physics of a train of laser pulses coupled with Optical Parametric Oscillators in a loop configu-
ration where carefully designed delay lines (or optoelectronic measurement-feedback mechanisms)
can allow for controllable interference of the traveling signals. It’s the so-called (optically) Coherent
Ising Machine (CIM) which has been the subject of a very large number of embodiments and vari-
ations [3]. Some of these generalizations are arguably intractable to model, due to quantum effects.
However, from a mathematical perspective, once all simplifications are performed, the behavior of
one of the simplest noiseless CIM can be represented by interconnected sets of regular differential
equations (ODEs):

dxi(t)
dt

= (p−1)xi(t)− xi(t)
3 + γ t ∑

i
Ji jxi(t) (2)

where xi is the (quadrature) amplitude of the ith OPO mode (spin), p is the photon pump rate, and
γ is a speed factor that determines the rate of growth of the feedback contribution that couples the

∗USRA Research Institute for Advanced Computer Science, Mountain View, CA, USA
†North Carolina State University, Raleigh, NC, USA
3Usually the Ising model includes local terms such as ∑i hisi, which are crucial for applied mappings.

However, the ground state of these models can always be mapped to the ground state of a quadratic form such
as (1) by the introduction of one auxiliary spin [2].

37th First Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2023(MLNPCP 2023).

spins, which linearly increases up to a final value ε reached at time t = T . The spin variables to
be used for the evaluation of the Ising model cost function are recovered by the binary projection
si(t) = sign[xi(t)]4 artificially performed in post-processing. The use of the CIM model to solve
Ising problems is motivated by an associated Lyapunov dynamics where each variable is driven
adiabatically through a bifurcation after which it becomes effectively a binary spin [4]5.

Motivation for using Neural networks for Ising optimization and Neural Operators
The idea of using neural networks to solve combinatorial optimization problems dates back to Hop-
field and Tank [6], but it is benefiting from a recent revival from the field of reinforcement learn-
ing [7] as well as from physics-inspired graph neural networks [8, 9]. One intriguing approach,
which has not appeared in the literature so far, is to see if a neural network could learn the operator
consisting of the differential equations of a system that solves a combinatorial optimization problem,
such as the CIM. Neural Operators [10] are a rather novel advance allowing for a neural network to
be trained to approximate a functional and have shown great promise to help solve inverse problems
and to replace multi-physics simulations of PDEs with less time and energy-intensive data-driven
approach [11]. This workshop paper investigates the proof-of-concept question of whether we can
use these neural operator methods to simulate Eq.(2). In addition to the simulation of the actual
continuous dynamics, we try to judge whether the resulting trained network could be a competitive
Ising solver, meaning if the postprocessed bitstrings after the neural inference are of quality even
when the internal dynamics is not faithfully reproduced.

In terms of neural architecture, we choose to focus on the paradigm of Deep Operator Networks
(DeepONet) [12] which appears scalable and easily deployable to simulate coupled ODEs.

Problem setup, metric of success, and CIM parameter tuning
We select to benchmark spin-glass Ising problems of the Sherrington-Kirckpatrick type (i.e. in
Eq.(1), Ji j is taken to be randomly drawn from a Gaussian distribution), which are a well studied
family of instances [13]. We conducted a preliminary scan of which values of p and γ minimize on
average the cost function H as a function of n, discovering that a good set of fixed parameters for
n = 20-200 is p = 0.7 and γ = 10 (we use p = 0.4,0.5,0.6,0.65 respectively for n = 3,5,10,15).

1.1 DeepONets for CIM ODE Simulation
Since p and γ are fixed, the output of the CIM equation is exclusively determined by two inputs:
the n(n− 1)/2 problem specifications coefficients {Ji j} and the n initial conditions: {xi(0)}. In
Figure 1, we consider a DeepONet architecture consisting of three networks: one network accepting
initial conditions as input, one network accepting the time variable t, and one network processing
the Ji j coefficients. The outputs of the three networks are combined linearly to produce a single
output vector, x̃ which is trained against the loss function taken to be the MSE with respect to the
exact xi(t + δ t), computed via the exact equations Eq.(2). The network is then trained via back-
propagation on NJ problem instances, using R0 initial conditions, to evolve for T/δ t points (for our
experiments δ t = 0.005 for a total of 400 time points). We use NJ = 10 and R0 = 20 for training (for
a total of 80,000 data samples) and NJ = 20 and R0 = 50 for testing. All simulations presented in this
study were conducted in the Google Colab cloud-based environment (Python version 3.10.12 and
TensorFlow 2.13.0). Adam optimizer was chosen to strike a balance between training convergence
speed and stability. A batch size of 1000 samples per iteration was selected randomly, allowing
for efficient data processing and GPU resource utilization. Moreover, a learning rate of 0.001 was
adopted to finely adjust model weight updates during training, which proceeds through 1500 epochs.
These specific training parameters were meticulously determined through iterative experimentation,
ensuring an effective and efficient neural network training process.

In Figure 2 we show the dynamical trajectories of six xi(t) variables (randomly selected among
the n) for three cases selecting a random problem instance and a random initial condition for n =
20,40,100, for illustrative purposes. In dashed we report the DeepONet outputs: it is clear that as
the system size increases, the network increasingly struggles to reproduce the exact solutions of the
ODEs. However, while the simulation of the entire operator would target the reconstruction of the
x(t) at an arbitrary time, for the purpose of combinatorial optimization, a trained DeepOnet task

4Note that there is an implicit dependence of these functions by the set of Ji j that specify the problem
instance k and by the initial conditions which will be specified by the index r.

5It should be noted that it has been shown that the CIM dynamics is also useful to solve non-binary,
quadratic, non-convex problems [5].

2

+

Jij

0

Fully Connected Layer

~

Figure 1: DeepONet architecture used for this study. The panels on the right illustrate the scaling
of the complexity of the DeepONet as illustrated by the millions of weights to be trained as well
as the hyperparameters for the neural networks accepting x0 and Ji j which need to be adjusted with
problem size. Numbers are determined by our empirical fine-tuning. For illustration, we showcase
the architectural hyperparameters of the networks for n = 100 in Table 1.

Table 1: Parameters for n = 100
Layers 1 2 3 4 5 6 7 8 9 ... 12 13 ... 21

Branch net 64 32 32 32 32 32 32 32 N/A...N/AN/A...N/A
Trunk net 1 64 32 32 N/AN/AN/AN/AN/AN/A...N/AN/A...N/A
Trunk net 2 64 32 32 32 32 32 32 32 32 ... 32 N/A...N/A

Fully connected dense layer128128128 128 128 128 128 128 128 ... 128 128 ... 128

would be to deliver the binary spins si. For the three cases presented, the final discrete solution is
correctly represented.

Evolution time t Evolution time t Evolution time t

va
ria

bl
es

 x
i(t

)

n=20 n=40 n=100

Figure 2: Example spin variable trajectories for three Ising problems at different sizes, obtained by
integrating the ODEs in Eq.(2). The bifurcation is complete when the sign of the xi variables stops
changing. Dashed lines indicate the corresponding x̃i variables simulated by a DeepONet trained on
separate instances of the same size.

In order to differentiate between our two objectives of evaluating the simulation fidelity and the
optimization performance, we consider two metrics of success, which we will evaluate as a function
of problem size n: one corresponding to the instantaneous mean square error per spin MSE and the

3

other to the average approximation ratio AR of the optimization problem6, i.e.

⟨MSE⟩(n, t) =
1

nNJR0

[
NJ

∑
k

R0

∑
r

n

∑
i
[x(k,r)i (t)− x̃(k,r)i (t)]2

]
, (3)

⟨AR⟩(n) =
1

NJR0

NJ

∑
k

∑R0
r mint

[
∑i j Ji jsign[x̃(k,r)i (t)]sign[x̃(k,r)i (t)]

]
minsi,s j

[
∑i j J(k)i j sis j

]
 , (4)

where we made explicit the dependence of the functions by the problem instance and the ini-
tial conditions, for clarity. In order to compute the minimum of H (denominator in (4) aver-
aged over instances for large n, as customary in benchmarks we use Parisi formula’s ⟨AR⟩ ≃
(−0.76+0.7n−

2
3)n3/2 which is a very good estimate [14].

Figure 3 shows our overall results for the ⟨MSE⟩ as a function of t for different n, for instances for
which we have trained the network as well as for unseen test instances. The results are consistent
with the general illustrative considerations shown in Fig. 2 and show that for n = 200 DeepONet
is clearly failing to simulate the ODEs since it is converging towards the expectation value for a
random uniformly sampled trajectory 4/3.

m
ea

n
er

ro
r p

er
 s

pi
n 〈

M
SE
〉

Training instancesTest instances

Evolution time t Evolution time t

Random

Figure 3: Instantaneous mean square error per spin over time as a function of problem size, for test
(left) and training instances (right)

In Figure 4 we show the main results of our proof-of-concept, where we use the trained DeepONets
in "optimization mode", evaluating their average performance versus the combinatorial solutions of
the Ising problem provided by the exact ODEs. We observe that the ⟨AR⟩ of the neural version of the
CIM is close in order of magnitude to the one obtained by the ODEs up to our very last benchmark
size n = 200, for both the instance set and the test set. We also decided to benchmark the real-world
use of optimization heuristics such as the CIM, for which the machine would be run multiple times
(using different initial conditions) and only the best-found solutions would be returned. For this
reason, we plot the average of the top 10% initial conditions for each problem instance using the
dashed lines. For both best and average initialization, training loss is negligible. In the lower panel,
we report respectively the runtimes of the neural networks when operated for inference (substantially
flat at 2 milliseconds) and the time it took to train them via our procedures (linearly increasing up to
our cutoff of about 1h of time).

6Usually the solution is computed at the final time t = T but it is computationally efficient to scan for the
best solution found across all evolution times, allowing for the rare statistical fluctuation when a higher quality
solution is found in proximity of the bifurcation (see for instance 2 for n=100, the orange trajectory changes
sign mid-way)

4

Se
co

nd
s

m
ill

is
ec

on
ds

Number of spins (n) Number of spins (n)

w
al

lc
lo

ck
 t

im
e

ap
pr

ox
im

at
io

n
ra

tio
 〈

A
R〉

ap
pr

ox
im

at
io

n
ra

tio
 〈

A
R〉

Training instancesTest instances

Figure 4: Comparative optimization performance results of DeepONets representation of CIM ver-
sus the exact integration, as a function of problem size. The left panel refers to statistics on test
instances after training, while the right panel shows the statistics restricted to the instances used
during training. Lower panels report on the times associated with the execution and the training of
the networks used.

1.2 Discussion and Conclusions

3 10 20 40 50 60
Number of Spins

10 3

10 2

10 1

100

101

102

103

Ti
m

e
To

 S
ol

ut
io

n
(s

)

ODE
DeepONet

Figure 5: Average Time to Solution computed
at P=99% for DeepONets representation of CIM
versus the exact ODE integration, as a function
of problem size. Probability of success has been
computed using R0=1000 and τ for each run was
measured empirically as wall-clock time of the
computer running the models.

In this workshop paper, we presented a proof-
of-concept study showing that a DeepONet ar-
chitecture is capable of efficiently simulating
the coupled dynamics of ODEs - mapping the
vectors of initial conditions x0 and Ising coeffi-
cients Ji j to discrete spin configurations si ob-
tained by projecting real functions xi(t) (solu-
tions of the ODEs) on their sign. Our results
show that after training, the network is capa-
ble of efficiently optimizing problems and ini-
tial conditions of the same size, up to and be-
yond 175 spins, which is a highly non-trivial
task, especially in a regime with many coupled
equations undergoing semi-chaotic dynamics.

Our tests have been limited by a rather small
computational cut-off for training, and it is ex-
pected that our observations could generalize
to higher n if sufficient data is allowed, and if
the hyperparameters are scaled correctly. How-
ever, the dynamic described by Eq.(2) is un-
sophisticated if the purpose is to have a com-
petitive Ising solver. Indeed the approximation
ratios reported in Fig. 4 are rather unimpres-
sive also for the ODE system, as it can be il-
lustrated if we plot the common Time to solution (⟨T T S⟩) metric as a function of the number
of spins in Figure 5, where it is clear that the setup cannot reach the global optimum beyond 20
spins 7. ⟨T T S⟩ is defined [15] as the mean time required to find the optimal solution of the prob-
lem at least one with a fixed probability P - which for independent runs of stochastic solvers is

7There is no immediate reason for which the absolute performance of the solver should correlate with the
ability of the neural network to replicate the performance of the numerical integration.

5

⟨T T S⟩= τ log(1−P)/ log(1−R⋆/R0) where R0 is the number of i.i.d. runs, each of duration τ , and
R⋆ is the number of those runs that end up in the global optimum.

State-of-art Ising Machines include more complex dynamics with more equations per binary vari-
able, featuring a richer, more chaotic bifurcation phenomenology [3] and leveraging stochastic noise
terms during the evolution [16, 17, 18]. An important task for proper benchmarking will be to learn
optimal parameter setting strategies on-the-fly based on the instance to be solved [19], which is cur-
rently an open problem, that could be tackled in principle by neural training. Learning those models
will be a challenge but will lead to more understanding on the power and limits of neural operators
for the purpose of combinatorial optimization. Ultimately, a DeepONet could also be trained on a
variety of different dynamical algorithms, including models that are not expressible via differential
equations. The primary aim of this initial proof-of-concept is to assess how resilient and applicable
our framework is in tackling a varied range of issues that will arise when we will apply the methods
on state-of-art heuristic Ising Machine strategies.

2 Aknowledgements
This work has been funded by the National Science Foundation CCF-1918549. A.T. has been sup-
ported by the USRA Feynman Quantum Academy internship program. We thank Prof. Peter McMa-
hon for insightful comments on our project.

References
[1] Naeimeh Mohseni, Peter L McMahon, and Tim Byrnes. Ising machines as hardware solvers

of combinatorial optimization problems. Nature Reviews Physics, 4(6):363–379, 2022.

[2] Abhishek Kumar Singh, Kyle Jamieson, Peter L McMahon, and Davide Venturelli. Ising
machines dynamics and regularization for near-optimal mimo detection. IEEE Transactions
on Wireless Communications, 21(12):11080–11094, 2022.

[3] Y Yamamoto, T Leleu, S Ganguli, and H Mabuchi. Coherent ising machinesquantum optics
and neural network perspectives. Applied Physics Letters, 117(16), 2020.

[4] Juntao Wang, Daniel Ebler, KY Michael Wong, David Shui Wing Hui, and Jie Sun. Bifurcation
behaviors shape how continuous physical dynamics solves discrete ising optimization. Nature
Communications, 14(1):2510, 2023.

[5] Farhad Khosravi, Ugur Yildiz, Artur Scherer, and Pooya Ronagh. Non-convex quadratic pro-
gramming using coherent optical networks. arXiv preprint arXiv:2209.04415, 2022.

[6] John J Hopfield and David W Tank. neural computation of decisions in optimization problems.
Biological cybernetics, 52(3):141–152, 1985.

[7] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

[8] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimiza-
tion with physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377,
2022.

[9] Martin JA Schuetz, J Kyle Brubaker, Zhihuai Zhu, and Helmut G Katzgraber. Graph coloring
with physics-inspired graph neural networks. Physical Review Research, 4(4):043131, 2022.

[10] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. arXiv preprint arXiv:2108.08481, 2021.

[11] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang,
and George Em Karniadakis. A comprehensive and fair comparison of two neural operators
(with practical extensions) based on fair data. Computer Methods in Applied Mechanics and
Engineering, 393:114778, 2022.

6

[12] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators.
arXiv preprint arXiv:1910.03193, 2019.

[13] Ryan Hamerly, Takahiro Inagaki, Peter L McMahon, Davide Venturelli, Alireza Marandi, Tat-
suhiro Onodera, Edwin Ng, Carsten Langrock, Kensuke Inaba, Toshimori Honjo, et al. Ex-
perimental investigation of performance differences between coherent ising machines and a
quantum annealer. Science advances, 5(5):eaau0823, 2019.

[14] Maxime Dupont, Bram Evert, Mark J Hodson, Bhuvanesh Sundar, Stephen Jeffrey, Yuki Ya-
maguchi, Dennis Feng, Filip B Maciejewski, Stuart Hadfield, M Sohaib Alam, et al. Quantum
enhanced greedy solver for optimization problems. arXiv preprint arXiv:2303.05509, 2023.

[15] Troels F Rønnow, Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V Isakov, David Wecker,
John M Martinis, Daniel A Lidar, and Matthias Troyer. Defining and detecting quantum
speedup. science, 345(6195):420–424, 2014.

[16] Sam Reifenstein, Satoshi Kako, Farad Khoyratee, Timothée Leleu, and Yoshihisa Yamamoto.
Coherent ising machines with optical error correction circuits. Advanced Quantum Technolo-
gies, 4(11):2100077, 2021.

[17] Hayato Goto, Kotaro Endo, Masaru Suzuki, Yoshisato Sakai, Taro Kanao, Yohei Hamakawa,
Ryo Hidaka, Masaya Yamasaki, and Kosuke Tatsumura. High-performance combinatorial
optimization based on classical mechanics. Science Advances, 7(6):eabe7953, 2021.

[18] George Mourgias-Alexandris, Hitesh Ballani, Natalia G Berloff, James H Clegg, Daniel
Cletheroe, Christos Gkantsidis, Istvan Haller, Vassily Lyutsarev, Francesca Parmigiani, Lu-
cinda Pickup, et al. Analog iterative machine (aim): using light to solve quadratic optimization
problems with mixed variables. arXiv preprint arXiv:2304.12594, 2023.

[19] Stochastic benchmark package - documentation. https://github.com/usra-riacs/
stochastic-benchmark.

7

https://github.com/usra-riacs/stochastic-benchmark
https://github.com/usra-riacs/stochastic-benchmark

	Introduction
	DeepONets for CIM ODE Simulation
	Discussion and Conclusions

	Aknowledgements

