
Koopman Constrained Policy Optimization: A Koopman operator theoretic
method for differentiable optimal control in robotics

Matthew Retchin 1 Brandon Amos 2 Steven L. Brunton 3 Shuran Song 1

Abstract
We introduce Koopman Constrained Policy Opti-
mization (KCPO), combining implicitly differen-
tiable model predictive control with a deep Koop-
man autoencoder for robot learning in unknown
and nonlinear dynamical systems. KCPO is a
new policy optimization algorithm that trains neu-
ral policies end-to-end with hard box constraints
on controls. Guaranteed satisfaction of hard con-
straints helps ensure the performance and safety
of robots. We perform imitation learning with
KCPO to recover expert policies on the Simple
Pendulum, Cartpole Swing-Up, Reacher, and Dif-
ferential Drive environments, outperforming base-
line methods in generalizing to out-of-distribution
constraints in most environments after training.

1. Introduction
The problem of real-world control presents difficulties from
nonlinearity and unknown dynamics. One possible solution
is via model-based optimal control. Optimal control in an
unknown system requires system identification, or the data-
driven estimation of a mathematical model characterizing
a system’s dynamics (Fasel et al., 2021). Yin et al. (2022)
use differentiable Riccati solving to obtain optimal controls
with a Koopman autoencoder-based model, which learns
a linear model from data in order to solve the classical
control problem of Linear Quadratic Regulator (LQR). Like
our work, Yin et al. (2022) is interested in box-constrained
control trajectories, using the hyperbolic tangent function to
squash the output of their LQR solver.

Trajectory optimization for nonlinear dynamical systems
typically relies on local linearization. Koopman opera-
tor theory (Koopman, 1931; Koopman & Neumann, 1932;
Budišić et al., 2012; Mezic, 2013; Otto & Rowley, 2021;
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Brunton et al., 2022; Colbrook & Townsend, 2021; Col-
brook et al., 2023), on which Yin et al. (2022) relies, may
provide an alternative path via global linearization: every
point in state space shares one linear model of the dynamics
(Brunton et al., 2022, Section 1.1). It is possible to employ
functions that lift from the original state space, where the
dynamics are nonlinear and difficult to both predict and
control, to a new space where a linear model is sufficient to
characterize the dynamics everywhere. Once dynamics have
been linearized globally, the strong guarantees of optimality
from classical control theory become available.

Koopman operator theory has recently been employed in
many domains in robotics and control (Surana, 2016; Korda
& Mezić, 2018; Peitz et al., 2020; Folkestad et al., 2020a;b;c;
Peitz & Klus, 2020; Folkestad & Burdick, 2021; Wang et al.,
2023; Calderón et al., 2021; Junker et al., 2022). This paper
focuses on one approach to apply Koopman operator theory,
a neural network architecture called a Koopman autoen-
coder that learns the lifting functions and linear operator
from data (Lusch et al., 2018; Takeishi et al., 2017; Yeung
et al., 2017; Mardt et al., 2018; Otto & Rowley, 2019; Mardt
et al., 2020). While the first Koopman autoencoders sim-
ply predict dynamics, later works besides Yin et al. (2022)
have successfully used Koopman autoencoders for optimal
control (Korda & Mezić, 2018; Han et al., 2022; Li et al.,
2020; King et al., 2022). These other works either are
unconstrained control methods, or they have probabilistic
constraints that are learned incrementally through training
instead of being enforced from the start as hard constraints.

Choosing a loss for learning a quality Koopman embedding
space is an open research topic. Most existing Koopman
autoencoder methods use a combination of prediction loss
and task loss, pre-training the Koopman model before using
it for a policy trained separately, although Yin et al. (2022)
learns the autoencoder end-to-end with task loss. Yin et al.
(2022)’s differentiable LQR solver enables the use of task
losses for learning Koopman dynamics.

Yin et al. (2022) does not explicitly consider the control
constraints in the Koopman embedding space. Constraining
the actions is crucial for safety in the control of robotic
systems for flying and locomotion tasks. Serious damage
to the robots or to surrounding humans and property could
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result if robots exceed their physical limits (Gu et al., 2022).

Contributions. We propose to use Koopman embeddings
for learning dynamics for Constrained Policy Optimization
(CPO) , e.g. as in Achiam et al. (2017), which we refer
to as KCPO. KCPO performs constrained policy optimiza-
tion, optimizing a policy that respects hard box constraints
during both training and inference. KCPO generates box-
constrained control trajectories for robots, bounding be-
tween an upper and lower limit. We experimentally study
KCPO in fully-observable and deterministic environments
(where perception is not a point of concern).

2. Background & Preliminaries
2.1. Model Predictive Control (MPC)

We solve a trajectory optimization problem with convex
cost function c(τt), nonconvex dynamics f(τt), and box
constraints u and u, where τt := {xt, ut}:

τ⋆1:T = argmin
τ1:T

T∑
t=1

c(τt)

subject to x1 = xinit,xt+1 = f(τt),u ≤ u ≤ u.

(1)

MPC, cf. (Tedrake, Chapter 10), solves eq. (1) for u∗
1 with

a finite horizon T and then advances the limited horizon
forward and solves eq. (1) in the next timestep.

2.2. Implicitly Differentiable Model Predictive Control

Amos et al. (2018), whose work KCPO builds upon, use
an implementation of MPC with box-constrained controls,
modifying the Control-Limited Differential Dynamic Pro-
gramming heuristic (also known as Box-DDP) (Tassa et al.,
2014). Appendix A.5 further describes their formulation.
Amos et al. (2018)’s implementation of Box-DDP uses first-
order linearization instead of the second-order linearization
in Tassa et al. (2014). Following Amos et al. (2018), we
will refer to the first-order iLQR version as “Box-DDP”.
Although linearization and quadratization are not needed for
KCPO, linearization is required to generate a dataset from a
Box-DDP-based expert for imitation learning, in which the
expert can access to the true nonlinear dynamics equations.

2.3. Koopman Autoencoders

Koopman operator theory offers hope that it may be feasible
to extend the benefits of existing linear control theory tech-
niques to nonlinear dynamical systems. In 1931, Bernard
Koopman showed that it is possible to diffeomorphically
lift an original state x, which has nonlinear dynamics, into
a new space with linear dynamics (Koopman, 1931). The
Koopman operator is a linear operator that completely char-
acterizes the original nonlinear dynamics. In this newly
lifted space, classical linear control techniques like LQR

could be used (Brunton et al., 2022, Section 6).

The key challenge in Koopman theory is that the operator
is infinite-dimensional that lives in a Hilbert space of mea-
surement functions g(x), also called observables. This is an
obstacle indeed, as LQR only applies to finite-dimensional
matrices. Thus, many researchers have focused on how to
approximate Koopman operators with finite-dimensional
matrices and also approximate the Koopman operator’s true
infinite-dimensional Hilbert space in finite dimensions .

Koopman autoencoders like those used in KCPO combine
Koopman operator theory with the traditional autoencoder
neural network architecture to learn approximate, finite-
dimensional observables and the Koopman operator simul-
taneously from data.

A finite Koopman operator is likely to be limited compared
to an infinite-dimensional operator. We use the Koopman au-
toencoder architecture from Lusch et al. (2018), which over-
comes the limitations of an autoencoder’s finite-dimensional
bottleneck by using an auxiliary neural network to model the
entire continuous spectrum of Koopman operator’s eigenval-
ues. This allows the latent space to use significantly fewer
dimensions than the true infinite-dimensional Koopman op-
erator. We augment Lusch et al. (2018)’s original design
with auxiliary neural networks to generate cost matrices for
the optimal control problem formulation presented in eq. (1).
KCPO’s autoencoder extends Lusch et al. (2018)’s auxiliary
network design from dynamics prediction to control tasks.

2.4. Koopman Dynamics for Control

The paradigm of end-to-end differentiable Koopman poli-
cies comes from Yin et al. (2022), who use analytical Ric-
cati solving to obtain optimal controls with their Koop-
man autoencoder-based model, and they impose box con-
straints on the output of the solver with a hyperbolic tan-
gent squashing function. However, squashing functions
often lead to poor performance in practice; a numerical
optimization method with built-in support for box con-
straints may be more appropriate (Tassa et al., 2014, Section
III.A). Problematically, numerical optimization is not easily
or efficiently differentiable. We propose to retain end-to-
end differentiability in a box-constrained Koopman policy
by replacing Yin et al. (2022)’s analytical Riccati solver
layer with the implicitly differentiable constrained numeri-
cal MPC layer of Amos et al. (2018).

Unlike Lusch et al. (2018) and our work, the Koopman
autoencoder of Yin et al. (2022) does not parameterize the
continuous spectrum of the Koopman operator’s eigenvalues.
As a consequence, Yin et al. (2022)’s embedding space is
much higher dimensional and requires far more parameters
to model the dynamics than our work.

Watter et al. (2015); Banijamali et al. (2018) and follow-
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up works also explore the idea of learning latent linear
dynamics for end-to-end differentiable visual control. Al-
though Watter et al. (2015); Banijamali et al. (2018) are not
inspired by Koopman operator theory and do not label their
autoencoder a Koopman autoencoder, their design is similar
to ours in that they each rely on local linearization prior to
iLQR or iLQG (iterative-Linear Quadratic Gaussian, which
is iLQR with Gaussian noise). However, their iLQR layers
are not differentiable and do not impose box constraints
on controls. They also are focused on the dual problem of
control and perception, while we restrict ourselves to just
control by assuming full observability and determinism.

3. Koopman Constrained Policy Optimization
Our method estimates Koopman dynamics for control by
combining a Koopman autoencoder with differentiable MPC
and differentiating end-to-end through these components.

3.1. Combining Koopman Autoencoders with
Differentiable MPC

The original differentiable MPC introduced by Amos et al.
(2018) had a great limitation specifically when using neural
networks to approximate the dynamics and cost function.
The nonlinear neural networks introduce strong nonconvex-
ity that prevents MPC from reaching a fixed point solution
to eq. (1) (Amos et al., 2018). The requirement for fixed
point solutions to trajectory optimization arises inherently
when using the IFT to differentiate through MPC. If neu-
ral networks cannot be used in MPC, then the scope of
applicability for differentiable MPC becomes limited.

Combining implicitly differentiable MPC with a Koopman
autoencoder addresses this issue by producing linear dy-
namics without Taylor expansion. With linear dynamics,
constrained MPC optimization provably converges to a fixed
point, assuming the feasible set is nonempty and the cost
function is convex. In most trajectory optimization, the
cost function is convex: the quadratic distance function
from current state to goal. We enable end-to-end training in
the KCPO algorithm by composing the Koopman autoen-
coder and implicitly differentiable MPC (see algorithm 1
and fig. 1). Additional details on Amos et al. (2018)’s sta-
bility issues may be found in appendix A.6.

The positive semi-definiteness of Ct is a critical assumption
for the feasibility of the trajectory optimization; otherwise,
a solution will likely not exist. Ensuring that cost matrix
Ct for the KCPO algorithm is positive semi-definite, the
auxiliary neural network outputting the parameters for the
cost function (AUXILIARYCOSTNN in algorithm 1) gen-
erates the lower triangle of C’s Cholesky decomposition:
C = LL⊤. Thus, the cost C from AUXILIARYCOSTNN is
positive semi-definite (Golub & Van Loan, 1996).

Figure 1. Koopman Constrained Policy Optimization architecture.
An autoencoder transforms an observed state X into latent state
vector Z. Auxiliary neural networks generate dynamics and cost
matrices for MPC, solving eq. (1) for optimal controls U∗.

Algorithm 1 Koopman Constrained Policy Optimization
T is the MPC horizon length.
x ∈ Rn is a state vector.
u ∈ Rm is a control vector.
u,u ∈ Rm are the constraints on controls (eq. (1)).
C ∈ RT×n+m×n+m and c ∈ RT×n+m are objective cost terms.

Ct must be positive semi-definite.
F ∈ RT×n×n+m and f ∈ RT×n are dynamics cost terms.

1: function KCPO(x1:T ,u,u; θ)
2: // Obtain the Koopman cost, dynamics, and states
3: C, c← AUXILIARYCOSTNN(x1; θ)
4: F, f ← AUXILIARYDYNAMICSNN(x1; θ)
5: z1:T ← ENCODER(x1:T ; θ)
6: // Solve for the controls in the Koopman space
7: u⋆

1:T ← DIFFERENTIABLEMPCT,u,u(z1,C, c,F, f)
8: // Decode back to the original space
9: x̂1:T ← DECODER(z1:T ; θ)

10: return u⋆
1:T , x̂1:T

11: end function

3.2. Learning & Backpropagation

Training KCPO requires backpropagating through a task-
specific policy loss and an autoencoding reconstruction loss.

ℓ = ℓpolicy(u
⋆
1:T ) + ℓreconstr(x̂1:T ). (2)

Equation (2) differs from Yin et al. (2022)’s loss by lacking
Koopman operator regularization and dynamics prediction
error terms. In-loss regularization is unnecessary because
we train with AdamW, a regularizing optimizer (Loshchilov
& Hutter, 2014). We do not find the prediction error term
helpful and omit it, noting that Yin et al. (2022) heav-
ily downweight it. ∇θℓreconstr is backpropagated through
KCPO(xinit; θ) with explicit differentiation, and∇θℓpolicy is
backpropagated through KCPO(xinit; θ) in two parts. Using
the chain rule, PyTorch seamlessly connects two derivatives:
first, the derivative of the MPC layer w.r.t. the loss, and
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second, the derivative of the previous layers w.r.t. their in-
puts and parameters, even as those layers are differentiated
using distinct methods (implicit and explicit, respectively)
(Paszke et al., 2019).

4. Experiments & Results
We evaluate KCPO’s efficacy with imitation learning to
recover expert policies in the Simple Pendulum, Cartpole
Swing-Up, Differential Drive (LaValle, 2006), and Reacher
environments. The Reacher experiments were conducted
using a custom environment inspired by the implementation
of the Reacher task from Ivy Gym (Lenton et al., 2021).
We compare with three baselines, each using the hyperbolic
tangent activation function to squash input between (−1, 1)
before scaling to fit box constraints.

The first baseline is a Long Short-Term Memory-based Re-
current Neural Network (RNN) (Hochreiter & Schmidhuber,
1997). The initial state is given to the RNN and inputted
recurrently until a control trajectory is fully generated. The
second baseline modifies the “ReflexNet” of (Kurtz et al.,
2022) to enforce hard constraints using hyperbolic tangent.
The ReflexNet architecture is a multilayer perceptron and
outputs the entire trajectory given the initial state:

u1:T = πθ(x0). (3)

The last baseline, “RiccatiNet” is inspired by Yin et al.
(2022). It slightly modifies our specific autoencoder archi-
tecture so as to work with Yin et al. (2022)’s approach of
differentiable Riccati solving and squashing function. This
enables a head-to-head comparison of implicitly differen-
tiable MPC against Yin et al. (2022)’s Riccati solving and
squashing function while holding the autoencoder constant.

These are good baselines for assessing KCPO because they
can generate full box-constrained control trajectories given
initial states. Hyperparameters are in appendix A.1. The
source code to reproduce our experiments is available at

https://github.com/mhr/kcpo-icml.

4.1. Out-of-Distribution Generalization

Our first experiment measures imitation loss through Mean
Squared Error (MSE) between the expert and the trained
policy π in the Differential Drive environment averaged
over ten trials, each deterministically reproducible with a
separate pseudo-random seed.

Figure 2 shows KCPO typically performing worse with
baselines for a test set with constraints identical to those
seen during training, but KCPO beats baseline performance
for a test set with constraints different than those seen during
training. This suggests the baselines may be overfitting to
the training data. Similar generalization results exist for
Simple Pendulum and Cartpole Swing-Up, while Reacher
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Figure 2. Test imitation loss at last epoch for Differential Drive.
Left panel tests with in-distribution constraints. Right panel tests
with new, out-of-distribution constraints unseen during training.
(lower=better).

results in similar generalization within the margin of error, to
be found in appendix A.3. Details on which constraints were
used for each experiment can be found in appendix A.2.

4.2. Speed

We timed one batch of KCPO during training and inference
for the Cartpole Swing-Up environment using each model
with MPC horizon T = {10, 20} for ten batches (figures
included in appendix A.4). An entire second of wall clock
time is required for inference on a KCPO network with a
horizon of 20 on a 13th Gen Intel(R) Core(TM) i9 with
32 GB of RAM. Thus, it is impractical to use KCPO for
real-time control, but with a future improvement in speed,
the control performance of KCPO would be valuable.

5. Conclusion
We have presented a new method for constrained policy op-
timization in unknown, highly nonlinear systems: Koopman
Constrained Policy Optimization (KCPO). KCPO harnesses
Koopman autoencoders’ linearized dynamics with differen-
tiable trajectory optimization for end-to-end trainable con-
strained policy optimization. KCPO exceeds or matches
baseline performance in the Simple Pendulum, Cartpole
Swing-Up, Reacher, and Differential Drive environments
when tested with constraints unseen during training. KCPO
is a new policy optimization algorithm that trains end-to-end
with inviolable, hard box constraints on controls.

Future Extensions. KCPO is limited to applying only box
constraints to controls. One approach for state constraints
is Shi & Meng (2022), who concatenate the state vector with
the latent embedding vector. Another approach could be to
use a linear decoder like Korda & Mezić (2018) and Han
et al. (2022). King et al. (2022) achieve state and control
constraints, but these constraints are probabilistic, so the ar-
chitecture is safe only for offline training. Another extension
could borrow from Han et al. (2022) to achieve stochastic
control robust to random perturbations in dynamics. How-
ever, Box-DDP (an extension of LQR) is already optimal
for stochastic dynamics with a Gaussian noise distribution
(Tedrake, Chapter 14).
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A. Appendix
A.1. Hyperparameters

Table 1 displays the hyperparameters for the experiments described in section 4. Please note that the choice of hidden layer
activation functions differ between models because we observed these functions to be most optimal empirically.

Table 1. Hyperparameters
MPC Horizon Length 10

Epochs 250
Total Training Samples 1000
Total Testing Samples 100

Total Validation Samples 100
State Dimensions 2 (Pendulum), 5 (Cartpole), 4 (Reacher), 3 (Differential Drive)

Control Dimensions 1 (Pendulum), 1 (Cartpole), 2 (Reacher), 2 (Differential Drive)
Koopman Operator Dimensionality 2× 2 (Pendulum), 6× 6 (Cartpole), 4× 4 (Reacher), 6× 6 (Differential Drive)

Control Matrix Dimensionality 2× 1 (Pendulum), 6× 1 (Cartpole), 4× 1 (Reacher), 6× 6 (Differential Drive)
RNN Hidden Layer Activation Function ReLU

ReflexNet & KCPO Hidden Layer Activation Function GELU (Hendrycks & Gimpel, 2016)
Optimizer AdamW (Loshchilov & Hutter, 2014)

Learning Rate 1× 10−3

A.2. In-Distribution and Out-of-Distribution Constraints

Table 2 contains the box constraints used in the generalization experiments described in section 4.1 for the Simple Pendulum,
Cartpole Swing-Up, Reacher, and Differential Drive environments.

Table 2. Test Constraints
Environment In-Distribution Out-of-Distribution

Simple Pendulum (-2, 2) (-1, 1)
Cartpole Swing-Up (-10, 10) (-5, 5)

Reacher (-1, 1) (-0.5, 0.5)
Differential Drive (-100, 100) (-80, 80)

A.3. Additional experimental results for out-of-distribution generalization using new constraints

Figures 3 to 5 depict our generalization experiments described in section 4.1 for the Simple Pendulum, Cartpole Swing-Up,
and Reacher environments, respectively. In these experiments, unlike with our Differential Drive experiment, KCPO
performs roughly on par or slightly worse than the baselines for in-distribution constraints, but the trend discussed in
section 4.1 of KCPO performing better than baselines with out-of-distribution constraints continues in these other three
environments.
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Figure 3. Test imitation loss at last epoch for Simple Pendulum. Left panel tests with in-distribution constraints. Right panel tests with
new, out-of-distribution constraints unseen during training. (lower=better).
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Figure 4. Test imitation loss at last epoch for Cartpole Swing-Up. Left panel tests with in-distribution constraints. Right panel tests with
new, out-of-distribution constraints unseen during training. (lower=better).
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Figure 5. Test imitation loss at last epoch for Reacher. Left panel tests with in-distribution constraints. Right panel tests with new,
out-of-distribution constraints unseen during training. (lower=better).

A.4. Timing

Figure 6 depicts our timing experiments described in section 4.2.
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Figure 6. The X-axis is separated into categories for training and inference forward passes of each method (KCPO, RNN, ReflexNet, and
RiccatiNet), and the Y-axis is time in seconds per forward pass of a single batch of data (lower=better). A black line is drawn where the
time reaches one second to demonstrate when a given controller’s speed becomes far too slow for real-time control. The top row is with
horizon=10, while the bottom row is with horizon=20.

A.5. Differentiable MPC with Implicit Function Theorem

In practice, most constrained MPC solvers are not explicitly differentiable, making it difficult to use them to train neural
policies with hard constraints. Following Amos et al. (2018) and Kolter & Duvenaud, let us treat a constrained MPC
solver as a function z⋆(x), with x being the input state and z⋆ being the optimal outputs (both the optimal primal and dual
variables). In practice, z⋆(x) does not easily admit an explicit definition in terms of x. A consequence of lacking such
a definition is that ∂z⋆(x)

∂x cannot be computed using the typical automatic differentiation pipeline. One could compute
∂z⋆(x)

∂x by programming an MPC solver with differentiable operations and unrolling all the operations into a differentiable
computational graph. However, computing that Jacobian via unrolling is prohibitively slow in practice because it often
requires hundreds of iterations for an MPC solver to reach a fixed point.

Fortunately, the Implicit Function Theorem (IFT) provides an alternative differentiation method (Krantz & Parks, 2002).
The constrained MPC solver may be considered to be an implicit function g(x, z⋆), which parameterizes a new function in
terms of both the independent and dependent variable. Intuitively, our choice of g(x, z⋆) is an optimality function where
suboptimal inputs u will result in g(x,u) > 0, but the root g(x, z⋆) = 0 exists for the fixed point solution to the MPC
optimization.

With this implicit formulation of the constrained MPC solver function, ∂g(x,z⋆)
∂x can be solved for, under the condition that

g(x, z⋆) = 0. First, let us define the optimality function, which is at a root at MPC’s optimal fixed point z⋆, satisfying the
aforementioned condition.

g(x, z⋆(x)) = 0 (4)

In the next step of the theorem, both sides may be differentiated w.r.t. x.
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∂g(x, z⋆(x))

∂x
= 0 (5)

The chain rule expands the partial derivative of eq. (5) into two new partial derivatives, each w.r.t. x. Because g(x, z⋆) is a
multivariate function, both terms must be summed together.

∂g(x, z⋆)

∂x
+

∂g(x, z⋆)

∂z⋆
∂z⋆(x)

∂x
= 0 (6)

Because this differentiation takes place at a root, a linear system of equations can be set up, and ∂z⋆(x)
∂x can be solved for.

∂z⋆(x)

∂x
= −

(
∂g(x, z⋆)

∂z⋆

)−1
∂g(x, z⋆)

∂x
(7)

A.6. Preventing Unstable Training via Koopman Operator Theory

There are two issues where training in Amos et al. (2018) became unstable.

First, there were occasions during training when MPC optimization fails to reach a fixed point for some or all samples in
a batch. Amos et al. (2018) designed their training procedure to detach from the ruined, unconverged samples to prevent
spoiling of the training with a runtime exception.

Second, for a task involving simultaneous system identification and cost function learning when imitating an expert policy,
training did not converge. The authors found that cycling between training the cost function parameters and training their
system parameters was the only path to solve the task. Even the method of detaching unconverged samples was unhelpful.

KCPO addresses both instability issues by eliminating the nonconvexity of the dynamics via Koopman operator theory:
linearity implies MPC always converges. Batch gradient descent therefore can be used for constrained policy optimization
with deep neural networks.

Empirically, we did find that there was an issue with reaching fixed points on occasion during experiments with Differential
Drive only.
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