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Abstract

We study linear regression when the input data population covariance matrix has1

eigenvalues λi ∼ i−α where α > 1. Under a generic random matrix theory2

assumption, we prove that any near-interpolator, i.e., β whose training error is3

below the noise floor, must have its squared ℓ2-norm growing super-linearly with4

the number of samples n: ∥β∥22 = Ω(nα). This implies that existing norm-based5

generalization bounds increase as the number of samples increases, matching the6

empirical observations from prior work. On the other hand, such near-interpolators7

when properly tuned achieve good generalization, where the test errors approach8

arbitrarily close to the noise floor. Our work demonstrates that existing norm-based9

generalization bounds are vacuous for explaining the generalization capability of10

any near-interpolators. Moreover, we show that the trade-off between train and test11

accuracy is better when the norm growth exponential is smaller.12

1 Introduction13

Learning algorithms that near-perfectly interpolate the training data such as deep neural networks have14

been surprisingly effective in practice despite conventional statistical wisdom suggesting otherwise15

[Zhang et al., 2021]. Near-interpolators arise frequently in modern machine learning, e.g., via early16

stopping rules [Ji et al., 2021, Kuzborskij and Szepesvári, 2022]. Therefore, understanding the17

fundamental trade-offs between near-interpolation and generalization is crucial.18

Power law spectra assumptions arise commonly in popular settings such as in neural tangent kernels19

computed from practical networks. For instance, power law spectra of the neural tangent kernel matrix20

has been observed empirically in the MNIST, CIFAR-100 and CALTECH 101 datasets [Velikanov21

and Yarotsky, 2021, Wei et al., 2022, Murray et al., 2022]. Power law spectra assumptions provide22

a setting amenable to analysis while resembling real datasets, which has been used by previously23

Mallinar et al. [2022] to show that perfect-interpolators exhibit the so-called tempered overfitting24

phenomenon.25

In this work, we analyze near-interpolators under power law spectra assumptions. Our result26

shows that such near-interpolators have norms increase super-linearly in the number of samples and27

exhibit tempered near-overfitting. Consequently, current norm-based generalization bounds are not28

applicable to explained this tempered near-overfitting behavior, and that tighter bounds are needed in29

the power law spectra assumption.30

1.1 Our contributions31

Super-linear growth of the squared norm. We show that when the data population covariance matrix32

has a power law spectra λi = i−α with exponent α > 1, near-interpolators have squared norm Ω(nα).33
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In this setting, our work answers the question raised in the the “Discussion” section of Koehler et al.34

[2021] regarding the growth of the norm for near-interpolators.35

Tempered near-overfitting of near-interpolators. Tempered overfitting, coined by Mallinar et al.36

[2022], refers to the situation when estimators perfectly interpolate the training data and achieve37

test error cσ2 for some c ∈ (1,∞), i.e., proportional to the Bayes optimal error/noise floor σ2.38

Under the power law spectra λi = i−α condition where α > 1, they show that the proportionality39

constant c = α. Under this same setting, we show that the near-interpolators achieve tempered40

near-overfitting. More precisely, properly tuned ridge regression achieve proportionality constant c41

down to the benign regime where c = 1.42

1.2 Related works43

The main difference between our work and that of Mallinar et al. [2022] is that our work establishes44

super-linear growth of the squared norm of near-interpolators. Our work is motivated by the empirical45

evidence found by Wei et al. [2022] suggests that norms of kernel ridge regressors grow rapidly46

potentially beyond the purview of norm-based bound. We confirm that bounds similar to the ones in47

Koehler et al. [2021] are indeed vacuous for power-law spectra. Therefore, our work suggests that48

explaining the generalization capability of near-interpolators will likely require new tools.49

Ghosh and Belkin [2022] provides a lower bound on the test error for near-interpolators, demonstrat-50

ing a fundamental trade-off between training and testing error. Our work derives a lower bound on51

the norm for near-interpolators. Therefore, our work complements both Mallinar et al. [2022] and52

Ghosh and Belkin [2022].53

Our result is reminiscent of the result [Belkin et al., 2018, Theorem 1] in classification, which54

establishes that the RKHS norm of a “near-interpolating” classifier grows at rate Ω(exp(n1/p)). Note55

that if the number of samples n = Θ(poly(p)), then the lower bound does not grow to infinity and56

thus is only meaningful when n = Ω(exp(p)). In contrast, our result is for regression. While our57

results are not directly comparable, our lower bound is meaningful in the more practical n ∝ p58

regime.59

For more related works, see Appendix Section E.

Figure 1: Left: Trade-off between the testing and training errors from Proposition 2.9. The solid
lines are the parametrized curves (x, y) = (E∗

train, E∗
test) traced out by varying k (equivalently r).

The resulting estimators can achieve a continuum regimes of overfitting. The scatter points are
empirical results from synthetic experiments on the HDA model (Example 2.4). The value for r are
tuned according to the tuning scheme in Remark A.1 for prescribed training error τ ≈ E∗

train. The
parameters are ntrain = ntest = 1000, γ∗ = 0.5, α ∈ {1.25, 2.5} and σ2 = 1. See Appendix D
for experimental details. Right: Synthetic experiments validating the norm lower bound given
by Theorem 2.3. See Appendix D for additional experiment details. The squared norms are log-
transformed then fitted by least squares to estimate the exponent α. The estimated exponents matches
the true α’s. Note that the trade-off is better (left) when the corresponding norm growth exponent is
smaller (right).
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2 Main results61

Assumptions on the data distribution. Let n denote the number of samples, treated as the fundamental62

parameter. The feature dimension p is assumed to depend on n implicitly. The sample-to-feature63

ratio is denoted γ := n/p ∈ (0, 1] and the asymptotic sample-to-feature ratio is denoted γ∗ :=64

limn→∞ γ ∈ [0, 1]. When γ∗ = 0, p grows much faster than n. Denote by X = [x1, . . . , xn] ∈ Rp×n65

the data matrix and y ∈ Rn the training labels. Suppose that there exists a function f : Rp → R66

(depending on n) such that yi = εi + f(xi) where εi ∈ Rn denote the noise. For instance, the67

well-specified case corresponds to when f(x) = x⊤β⋆ for some β⋆ ∈ Rp. Both y and ε are viewed68

as column vectors.69

Assumptions on the noise. Suppose that the noise are independent across samples, has zero mean70

0 = E[ε1] and variance σ2 = E[ε21] > 0. For a positive integer p, let Ip denote the p × p identity71

matrix. Thus we have E[εε⊤] = σ2In. Moreover, suppose that ε ⊥ X , i.e., the noise and the data are72

independent.73

Definition 2.1. Ridge regression with regularizer ϱ > 0 is the vector β̂ϱ defined via the optimization:74

β̂ϱ := argminβ∈Rp
1
n∥X

⊤β − y∥22 + ϱ∥β∥22. (1)

Let Σ̂ := n−1XX⊤ denote the sample covariance matrix, Σ := E[Σ̂] the population covariance and75

Ǧ := n−1X⊤X the (scaled) gram matrix.76

2.1 Super-linear growth of the squared norm77

Our main result is that the expected squared norm of the KRR with ϱ := rn−α regularizer grows at78

least on the order of nα under suitable assumptions which we now introduce:79

Assumption 2.2. Let α > 1. The exact eigenvalue decay (EVD) condition with exponent α assumes80

that Σ = diag(λ1, · · · , λp) where λi = i−α.81

Assumption 2.2 has been analyzed in many different context, most notably recently in being the82

setting for the so-called tempered overfitting phenomenon [Mallinar et al., 2022]. See the related83

works section for a detailed discussion.84

Theorem 2.3. Assume that the exact EVD (Assumption 2.2) and certain random matrix-theoretic85

conditions hold. Define regularizers ϱ := rn−α for the ridge regression (Definition 2.1) where r > 086

is a positive number. Then, we have E[∥β̂ϱ∥22] = Ω(nα).87

See Figure 1-Left for experimental validation of the lower bound. Below, we will use the term88

“regularizer” to refer to both ϱ and r interchangeably.89

The assumptions made in Theorem 2.3 are satisfied by the so-called HDA model, defined below. This90

is proved later in Lemma B.5.91

Example 2.4. Bai and Silverstein [2010], Dobriban and Wager [2018]. The following is sometimes92

referred to as the high-dimensional asymptotic (HDA) model: 1. X = Σ1/2Z where the entries of93

Z = {Zij} ∈ Rp×n are i.i.d, have zero mean E[Zij ] = 0 and unit variance E[Z2
ij ] = 1. The matrix94

Σ is positive semidefinite. 2. n/p → γ∗ ∈ (0,∞), and 3. Spectral distribution of Σ converges to a95

distribution H supported on R≥0.96

Remark 2.5. When the conditions of Theorem 2.3 are met, the expected norm ∥β̂ϱ∥22 = Ω(nα). The97

current state-of-the-art uniform convergence generalization bound [Koehler et al., 2021, Corollary98

1] are of the form ∥β∥2/
√
n and are thus vacuous when ∥β∥22 = Ω(nα) when α > 1. We note that99

the aforementioned results are for perfect-interpolators that achieve zero training error, rather than100

near-interpolators. To our knowledge, no analogous theory for near-interpolators is known. Whether101

the techniques of [Koehler et al., 2021] can be extended to explain near-interpolators is left as future102

work.103

While stated for the ridge regressor as in Definition 2.1, our lower bound holds for any β that is “as104

good of an interpolator as ρ̂ϱ”, i.e., β has training error less than that of ρ̂ϱ.105

Definition 2.6. Let τ ≥ 0 arbitrary. The minimum norm τ -near-interpolator is defined as106

βτ := argminβ∈Rp∥β∥22 s.t. 1
n∥X

⊤β − y∥22 ≤ τ. (2)
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A τ -near-interpolator is any β ∈ Rp that is feasible for Equation (2).107

Proposition 2.7. Let ρ > 0 be arbitrary, β̂ϱ ∈ Rp be as in Definition 2.1, and τ := 1
n∥X

⊤β̂ϱ − y∥22.108

Consider βτ as in Definition 2.6. Then ∥β̂ϱ∥2 = ∥βτ∥2. Consequently, if β ∈ Rp has less training109

error than ∥β̂ϱ∥2, then ∥β̂ϱ∥2 ≤ ∥β∥2.110

For the proof, see Appendix Section F.111

2.2 Near-overfitting: Benign, tempered and everything in between112

Simon et al. [2022] analyzed certain approximations of the testing and training errors of kernel ridge113

regression. While these approximations, dubbed the eigenlearning framework, are non-rigorous114

[Mallinar et al., 2022], they have been shown to be highly predictive in practice [Jacot et al., 2020,115

Bordelon et al., 2020, Canatar et al., 2021].116

Following Mallinar et al. [2022], we use the eigenlearning framework to calculate the training and117

testing error of the estimators in Theorem 2.3 in terms of the effective regularizer [Wei et al., 2022],118

denoted by k.119

Definition 2.8. Let α > 1 and γ∗ ∈ [0,∞). Define functions I(·) ≡ Iα,γ∗(·) and J (·) ≡ Jα,γ∗(·) as120

I(k) :=
∫ 1/γ∗
0

dx
1+kxα , and J (k) :=

∫ 1/γ∗
0

dx
(1+kxα)2 . When γ∗ = 0, we assume that 1/γ∗ = +∞.121

Under Assumption 2.2, these functions from Definition 2.8 can be solved in closed-form given in122

Appendix G. The reason we work with the effective regularizer k rather than the regularizer r is123

that it is easier to calculate the approximations E∗
test, E∗

train of the testing and training errors in the124

eigenlearning framework:125

Proposition 2.9. In the setting of Section 2, assume further that f is well-specified, i.e., f(x) = x⊤β⋆126

for some β⋆. Moreover, suppose that supn=1,2... ∥β⋆∥2 < +∞. Assume the exact polynomial EVD127

condition (Assumption 2.2) with exponent α > 1. For the estimator in Theorem 2.3 we have128

E∗
test ≡ lim

n→∞
Etest = σ2 · 1

1−J (k) , and E∗
train ≡ lim

n→∞
Etrain = σ2 · (1−I(k))2

1−J (k)

Moreover, there exists kcrit ∈ R≥0 such that 1. For each r > 0, there exists a unique k ∈ (kcrit,+∞)129

such that r = R(k) := k(1−I(k)), 2. R is monotonically increasing on (kcrit,+∞), 3. E∗
test > σ2130

for all k ∈ (kcrit,+∞), 4. limk→+∞ E∗
test = σ2, and 5. d

dαE
∗
test > 0 for any fixed k > 0.131

For the proof of Proposition 2.9, see Appendix J. Thus, R is a bijection that relates the effective132

regularizer k and the (ordinary) regularizer r. Furthermore, note that limk→+∞ E∗
test = σ2 precisely133

states that the test error can be made arbitrarily close to the noise floor as k (equivalently, r) goes to134

infinity (See Proposition J.1 and Figure 2-Left).135

Remark 2.10 (Trade-off quality vs norm growth exponent). Note that item 5 of Proposition 2.9 makes136

rigorous the observation that in Figure 1-left, the trade-off is better when the corresponding norm137

growth exponent is smaller (see Figure 1-right).138

3 Discussion and limitations139

Connection to early stopping. Typically, early stopping prevents the trained algorithm from perfectly140

interpolating the data. Can early stopped learning theory results, e.g., Ji et al. [2021], Kuzborskij and141

Szepesvári [2022], be applied to analyze near-interpolators?142

Near-interpolators and uniform convergence generalization bound. Is possible to use uniform143

convergence-based approach to give non-vacuous generalization bound under the setting studied in144

this work? This question has already been raised by Dobriban and Wager [2018] in the context of145

classification.146

Limitations. Our work is restricted to analyzing a random matrix model. Understanding the147

phenomenon uncovered in this paper in more general models and real world settings will be needed.148

Moreover, our work does not rule out the existence of uniform convergence generalization bound.149

4



References150

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural151

scaling laws. arXiv preprint arXiv:2102.06701, 2021.152

Zhidong Bai and Jack W Silverstein. Spectral analysis of large dimensional random matrices,153

volume 20. Springer, 2010.154

Zhidong Bai and Wang Zhou. Large sample covariance matrices without independence structures in155

columns. Statistica Sinica, pages 425–442, 2008.156

Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear157

regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020.158

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand159

kernel learning. In International Conference on Machine Learning, pages 541–549. PMLR, 2018.160

Raphaël Berthier, Francis Bach, and Pierre Gaillard. Tight nonparametric convergence rates for161

stochastic gradient descent under the noiseless linear model. Advances in Neural Information162

Processing Systems, 33:2576–2586, 2020.163

Alberto Bietti, Luca Venturi, and Joan Bruna. On the sample complexity of learning with geometric164

stability. In Advances in Neural Information Processing Systems, 2021.165

Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning curves in166

kernel regression and wide neural networks. In International Conference on Machine Learning,167

pages 1024–1034. PMLR, 2020.168

Sébastien Bubeck and Mark Sellke. A universal law of robustness via isoperimetry. Advances in169

Neural Information Processing Systems, 34:28811–28822, 2021.170

Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model align-171

ment explain generalization in kernel regression and infinitely wide neural networks. Nature172

communications, 12(1):1–12, 2021.173

Romain Couillet and Mérouane Debbah. Signal processing in large systems: A new paradigm. IEEE174

Signal Processing Magazine, 30(1):24–39, 2012.175

Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Generalization error rates176

in kernel regression: The crossover from the noiseless to noisy regime. In Advances in Neural177

Information Processing Systems, pages 10131–10143, 2021.178

Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression179

and classification. The Annals of Statistics, 46(1):247–279, 2018.180

Nikhil Ghosh and Mikhail Belkin. A universal trade-off between the model size, test loss, and training181

loss of linear predictors. arXiv preprint arXiv:2207.11621, 2022.182

Arthur Jacot, Berfin Simsek, Francesco Spadaro, Clément Hongler, and Franck Gabriel. Kernel183

alignment risk estimator: Risk prediction from training data. Advances in Neural Information184

Processing Systems, 33:15568–15578, 2020.185

Ziwei Ji, Justin Li, and Matus Telgarsky. Early-stopped neural networks are consistent. Advances in186

Neural Information Processing Systems, 34:1805–1817, 2021.187

Antti Knowles and Jun Yin. Anisotropic local laws for random matrices. Probability Theory and188

Related Fields, 169(1):257–352, 2017.189

Frederic Koehler, Lijia Zhou, Danica J Sutherland, and Nathan Srebro. Uniform convergence of190

interpolators: Gaussian width, norm bounds and benign overfitting. Advances in Neural Information191

Processing Systems, 34:20657–20668, 2021.192

Ilja Kuzborskij and Csaba Szepesvári. Learning lipschitz functions by gd-trained shallow overparam-193

eterized relu neural networks. arXiv preprint arXiv:2212.13848, 2022.194

5



Neil Rohit Mallinar, James B Simon, Amirhesam Abedsoltan, Parthe Pandit, Misha Belkin, and195

Preetum Nakkiran. Benign, tempered, or catastrophic: Toward a refined taxonomy of overfitting.196

In Advances in Neural Information Processing Systems, 2022.197

Michael Murray, Hui Jin, Benjamin Bowman, and Guido Montufar. Characterizing the spectrum of198

the NTK via a power series expansion. arXiv preprint arXiv:2211.07844, 2022.199

Courtney Paquette, Kiwon Lee, Fabian Pedregosa, and Elliot Paquette. Sgd in the large: Average-case200

analysis, asymptotics, and stepsize criticality. In Conference on Learning Theory, pages 3548–3626.201

PMLR, 2021.202

Courtney Paquette, Bart van Merriënboer, Elliot Paquette, and Fabian Pedregosa. Halting time is203

predictable for large models: A universality property and average-case analysis. Foundations of204

Computational Mathematics, pages 1–77, 2022.205

Jack W Silverstein and Sang-Il Choi. Analysis of the limiting spectral distribution of large dimensional206

random matrices. Journal of Multivariate Analysis, 54(2):295–309, 1995.207

James B Simon, Madeline Dickens, Dhruva Karkada, and Michael R DeWeese. The eigenlearning208

framework: A conservation law perspective on kernel regression and wide neural networks. arXiv209

preprint arXiv:2110.03922, 2022.210

Terrence Tao. Intuitive understanding of the Stieltjes transform. MathOverflow, 2011. URL211

https://mathoverflow.net/q/79129. Version: 2011-10-25.212

Alexander Tsigler and Peter L Bartlett. Benign overfitting in ridge regression. arXiv preprint213

arXiv:2009.14286, 2020.214

Maksim Velikanov and Dmitry Yarotsky. Explicit loss asymptotics in the gradient descent training of215

neural networks. Advances in Neural Information Processing Systems, 34:2570–2582, 2021.216

Maksim Velikanov and Dmitry Yarotsky. Tight convergence rate bounds for optimization under217

power law spectral conditions. arXiv preprint arXiv:2202.00992, 2022.218

Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict how219

real-world neural representations generalize. In Proceedings of the 39th International Conference220

on Machine Learning, pages 23549–23588. PMLR, 2022.221

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep222

learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,223

2021.224

Hongyang Zhang, Yihan Wu, and Heng Huang. How many data are needed for robust learning?225

arXiv preprint arXiv:2202.11592, 2022.226

6

https://mathoverflow.net/q/79129


A Additional discussion on implications of Proposition 2.9227

Using Proposition 2.9, we illustrate the trade-off between the training error versus the testing error228

in Figure 1-Right using closed-form expression for E∗
train and E∗

test are presented in Appendix G.229

Figure 2-Left demonstrates that empirical traing and test errors from synthetic experiments concentrate230

around the theoretical values (E∗
train, E∗

test) with growing n.231

Remark A.1 (Tuning the regularizer). Proposition 2.9 allows for tuning the ridge parameter ϱ := rnα232

to achieve a user-specified value of training error τ via the following procedure: First, use a binary233

search algorithm to find kτ such that τ = E∗
train. Next, set r := R(kτ ). Finally, set ϱ := rnα.234

Remark A.2. The upshot of Proposition 2.9 is that any trade-off (E∗
train, E∗

test) on along the blue curve235

in Figure 1-Right can be achieved by the tuning algorithm in Remark A.1. For perfect-interpolators,236

Mallinar et al. [2022] shows that estimators with tempered overfitting achieve test error of exactly237

ασ2. In contrast, near-overfitting can achieve a continuum of test errors, i.e., cσ2 where c ∈ (1, cmax)238

belongs to a interval.239

Figure 2: Left: Synthetic experiment validating the approximations given by Proposition 2.9 using
the same setup as in Figure 1. By setting r ≈ 3.54, we get a test error of ≈ 1.35 which is significantly
below the tempered overfitting test error of α = 1.75 in [Mallinar et al., 2022, Theorem 3.1]. See
Figure 1 and Appendix D for experimental details. Right: The R(k) function from Proposition 2.9.
The x-axis is the input k. Note that for k < kcrit the regularizer r is negative. Although we are only
interested in the (kcrit,+∞) portion, negative regularizers have been studied by Tsigler and Bartlett
[2020] in the context of benign overfitting.

B Random Matrix Theory and Assumptions240

In this section, we review and define the random matrix theory-based assumptions used to establish241

our results. These assumptions, while seemingly restrictive, are common in random matrix theory242

and showing their universality is an ongoing research area. See Remark B.11.243

For c ∈ R, let δc denote the Dirac-delta measure on R at c. In other words, for a Borel-measurable244

set E ⊆ R, we have δc(E) = 1 if c ∈ E and δc(E) = 0 otherwise.245

Definition B.1 (Empirical spectral measure). Let M ∈ Rp×p be a matrix with real eigenvalues246

λ1, . . . , λp. The empirical spectral measure of M , denoted by esd(M), is the measure on R given247

by esd(M) = 1
p

∑p
i=1 δλi

.248

We now state the weaker eigenvalue decay assumption sufficient for Theorem 2.3:249

Assumption B.2 (Asymptotic EVD). Let α > 1. Suppose that esd(nαΣ) converges to a distribution250

H on R≥0.251

In Proposition C.7, we show that Assumption B.2 generalizes the earlier Assumption 2.2.252

Random matrix theory are primarily concerned with analysis of the spectra of large random matrices.253

A key analytic tool is the Stieltjes transform of the empirical spectral measures of matrices:254

Definition B.3. Let µ be a measure on R. The Stieltjes transform of µ is the (complex-valued)255

function with input z ∈ C given by Sµ(z) :=
∫ µ(t)dt

t−z .256
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See Bai and Silverstein [2010, Appendix B.2] for reference.257

For a matrix M ∈ Rp×p with p real eigenvalues (e.g., when M is real and symmetric), the following258

holds:259

Sesd(M)(z) = p−1tr
(
(M − zIp)−1

)
.

We now state the other assumption made in Theorem 2.3:260

Assumption B.4 (Positivity condition). For every r > 0, suppose that261

limn→∞ E
[

d
dr (rSesd(nαǦ)(−r))

]
> 0.262

By leveraging the results of Silverstein and Choi [1995], we prove in Appendix C.1 the following:263

Lemma B.5. Under the HDA model (Example 2.4) and the EVD condition (Assumption B.2), we264

have that limn→∞ E
[

d
dr (rSesd(nαǦ)(−r))

]
> 0.265

Next, we state what is sometimes referred to as the self-consistent equation [Tao, 2011]:266

Assumption B.6. For each r > 0, there exists a unique k ≡ k(r) ∈ R such that the limit exists,267

Ĩ(k) := limn→∞
1
n

∑p
i=1

1
1+kn−αλ−1

i

∈ R,

and the tuple (r, k) satisfies the equation268

1 = r
k + Ĩ(k). (3)

Remark B.7. The functional relationship between r and k can be computed explicitly under the exact269

eigenvalue decay condition. As we will see in the proof of Proposition J.1, the expression Ĩ coincide270

with I from Definition 2.8.271

Next, we state a version of the classical Marchenko-Pastur law for a random matrix ensemble X .272

Assumption B.8 (Marchenko-Pastur law). In the setting of Assumption B.6, further assume that273

almost surely274

lim
n→∞

rSesd(nαǦ)(−r) = kSH(−k)

and limn→∞
d
dr

(
rSesd(nαǦ)(−r)

)
= d

dr (kSH(−k)). We note that the k on the RHS depends on r.275

Remark B.9. While we assume that the data is generated from the HDA model X = ΣZ, we note276

that, when Σ = diag({λi = i−α}) (Assumption 2.2), the empirical spectral measure of the scaled277

covariance nαΣ converges to a limiting distribution. On the other hand, than the unscaled Σ matrix278

does not. Thus, the above Assumption B.8 reduces to the standard Marchenko-Pastur law when we279

consider the “fictitious” scaled HDA model nα/2
√
ΣZ which is used in the analysis. The scaling of280

the regularizer ϱ = rn−α in Definition 2.1 is chosen specifically to allow us to shift our analysis to281

this “fictitious” scaled HDA model.282

The following is well-known [Dobriban and Wager, 2018]:283

Theorem B.10 (Marchenko-Pastur theorem). Under Example 2.4, both Assumption B.6 and As-284

sumption B.8 hold.285

Remark B.11. Many works have demonstrated these so-called universality phenomena for a broad286

range of random matrix ensemble beyond the simple HDA model. For instance, the Marchenko-Pastur287

law (Assumption B.8) and their variants has been extended to the setting where certain independence288

assumptions are dropped [Bai and Zhou, 2008] and when γ∗ = limn→∞ n/p = 0 [Knowles and Yin,289

2017, Wei et al., 2022]. As such, we expect Assumption B.4 to hold in these broader contexts as well.290

We leave this as an important future direction.291

Having introduced the necessary assumptions, we now turn to proving Theorem 2.3.292

C Norm lower bound in RMT settings293

The goal of this section is to sketch the proof for Theorem 2.3. Complete proofs of all results are294

included in the Appendix. Throughout, we assume the setting of Section 2. The first key technical295

step the following:296
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Proposition C.1. E∥β̂ϱ∥22 ≥ n−1σ2E[tr((Σ̂ + ϱIp)−2Σ̂)].297

Proof sketch of Proposition C.1. We first simplify ∥β̂ϱ∥22 using the well-known formula for ridge298

regression:299

Lemma C.2. The closed-form solution for Equation (1) is given by the formula β̂ϱ := (Σ̂ +300

ϱIp)−1 1
nXy.301

Next, let M := (Σ̂ + ϱIp)−1 1
nX . Using the independence of X and ε, we get E[∥β̂ϱ∥22] ≥302

E[tr(M⊤Mεε⊤)]. Since M⊤M and εε⊤ are also independent, we have303

E[tr(M⊤Mεε⊤)] = σ2E[tr(M⊤M)].

By M⊤M = 1
n (Σ̂ + ϱIp)−1Σ̂(Σ̂ + ϱIp)−1 and the cyclic property of trace, we get the desired304

inequality.305

The next step towards proving Theorem 2.3 is the following:306

Proposition C.3. Let ϱ := rn−α. Then we have E∥β̂ϱ∥22 ≥ nασ2 · E
[

d
dr (rSesd(nαǦ)(−r))

]
.307

Proof sketch of Proposition C.3. We first relate the quantity tr((Σ̂+ϱIp)−2Σ̂) inside the lower bound308

in Proposition C.1 to Sesd(nαΣ̂), the Stieltjes transform of nαΣ̂:309

Lemma C.4. Let M ∈ Rp×p be any symmetric matrix and z ∈ R. Then we have310

d
dz tr(z(M + zIp)−1) = tr(M(M + zIp)−2).

Next, we use the following well-known result for relating Sesd(nαΣ̂) and Sesd(cǦ). For the sake of311

completeness, we include the proof in the Appendix.312

Lemma C.5 (Gram-to-covariance). Let c ∈ R and z ∈ C be arbitrary, then Sesd(cΣ̂)(z) = γ ·313

Sesd(cǦ)(z)−
(1−γ)

z .314

Using Proposition C.1 and the two preceding Lemmas, the desired inequality follows from algebraic315

manipulation.316

Given the lower bound in Proposition C.3, our goal now is to relate the random quantity Sesd(nαΣ̂)(·)317

with the deterministic quantity Sesd(nαΣ)(·) using random matrix theory. Later, we will see that318

a consequence of Proposition C.7 is that E
[

d
dr (rSesd(nαΣ̂)(−r))

]
is positive. This implies that319

E[∥β̂∥22] ≥ o(nα). We now conclude with the proof of Theorem 2.3.320

Proof of Theorem 2.3. Let L := limn→∞ E
[

d
dr (rSesd(nαǦ)(−r))

]
> 0 be as in Assumption B.4.321

Thus, for all n ≫ 0 sufficiently large, we have E
[

d
dr (rSesd(nαǦ)(−r))

]
> L/2 > 0. By Proposi-322

tion C.3, we get that E∥β̂ϱ∥22 ≥ nασ2 · L
2 for all n ≫ 0, as desired.323

C.1 Positivity condition for the HDA model324

This section will focus on the proof of Lemma B.5. Thus, throughout this section, we assume the325

setting of Example 2.4. Using the Marchenko-Pastur law (Assumption B.8) and calculus, we first326

show that327

lim
n→∞

E
[

d
dr (rSesd(nαǦ)(−r))

]
=
(
dr
dk

)−1 · d
dk (kSH(−k))

where r and k are as in Assumption B.6. Thus, we reduce to showing the positivity of dr
dk and328

d
dk (kSH(−k)). See Appendix I. □329
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C.2 Convergence to limiting distribution330

It remains to check that the exact eigenvalue decaying assumption (Assumption 2.2) indeed satisfy331

the condition 3 of Example 2.4.332

Definition C.6. Given a measure µ on R, we let cdf[µ] denote the cumulative distribution function333

of µ.334

Proposition C.7. Under Assumption 2.2, we have the following:335

lim
n→∞

cdf[esd(nαΣ)](t) =

{
1− γ∗t

−1/α : t ≥ γα
∗

0 otherwise.

Proof of Proposition C.7. The set of eigenvalues of nαΣ336

{(n/i)α}i=1,...,p = {(np )
α︸ ︷︷ ︸

=γα

, , . . . , ( n
n+1 )

α, n
n︸︷︷︸
=1

, ( n
n−1 )

α, . . . , (n1 )
α︸ ︷︷ ︸

=nα

}.

Thus, cdf[esd(nαΣ)](t) = 0 if t < γα and = 1 if t > nα.337

Below, let t ∈ [γα, nα] and j(t) ∈ {1, . . . , p} be the index such that t ≈ (n/j(t))α is as close as338

possible. Solving for j(t), we have j(t) ≈ nt−1/α. Thus, there are (approximately) p− j(t) indices,339

denoted by i, such that (n/i)α < (n/j(x))α. Divide by p, we get the relative frequency of such340

indices i, which is cdf[esd(nαΣ)](t) = 1− (j(t)/p) ≈ 1− γt−1/α. This approximation becomes341

exact as n → ∞.342

D Experiment343

We run experiment with α = 1.75 and n/p = γ = 0.5. We sample β⋆ ∈ Rp such that β⋆
i are344

i.i.d Gaussian with zero mean and variance = 10/p. For the data, we sample X =
√
ΣZ as in the345

HDA model Example 2.4 where Zij are i.i.d standard Gaussian random variables and Σ is as in346

Assumption 2.2. The same set up is used for Figure 1. All code for the experiments are included in347

Appendix K.348

E Expanded related works349

Trade-offs in interpolation-based learning. In addition to Mallinar et al. [2022], Ghosh and Belkin350

[2022], Belkin et al. [2018], previous works have also studied the fundamental trade-off in learning351

algorithms between overparametrization and (Lipschitz) smoothness [Bubeck and Sellke, 2021]352

robustness and smoothness [Zhang et al., 2022].353

Power law spectra. Many works reviewed in this section study the eigenvalues of kernel/gram354

matrices, while we are primarily interested in the covariance matrix spectra. However, we note that355

the covariance matrix have the same eigenvalues. Thus, results regarding the spectra applies to both356

kernel/gram and covariance matrices. Below, we will review works in this area using the term used357

by the original authors.358

Power-law spectra datasets. Synthetic data with artificial power law EVD covariance have been used359

frequently as toy examples [Berthier et al., 2020, Mallinar et al., 2022]. On real datasets, power360

law EVD is often observed to describe neural tangent kernels (NTK) well in practice, including on361

MNIST ([Bahri et al., 2021, Fig, 4] and [Velikanov and Yarotsky, 2022, Fig. 2]), FASHION-MNIST362

[Cui et al., 2021, Fig. 7] CALTECH 101 [Murray et al., 2022, Fig. 1], CIFAR-100 [Wei et al., 2022,363

Fig. 3].364

Theoretical machine learning works using power-law spectra. Bordelon et al. [2020] shows that365

power law EVD implies power law learning curve. Velikanov and Yarotsky [2021, §6.2] computes366

the power law EVD exponent for certain NTKs with ReLU to be α = 1 + 1
d . Murray et al. [2022]367

computes the EVD for NTKs with several different activations. The EVD condition is also known368

as the capacity condition in the kernel ridge regression literature. See Bietti et al. [2021] and the369

references there-in.370
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Bartlett et al. [2020, Theorem 6] shows that benign overfitting occurs when the covariance matrix371

eigenvalues λi = i−1 log−b(i + 1) for b > 1. Mallinar et al. [2022] studies power law decay for372

α ≥ 1 and proposes a taxonomy of overfitting into three categories: catastropic, tempered and benign.373

Random matrix theory (RMT). The signal processing research community have long been using RMT374

for theoretical analysis [Couillet and Debbah, 2012]. Increasingly RMT has been applied to machine375

learning as well as a key tool for analysis. In particular, Dobriban and Wager [2018], Jacot et al.376

[2020] have applied RMT for (kernel) ridge regression. Paquette et al. [2022, 2021] uses the so-called377

local Marchenko-Pastur law [Knowles and Yin, 2017] to analyze gradient-based algorithms. Wei378

et al. [2022] also applies such local law to analyze the so-called generalized cross- validation (GCV)379

estimator.380

F Proof for Proposition 2.7381

Proof of Proposition 2.7. By definition, β̂ϱ is feasible for the optimization in Equation (2) and thus382

∥β̂ϱ∥2 ≥ ∥βτ∥2. Now, suppose for the sake of contradiction that ∥βτ∥2 < ∥β̂ρ∥2. Then we have383

ϱ∥βτ∥22 + 1
n∥Xβτ − y∥22

≤ ϱ∥βτ∥22 + τ ∵ βτ is feasible for Equation (2)

< ϱ∥β̂ϱ∥22 + τ ∵ assumption ∥βτ∥2 < ∥β̂ρ∥2
= ϱ∥β̂ϱ∥22 + 1

n∥Xβ̂ϱ − y∥22 ∵ Definition of τ

This contradicts the minimality of β̂ρ for Equation (1). Thus, we’ve shown that ∥βτ∥2 = ∥β̂ρ∥2.384

G Closed-form expression for Proposition 2.9385

Let 2F1(a, b; c; z) be the Gauss hypergeometric function, implemented in SCIPY as386

scipy.special.hyp2f1.387

Lemma G.1. Let α > 1 and γ∗ ∈ R≥0 be fixed. The functions I,J from Definition 2.8 can be388

written in closed form as:389

I(k) = γ−1
∗ × 2F1(1, 1/α; 1 + 1/α;−kγ−α

∗ )
390

J (k) = γ−1
∗ × 2F1(2, 1/α; 1 + 1/α;−kγ−α

∗ ).

When γ∗ = 0, we have391

I(k) = π

α
k−1/α csc(π/α)

392

J (k) =
π(α− 1)

α2
k−1/α csc(π/α).

The above expressions can be obtained using computer algebra softwares such as MATHEMATICA.393

Note that the expression in the γ∗ = 0 case has appeared previously in [Mallinar et al., 2022,394

Eqn. (22)] in a similar context. To the best of our knowledge, the expressions in the γ∗ ̸= 0 case are395

new, at least in the machine learning literature.396

H Proofs for supporting lemmas of Theorem 2.3397

Proof of Lemma C.2. Start with the objective function F(β) := 1
n∥X

⊤β − y∥22 + ϱ∥β∥22. Take398

derivative with respect to β, we have399

1

2
∇β

(
1

n
∥X⊤β − y∥22 + ϱ∥β∥22

)
=

1

2
∇β

(
β⊤(Σ̂ + ϱIp)β − 2

n
β⊤Xy

)
= (Σ̂ + ϱIp)β − 1

n
Xy.

Since ∇βF(β̂ϱ) = 0, we are done.400
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Lemma H.1 (Special case of Woodbury formula). Let M ∈ Rp×n be an arbitrary matrix and401

ϱ ∈ (0,∞). Then402

(MM⊤ + ϱIp)−1M = M(M⊤M + ϱIn)−1 ∈ Rn×p

Proof of Lemma H.1. It suffices to prove Lemma H.1 for the special case when ϱ = 1, which we403

assume below. By the Woodbury matrix identity, we have404

(MM⊤ + Ip)−1 = I−M(M⊤M + In)−1M⊤ (4)

For brevity, let P := MM⊤ + Ip and let N := M⊤M + In. To proceed, we have405

P−1M

= M −MN−1M⊤M ∵ Multiplying (4) by M on the right

= M(In −N−1M⊤M) ∵ Factoring out M on the left

= M(In − (In −N−1)) ∵ In = N−1N = N−1 +N−1M⊤M

= MN−1

as desired.406

Proof of Lemma C.4. Without the loss of generality, suppose that M = diag(λi, . . . , λp). Then we407

have f(z) := tr(z(M + zIp)
−1) =

∑p
i=1

z
λi+z . Now, from elementary calculus, we have408

d

dx

x

y + x
= (y + x)−1 − x(y + x)−2 = (y + x)−2((y + x)− x) =

y

(y + x)2
.

From this, we recover the fact that d
dz f(z) =

∑n
i=1

λi

(λi+z)2 = tr(M(M + zIp)−2), as desired.409

Proof of Lemma C.5. Without the loss of generality, we may assume that c = 1. Let λ̂1 ≥ · · · ≥ λ̂p410

be the eigenvalues of Σ̂. Since p > n, we necessarily have that λ̂n+1 = · · · = λ̂p = 0. Moreover,411

λ̂1, . . . , λ̂n are the eigenvalues of Ǧ. Now, unwinding the definition, we have412

Sesd(Σ̂)(z) =
1

p

p∑
i=1

1

λ̂i − z

and413

Sesd(Ǧ)(z) =
1

n

n∑
i=1

1

λ̂i − z
.

Thus,414

Sesd(Σ̂)(z) =
1

p

(
n∑

i=1

1

λ̂i − z
+

p∑
i=n+1

1

−z

)

=

(
n

p

1

n

n∑
i=1

1

λ̂i − z

)
− p− n

p

1

z

= γ · Sesd(Ǧ)(z)−
(1− γ)

z

as desired.415

Proof of Proposition C.1. Below, for brevity we let a := f(X) and M := (Σ̂ + ϱIp)−1 1
nX . We416

recall from the previous lemma that417

β̂ϱ = (Σ̂ + ϱIp)−1 1

n
Xy = (Σ̂ + ϱIp)−1 1

n
X(f(X) + ε) = M(a+ ε).
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Thus,418

∥β̂ϱ∥22 = (a+ ε)⊤M⊤M(a+ ε) ≥ ε⊤M⊤Mε+ 2ε⊤M⊤Ma

Note that ε ⊥ M⊤Ma since ε ⊥ X . Thus, since E[ε] = 0, we have419

E[∥β̂ϱ∥22] = E[(a+ ε)⊤M⊤M(a+ ε)] ≥ E[ε⊤M⊤Mε] = E[tr(M⊤Mεε⊤)]

Since M⊤M ⊥ εε⊤, we have420

E[tr(M⊤Mεε⊤)] = tr(E[M⊤M ]E[εε⊤]) = tr(E[M⊤Mσ2In]) = σ2E[tr(M⊤M)].

On the other hand, M⊤M = 1
n (Σ̂ + ϱIp)−1Σ̂(Σ̂ + ϱIp)−1. Using the cyclic property of trace, we421

get the desired inequality.422

Proof of Proposition C.3. Recall from Proposition C.1 that E∥β̂∥22 ≥ n−1σ2E[tr((Σ̂ + ϱIp)−2Σ̂)].423

Below, we analyze the term inside the expectation. By the definition of the Stieltjes transform, we424

have425

tr(ϱ(Σ̂ + ϱIp)−1) = tr(rn−α(Σ̂ + rn−αIp)−1) = tr(r(nαΣ̂ + rIp)−1) = prSesd(nαΣ̂)(−r).

Therefore, by Lemma C.4, we have426

d

dr

(
prSesd(nαΣ̂)(−r)

)
=

d

dr
tr(ϱ(Σ̂+ϱIp)−1) =

dϱ

dr
· d
dϱ

tr(ϱ(Σ̂+ϱIp)−1) = n−αtr((Σ̂+ϱIp)−2Σ̂).

By Lemma C.5, we have427

prSesd(nαΣ̂)(−r) = pr

(
γ · Sesd(nαǦ)(−r) +

(1− γ)

r

)
= nrSesd(nαǦ)(−r) + p(1− γ)

Thus, we have428

d

dr

(
prSesd(nαΣ̂)(−r)

)
= n

d

dr

(
rSesd(nαǦ)(−r)

)
from which we conclude that429

tr((Σ̂ + ϱIp)−2Σ̂) = nα+1 d

dr

(
rSesd(nαǦ)(−r)

)
.

In view of E∥β̂∥22 ≥ n−1σ2E[tr((Σ̂+ ϱIp)−2Σ̂)] from Proposition C.1, we get the desired inequality.430

431

I Continued from Appendix C.1432

Before proceeding, we recall several definitions and notations adapted from Dobriban and Wager433

[2018]:434

lim
n→∞

E
[
Sesd(nαǦ)(z)

]
= v(z) (5)

is analogous to the v(z) defined in the paragraph immediately following [Dobriban and Wager, 2018,435

Eqn. (2)]. The difference is our Equation (5) is for the limit of the nα-scaled matrices nαǦ, rather436

than for Ǧ as in Dobriban and Wager [2018].437

Let H = limn→∞ cdf[esd(nαΣ)] be the limiting distribution as in Assumption B.2. Plugging in438

z = −r into Dobriban and Wager [2018, Eqn. (A.1)], we have439

− 1

v(−r)
= −r − 1

γ

∫
tdH(t)

1 + tv(−r)
.

Letting k ≡ k(r) := 1
v(−r) , we can rewrite the above as440

1 =
r

k
+

1

γ

∫
tdH(t)

k + t
. (6)
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By construction, we have441

1

γ

∫
tdH(t)

k + t
= lim

n→∞

1

n

p∑
i=1

1

1 + kn−αλ−1
i

where the RHS is as in Assumption B.6. Consequently, the tuple r, k from Assumption B.6 coincide442

with the earlier definition of k := 1
v(−r) right before Equation (6). Having established the above, we443

now proceed to:444

Proof of Lemma B.5. By the product rule, we have445

d
dr

(
rSesd(nαǦ)(−r)

)
= Sesd(nαǦ)(r)− rS ′

esd(nαǦ)
(−r)

Now, taking the limit of the above equation on both side, we have446

lim
n→∞

E
[

d
dr

(
rSesd(nαǦ)(−r)

)]
= lim

n→∞
E
[
Sesd(nαǦ)(−r)− rS ′

esd(nαǦ)
(−r)

]
= v(−r)− rv′(−r) ∵ Definition of v and v′

= d
dr (rv(−r)) ∵ Product rule

= d
dr (kSH(−k)) ∵ Marchenko-Pastur law (Assumption B.8)

= dk
dr · d

dk (kSH(−k)) ∵ Chain rule

=
(
dr
dk

)−1 · d
dk (kSH(−k)) ∵ Inverse function theorem

To complete the proof, it suffices to show that both dr
dk and d

dk (kSH(−k)) are positive which will be447

checked in the next two lemmas.448

Lemma I.1. The function dr
dk evaluated at k is positive.449

Proof of Lemma I.1. Recall that k = 1
v(−r) . Thus, we have450

dk

dr
(r) = (−1)

1

v(−r)2
(−1) · v′(−r) =

v′(−r)

v(−r)2
.

From the proof of Silverstein and Choi [1995, Theorem 4.1], we see that v′(·) > 0 for all negative451

inputs. In particular, v′(−r) > 0 which implies that dk
dr is positive. By the inverse function theorem,452

we have dr
dk = (dkdr )

−1 is also positive.453

Lemma I.2. The quantity d
dk (kSH(−k)) is positive.454

Proof of Lemma I.2. Plugging in z = −r into Dobriban and Wager [2018, Eqn. (3)], we have455

v(−r)− 1

r
=

1

γ

(
m(−r)− 1

r

)
. (7)

Now,456

rm(−r) = γrv(−r) + (1− γ) ∵ Equation (7) (8)

= γ
r

k
+ (1− γ) ∵ Definition of k (9)

=

(
γ −

∫
tdH(t)

k + t

)
+ (1− γ) ∵ Equation (6) (10)

= 1−
∫

tdH(t)

k + t
(11)

=

∫
kdH(t)

k + t
∵ 1 =

∫
dH(t) =

∫
k + t

k + t
dH(t) (12)

= kSH(−k). (13)
Thus, differentiating under the integral, we have457

d

dk
(kSH(−k)) =

∫
d

dk

(
k

k + t

)
dH(t) =

∫
tdH(t)

(k + t)2
> 0

as desired.458
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J Proof of Proposition 2.9459

We begin by analyzing the functions defined in Definition 2.8 and prove the items 1 and 2 of the460

“Moreover” part of Proposition 2.9:461

Proposition J.1. Let I and J be functions as defined in Definition 2.8. Under Assumption 2.2 and462

Assumption B.6, we have that r = R(k) := k · (1− I(k)) and dr
dk = 1− J (k).463

Furthermore, the following holds:464

1. R(k) ≍ k for k ≫ 0,465

2. There exists kcrit > 0 such that R(kcrit) = 0, R is increasing and positive on (kcrit,+∞).466

3. J (k) < 1 for k ∈ (kcrit,+∞) and J (+∞) = 0.467

Proof of Proposition J.1. We begin by proving the first part: that r = R(k) := k · (1 − I(k)) and468
dr
dk = 1− J (k). Rewrite the limit in Equation (3) as469

lim
n→∞

1

n

p∑
i=1

1

1 + kn−ασ−1
i

= lim
n→∞

1

n

n/γ∑
i=1

1

1 + k(i/n)
α =

∫ 1/γ∗

0

dx

1 + kxα

The right-most equality follows from the definition of the (Riemann) integral. If γ∗ = 0, then470

1/γ∗ = +∞ and the above is interpreted as an improper Riemann integral. Now, rearranging471

Equation (3), we get the desired formula of r = R(k) := k · (1− I(k)). The formula for dr
dk follows472

from differentiating under the integral theorem. Note that this also proves the assertion made in473

Remark B.7.474

For the first item of the “Furthermore” part, it suffices to show that limk→+∞ I(k) = 0. This follows475

from the fact that limk→+∞
1

1+kxα = 0 for all x > 0, integrability of the function (1 + xα)−1 over476

R≥0, and the dominated convergence theorem. Likewise, limk→∞ J (k) = 0 as well.477

For the second item of the “Furthermore” part, we note that for all x sufficiently large, we have478
dr
dk > 0 since limk→∞ J (k) = 0. Now, let kcrit be the largest real number such that R(kcrit) = 0.479

Since R(0) = 0, we must have kcrit ≥ 0.480

For all k > kcrit, we claim that I(k) < 1. To see this, assume the contrary. Then by the fact that481

limk→+∞ I(k) = 0 and the intermediate value theorem, there must exists k′ such that k′ > k such482

that I(k′) = 1 which implies that R(k′) = 0. This contradicts the maximality of kcrit.483

Finally, since 1 + kxα ≤ (1 + kxα)2 for all k ≥ 0 and x ≥ 0, we have that I(k) ≥ J (k) for all484

such k’s. Thus, by the previous claim, for all k > kcrit, we have 1 > I(k) ≥ J (k). This proves485

that dr
dk > 0 for all k > kcrit, as desired.486

J.1 Review of the eigenlearning framework487

Before proceeding with finishing the proof of Proposition 2.9, we briefly review the eigenlearning488

framework. Simon et al. [2022] calculates the test error for the estimator489

β̌δ := X(X⊤X + δIn)−1y = X(nǦ+ δIn)−1y (14)
for kernel ridge regression using the so-called eigenlearning equations [Simon et al., 2022, Section490

4.1]. Below, we recall some relevant parts of the framework:491

Definition J.2 (Eigenlearning eqn. specialized to setting in Section 2). Suppose that the ground truth492

regression function is linear, i.e., f(x) = x⊤β⋆ for some β⋆ ∈ Rp. Let δ and κ satisfy the equation493

n = δ
κ +

∑p
i=1

λi

λi+κ . (15)
Define the following n-dependent quantities:494

1. Overfitting coefficient: Ecoef := ndκ
dδ495

2. Testing error: Etest := Ecoef(σ2 + C) where496

C =
∑p

i=1(1− Li)(β
⋆
i )

2 and Li :=
λi

λi+κ .

3. Training error: Etrain := δ2

n2κ2 Etest.497
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J.2 Completing the proof of Proposition 2.9498

Throughout this section, we assume that we are in the situation of Proposition 2.9. Now, Simon499

et al. [2022] uses a different scaling for ridge regression than the one we use. We first resolve this500

discrepancy. Comparing Equation (14) with the expression in Lemma C.2, if we let δ := nϱ, then the501

expressions are equivalent, i.e., β̌δ = β̂ϱ. To see this, note that502

β̌δ = β̌nϱ = X(X⊤X + nϱIn)−1y

= (XX⊤ + nϱIp)−1Xy ∵ Lemma H.1

= (n(n−1XX⊤ + ϱIp))−1Xy

= (Σ̂ + ϱIp)−1 1
nXy = β̂ϱ ∵ Definition of β̂ϱ

Furthermore, we claim that as n → ∞, we have r, k satisfies Equation (3) if and only if (δ =503

nrn−α, κ = kn−α) satisfies Equation (15):504

n =
δ

κ
+

p∑
i=1

λi

λi + κ
⇐⇒ n =

nrn−α

kn−α
+

p∑
i=1

λi

λi + kn−α
⇐⇒ 1 =

r

k
+

1

n

p∑
i=1

1

1 + kn−αλ−1
i

.

Taking limit as n → ∞, we have proved the claim.505

Next, we show that limn→∞ C = 0 where C is as in Definition J.2. We have Li := λi

λi+κ =506

1
1+k(i/n)α . Note that limn→∞ Li = 1 for all fixed i. On the other hand, since supn=1,2... ∥β⋆∥2 <507

+∞, dominated convergence theorem implies that limn→∞ C = 0508

We claim that the following asymptotic expression for the testing and training error hold:509

lim
n→∞

Etest = σ2 · dk
dr and lim

n→∞
Etrain = σ2 · r2

k2 · dk
dr (16)

where r and k are defined as in Assumption B.6.510

To see this, first note that the overfitting coefficient satisfies511

Ecoef := ndκ
dδ = ndκ

dϱ
dϱ
dδ = ndκ

dϱ
1
n = dκ

dϱ = dk
dr .

Thus, we obtain the following asymptotic expression512

lim
n→∞

Etest = Ecoef · σ2 = σ2 · dk
dr .

On the other hand, the training error is given by513

Etrain = δ2

n2κ2 Etest = ϱ2

κ2 Etest = Etest · r2

k2 .

Therefore, limn→∞ Etrain = σ2 · r2

k2 · dk
dr . This proves (16), as desired.514

Finally, we show that d
dαE

∗
test > 0 for any k > 0. To this end, we use the expression derived in the515

previous step that E∗
test = σ2 · 1

1−J (k) . Taking derivative of both side w.r.t α, we have516

d
dαE

∗
test = σ2 −1

(1−J (k))2
d
dαJ (k)

Now, we recall from Definition 2.8 that J (k) :=
∫ 1/γ∗
0

dx
(1+kxα)2 . Thus, by differentiating under the517

integral sign, we have518

d
dαJ (k) =

∫ 1/γ∗

0

−2kxα log(x)dx

(1 + kxα)3
.

Putting it all together, we have519

d
dαE

∗
test = 2kσ2 1

(1−J (k))2

∫ 1/γ∗

0

xα log(x)dx

(1 + kxα)3
.

Since the integrand is positive, the integral is positive as well. Moreover, since k > 0, we have520
d
dαE

∗
test > 0 as desired. □521
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K Code522

Implementation of the I and J functions from Definition 2.8:523

1 import scipy.special as sc524

2 gamma = 0.5525

3 alpha = 1.75526

4527

5 # I generator528

6 I_gen = lambda x,k, alpha: x*sc.hyp2f1 (1,(1/ alpha), 1 + (1/ alpha), -k*529

x** alpha)530

7 # J generator531

8 J_gen = lambda x,k, alpha: x*sc.hyp2f1 (2,(1/ alpha), 1 + (1/ alpha), -k*532

x** alpha)533

9534

10 I = lambda k : I_gen (1/gamma , k, alpha) #\mathcal{I}535

11 J = lambda k : J_gen (1/gamma , k, alpha) #\mathcal{J}536

12537

13 N = lambda k : 1 - I(k) # helper538

14 D = lambda k : 1 - J(k) # helper539

15540

16 Etst = lambda k : 1/D(k) #\mathcal{E}_{\ mathtt{test }}/\ sigma^2541

17 Etrn = lambda k : N(k)**2/D(k) #\mathcal{E}_{\ mathtt{train }}/\ sigma^2542

18 R = lambda k : k*(1-I(k)) # \mathcal{R}543

For the experiments in Figure 1-Right:544

1 import numpy as np545

2 gamma = 0.5546

3 alpha = 1.75547

4548

5 k_grid = [ 1.34, 1.99, 2.45, 2.92, 3.44, 4.03, 4.71, 5.5 ,549

6.44,550

6 7.55, 8.9 , 10.54, 12.58 , 15.15, 18.46 , 22.8 , 28.67 , 36.87,551

7 48.82, 67.2 ]552

8553

9 n_tst = 1000554

10 def get_norms(n,r):555

11 p = int(n/gamma)556

12557

13 idx = np.arange(1,p+1) # feature indices558

14559

15 pop_evs = idx**(- alpha) # population level eigenvalues560

16561

17 X = np.multiply(np.sqrt(pop_evs[:,None]), np.random.normal(size= (562

p, n)) )563

18 X_tst = np.multiply(np.sqrt(pop_evs[:,None]), np.random.normal(564

size= (p, n_tst)) )565

19566

20 beta_true = np.sqrt (10)*np.random.normal(size= (p,1))/np.sqrt(p)567

21568

22 y = X.T@beta_true + np.random.normal(size= (n,1))569

23 y_tst = X_tst.T@beta_true + np.random.normal(size= (n_tst ,1))570

24571

25572

26 hatSig = (1/n)*X@X.T # sample covariance matrix573

27574

28 beta = (1/n)*np.linalg.solve(hatSig + r*n**(- alpha)*np.eye(p), X@y575

)576

29577

30 norm = np.linalg.norm(beta)**2578

31 Etrn = np.mean(np.square(y-X.T@beta))579

32 Etst = np.mean(np.square(y_tst -X_tst.T@beta))580

33 return {"norm": norm , "Etrn":Etrn , "Etst":Etst}581

34582
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35 rs = R(np.array(k_grid))583

36584

37 n = 1000585

38586

39 Etrns = []587

40 Etsts = []588

41 for r in rs:589

42 result = get_norms(n,r)590

43 Etrns.append(result["Etrn"])591

44 Etsts.append(result["Etst"])592

For the experiments in Figure 1:593

1 # run the previous block first!594

2 r = 3.5433549686341595

3596

4 ns = np.logspace (1,3.6,num =20)597

5 categories = ["norm","Etrn","Etst"]598

6 n_trials = 10599

7600

8 results = {cat : [[] for _ in range(n_trials)] for cat in categories}601

9602

10 for t in range(n_trials):603

11 for n in ns:604

12 out = get_norms(int(n),r)605

13 for cat in categories:606

14 results[cat][t]. append(out[cat])607
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