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Abstract

We study linear regression when the input data population covariance matrix has
eigenvalues \; ~ ¢~“ where a > 1. Under a generic random matrix theory
assumption, we prove that any near-interpolator, i.e., 5 whose training error is
below the noise floor, must have its squared ¢>-norm growing super-linearly with
the number of samples n: ||3]|3 = (n®). This implies that existing norm-based
generalization bounds increase as the number of samples increases, matching the
empirical observations from prior work. On the other hand, such near-interpolators
when properly tuned achieve good generalization, where the test errors approach
arbitrarily close to the noise floor. Our work demonstrates that existing norm-based
generalization bounds are vacuous for explaining the generalization capability of
any near-interpolators. Moreover, we show that the trade-off between train and test
accuracy is better when the norm growth exponential is smaller.

1 Introduction

Learning algorithms that near-perfectly interpolate the training data such as deep neural networks have
been surprisingly effective in practice despite conventional statistical wisdom suggesting otherwise
[Zhang et al., [2021]]. Near-interpolators arise frequently in modern machine learning, e.g., via early
stopping rules [Ji et al., 2021} [Kuzborskij and Szepesvari, [2022]]. Therefore, understanding the
fundamental trade-offs between near-interpolation and generalization is crucial.

Power law spectra assumptions arise commonly in popular settings such as in neural tangent kernels
computed from practical networks. For instance, power law spectra of the neural tangent kernel matrix
has been observed empirically in the MNIST, CIFAR-100 and CALTECH 101 datasets [Velikanov
and Yarotskyl 2021}, |Wei et al.| 2022, Murray et al.,|2022]]. Power law spectra assumptions provide
a setting amenable to analysis while resembling real datasets, which has been used by previously
Mallinar et al.| [2022] to show that perfect-interpolators exhibit the so-called tempered overfitting
phenomenon.

In this work, we analyze near-interpolators under power law spectra assumptions. Our result
shows that such near-interpolators have norms increase super-linearly in the number of samples and
exhibit tempered near-overfitting. Consequently, current norm-based generalization bounds are not
applicable to explained this tempered near-overfitting behavior, and that tighter bounds are needed in
the power law spectra assumption.

1.1 Our contributions

Super-linear growth of the squared norm. We show that when the data population covariance matrix
has a power law spectra A; = i~ with exponent o > 1, near-interpolators have squared norm Q(n®).
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In this setting, our work answers the question raised in the the “Discussion” section of [Koehler et al.
[2021] regarding the growth of the norm for near-interpolators.

Tempered near-overfitting of near-interpolators. Tempered overfitting, coined by Mallinar et al.
[2022], refers to the situation when estimators perfectly interpolate the training data and achieve
test error co? for some ¢ € (1,00), i.e., proportional to the Bayes optimal error/noise floor o2
Under the power law spectra \; = ¢~ condition where o > 1, they show that the proportionality
constant ¢ = «. Under this same setting, we show that the near-interpolators achieve tempered
near-overfitting. More precisely, properly tuned ridge regression achieve proportionality constant ¢
down to the benign regime where ¢ = 1.

1.2 Related works

The main difference between our work and that of [Mallinar et al.|[2022] is that our work establishes
super-linear growth of the squared norm of near-interpolators. Our work is motivated by the empirical
evidence found by Wei et al.| [2022] suggests that norms of kernel ridge regressors grow rapidly
potentially beyond the purview of norm-based bound. We confirm that bounds similar to the ones in
Koehler et al.|[2021]] are indeed vacuous for power-law spectra. Therefore, our work suggests that
explaining the generalization capability of near-interpolators will likely require new tools.

Ghosh and Belkin|[2022] provides a lower bound on the fest error for near-interpolators, demonstrat-
ing a fundamental trade-off between training and testing error. Our work derives a lower bound on
the norm for near-interpolators. Therefore, our work complements both Mallinar et al.|[2022]] and
Ghosh and Belkin! [2022].

Our result is reminiscent of the result [Belkin et al.l 2018, Theorem 1] in classification, which
establishes that the RKHS norm of a “near-interpolating” classifier grows at rate Q(exp(n'/?)). Note
that if the number of samples n = O(poly(p)), then the lower bound does not grow to infinity and
thus is only meaningful when n = Q(exp(p)). In contrast, our result is for regression. While our
results are not directly comparable, our lower bound is meaningful in the more practical n o p
regime.

For more related works, see Appendix Section [E]
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Figure 1: Left: Trade-off between the testing and training errors from Proposition[2.9} The solid
lines are the parametrized curves (z,y) = (& ain; Enesy) traced out by varying k (equivalently r).
The resulting estimators can achieve a continuum regimes of overfitting. The scatter points are
empirical results from synthetic experiments on the HDA model (Example[2.4). The value for r are
tuned according to the tuning scheme in Remark [A.T|for prescribed training error 7 =~ &;,;,,. The
parameters are Nirain = Ntest = 1000, v, = 0.5, a € {1.25,2.5} and 02 = 1. See Appendix@]
for experimental details. Right: Synthetic experiments validating the norm lower bound given
by Theorem 2.3} See Appendix D] for additional experiment details. The squared norms are log-
transformed then fitted by least squares to estimate the exponent «.. The estimated exponents matches
the true a’s. Note that the trade-off is better (left) when the corresponding norm growth exponent is

smaller (right).
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2 Main results

Assumptions on the data distribution. Let n denote the number of samples, treated as the fundamental
parameter. The feature dimension p is assumed to depend on n implicitly. The sample-to-feature
ratio is denoted v := n/p € (0, 1] and the asymptotic sample-to-feature ratio is denoted v, :=
lim;, 00 7y € [0, 1]. When v, = 0, p grows much faster than n. Denote by X = [z1,...,x,] € RP*"
the data matrix and y € R"™ the training labels. Suppose that there exists a function f : R? — R
(depending on n) such that y; = &; + f(z;) where £; € R™ denote the noise. For instance, the
well-specified case corresponds to when f(x) = =T 3* for some 3* € RP. Both y and ¢ are viewed
as column vectors.

Assumptions on the noise. Suppose that the noise are independent across samples, has zero mean
0 = E[e1] and variance 02 = E[e7] > 0. For a positive integer p, let I, denote the p x p identity
matrix. Thus we have E[EET] = ¢2I,,. Moreover, suppose that ¢ L X, i.e., the noise and the data are
independent.

Definition 2.1. Ridge regression with regularizer o > 0 is the vector BQ defined via the optimization:
By = argmingep, 5 | X T8 — yll3 + ol|BII5. M

Let ¥ :=n !X X7 denote the sample covariance matrix, > := IE[XA)] the population covariance and
G :=n"'X T X the (scaled) gram matrix.

2.1 Super-linear growth of the squared norm

Our main result is that the expected squared norm of the KRR with g := rn™° regularizer grows at
least on the order of n® under suitable assumptions which we now introduce:

Assumption 2.2. Let o > 1. The exact eigenvalue decay (EVD) condition with exponent «v assumes
that ¥ = diag(A1,- -+, Ap) where \; = i~

Assumption has been analyzed in many different context, most notably recently in being the
setting for the so-called fempered overfitting phenomenon [Mallinar et al.| [2022]]. See the related
works section for a detailed discussion.

Theorem 2.3. Assume that the exact EVD (Assumption 2.2)) and certain random matrix-theoretic
conditions hold. Define regularizers o := rn~% for the ridge regression (Deﬁnition where r > 0
is a positive number. Then, we have E[||3,3] = Q(n®).

See Figure [T}Left for experimental validation of the lower bound. Below, we will use the term
“regularizer” to refer to both ¢ and r interchangeably.

The assumptions made in Theorem [2.3]are satisfied by the so-called HDA model, defined below. This
is proved later in Lemma|[B.3]

Example 2.4. Bai and Silverstein| [2010]], |Dobriban and Wager|[2018|]. The following is sometimes
referred to as the high-dimensional asymptotic (HDA) model: 1. X = ©.1/2Z where the entries of
Z ={Z;;} € RP*™ are ii.d, have zero mean E[Z;;] = 0 and unit variance E[ij] = 1. The matrix
¥ is positive semidefinite. 2. n/p — 7. € (0, 00), and 3. Spectral distribution of ¥ converges to a
distribution H supported on R>.

Remark 2.5. When the conditions of Theoremare met, the expected norm || Bg |2 = Q(n®). The
current state-of-the-art uniform convergence generalization bound [Koehler et al.,[2021}, Corollary
1] are of the form ||3||2/+/n and are thus vacuous when ||3]|2 = Q(n®) when o > 1. We note that
the aforementioned results are for perfect-interpolators that achieve zero training error, rather than
near-interpolators. To our knowledge, no analogous theory for near-interpolators is known. Whether
the techniques of [Koehler et al.,|2021]] can be extended to explain near-interpolators is left as future
work.

While stated for the ridge regressor as in Definition our lower bound holds for any /3 that is “as
good of an interpolator as p,”, i.e., 3 has training error less than that of p,,.

Definition 2.6. Let 7 > 0 arbitrary. The minimum norm T-near-interpolator is defined as

B, = argmingep, |83 st LIXTA-yl3 <. @
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A T-near-interpolator is any 5 € RP that is feasible for Equation (2).

Proposition 2.7. Let p > 0 be arbitrary, Bg € RP be as in Deﬁnition and7:= 1| X7 BQ — |3
Consider 3 as in Deﬁnition Then || BQHQ = ||8,||2. Consequently, if 3 € R? has less training
error than || B|l2, then |[5,|l2 < [|3]]2-

For the proof, see Appendix Section|[H

2.2 Near-overfitting: Benign, tempered and everything in between

Simon et al.|[2022] analyzed certain approximations of the testing and training errors of kernel ridge
regression. While these approximations, dubbed the eigenlearning framework, are non-rigorous
[Mallinar et al., 2022f], they have been shown to be highly predictive in practice [Jacot et al., 2020,
Bordelon et al., [2020, |Canatar et al., [2021]].

Following Mallinar et al.| [2022], we use the eigenlearning framework to calculate the training and
testing error of the estimators in Theorem [2.3]in terms of the effective regularizer [Wei et al.l 2022],
denoted by k.

Definition 2.8. Let o > 1 and v, € [0, 00). Define functions Z(-) = Z4 ~, (-) and J (-) = Ja,+. () as

Z(k) = 01/7* 1+dk”«'zu, and J (k) := 01/7* (1—5—%%)2' When v, = 0, we assume that 1/7, = +o0.

Under Assumption [2.2] these functions from Definition [2.8]can be solved in closed-form given in
Appendix |G| The reason we work with the effective regularizer k rather than the regularizer r is
that it is easier to calculate the approximations &7, ., E4rain Of the testing and training errors in the
eigenlearning framework:

Proposition 2.9. In the setting of Section assume further that f is well-specified, i.e., f(z) = =T 8*
for some 3*. Moreover, suppose that sup,,_; o ||3*||2 < +0c. Assume the exact polynomial EVD
condition (Assumption[2.2)) with exponent o > 1. For the estimator in Theorem [2.3| we have

2 (1-Z(k)*

2 — 1 _ .
= M Eerain = 07 - =77

and &

train

* 9.
gtest = lim gtest =0
n—oo

R S

=7 (k)
Moreover, there exists kcrir € R>q such that /. Foreach r > 0, there exists a unique k € (kcyit, +00)
such that = R (k) := k(1 —Z(k)), 2. R is monotonically increasing on (kcrit, +00), 3. Efegy > 0°
forall k € (Kepit, +00), 4. limy_ 4 o0 Efogy = 02, and 5. % st > 0 for any fixed k£ > 0.

For the proof of Proposition [2.9] see Appendix J] Thus, R is a bijection that relates the effective
regularizer k and the (ordinary) regularizer r. Furthermore, note that limy,_, 1 o £;.g, = 02 precisely
states that the test error can be made arbitrarily close to the noise floor as k (equivalently, ) goes to
infinity (See Proposition [J.T)and Figure 2} Left).

Remark 2.10 (Trade-off quality vs norm growth exponent). Note that item 5 of Proposition[2.9makes
rigorous the observation that in Figure [T}Heft, the trade-off is better when the corresponding norm
growth exponent is smaller (see Figure[[}right).

3 Discussion and limitations

Connection to early stopping. Typically, early stopping prevents the trained algorithm from perfectly
interpolating the data. Can early stopped learning theory results, e.g., Ji et al.|[2021]], Kuzborskij and
Szepesvari [2022]], be applied to analyze near-interpolators?

Near-interpolators and uniform convergence generalization bound. Is possible to use uniform
convergence-based approach to give non-vacuous generalization bound under the setting studied in
this work? This question has already been raised by [Dobriban and Wager|[2018] in the context of
classification.

Limitations. Our work is restricted to analyzing a random matrix model. Understanding the
phenomenon uncovered in this paper in more general models and real world settings will be needed.
Moreover, our work does not rule out the existence of uniform convergence generalization bound.



150

151
152

153
154

155
156

157
158

159
160

161
162
163

164
165

166
167

169
170

171
172
173

174
175

176
177
178

179
180

181
182

183
184
185

190
191
192

193
194

References

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jachoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. arXiv preprint arXiv:2102.06701, 2021.

Zhidong Bai and Jack W Silverstein. Spectral analysis of large dimensional random matrices,
volume 20. Springer, 2010.

Zhidong Bai and Wang Zhou. Large sample covariance matrices without independence structures in
columns. Statistica Sinica, pages 425442, 2008.

Peter L Bartlett, Philip M Long, Gdbor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences, 117(48):30063-30070, 2020.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand
kernel learning. In International Conference on Machine Learning, pages 541-549. PMLR, 2018.

Raphaél Berthier, Francis Bach, and Pierre Gaillard. Tight nonparametric convergence rates for
stochastic gradient descent under the noiseless linear model. Advances in Neural Information
Processing Systems, 33:2576-2586, 2020.

Alberto Bietti, Luca Venturi, and Joan Bruna. On the sample complexity of learning with geometric
stability. In Advances in Neural Information Processing Systems, 2021.

Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning curves in
kernel regression and wide neural networks. In International Conference on Machine Learning,
pages 1024-1034. PMLR, 2020.

Sébastien Bubeck and Mark Sellke. A universal law of robustness via isoperimetry. Advances in
Neural Information Processing Systems, 34:28811-28822, 2021.

Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model align-
ment explain generalization in kernel regression and infinitely wide neural networks. Nature
communications, 12(1):1-12, 2021.

Romain Couillet and Mérouane Debbah. Signal processing in large systems: A new paradigm. /EEE
Signal Processing Magazine, 30(1):24-39, 2012.

Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborova. Generalization error rates
in kernel regression: The crossover from the noiseless to noisy regime. In Advances in Neural
Information Processing Systems, pages 10131-10143, 2021.

Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression
and classification. The Annals of Statistics, 46(1):247-279, 2018.

Nikhil Ghosh and Mikhail Belkin. A universal trade-off between the model size, test loss, and training
loss of linear predictors. arXiv preprint arXiv:2207.11621, 2022.

Arthur Jacot, Berfin Simsek, Francesco Spadaro, Clément Hongler, and Franck Gabriel. Kernel
alignment risk estimator: Risk prediction from training data. Advances in Neural Information
Processing Systems, 33:15568-15578, 2020.

Ziwei Ji, Justin Li, and Matus Telgarsky. Early-stopped neural networks are consistent. Advances in
Neural Information Processing Systems, 34:1805-1817, 2021.

Antti Knowles and Jun Yin. Anisotropic local laws for random matrices. Probability Theory and
Related Fields, 169(1):257-352, 2017.

Frederic Koehler, Lijia Zhou, Danica J Sutherland, and Nathan Srebro. Uniform convergence of
interpolators: Gaussian width, norm bounds and benign overfitting. Advances in Neural Information
Processing Systems, 34:20657-20668, 2021.

Ilja Kuzborskij and Csaba Szepesvari. Learning lipschitz functions by gd-trained shallow overparam-
eterized relu neural networks. arXiv preprint arXiv:2212.13848, 2022.



195
196
197

198
199

201
202

203
204
205

207

208
209
210

211
212

213
214

215
216

217
218

219
220
221

222
223
224

225
226

Neil Rohit Mallinar, James B Simon, Amirhesam Abedsoltan, Parthe Pandit, Misha Belkin, and
Preetum Nakkiran. Benign, tempered, or catastrophic: Toward a refined taxonomy of overfitting.
In Advances in Neural Information Processing Systems, 2022.

Michael Murray, Hui Jin, Benjamin Bowman, and Guido Montufar. Characterizing the spectrum of
the NTK via a power series expansion. arXiv preprint arXiv:2211.07844, 2022.

Courtney Paquette, Kiwon Lee, Fabian Pedregosa, and Elliot Paquette. Sgd in the large: Average-case
analysis, asymptotics, and stepsize criticality. In Conference on Learning Theory, pages 3548-3626.
PMLR, 2021.

Courtney Paquette, Bart van Merriénboer, Elliot Paquette, and Fabian Pedregosa. Halting time is
predictable for large models: A universality property and average-case analysis. Foundations of
Computational Mathematics, pages 1-77, 2022.

Jack W Silverstein and Sang-I1 Choi. Analysis of the limiting spectral distribution of large dimensional
random matrices. Journal of Multivariate Analysis, 54(2):295-309, 1995.

James B Simon, Madeline Dickens, Dhruva Karkada, and Michael R DeWeese. The eigenlearning
framework: A conservation law perspective on kernel regression and wide neural networks. arXiv
preprint arXiv:2110.03922, 2022.

Terrence Tao. Intuitive understanding of the Stieltjes transform. MathOverflow, 2011. URL
https://mathoverflow.net/q/79129. Version: 2011-10-25.

Alexander Tsigler and Peter L Bartlett. Benign overfitting in ridge regression. arXiv preprint
arXiv:2009.14286, 2020.

Maksim Velikanov and Dmitry Yarotsky. Explicit loss asymptotics in the gradient descent training of
neural networks. Advances in Neural Information Processing Systems, 34:2570-2582, 2021.

Maksim Velikanov and Dmitry Yarotsky. Tight convergence rate bounds for optimization under
power law spectral conditions. arXiv preprint arXiv:2202.00992, 2022.

Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict how
real-world neural representations generalize. In Proceedings of the 39th International Conference
on Machine Learning, pages 23549-23588. PMLR, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107-115,
2021.

Hongyang Zhang, Yihan Wu, and Heng Huang. How many data are needed for robust learning?
arXiv preprint arXiv:2202.11592, 2022.


https://mathoverflow.net/q/79129

227

228
229
230
231
232
233
234
235
236
237

239

240

241
242
243

244
245

246
247

248

249

250
251

252

253
254

256

A Additional discussion on implications of Proposition 2.9]

Using Proposition[2.9] we illustrate the trade-off between the training error versus the testing error
in Figure[T}Right using closed-form expression for £ ,;, and &;,, are presented in Appendix
Figure[2} Left demonstrates that empirical traing and test errors from synthetic experiments concentrate
around the theoretical values (€. ,in, Eresy) With growing n.

Remark A.1 (Tuning the regularizer). Proposition[2.9)allows for tuning the ridge parameter ¢ := rn®
to achieve a user-specified value of training error 7 via the following procedure: First, use a binary
search algorithm to find &, such that 7 = &£ _; . Next, set r := R(k,). Finally, set o := rn®.
Remark A.2. The upshot of Propositionis that any trade-off (£;,:,, Erest) ON along the blue curve
in Figure [TFRight can be achieved by the tuning algorithm in Remark [A.T] For perfect-interpolators,
Mallinar et al.[[2022] shows that estimators with tempered overfitting achieve test error of exactly
ao?. In contrast, near-overfitting can achieve a continuum of test errors, i.e., co? where ¢ € (1, emax)

belongs to a interval.

Tst error Trn error 20-80 quantile i,
[ s — Eam Il 087 i
2.0
R e=1n ________ 0.6
2 NI . e
» See a2 041 i
£ P LJ e v e red . :
i ® e ° . = H (0, kerse) (Kcrit, +00)
e I et 5] i Negative Positive
2 Noise floor 021 i regularization” regularization
= :
‘s
< .
=05 () L] (0.() Frerkeerrrneserrrnnenenneenenies Bttt
L4 0 v v oy, =y—a oo
. — R(k)=k-(1-Z(k))
—0.24_:
0.0 4 . — ,
10! 10? 10° 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Sample size n k

Figure 2: Left: Synthetic experiment validating the approximations given by Proposition[2.9using
the same setup as in Figure[I} By setting r ~ 3.54, we get a test error of ~ 1.35 which is significantly
below the tempered overfitting test error of o = 1.75 in [Mallinar et al.,[2022, Theorem 3.1]. See
Figure|l|and Appendix @] for experimental details. Right: The R (k) function from Proposition
The z-axis is the input k. Note that for & < k., the regularizer r is negative. Although we are only
interested in the (kcrit, +00) portion, negative regularizers have been studied by [Tsigler and Bartlett
[2020] in the context of benign overfitting.

B Random Matrix Theory and Assumptions

In this section, we review and define the random matrix theory-based assumptions used to establish
our results. These assumptions, while seemingly restrictive, are common in random matrix theory
and showing their universality is an ongoing research area. See Remark [B.1T]

For ¢ € R, let §,. denote the Dirac-delta measure on R at c. In other words, for a Borel-measurable
set E C R, we have §.(E) = 1if c € FE and 0.(E) = 0 otherwise.

Definition B.1 (Empirical spectral measure). Let M € RP*P be a matrix with real eigenvalues

A, ..., Ap. The empirical spectral measure of M, denoted by esd (M), is the measure on R given
by esd(M) = % b O,

We now state the weaker eigenvalue decay assumption sufficient for Theorem [2.3

Assumption B.2 (Asymptotic EVD). Let « > 1. Suppose that esd(n®X) converges to a distribution
H on Rzo.

In Proposition[C.7} we show that Assumption [B.2] generalizes the earlier Assumption [2.2]

Random matrix theory are primarily concerned with analysis of the spectra of large random matrices.
A key analytic tool is the Stieltjes transform of the empirical spectral measures of matrices:
Definition B.3. Let i be a measure on R. The Stieltjes transform of p is the (complex-valued)
function with input z € C given by S,,(z) := [ pt)dt

t—z °
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See|Bai and Silverstein| [2010, Appendix B.2] for reference.

For a matrix M € RP*P with p real eigenvalues (e.g., when M is real and symmetric), the following

holds:
Sesd(M) (Z) = p_ltr ((M - ZHP)_l) :
We now state the other assumption made in Theorem 2.3}

Assumption B.4 (Positivity condition). For every r > 0, suppose that
lim,, 00 E[d—(i(rSesd(naé)(—r))} > 0.

By leveraging the results of Silverstein and Choi| [1995]], we prove in Appendix [C.]the following:

Lemma B.5. Under the HDA model (Example and the EVD condition (Assumption[B.2), we
have that lim,,, oo E[ 2 (TSesa(noc) (=r))] > 0.

Next, we state what is sometimes referred to as the self-consistent equation [Taol 2011]:
Assumption B.6. For each r > 0, there exists a unique k = k(r) € R such that the limit exists,

and the tuple (r, k) satisfies the equation
1=%+Z(k). 3)

Remark B.7. The functional relationship between r and k can be computed explicitly under the exact

eigenvalue decay condition. As we will see in the proof of Proposition |J.1} the expression 7 coincide
with Z from Definition 2.8

Next, we state a version of the classical Marchenko-Pastur law for a random matrix ensemble X .

Assumption B.8 (Marchenko-Pastur law). In the setting of Assumption further assume that
almost surely
lim Tsesd n"‘G)( ) = kSH(_k)

n— oo

and lim,, _, o 4 (rSesd(naG) (—r)) = 4 (kSg(—k)). We note that the k on the RHS depends on r.

Remark B.9. While we assume that the data is generated from the HDA model X = X7, we note
that, when ¥ = diag({\; = i~}) (Assumption[2.2), the empirical spectral measure of the scaled
covariance n®X converges to a limiting distribution. On the other hand, than the unscaled > matrix
does not. Thus, the above Assumption[B.§|reduces to the standard Marchenko-Pastur law when we
consider the “fictitious” scaled HDA model n®/2v/~Z which is used in the analysis. The scaling of
the regularizer o = rn~% in Deﬁmtlonnm chosen specifically to allow us to shift our analysis to
this “fictitious” scaled HDA model.

The following is well-known [Dobriban and Wager, [2018]]:

Theorem B.10 (Marchenko-Pastur theorem). Under Example both Assumption and As-
sumption [B.§] hold.

Remark B.11. Many works have demonstrated these so-called universality phenomena for a broad
range of random matrix ensemble beyond the simple HDA model. For instance, the Marchenko-Pastur
law (Assumption[B.8) and their variants has been extended to the setting where certain independence
assumptions are dropped [Bai and Zhou, [2008]] and when ~,. = lim,, o, n/p = 0 [Knowles and Yin|
2017, |Wei et al.l 2022]]. As such, we expect Assurnption to hold in these broader contexts as well.
We leave this as an important future direction.

Having introduced the necessary assumptions, we now turn to proving Theorem 2.3]

C Norm lower bound in RMT settings

The goal of this section is to sketch the proof for Theorem [2.3] Complete proofs of all results are
included in the Appendix. Throughout, we assume the setting of Section 2] The first key technical
step the following:
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Proposition C.1. E||3,]2 > n~'o2E[tr((2 + ol,) 23]
Proof sketch of Proposition[C.1} We first simplify || $,|2 using the well-known formula for ridge
regression:
Lemma C.2. The closed-form solution for Equation is given by the formula BQ = (f) +
Q]Ip)fliX V.
Next, let M = (X + ol,)"'1X. Using the independence of X and e, we get E[|B,]13] >
E[tr(M " Mec")]. Since M " M and e " are also independent, we have

E[tr(M " Mee")] = o?E[tr(M " M)].
By M"M = %(ﬁ) + Q]Ip)‘li(i + ol,)~! and the cyclic property of trace, we get the desired
inequality. O

The next step towards proving Theorem [2:3]is the following:
Proposition C.3. Let ¢ := rn~“. Then we have E||3,3 > n®o? - B[4 (rSogq(nacy(—7))]-

Proof sketch of Proposition[C.3} We first relate the quantity tr((3+ ol,) ~232) inside the lower bound
in Proposition toS

esd(nos)’

the Stieltjes transform of n®3:

Lemma C4. Let M € RP*P be any symmetric matrix and z € R. Then we have

Ltr(2(M + 21,) ") = tr(M (M + 21,)?).

Next, we use the following well-known result for relating S, _ d(nai) and Sy~ For the sake of
completeness, we include the proof in the Appendix.

Lemma C.5 (Gram-to-covariance). Let ¢ € R and z € C be arbitrary, then Sesd(ci)(z) = -
(=)

Sesd(c@) (Z) - z

Using Proposition [C.I]and the two preceding Lemmas, the desired inequality follows from algebraic
manipulation. O

Given the lower bound in Proposition our goal now is to relate the random quantity S__ a(nos) )
with the deterministic quantity Sesq(sox)(-) using random matrix theory. Later, we will see that
a consequence of Proposition is that B[ (rS, (e (=7))] is positive. This implies that
E[||3]|2] > o(n®). We now conclude with the proof of Theorem

Proof of Theorem2.3] Let L := lim,, o E[d%(rSesd(naé)(—r))] > 0 be as in Assumption
Thus, for all n >> 0 sufficiently large, we have E[ - (1S, q(nacy)(—7))] > L/2 > 0. By Proposi-
tion we get that E||Bg\|§ > n%0? - L forall n > 0, as desired. O

C.1 Positivity condition for the HDA model

This section will focus on the proof of Lemma@ Thus, throughout this section, we assume the
setting of Example[2.4] Using the Marchenko-Pastur law (Assumption[B-8) and calculus, we first

show that .

nleroloE[%(rsesd(naé)(—r))} = (%) - 4% (kSu(=k))
where r and k are as in Assumption Thus, we reduce to showing the positivity of % and
d% (kSu(—E)). See Appendix O
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C.2 Convergence to limiting distribution

It remains to check that the exact eigenvalue decaying assumption (Assumption [2.2) indeed satisfy
the condition 3 of Example

Definition C.6. Given a measure y on R, we let cdf[u] denote the cumulative distribution function
of p.

Proposition C.7. Under Assumption [2.2] we have the following:

. N 1— et Ve g >ae
i catlesa(n)(0) = { otherwise.

Proof of Proposition The set of eigenvalues of n™3

{(n/i)*}iz1,. p = {(%)“,,...,(#l)ay no(mo)e ()0
o =7 ~

Thus, cdf[esd(n®X)](t) = 0ift < v* and = 1if t > n*.

Below, let t € [y*,n®] and j(t) € {1,...,p} be the index such that t ~ (n/j(t))“ is as close as
possible. Solving for 5(t), we have j(t) ~ nt~'/<. Thus, there are (approximately) p — 5(¢) indices,
(

denoted by i, such that (n/i)* < (n/j(x))“. Divide by p, we get the relative frequency of such
indices i, which is cdf[esd(n®¥)](t) = 1 — (j(t)/p) ~ 1 — vt~/ This approximation becomes
exact as n — 0o. O

D Experiment

We run experiment with o = 1.75 and n/p = v = 0.5. We sample 8* € R? such that 3 are

i.i.d Gaussian with zero mean and variance = 10/p. For the data, we sample X = /X7 as in the
HDA model Example [2.4] where Zij are i.i.d standard Gaussian random variables and . is as in
Assumption [2.2] The same set up is used for Figure[I] All code for the experiments are included in

Appendix [K]

E Expanded related works

Trade-offs in interpolation-based learning. In addition to Mallinar et al.|[2022]],|Ghosh and Belkin
[2022], Belkin et al.| [2018]], previous works have also studied the fundamental trade-off in learning
algorithms between overparametrization and (Lipschitz) smoothness [Bubeck and Sellkel 2021]]
robustness and smoothness [Zhang et al.|[2022].

Power law spectra. Many works reviewed in this section study the eigenvalues of kernel/gram
matrices, while we are primarily interested in the covariance matrix spectra. However, we note that
the covariance matrix have the same eigenvalues. Thus, results regarding the spectra applies to both
kernel/gram and covariance matrices. Below, we will review works in this area using the term used
by the original authors.

Power-law spectra datasets. Synthetic data with artificial power law EVD covariance have been used
frequently as toy examples [Berthier et al., 2020, Mallinar et al., 2022]]. On real datasets, power
law EVD is often observed to describe neural tangent kernels (NTK) well in practice, including on
MNIST ([Babhri et al.,|2021} Fig, 4] and [Velikanov and Yarotsky, |2022} Fig. 2]), FASHION-MNIST
[Cui et al.L 2021} Fig. 7] CALTECH 101 [Murray et al., 2022} Fig. 1], CIFAR-100 [Wei et al., 2022}
Fig. 3].

Theoretical machine learning works using power-law spectra. Bordelon et al.|[2020] shows that
power law EVD implies power law learning curve. |Velikanov and Yarotsky|[2021, §6.2] computes
the power law EVD exponent for certain NTKs with ReLU tobe o = 1 + é. Murray et al.|[2022]
computes the EVD for NTKs with several different activations. The EVD condition is also known
as the capacity condition in the kernel ridge regression literature. See Bietti et al.|[2021]] and the
references there-in.

10
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Bartlett et al.|[2020, Theorem 6] shows that benign overfitting occurs when the covariance matrix
eigenvalues \; = i~ 'log’(i 4 1) for b > 1. Mallinar et al.| [2022] studies power law decay for
« > 1 and proposes a taxonomy of overfitting into three categories: catastropic, tempered and benign.

Random matrix theory (RMT). The signal processing research community have long been using RMT
for theoretical analysis [Couillet and Debbah, |2012]. Increasingly RMT has been applied to machine
learning as well as a key tool for analysis. In particular, |Dobriban and Wager| [2018], Jacot et al.
[2020] have applied RMT for (kernel) ridge regression. [Paquette et al.[[2022}2021] uses the so-called
local Marchenko-Pastur law [Knowles and Yin, 2017] to analyze gradient-based algorithms. Wei
et al.|[2022] also applies such local law to analyze the so-called generalized cross- validation (GCV)
estimator.

F Proof for Proposition

Proof of Proposition[2.7] By definition, BQ is feasible for the optimization in Equation (2) and thus
1Boll2 > |18, ||2. Now, suppose for the sake of contradiction that |3 ||2 < ||5,||2. Then we have

I8, 13+ HIX8, -yl

<o|lB.|3+7 B, is feasible for Equation ()
< Q||BQ||§ +7 - assumption |3, |2 < ||Bp|\2
= 0|18, I3 + %HXﬁQ —y||? - Definition of 7

This contradicts the minimality of 3, for Equation (Eb Thus, we’ve shown that ||, ||z = [|3,]la. O

G Closed-form expression for Proposition 2.9

Let oFi(a,b;c;z) be the Gauss hypergeometric function, implemented in SCIPY as
scipy.special.hyp2f1l.

Lemma G.1. Let o > 1 and 7, € R>¢ be fixed. The functions Z, J from Definition [ng] can be
written in closed form as:

ha
&y

N~—
I

v X P (1,1 o1+ 1o —ky, @)
Yot X o F1(2, 1o 14 1o kv, ).

2
N

S~—
I

When v, = 0, we have
I(k) = Zk=V% cse(n /)
o

I (k) = %w/a ese(m/a).

The above expressions can be obtained using computer algebra softwares such as MATHEMATICA.
Note that the expression in the v, = 0 case has appeared previously in [Mallinar et al., 2022,
Eqn. (22)] in a similar context. To the best of our knowledge, the expressions in the -y, # 0 case are
new, at least in the machine learning literature.

H Proofs for supporting lemmas of Theorem 2.3

Proof of Lemma[C.2] Start with the objective function F () := 1||X T8 — y[|3 + o||8||3. Take
derivative with respect to 3, we have

1 1 1 - 2 - 1
5V (nIIXTB B+ gnﬁ%) =2V (mz oL)B— nBTXy) G+ ap-Lix
Since V3 F(8,) = 0, we are done. O

11
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Lemma H.1 (Special case of Woodbury formula). Let M € RP*™ be an arbitrary matrix and
0 € (0,00). Then

(MM + oI,)"*M = M(M "M + ol,)~ € R"*P
Proof of Lemma[H.1} 1t suffices to prove Lemma [H.T] for the special case when ¢ = 1, which we
assume below. By the Woodbury matrix identity, we have
(MM" 4+ L) ' =1-MM"M+1,)"'M" )

For brevity, let P :== MM " + 1, and let N := M " M + I,,. To proceed, we have

P'M

=M—-MN"*MTM - Multiplying (@) by M on the right

=M, — N"*M"M) - Factoring out M on the left

=MI, -1, -NY) L,=N'N=N1'4+N'M"M

=MN!
as desired. O
Proof of Lemma[C4} Without the loss of generality, suppose that M = diag(\;, ..., A,). Then we
have f(z2) == tr(z2(M + zI,)"1) = >F_, 57> - Now, from elementary calculus, we have
d w —1 —2 —2 Y
— =(y+z —x(y+x =Wyt +z)-2)=—F3.
P (y+z) (y + ) (y+z)((y+z)—z) OEESE

From this, we recover the fact that - f(2) = Y7 (/\)\W = tr(M (M + 21,,)~2), as desired. [

Proof of Lemma|[C.5] Without the loss of generality, we may assume that ¢ = 1. Let A > > ;\p

1
be the eigenvalues of 3. Since p > n, we necessarily have that A\, = --- = A\, = 0. Moreover,
A1, ..., A\, are the eigenvalues of G. Now, unwinding the definition, we have

Sty (2) = 130
esd(X) P P 5\1 _ .
and
e 1
Soca(c = — - .
ae(2) n;/\z—z
Thus,
1 E”: 1 zp: 1
Socars (z)z( - )
esd(X)
p =1 )\172 i=n—+1 ?
_(niys 1) _pont
pnlei—z) " b oz
(1-7)
=7 Sesd(é) (Z) - P
as desired. O

Proof of Proposition|C.1] Below, for brevity we let a := f(X) and M := (S + ol,) X, We
recall from the previous lemma that

Bo= -+ o)™ Xy = (84 o) - X(f(X) + ) = M(a+ <),

12



418

419

420

421
422

423
424
425

426

427

428

429

430
431

432

433
434

435
436
437

438

440

Thus,
B2 = (a+e) "M M(a+e)>ec M Me+2"M" Ma

Note thate | M " Ma since e 1. X. Thus, since E[¢] = 0, we have

E[|B,/3] =El(a +¢) "M M(a+e)] > Ele" M Me] = E[tr(M " Mee"))
Since MTM 1 e ', we have
E[tr(M " Mee")] = tr(E[M " M|E[ee"]) = tr(E[M " Mc?1,]) = o*Eltr(M " M)).
On the other hand, M "M = %(XA] + gﬂp)’li(ﬁ] + ol,)~*. Using the cyclic property of trace, we
get the desired inequality. O

Proof of Proposition|C.3} Recall from Propositionthat E||3]13 > n~'o®E[tr((X + ol,) ).
Below, we analyze the term inside the expectation. By the definition of the Stieltjes transform, we
have

tr(o( + o)1) = tr(rn (2 4+ rn L) 1) = tr(r(n®% + 7L,) 7Y = PrSeganosy (—7)-

Therefore, by Lemmal[C.4] we have

d _d ¢ 1y _do d s “1y L —ag (% —2¢
ar (pTSesd(naz)(—T)) = o tr(e(S+ely) ™) = dr~d9tr(g(2+gﬂp) ) =n"%r((X+el,) " 7%).
By Lemma|[C.5] we have

S apmesy (—T) = St O s, gnee 1
pr esd(naZ)(_r) =pr\7- esd(n“G)(_r) + r =nr esd(naG)(_r) +p( - ’Y)

Thus, we have
d d
% (pTSesd(naﬁl)(_r)) - n% (rsesd(nac)(_r)>

from which we conclude that

R o ait d
(S + o1)28) = 0! (rSsg(ocy (1)) -

In view of E||3]|2 > n~'o?E[tr(( + ol,,) ~2%)] from Proposition we get the desired inequality.
O

I Continued from Appendix [C.]]

Before proceeding, we recall several definitions and notations adapted from [Dobriban and Wager
[2018]:

lim E [S, 00001 ()] = v(2) Q)

n—oo
is analogous to the v(z) defined in the paragraph immediately following [Dobriban and Wager, [2018|
Eqn. (2)]. The difference is our Equation dg_[) is for the limit of the n®-scaled matrices n®G, rather
than for GG as in|Dobriban and Wager| [2018)]].

Let H = lim,,, cdf[esd(n®Y)] be the limiting distribution as in Assumption[B.2] Plugging in
z = —r into|Dobriban and Wager| [2018] Eqn. (A.1)], we have

1 1 tdH (t)
v(—r) 7/1+tv(—r)'

Letting k = k(r) := ﬁ, we can rewrite the above as

_r 1 [tdH(?)
i e ©

13
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By construction, we have

1 [tdH(t 1& 1

YR
ol k+t  nocon =14+ kn=o)

where the RHS is as in Assumption Consequently, the tuple 7, k from Assumption [B.6]coincide

with the earlier definition of k := - =9 right before Equation @) Having established the above, we

now proceed to:

Proof of Lemma|B.5] By the product rule, we have

4 (TSesd(n“G)(_r)> = Sesa(nacy (1) — rSésd(naé)(—r)
Now, taking the limit of the above equation on both side, we have

lim E [ (rSyuanecy (—7))] = 1m0 E [Sppaquecy (1) = 7Shugnoce(—7)

o =v(—r) —rv'(-r) - Definition of v and v’
=L (ro(—r)) " Product rule
= d% (kSu(—k)) *.» Marchenko-Pastur law (Assumption [B.8)
= % . ﬁ (kSg(—k)) *.~ Chain rule
= (%)71 - A (kSu(—k)) *.* Inverse function theorem

To complete the proof, it suffices to show that both 47 and % (kSu(—k)) are positive which will be
checked in the next two lemmas. O

Lemma I.1. The function Z—Z evaluated at k is positive.

Proof of Lemmal[ 1] Recall that k = ﬁ Thus, we have

%r:—$_.v’_rzm
d’l"() ( 1)1}(—7‘)2( 1) ( ) U(—’/‘)QQ

From the proof of |Silverstein and Choi|[[1995] Theorem 4.1], we see that v'(-) > 0 for all negative

inputs. In particular, v'(—r) > 0 which implies that % is positive. By the inverse function theorem,
we have 4 = (9£)~1 js also positive. O

Lemma L.2. The quantity % (kSu(—k)) is positive.

Proof of Lemmal[.2] Plugging in z = —r into[Dobriban and Wager [2018] Eqn. (3)], we have

1 1 1
v(—r) — o= 5 (m(—r) - r) . ™
Now,
rm(—r) = yrv(—r) 4+ (1 —~) .- Equation (8)
= v% +(1—7) - Definition of k )
= (,y — / tzjfi)) +(1—=+) . Equation (§) (10)
. [tdH()
=1 k+t (1
_ [RdH(E) _ [ktt
—/ e .1—/dH(t)—/k+th(t) (12)
= kSu(—k). (13)

Thus, differentiating under the integral, we have

d B d k B tdH (t)
d—k(kSH(—k)) = /% (k+t> dH(t) = / (e >0
as desired. O

14
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J Proof of Proposition 2.9

We begin by analyzing the functions defined in Definition [2.8] and prove the items 1 and 2 of the
“Moreover” part of Proposition[2.9

Proposition J.1. Let Z and J be functions as defined in Definition Under Assumption [2.2|and
Assumption we have thatr = R(k) := k- (1 — Z(k)) and 3—2 =1-J(k).

Furthermore, the following holds:

R(k) < kfork >0,

There exists kerit > 0 such that R(kcriz) = 0, R is increasing and positive on (kcrit, +00).

J(k) < 1fork € (kerit, +00) and J (+00) = 0.

Proof of Proposition[J.] We begin by proving the first part: that r = R(k) := k- (1 — Z(k)) and
4 =1 — J(k). Rewrite the limit in Equation (3) as

1 1 o1&l Vv dy
nh—{gongl—kkn—aai_l _nh—{l;onizglJrk(i/n)a _/0 14 kx>
The right-most equality follows from the definition of the (Riemann) integral. If v, = 0, then
1/4+ = 400 and the above is interpreted as an improper Riemann integral. Now, rearranging
Equation , we get the desired formula of r = R(k) := k- (1 — Z(k)). The formula for % follows
from differentiating under the integral theorem. Note that this also proves the assertion made in
Remark [B.7]

For the first item of the “Furthermore” part, it suffices to show that limy_, . o Z(k) = 0. This follows
from the fact that limg_, 1 oo ﬁ = 0 for all z > 0, integrability of the function (1 + 2%)~! over

R>0, and the dominated convergence theorem. Likewise, limy_, o J (k) = 0 as well.

For the second item of the “Furthermore” part, we note that for all = sufficiently large, we have

% > 0 since limy o0 J (k) = 0. Now, let kc,s¢ be the largest real number such that R (kerit) = 0.
Since R(0) = 0, we must have k.35 > 0.

For all & > ki, we claim that Z(k) < 1. To see this, assume the contrary. Then by the fact that
limg s 1 oo Z(k) = 0 and the intermediate value theorem, there must exists &k’ such that ¥’ > k such
that Z(k’) = 1 which implies that R(k") = 0. This contradicts the maximality of kcy;+.

Finally, since 1 + kz® < (1 + kz®)? for all K > 0 and x > 0, we have that Z(k) > J (k) for all
such k’s. Thus, by the previous claim, for all k& > k¢pi4, we have 1 > Z(k) > J (k). This proves
that g—; > 0 forall &k > kcrit, as desired. O

J.1 Review of the eigenlearning framework

Before proceeding with finishing the proof of Proposition[2.9] we briefly review the eigenlearning
framework. |Simon et al.| [2022]] calculates the test error for the estimator

Bs = X(XTX +6L,) 'y = X(nG +L,) "1y (14)
for kernel ridge regression using the so-called eigenlearning equations [Simon et al., 2022, Section
4.1]. Below, we recall some relevant parts of the framework:

Definition J.2 (Eigenlearning eqn. specialized to setting in Section[Z). Suppose that the ground truth
regression function is linear, i.e., f(z) = 2T 8* for some 3* € RP. Let § and & satisfy the equation

n=245", ,\f-m (15)
Define the following n-dependent quantities:

. . . . d
Overfitting coefficient: Ecoer 1= NG5

Testing error: Evest = Ecoes (02 + C) where
C=1,1-L)(B)? and L;:= 2.

2
Training error: Eyrain 1= #&es»ﬁ.

15
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J.2 Completing the proof of Proposition 2.9

Throughout this section, we assume that we are in the situation of Proposition @ Now, |[Simon
et al.|[2022]] uses a different scaling for ridge regression than the one we use. We first resolve this
discrepancy. Comparing Equation with the expression in Lemma|C.2] if we let § := nyp, then the

expressions are equivalent, i.e., Bg = f3,. To see this, note that
Bs = Bno = X(X "X +nol,) "ty
= (XX +ngl,) ' Xy - LemmalHI]
=(nn XX + ol,) ' Xy
= (f} + Q]Ip)_liXy = BQ *.» Definition of BQ

Furthermore, we claim that as n — oo, we have r, k satisfies Equation if and only if (§ =
nrn~, k = kn~%) satisfies Equation (I5):

n—é+zp: As @n—nmiaqup: A <:>1—i+lzp:;
kK Ntk  kn—o — \i +kn~e k n L4 kn—ox !

=1

Taking limit as n — oo, we have proved the claim.

Next, we show that lim,,_,.o C = 0 where C is as in Definition We have L; := A-)\-‘,i-n =
m. Note that lim,, o, £; = 1 for all fixed 7. On the other hand, since sup,,_; 5 _|[|3*[|2 <

400, dominated convergence theorem implies that lim,, ., C' = 0

We claim that the following asymptotic expression for the testing and training error hold:

; 2 dk ; 2 r?  dk
lim Eese =07 - 57 and  lim Eypagn =07 1z - G (16)
n—o0 n—o0

where 7 and k are defined as in Assumption
To see this, first note that the overfitting coefficient satisfies
e pmdk _ dide _ dkl _ drk __ dk
gcoef = nﬁ = ndfgﬁ = nTgE = de T ar
Thus, we obtain the following asymptotic expression

: _ 2 _ 2 dk
lim Eiest = Ecoer -0~ = 0" - .
n—oo

On the other hand, the training error is given by

52 02 r2
gtrain = Wgtest = ?gtest = gtest tEZ

; 2 r?  dk : :
Therefore, lim,, ;o0 Etrain = 07 - fz - 4+ This proves (16), as desired.

Finally, we show that %S:est > 0 for any k£ > 0. To this end, we use the expression derived in the
previous step that £/, = 0 - 777y Taking derivative of both side w.r.t o, we have

d ¢ox* _ 2 —1 d
daCrest =0 W%j(k)

Now, we recall from Deﬁnitionthat J(k) = fol/ T (1#?%)2' Thus, by differentiating under the
integral sign, we have
(k) = /1/7* —2kx® log(w)dx.
o 0 (14 kxo)3
Putting it all together, we have

/v .
dig:est = 2ko” ! p) / " a 1Og($)d$
o a=7m” J, (1 + k)3
Since the integrand is positive, the integral is positive as well. Moreover, since k& > 0, we have
%&f <t > 0 as desired. O

e
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K Code

Implementation of the Z and 7 functions from Definition @

import scipy.special as sc

gamma = 0.5
alpha = 1.7

5

# I generator

I_gen = lambda x,k,
x**xalpha)

# J generator

J_gen = lambda x,k,

x**alpha)

I = lambda k

J = lambda k

N = lambda k

D = lambda k
Etst = lambda k
Etrn = lambda k

s R = lambda k

I_gen(1/gamma, k,
J_gen(1/gamma, k,

alpha:

alpha:

1 - I(k) # helper
1 - J(k) # helper

For the experiments in Figure [T} Right:

import numpy as np

n_tst = 100

0

def get_norms(n,r):
p = int(n/gamma)

> gamma = 0.5
3 alpha = 1.75
s k_grid = [ 1.34, 1.
6.44,
7.55, 8.9
48.82, 67.2

]

908

10.54, 12.58, 15.15, 18.46, 22.

2.45, 2.92,

x*sc.hyp2f1(1,(1/alpha),

x*sc.hyp2f1(2,(1/alpha),

alpha) #\mathcal{I}
alpha) #\mathcal{J}

3.44, 4.03,

idx = np.arange(l,p+1) # feature indices

pop_evs

1 + (1/alpha), -k=*

1 + (1/alpha), -kx*

8

1/D(k) #\mathcal{E}_{\mathtt{testl}}/\sigma~2
N(k)**2/D(k) #\mathcal{E}_{\mathtt{train}}/\sigma~2
k*(1-I(k)) # \mathcal{R}

4.71, 5.

3

28.67,

idx**(-alpha) # population level eigenvalues

5

B

36.87,

X = np.multiply(np.sqrt(pop_evs[:,Nonel]), np.random.normal (size= (

p, n)) )

X_tst =

np.multiply (np.sqrt (pop_evs[:,None]), np.random.normal (
n_tst)) )

size= (p,

beta_true = np.sqrt (10) *np.random.normal(size= (p,1))/np.sqrt(p)

y = X.T@beta_true + np.random.normal(size= (n,1))

y_tst =

hatSig

beta =
)

norm
Etrn
Etst =
return

X_tst.T@beta_true + np.random.normal (size=

(1/n)*X@X.T # sample covariance matrix

(n_tst ,1))

(1/n)*np.linalg.solve(hatSig + r*n**(-alpha)*np.eye(p), X@y

np.linalg.norm(beta) **2
np.mean (np.square (y-X.T@beta))
np.mean (np.square(y_tst-X_tst.T@beta))

"norm":

norm,

"Etrn":Etrn,

17

"Etst":Etst}



5835 rs = R(np.array(k_grid))

58436

5857 n = 1000

58638

ssm0 Etrns = []

58810 Etsts = []

58911 for r in rs:

59042 result = get_norms(n,r)

59143 Etrns.append (result ["Etrn"])
59214 Etsts.append (result ["Etst"])

se3  For the experiments in Figure [T}

5041 # run the previous block first!
59520 r = 3.5433549686341

596 3

5974 ns = np.logspace(1,3.6,num=20)

5985 categories = ["norm","Etrn","Etst"]

5996 n_trials = 10

600 7

6018 results = {cat : [[] for _ in range(n_trials)] for cat in categories}
602 9

6030 for t in range(n_trials):

60411 for n in mns:

60512 out = get_norms(int(n),r)

60613 for cat in categories:

60714 results[cat][t].append(out[cat])

18
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