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ABSTRACT

We present unexpected findings from a large-scale benchmark study evaluating
Conditional Average Treatment Effect (CATE) estimation algorithms, i.e., CATE
models. By running 16 modern CATE models on 12 unique datasets and 43,200
sampled variants generated through diverse observational sampling strategies, we
find that: (a) 62% of CATE estimates have a higher Mean Squared Error (MSE)
than a trivial zero-effect predictor, rendering them ineffective; (b) in datasets with
at least one useful CATE estimate, 80% still have higher MSE than a constant-
effect model; and (c) Orthogonality-based models outperform other models only
30% of the time, despite widespread optimism about their performance. These
findings expose significant limitations in current CATE models and suggest ample
opportunities for further research.
Our findings stem from a novel application of observational sampling, originally
developed to evaluate Average Treatment Effect (ATE) estimates from observa-
tional methods with experiment data. To adapt observational sampling for CATE
evaluation, we introduce a statistical parameter, Q, equal to MSE minus a constant
and preserves the ranking of models by their MSE. We then derive a family of
sample statistics, collectively called Q̂, that can be computed from real-world data.
We prove that Q̂ is a consistent estimator of Q under mild technical conditions.
When used in observational sampling, Q̂ is unbiased and asymptotically selects
the model with the smallest MSE. To ensure the benchmark reflects real-world
heterogeneity, we handpick datasets where outcomes come from field rather than
simulation. By combining the new observational sampling method, new statistics,
and real-world datasets, the benchmark provides a unique perspective on CATE
estimator performance and uncover gaps in capturing real-world heterogeneity.

1 INTRODUCTION

Conditional Average Treatment Effect (CATE) models are increasingly used to answer causal infer-
ence questions in fields such as medicine, economics, and policy. But how well do these models
capture real-world heterogeneity? We present unexpected findings from a large-scale benchmark
study on contemporary CATE estimation algorithms. Based on 43,200 sampled variants derived from
12 unique datasets and evaluated across 16 CATE models, we find: (a) 62% of CATE estimates have
a higher Mean Squared Error (MSE) than a trivial estimator that consistently predicts zero effect,
rendering them ineffective; (b) in cases where at least one useful CATE estimate exists, 80% have
higher MSE than a constant-effect estimator; and (c) orthogonality-based models outperform other
models only 30% of the time. These findings raise important questions about the current models’
ability to fully reflect the complexities of real-world heterogeneity.

Rather than introducing new models, our benchmark study focuses on evaluating current CATE
estimation models. The past decade has seen significant advancements in CATE estimation, with
new methods emerging from statistics, econometrics, and machine learning (see Chernozhukov
et al. (2017); Athey & Imbens (2016); Kennedy (2023); Shalit et al. (2017); Alaa & van der Schaar
(2017); Chernozhukov et al. (2023); Künzel et al. (2019)). Widely available and easy-to-use tools
like EconML (Battocchi et al., 2019) and DoubleML (Bach et al., 2022) have made CATE models
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accessible to users with minimal expertise, leading to their broad application in high-stakes business
and scientific decisions, where accuracy is critical.

Understanding real-world model accuracy is challenging because CATE estimation models lack access
to ground truth CATE. To compensate, these models rely on estimates of potential outcomes and/or
propensity, known as nuisance functions. As a result, models face two key risks - inaccurate potential
outcome estimation and inaccurate propensity estimation - forcing difficult trade-offs. When potential
outcome risk approaches zero, the ground truth CATE estimate can be recovered, which is the core
idea behind S-learner and T-learner models (Künzel et al., 2019). Conversely, when propensity is
known, the Horvitz-Thompson estimator (Horvitz & Thompson, 1952) provides unbiased CATE
estimates. Most contemporary CATE models attempt a hybrid approach, estimating both potential
outcomes and propensities to generate the final CATE estimate. The error of nuisance estimates
impacts the accuracy of CATE estimates. To minimize the effect of errors, modern CATE models
employ loss functions with robustness guarantees, ensuring that errors in nuisance estimates do not
have a first-order effect on the CATE estimate. Such guarantees come from a family of closely related
theories, including but not limited to doubly robustness (Kennedy, 2023), Neyman Orthogonality
(Chernozhukov et al., 2017; Nie & Wager, 2020; Foster & Syrgkanis, 2023), and Influence function
(Alaa & Van Der Schaar, 2019). We refer to such models from these theories as orthogonality-based
models. These theories rely on stringent assumptions regarding smoothness, Lipschitz continuity,
sparsity, convexity, and orthogonality of the true potential outcomes, propensities, and loss functions.
While mathematically elegant, their effectiveness is typically validated using simulation data.

Despite theoretical guarantees, evaluating CATE models in practice remains a significant challenge.
CATE model evaluation methods aim to assess the accuracy of CATE estimation models but encounter
the same challenges as the models they evaluate. Ideally, we would compute the MSE for CATE
estimates and rank estimators by their MSE relative to the ground truth CATE, a process known as
oracle ranking. However, in most real-world datasets, only the factual outcome is observed, not the
counterfactual, making the ground truth CATE unknown unless the counterfactual generation process
is explicitly known. It is widely accepted that without observing both factual and counterfactual
outcomes, ground truth CATE cannot be computed, making it difficult to select the most accurate
CATE estimators (Curth & van der Schaar, 2021; 2023; Neal et al., 2021; Mahajan et al., 2023).
Without understanding CATE estimate accuracy, users cannot effectively evaluate the quality of
estimators or the risk of inaccurate estimates.

To address challenge of evaluating CATE models without ground truth CATE, two main approaches
are used, each with drawbacks. The first approach simulates potential outcomes and ranks CATE
estimators by their MSE on semi-synthetic datasets, effectively removing the risk of potential outcome
estimation (see Hill (2011); Shalit et al. (2017); Künzel et al. (2019); Diemert et al. (2021)). But
doubts remain about whether promising simulation results translate to equally promising outcomes
in real-world cases. The second approach ranks CATE estimators using proxy loss functions (see
details in Section 2), particularly those with doubly robust or Neyman orthogonal properties. This
approach attempts to manage both potential outcome and propensity estimation risks by exploiting
orthogonality properties in the loss. Doubts remain about proxy loss functions, particularly concerning
their stringent assumption requirement, finite sample property, and self-serving bias (Curth & van der
Schaar, 2023). The last bias occurs when a CATE estimator is evaluated using a loss function sharing
common assumptions. For example, if we use R-loss to score CATE estimators and find R-learner
(which optimizes R-loss) performs best, we cannot determine whether R-learner has indeed the lowest
MSE or simply shares assumptions with R-loss. This situation is analogous to a sports player also
acting as the referee. Note that, this situation is unique to causal inference where ground truth is
missing in test dataset, making it impossible to compute MSE there like one would do in supervised
learning. To summarize, from a risk perspective, current CATE evaluation methods either try to
remove potential outcome estimation risk, or manage both outcome estimation and propensity risks.
Meanwhile, few work explores removing the risk of propensity estimation.

Given the limitations of current CATE evaluation methods, we seek new approaches that can assess
CATE estimator performance on real-world heterogeneous data while relying on fewer and simpler
assumptions. Drawing from the risk discussion, we ask: could eliminating the risk of propensity
estimation be the solution? At first glance, this seems counter-intuitive. Observational methods
inherently work with unknown propensity, thus the risk cannot be removed. This is where the method
of observational sampling comes in (LaLonde, 1986; Gentzel et al., 2021). In observational sampling,
an observational dataset is created by sampling from an Randomized Controlled Trial (RCT) dataset
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through a carefully designed process that introduces selection bias. This approach allows CATE
estimators to be trained on the observational sub-sample (with propensity estimation risk) while their
performance is evaluated using the full RCT data (without propensity estimation risk).

The history of observational sampling dates back as long as the field of causal inference itself.
For instance, LaLonde (1986) used it to construct the IHDP dataset for evaluating ATE estimates
from observational data. Since then, large RCT datasets have become more available in certain
domains (Gordon et al., 2019; 2022). However, few researchers (except Gentzel et al. (2021))
explore observational sampling for CATE evaluation, as mainstream research often relies on small
semi-synthetic datasets, which have the drawbacks discussed earlier.

Recognizing the untapped potential of observational sampling, we hypothesize that it offers oppor-
tunities to develop new statistics for identifying the most accurate CATE estimators and assessing
their ability to capture real-world heterogeneity. This forms the central hypothesis of our research.
To rigorously test this, we aim to develop new theoretical results and create a benchmark procedure
using observational sampling for CATE evaluation.

This paper offers three key contributions to the field of CATE evaluation:

1. Benchmark Findings: Our primary contribution is new findings from the large-scale benchmark
study, evaluating sixteen contemporary CATE estimation methods across 43,200 test datasets. As
noted in the opening paragraph, these findings reveal significant limitations in current CATE models,
particularly in capturing real-world heterogeneity. They highlight the need for further research and
improvements in this area.

2. New Evaluation Metrics: Our second contribution is new CATE evaluation metrics. We define a
new statistical parameter, Q, which equals MSE minus a constant, and develop a family of statistics,
collectively called Q̂, that converge to Q. We prove that Q̂ converges in probability to Q under
mild technical conditions. For RCT data, we further demonstrate that Q̂ is unbiased and achieves
a O(1/

√
N) asymptotic convergence rate. Additionally, we introduce a control-variates-based

framework to reduce the variance of Q̂, showing that common CATE estimation losses, such as
R-loss and DR-loss, are special cases of this framework.

3. Novel Evaluation Procedure: Our third contribution is a novel CATE evaluation procedure based
on observational sampling and the newly developed Q. This method allows for the training of CATE
estimators on observational sub-samples and evaluates their performance using Q̂ on the full RCT
dataset. Unlike previous benchmarks, our approach does not rely on simulated potential outcomes,
addressing concerns about real-world heterogeneity and mitigating the risk of self-serving bias.

2 PRELIMINARY AND RELATED WORK

2.1 PRELIMINARIES

We formalize our problem setting using the potential outcomes framework Rubin (2005). All
notations can be found in Table 2 in Appendix A. Let (X,T, Y ) be a tuple of random variables
following distribution Π, where X ∈ X is the pre-treatment covariates, Y ∈ R is the observed
outcome, and T ∈ {0, 1} is the treatment assignment. Each tuple is associated with two potential
outcomes Y (0) and Y (1). However, we observe only the outcome associated to the factual treatment
T ∈ {0, 1}, Y = Y (T ). We denote µ(0)(x) = E[Y (0)|X = x] and µ(1)(x) = E[Y (1)|X = x] as
the expected potential outcome functions given the covariate x, and e(x) = Pr(T = 1|X = x) as
the treatment propensity function. The Conditional Average Treatment Effect (CATE) is then defined
as: τ(x) = E[Y (1) − Y (0)|X = x] = µ(1)(x) − µ(0)(x). The Average Treatment Effect (ATE) is
then τATE = EX [τ(X)].

Let D denote a dataset with N i.i.d samples {(xn, tn, yn)} drawn from Π. When the treatment
assignment is independent of covariates, i.e., T ⊥ X , we call such dataset a RCT dataset. On an RCT
dataset, we define the constant treatment propensity E1 = e(x) = Pr(T = 1|X = x) = Pr(T = 1)
and E0 = 1− E1.

The goal of CATE estimation is to train a CATE estimator τ̂(x) using an observational dataset that
approximates τ(x) as much as possible. Given a trained CATE estimator τ̂(·) : X → R, the goal
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of CATE evaluation is to evaluate the quality of τ̂(·) by comparing it to τ(·). One commonly used
evaluation criterion is its MSE, also known as Precision in Estimating Heterogeneous Effects (PEHE)
(Hill, 2011): P (τ̂(·)) = EX [(τ(X) − τ̂(X))2], which is a functional that maps an estimator τ̂ to
a non-negative real number. Note that, MSE can be calculated only when τ(·) is available, which
requires the observation of both factual and counterfactual outcomes. To ensure that effects are
identifiable from observational data, we rely on the standard ignorability assumptions (Rosenbaum &
Rubin, 1983):

Assumption 2.1. (i) Consistency: for a sample with treatment assignment T , we observe the
associated potential outcome, i.e. Y = Y (T ). (ii) Unconfoundedness: there are no unobserved
confounders, so that Y (0), Y (1) ⊥ T |X . (iii) Overlap: treatment assignment is non-deterministic,
i.e., 0 < Pr(T = 1|X = x) < 1.

2.2 RELATED WORK

CATE estimation. There exist many methods to construct CATE estimator τ̂(x). Here we cover three
most popular strategies. The first outcome prediction strategy predicts potential outcomes µ(0)(x)
and µ(1)(x), and uses their difference as the CATE estimate, i.e., τ̂(x) = µ̃(1)(x)− µ̃(0)(x). 1 This
approach essentially minimizes LOP (µ̃

(0), µ̃(1)) = 1
N

∑
n

(
yn − µ̃(tn)(xn)

)2
by any regression

model. Examples include S-learner, which regress Y on X and T , and T-learner, which regress Y
on X for T = 0 and T = 1 separately (Künzel et al., 2019). Solving the minimization problem of
argminµ̃(0),µ̃(1) LOP yields the estimator of τ̂OP (x) = µ̃(1)(x)−µ̃(0)(x). For observational datasets,
learning a shared representation ϕ(x) for both treatment groups can improve CATE estimates. This ap-
proach regresses Y on ϕ(X) to estimate potential outcomes; Johansson et al. (2018) provides bounds
on generalization error. Dragonnet (Shi et al., 2019), a variation of this approach, learns the represen-
tations of µ(0)(ϕ(x)), µ(1)(ϕ(x)), and e(ϕ(x)) using a three-head neural network. The loss function
for dragonnet is LRL(µ̃

(0), µ̃(1)) = 1
N

∑
n

[
(yn − µ̃(tn, ϕ(xn)))

2 +λBCE(tn, ẽ(ϕ(xn)))
]
. Solving

the problem of argminϕ,µ̃(0),µ̃(1),ẽ LRL yield the estimator τ̂RL(x) = µ̃(1)(ϕ(x))− µ̃(0)(ϕ(x)).

The second semi-parametric regression strategy estimates CATE based on transformed outcomes.
When the true model is Y = f(X) + Tτ(X) + ϵ, it can be rewritten as Y − m(X) = (T −
e(X))τ(X) + ϵ where m(x) = E[Y |X = x] = f(x) + e(x)τ(x). This reformulation then estimates
τ(x) by regressing transformed outcome Y −m(X) on transformed covariate T − e(X). Robinson
(1988) and subsequent work show that these estimates are

√
N -consistent. Historically, this approach

carried different names such as residual-on-residual, partialling-out estimators, Double Machine
Learning (Chernozhukov et al., 2017), and Neyman orthogonality (Newey, 1994), to name a few.
In its simplest form, the loss function is LR(τ̂) =

1
N

∑
n

[
((yn − m̃(xn))− (tn − ẽ(xn))τ̂(xn))

2
]

with plug-in estimates m̃(x) and ẽ(x); this is called R-loss in Nie & Wager (2020). Minimizing
LR yields the estimator τ̂R(x). A notable extension of this method is causal forests (Athey et al.,
2018), which adaptively partition the data to maximize the difference between CATE estimates from
different tree partitions, improving the accuracy of the estimates.

The third approach is Inverse-Propensity Weighting (IPW). IPW is based on the Horvitz-Thompson
estimator, defined as η(x, t, y) =

(
t

e(x) −
(1−t)
1−e(x)

)
y. When the propensity score e(x) is

known, this estimator is an unbiased estimate of τ(x) (Horvitz & Thompson, 1952). That
is, E[η(X,T, Y )|X = x] = τ(x). However, IPW is known to have high variance (Robins
et al., 1994). To reduce variance, Kennedy (2023) suggests constructing doubly robust loss
LDR(τ̂) = 1

N

∑
n [η(xn, tn, yn) + γ(xn, tn)− τ̂(xn)]

2, where γ(x, t) =
(
1− t

ẽ(x)

)
µ̃(1)(x) −(

1− 1−t
1−ẽ(x)

)
µ̃(0)(x) is a shorthand function with plug-in estimates µ̃(1), µ̃(0) and ẽ(x) that we will

use later. Solving the problem of argminτ̂ LDR yields the Doubly Robust estimator τ̂DR(x).

When explaining the strategies mentioned above, we omit the details for sample splitting and
regularization to improve readability. Modern implementation of these methods use standard ML

1Let f be a ground truth function defining the data generation process; f is often unobservable. We use f̂ to
represent the main estimator, and f̃ to represent the plug-in.
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regression and classification models as components. In different literature components are called
plug-ins, base learners, or nuisance functions.

CATE model evaluation. There is extensive literature on CATE model evaluation. In principle, any
score function S(τ̂) can rank and evaluate CATE estimators. However, the key question is whether
the ranking helps users identify the best estimators for their needs. While this paper focuses on score
functions that rank by MSE, it’s useful to first explore the broader landscape of score functions.

The first category of score functions includes hypothesis testing statistics. Studies such as Cher-
nozhukov et al. (2023); Bartolomeis et al. (2024); Hussain et al. (2023) develop statistics to detect
heterogeneity, unobserved confounding, or transportability. These statistics can rank CATE estimators
but do not guarantee finding the estimator with smaller MSE; this makes them unsuitable for general
CATE evaluation. For instance, the BLP statistic from Chernozhukov et al. (2023) is ineffective when
the CATE estimator has small variance. The second category covers rank-based metrics, commonly
used in uplift modeling and CATE calibration. Examples include Radcliffe (2007); Dwivedi et al.
(2020); Yadlowsky et al. (2023); Imai & Li (2021); Xu & Yadlowsky (2022). While useful in specific
contexts, these metrics lack a direct connection to MSE. For example, the Qini index (Radcliffe,
2007) assigns the same score to two estimators τ̂(x) and τ̂(x) + 1, even if their MSE differs. The
third category consists of score functions that compare CATE estimators to ATE estimates from
experimental data, as discussed in Gentzel et al. (2021) and related work.

Now, let us turn to methods designed to find model with smallest MSE; see Curth & van der Schaar
(2021; 2023); Mahajan et al. (2023); Neal et al. (2021) for reviews. The most common approach is
simulation using semi-synthetic datasets, such as IHDP and Jobs (Hill, 2011; LaLonde, 1986), where
simulated potential outcomes make MSE calculation feasible. Extensions of this approach include
generative models for synthetic data (Neal et al., 2021; Athey et al., 2020; Parikh et al., 2022). As
noted before, simulation zeroes out real-world heterogeneity, the precise risk we want to evaluate.

Another strategy is hold-out validation, which constructs CATE estimation loss functions on test
datasets. For instance, by estimating potential outcomes µ̃(0)(x) and µ̃(1)(x), one can compute the
proxy τ̃(x) and calculate the MSE as LPL(τ̂) = 1

N

∑
n(τ̂(xn) − τ̃(xn))

2. Other loss functions
can also apply; theorem 15.2.1 in Chernozhukov et al. (2024) is an example. The primary risk with
this approach is still self-serving bias: model may unfairly benefit from being judged by losses
that favor its own design. Furthermore, hold-out validation introduces complexity, as there are
numerous choices: base regression models, hyperparameters, regularization, sample-splitting, and
bias correction techniques (e.g., Neyman orthogonality (Newey, 1994), influence functions (Alaa &
Van Der Schaar, 2019)). These choices further aggravate the self-serving bias.

Recent studies (Curth & van der Schaar, 2023; Mahajan et al., 2023; Neal et al., 2021; Athey et al.,
2020; Parikh et al., 2022), largely based on semi-synthetic datasets, have evaluated various CATE
evaluation criteria, including LOP , LR, LDR, and LPL. However, consensus is yet form.

3 THE PROPOSED EVALUATION METRIC Q

As discussed, existing CATE evaluation criteria fall short of selecting the best models, particularly
when it comes to capturing real-world heterogeneity. This makes it difficult for practitioners to choose
the most suitable models and prevents the community from making substantial breakthroughs in
CATE estimation. We propose to break this dilemma by introducing a new statistical parameter Q,
equal to MSE minus a constant, and a family of statistics Q̂ that can be computed from real-world
data. We prove that Q̂ is a consistent estimator to Q; when treatment propensity is known (as in
observational sampling), Q̂ is unbiased. Thus Q̂ asymptotically preserves the same order as MSE
when ranking different CATE models. We also discuss the generalization property, variance reduction
strategies, and ways to use Q̂ to evaluate CATE estimators.

3.1 Q AND ITS STATISTICAL ESTIMATOR Q̂

For a given CATE estimator τ̂ , we refactor MSE P (τ̂) into three parts:

P (τ̂) = EX [(τ(X)− τ̂(X))2] = EX [τ2(X)]︸ ︷︷ ︸
unobservable constant

+EX [τ̂2(X)]− 2EX [τ(X)τ̂(X)]︸ ︷︷ ︸
can be approximated from real-world dataset

(1)
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The first part, P1 = EX [τ2(X)], is unobservable but independent from the CATE estimator, thus
can be dropped when we evaluate relative performance of models. The two other parts, P2(τ̂) =
EX [τ̂2(X)], and P3(τ̂) = EX [τ(X)τ̂(X)], can be approximated with confidence. This yields the
statistical parameter that drives oracle model ranking:

Q(τ̂) = P2(τ̂)− 2P3(τ̂) = P (τ̂)− P1 (2)

Let q(x, t, y; τ̂) = τ̂2(x)−2τ̂(x)η(x, t, y), where η is the shorthand for Horwitz-Thompson estimator,
and let qn(τ̂) = q(xn, tn, yn; τ̂) for n-th sample. We now define the sample statistic:

Q̂(τ̂) =
1

N

∑
n

qn(τ̂) =
1

N

∑
n

[τ̂2(xn)− 2τ̂(xn)η(xn, tn, yn)] (3)

Note that we can compute the value of Q̂ without counterfactual ground truth. It follows that:

Lemma 3.1. Unbiasedness. When the propensity function P (T = 1|X = x) = e(x) is known,
E[Q̂(τ̂)] = Q(τ̂).

See Appendix B for all proofs. In particular, Theorem B.2 establish the consistency of Q̂ when
propensity needs to be estimated.
Remark 3.2. Relationship with orthogonal ML. Lemma 3.1 is connected to orthogonal ML methods
(Foster & Syrgkanis, 2023). For example, Theorem 15.2.1 in Chernozhukov et al. (2024) discuss
similar CATE evaluation techniques based on orthogonality assumptions, requiring the triple product
of the propensity error, plug-in outcome estimate error, and the difference between two CATE
estimates to converge at an O(1/

√
N) rate.

While Lemma 3.1 may initially appear similar to results in orthogonal ML (by zero-ing out propensity
risk), it is essential to establish these results without relying on orthogonal ML assumptions. As
discussed in Section 1, CATE evaluation should be based on fewer and simpler assumptions than
CATE estimation. Furthermore, as Section 4 will show, orthogonality-based estimators often fail
to capture real-world heterogeneity, raising doubts about their reliability in CATE evaluation. This
makes it critical to develop results on stronger foundation. To our knowledge, our result is the first to
provide asymptotic guarantees for oracle ranking under such general conditions.
Remark 3.3. Local Effect. Lemma 3.1 can be easily extended to the case where Q is weighted by
function w(x) > 0. That is, Q̂(τ ;w) =

∑
n

[
w(xn)(τ̂

2(xn)− 2η(xn, tn, yn)τ̂(xn))
]
/
∑

n w(xn)

is an unbiased estimator of Q(τ̂ ;w) = EX [w(X)(τ̂2(X)−2τ̂(X)τ(X))]. This result is useful when
one part of the distribution is more important than others.

Intuitively, Q̂ are relative performance metrics. Meanwhile, they can be used to measure absolute
performance of CATE estimators, in three ways below. We will demonstrate their use in Section 4
Benchmark.
Remark 3.4. Degeneracy. A CATE estimator is useless if Q(τ̂) ≥ 0; when this happens, we call the
estimator is degenerate. To see that, let τ̂0 = 0 be a (trivial) CATE estimator that estimates no CATE
constantly. If Q(τ̂) ≥ 0, the CATE estimator τ̂ has a higher MSE than τ̂0. This suggests the model is
useless. As a result, Q̂(τ̂) ≥ 0 can be used to detect severe errors in CATE estimation.
Remark 3.5. Heterogeneity screening. Secondly, let Q(τ̂B) be a constant effect (ATE) estimator. A
CATE estimator with Q(τ̂) ≥ Q(τ̂B) is useless as its MSE is higher than a constant effect estimator.

Remark 3.6. Approximate MSE. Finally, we can construct an MSE estimate, P̂ (τ̂), by decorating
P̂ (τ̂) with plug-in estimates of potential outcomes µ̃(0)(x) and µ̃(1)(x) as follows. P̂ (τ̂) helps
us understand the error magnitude of CATE estimator and retains same ranking property as Q̂(τ̂)

P̂ (τ̂) = Q̂(τ̂) + 1
N

∑
n(µ̃

(1)(x)− µ̃(0)(x))2.

Does CATE evaluation result generalize to new distributions? We answer in the next two theorems:

A scientist with access to a dataset generated by one distribution may want to use it to find the
best CATE estimator for a second, different but related distribution, without the cost of second data
selection. Theorem 3.7 below shows that we can use data from one distribution to estimate Q on
another, via Inverse Propensity Weighting, when the density ratio between two distributions are
known or can be reliably estimated.
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Theorem 3.7. Generalization via Inverse Propensity Weighting. Let Π1 and Π2 be two data dis-
tributions sharing the same τ(x). Let X1 and X2 be their marginal distribution of X with den-
sity ρ1(x) and ρ2(x) respectively. Also assume both distributions share common support and let
ζ(x) = ρ2(x)/ρ1(x) be the density ratio. Let {(xn, tn, yn)}(1 ≤ n ≤ N) be N i.i.d samples drawn
from Π1. We have Q(τ̂ ;X2) = EΠ1

[
1
N

∑
n ζ(xn)

[
τ̂2(xn)− 2η(xn, tn, yn)τ̂(xn)

]]
.

When density ratio is difficult to estimate, or when the potential outcome distribution changes, a
scientist may wonder if the best CATE estimator identified for one distribution is also the best for
another. Theorem 3.8 below states that the CATE estimator with smaller Q on one distribution is also
the CATE estimator with smaller Q on the second, when the two distributions are close enough:

Theorem 3.8. Ranking Generalization. Let Π1 and Π2 be two different joint distribution of
X,Y (0), Y (1). Let τ̂1 and τ̂2 be two deterministic CATE estimators. Let h0(x, y0, y1; τ̂) = τ̂2(X)−
2τ̂(x)(y1 − y0)) be a shorthand function. Let DH(Π1,Π2) := suph∈H |EΠ1

[h(X,Y (0), Y (1))] −
EΠ2

[h(X,Y (0), Y (1))]| < ∆ be the Integral Probability Metric bounded by a finite constant ∆, where
H is a set of real-valued functions such that h0(τ̂1), h0(τ̂2) ∈ H . When Q(τ̂1; Π1)−Q(τ̂2; Π1) ≥ 2∆,
we have Q(τ̂1; Π2)−Q(τ̂2; Π2) > 0.

3.2 RESULTS FOR OBSERVATIONAL SAMPLING

In case of observational sampling (to be used in Section 4), results can be further improved. In
observational sampling, we sample a subset from experiment data to train CATE estimators. We then
evaluate the CATE estimators on the remaining RCT sub-sample. These results help the benchmark.

First we explore opportunities of variance reduction. Even with Lemma 3.1, the variance of Q̂ can
still be large in finite-sample settings, driven by the high-variance nature of Horwitz-Thompson
estimator η. In this section we provide a general control variates framework to reduce variance of
Q̂ while preserving its desirable unbiased property. To start, we introduce the basic concepts of
control variates (Glynn & Szechtman, 2002). Let U be a real-valued random variable and we want
to estimates its mean E[U ]. We can use the sample mean estimator Ū =

∑
n un/N where un are

i.i.d samples of U . Suppose that there exists a zero-mean random variable V,E[V ] = 0. Then, the
control variate Ū(θ) =

∑
n(un + θvn)/N = Ū + θ

∑
n vn/N is also an unbiased estimator of E[U ].

Moreover, the variance-minimizing choice is θ∗ = −Cov(U, V )/Var[V ].

To apply control variates on Q̂, note that Q̂ = 1
N

∑
n qn is the sample mean of q(X,T, Y ; τ̂). Let

r(x, t, y; τ̂) be a control variates function with zero mean, i.e., E[r(X,T, Y ; τ̂)] = 0. Therefore

Q̂(r(·); τ̂) = 1

N

∑
n

[
q(xn, tn, yn; τ̂) + θr(xn, tn, yn; τ̂)

]
(4)

has the same expectation as Q̂(τ̂), i.e., E[Q̂(r(·); τ̂) = E[Q̂(τ̂)].

Next we show that location invariance and commonly used CATE estimation losses are special cases
of this control variates framework.

Proposition 3.9. Location Invariance. Assume X ⊥ T . Let the location invariance control variates
function be rLI(x, t, y; τ̂) = 2

(
t
E1

− (1−t)
E0

)
τ̂(x). Q̂(rLI) = Q̂+ θ 1

N

∑
n rLI(xn, tn, yn; τ̂) is an

unbiased estimator of Q.

Proposition 3.10. Doubly Robust loss. Assume X ⊥ T . Define the control variates function as
rDR(x, t, y; τ̂) = −2γ(x, t)τ̂(x) and Q̂(rDR) = Q̂ + 1

N

∑
n rDR(xn, tn, yn; τ̂), where γ(x, t) is

the shorthand function defined in Section 2. We have E[Q̂(rDR)] = Q and LDR(τ̂) = Q̂(rDR) +

1
N

∑
n

[
η(xn, tn, yn) + γ(xn, tn)

]2
is equal to Q̂(rDR) plus a constant independent from τ̂ .

Proposition 3.11. R-loss. Assume X ⊥ T . Define the control variates function as rR(x, t) = −4(1−
2t)m̃(x)τ̂(x) and Q̂(rR) = Q̂+ 1

N

∑
n rR(xn, tn, yn; τ̂). We have E[Q̂(rR)] = Q. Moreover when

E1 = Pr(T = 1) = 0.5, LR(τ̂) = Q̂(rR)
4 + 1

N

∑
n(yn − m̃(xn))

2 is equal to Q̂(rR)/4 plus a
constant independent from τ̂ .
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Variations of Q̂ are rank-preserving when used to evaluate CATE models. When the dataset grows
large, their difference disappears. Which variant to use depends on theoretical and practical consider-
ations: the original Q̂ and Q̂(rLI) are model-free and easy to implement. Meanwhile, the variance
reduction variants Q̂(r), including its special cases Q̂(rR) and Q̂(rDR), offers the potential benefit
of even lower variance, at the price of fitting and saving the extra plug-in estimators. Finally, note that
Chernozhukov et al. (2023) proved results similar to Propositions 3.11 and 3.10, based on stringent
orthogonality assumptions; their result do not generalize to other control variates.

Finally, we prove that all variants of Q̂ achieves O(1/
√
N) convergence rate:

Theorem 3.12. Convergence Rate. Assume Y is a bounded random variable, τ̂(x) is a bounded
function, propensity score is bounded, i.e., 0 < ē < e(x) = Pr(T = 1|X = x) < 1− ē < 1, and that
the control variate function r(x, t, y; τ̂) is bounded. We have

√
N(Q̂(r; τ̂)−Q) → N (0, σ2(r, τ̂))

where σ2(r, τ̂) is the finite variance for q(r; τ̂).

4 BENCHMARK AND FINDINGS

4.1 BENCHMARK DESIGN VIA OBSERVATIONAL SAMPLING

Now that we have studied the statistical properties of variations of Q̂, we are ready to use it to
evaluate CATE estimation models using real-world datasets. We emphasize that the evaluation is
more than a post-mortem examination. Theorems 3.7 and 3.8 suggests that results obtained from one
distribution can generalize to a new one under the right conditions. Performance of CATE estimators
on a carefully selected portfolios of observational sampling study are predictive indicators to their
future performance on new and similar distributions.

Dataset generation. We use twelve large RCT datasets for this evaluation study. They are listed in
Table 4. These datasets were selected to represent diverse real-world data generation processes; the
rationale for their inclusion and additional details are in Appendix E.

Observational sampling. For each RCT dataset D, we sample it to generate the estimation Dest with
selection bias, and an evaluation RCT dataset Deval; there is no overlap between them. See Appendix
F for details. We vary three sampling parameters, 4 variations in estimation dataset size, 3 variations
in treatment %, and 3 variations in assignment mechanism nonlinearity; this results in 36 settings. For
every setting, we sample Dest and Deval jointly 100 times, yielding 3,600 pairs of Dest and Deval.
Repeating same process for the 12 RCT datasets yields 12× 3, 600 = 43, 200 benchmark datasets.

Estimation model selection. We evaluate 16 CATE estimation models on Dest. These models include
variations of S, R, and T learners (Künzel et al., 2019), Doubly Robust learners (Kennedy, 2023),
Double Machine Learning models (Chernozhukov et al., 2017; Nie & Wager, 2020), representation
learning-based models (Shi et al., 2019), and causal random forest models (Athey et al., 2018).
We use the format <model-name>.<base-learner>.<details> as the model code when
presenting results. Full model details can be found in Table 3 in Appendix C. We use code from
Curth & van der Schaar (2023); Curth (2023); Battocchi et al. (2019) for reproducibility.

Estimation and Evaluation. We train 16 models listed in Table 3 on Dest. See Appendix C for details.
We then evaluate the trained models on Deval, using Q̂(rDR).

4.2 FINDINGS

Table 1 summarizes the benchmark findings. For each dataset, we calculate Q̂ for every model. Out
of 43,200 datasets, 41,499 (96%) have at least one non-degenerate model with Q̂(τ̂) < 0. For these
datasets, models are ranked from best (rank 1 for the most negative Q̂) to worst. A model "wins" if it
ranks 1, and its "win share" reflects how often it outperforms other models. We also compute each
model’s average degenerate rate.

The benchmark reveals critical insights into the current landscape of CATE estimation models:

1. CATE models produces degenerate estimators more than half the time. We found 62% of fitted
CATE estimators were degenerate; Among them, 94% are statistically different from zero at 5%
significance level. This highlights the need for problem-specific fine-tuning. This suggests that using

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Model comparison: summary of 43,200 datasets

Model Wins Win share Degenerate Degenerate rate Avg rank
s.xgb.cv 10,491 25.5% 2,600 6.3% 4.4
s.ridge.cv 5,327 12.9% 12,837 31.2% 4.2
dragon.nn 4,976 12.1% 18,021 43.8% 5.1
s.ext.ridge.cv 4,582 11.1% 20,760 50.4% 5.6
dml.elastic 3,413 8.3% 19,913 48.4% 5.6
dml.lasso 3,279 8.0% 19,916 48.4% 5.7
s.ext.xgb.cv 2,648 6.4% 21,344 51.8% 6.9
r.ridge.cv 2,532 6.2% 25,209 61.2% 8.7
dr.ridge.cv 2,499 6.1% 24,384 59.2% 7.1
t.ridge.cv 1,780 4.3% 26,383 64.1% 8.2
dr.xgb.cv 476 1.2% 29,409 71.4% 9.9
cforest 209 0.5% 31,286 76.0% 10.5
t.xgb.cv 187 0.5% 31,561 76.7% 11.4
r.xgb.cv 110 0.3% 34,814 84.6% 12.4
dml.xgb - 0.0% 40,741 99.0% 15.9
dml.linear - 0.0% 38,796 94.2% 14.3

using Q̂(τ̂) ≤ 0 as a model selection guardrail is crucial for avoiding poor-performing estimators,
when possible.

2. CATE estimators fail to outperform a constant-effect benchmark 80% of the time. We use Double
ML with a Lasso base learner (dml.lasso) to construct τ̂B , a constant-effect estimator. Among
25,440 datasets with non-degenerate τ̂B < 0, only 20% of CATE estimators (τ̂ ) outperform τ̂B .
This finding is striking, given that these methods are explicitly designed to capture heterogeneity. It
also highlights the underappreciated value of heterogeneity detection methods (Crump et al., 2008;
Chernozhukov et al., 2023), which deserve significantly more attention.

3. Orthogonality-based learners underperform. Despite their theoretical advantages, these models
(model name dml, r, dr, and cforest) have an average degenerate rate of 71%, and win only
30% of the time. This underperformance raises concerns about the self-serving bias inherent in
using their proxy losses as CATE evaluation criteria. Their performance, we hypothesize, arises
from a combination of factors, including the data-generating process and modeling choices. While
the sample-splitting and debiasing mechanisms should, in theory, mitigate risks from poorly spec-
ified outcome models, other practical challenges—such as violations of assumptions required for
orthogonality conditions to hold—may play a role. This is a topic for our ongoing research.

4. No single model consistently outperforms others. Among the sixteen models evaluated, s.xgb.cv
had the highest win share at 25.5%. Unlike prior studies, our findings are based on real-world data
rather than simulated outcomes, reinforcing the relevance of these results for practical applications.
Detailed performance analysis across datasets, data size, treatment proportion, and assignment
complexity is available in Appendix I.1.

4.3 RESULT VALIDITY AND CONSIDERATIONS

We were surprised by the findings. While we anticipated variation in (relative) accuracy, we did
expect contemporary CATE estimators to provide generally useful estimates. Before concluding
that these results reflect fundamental issues with CATE estimation, we consider several alternative
explanations:

Is Q̂ really performing oracle ranking? We present simulation results on the agreement between Q̂
and MSE P when used to select best models. We tested using semi-synthetic datasets based on the
Hillstrom dataset (Hillstrom, 2008). Synthetic potential outcomes and treatments were generated, and
the dataset was split into an estimation set (Dest) and an evaluation set (Deval) of varying sizes (1,000
to 64,000 samples). We trained the same 16 CATE models on Dest and evaluated them on Deval

using Q̂ variants as the evaluation criteria. To assess the accuracy of Q̂, we compared model rankings
from Q̂ with oracle rankings available in the simulated data using ranking metrics; see Figure 1

9
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for MRR and Appendix D for more details. As predicted by theory, the agreement between Q̂ and
the oracle improved with larger evaluation datasets, and Q̂ consistently outperformed alternative
evaluation metrics. See Appendix D.2 for more results.

1k 2k 4k 8k 16k 32k 64k
Dataset s ze

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

mrr vs test dataset s ze on h llstrom
oracle
Q̂

Q̂(rLI)
Q̂(rR) w )h lr ba(e learner
Q̂(rR) w )h xgb ba(e learner
Q̂(rDR) w )h lr ba(e learner
Q̂(rDR) w )h xgb ba(e learner
Ou)come pred c) on accuracy

MSE aga n() S-learner (xgb) proxy loss
MSE against S-learner (lr) proxy loss
MSE against T-learner (xgb) proxy loss
MSE against T-learner (lr) proxy loss
Qini
MSE against ATE
Calibration Score

Figure 1: Ranking agreement between Q̂ variants and oracle. X-axis represents evaluation data size;
y-axis represents MRR.

Implementation Accuracy. The possibility of implementation errors is a valid concern, but we
minimize the risk by re-using the codebase (Curth, 2023) that has been used for recent large-scale
benchmarks (Curth & van der Schaar, 2023). We relied on existing CATE estimators and evaluation
criteria when possible and used EconML for additional implementations. We are committed to
releasing our code following proper approval to further ensure transparency and reproducibility.

Model Selection. Our evaluation focused on 16 widely used CATE models; they span the major
strategies in CATE estimation discussed in Section 2.2. While resource constraints limited the number
of models we could include, this selection offers a representative evaluation of contemporary methods.
However, we acknowledge that additional models, particularly from deep learning and Gaussian
Process approaches (Alaa & van der Schaar, 2017), could provide further insights.

Context-Specific Generalizability. While the datasets used in our benchmark may not cover every
researcher’s specific needs, they represent a diverse range of real-world data generation processes.
Our results expose significant risks in CATE estimation, particularly for practitioners without the
deep domain expertise necessary for rigorous model fine-tuning. These findings provide crucial
insights into the limitations of widely used CATE methods in capturing real-world heterogeneity.

5 CONCLUSIONS

We introduce a new approach to evaluating CATE estimators using observational sampling, centered
around the statistical parameter Q to identify the estimator with the lowest MSE. The Q̂ family of
statistics are unbiased estimators of Q, computable from real-world RCT datasets without relying on
simulated potential outcomes. Under the control variates framework, we show that common CATE
estimation losses are special cases of Q̂, and that this method generalizes to new and observational
distributions.

However, the most important contribution of this work is the empirical findings themselves. Our large-
scale evaluation of sixteen CATE models across 43,200 datasets built from real-world data reveals
a striking pattern: 62% of CATE estimates (71% for orthogonality based models) perform worse
than a trivial zero-effect predictor, and among cases with useful estimates, 80% fail to outperform a
constant-effect model. Furthermore, orthogonality-based models only outperform non-orthogonality
models 30% of the time. These findings highlight important limitations in current CATE estimation
research and emphasize the need for continued innovation and development in this area.
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A NOTATION TABLE

Let f be a ground truth function defining the data generation process; f is often unobservable. We
use f̂ to represent the main estimator, and f̃ to represent the plug-in.

Notation Definition
X Pre-treatment random vector
T Binary treatment
Y (0) and Y (1) Potential outcomes
Y = Y (T ) Outcome
µ(0)(x) and µ(1)(x) Expectations of potential outcomes
µ̃(0)(x) and µ̃(1)(x) Plug-in estimates of potential outcomes
τ(x) = µ(1)(x)− µ(0)(x) ground truth CATE function
τ̂(x) CATE estimate
e(x) = Pr(T = 1|X = x) Propensity function
ẽ(x) Plug-in estimate of e(x)
E1 Treatment probability in RCT, i.e., E1 = Pr(T = 1). Also E0 = 1− E1

D A dataset, a list of (X,T, Y ) tuples
N Number of samples in dataset
(xn, tn, yn) n-th sample in D
Dest The estimation dataset, a subset of D
Deval The evaluation dataset, a subset of D
P Mean Squared Error of CATE estimator. Also known as PEHE
Q The statistical parameter; also the part of MSE that depends on τ̂

Q̂ The sample statistics computed on dataset D
r(·) The zero-mean control variate function
Q̂(r) The sampled statistics with control variates function r
LR R loss
LDR DR loss
m(x) E[Y |X = x], used in R loss
m̃(x) Plug-in estimate of m(x)
η(x, t, y) Shorthand function used for IPW estimator
γ(x, t) Shorthand function used in DR learner

Table 2: Notations

B PROOFS

B.1 PROOF OF LEMMA 3.1

Proof. To see that, notice

P3(τ̂) = EX [τ̂(x)τ(x)]

= EX [τ̂(x)ET,Y |X [η(X,T, Y )]]

= EX [ET,Y |X [τ̂(x)η(X,T, Y )]]

= EX,T,Y [τ̂(x)η(X,T, Y )]

= E
[ 1

N

∑
n

τ̂(xn)η(xn, tn, yn)
]

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where the second equation is due to unbiasedness of Horwitz-Thompson estimator η. It follows that

Q = P2 − 2P3

= E
[ 1

N

∑
n

(τ̂(xn)− 2τ̂(xn)η(xn, tn, yn))
]

= E
[ 1

N

∑
n

q(xn, tn, yn; τ̂)
]

= E[Q̂]

Thus E[Q̂] = Q holds as long as the ground truth propensity function e(x) is known, even if it is not
constant.

Remark B.1. The proof can be extended to other unbiased CATE estimators.

B.2 PROOF OF THEOREM B.2

Based on Lemma 3.1, We can establish the consistency of Q̂ when propensity needs to be estimated:
Theorem B.2. Consistency. Assume propensity e(x) and its estimate ê(x) are both bounded
away from zero and way on their support: 0 < ē ≤ e(x), ê(x) ≤ 1 − ē < 1. Also assume
limn→∞ Pr(EX [|ên(x)− e(X)|] > ϵ) = 0 for all ϵ > 0. We have for all ϵ > 0,

lim
n→∞

Pr(|Q̂n(τ̂)−Q(τ̂)| > ϵ) = 0 (5)

Proof. First, notice

Q̂(e(x))− Q̂(ê(x)) =
1

N

∑
n

[
τ̂2(xn)− 2τ̂(xn)(

tn
e(xn)

− 1− tn
1− e(xn)

)yn

]
(6)

− 1

N

∑
n

[
τ̂2(xn)− 2τ̂(xn)(

tn
ê(xn)

− 1− tn
1− ê(xn)

)yn

]
(7)

=
1

N

∑
n

2τ̂(xn)yn

(
tn

ê(xn)
− tn

e(xn)
+

1− tn
1− e(xn)

− 1− tn
1− ê(xn)

)
(8)

It follows that

|Q̂(e(x))− Q̂(ê(x))| (9)

≤ 1

N

∑
n

|2τ̂(xn)yn|
(∣∣∣∣ tn

ê(xn)
− tn

e(xn)

∣∣∣∣+ ∣∣∣∣ 1− tn
1− e(xn)

− 1− tn
1− ê(xn)

∣∣∣∣) (10)

=
1

N

∑
n

|2τ̂(xn)yn|
(

tn
e(xn)ê(xn)

|ê(xn)− e(xn)|+
1− tn

(1− e(xn))(1− e(xn))
|ê(xn)− e(xn)|

)
(11)

≤

{
1

N

∑
n

|2τ̂(xn)yn|
(

tn
e(xn)ê(xn)

+
1− tn

(1− e(xn))(1− e(xn))

)
|e(xn)− e(xn)|

}
(12)

≤ C1
1

N

∑
n

|e(xn)− ê(xn)| (13)

= C1 (EX [|e(X)− ê(X)|] + ε1) (14)
≤ C1 (EX [|e(X)− ê(X)|] + |ε1|) (15)

where

C1 = 4max

(
1

ē2
,

1

(1− ē)2

)
max
n

|τ̂(xn)yn| (16)

is a constant and
ε1 = EX [|e(X)− ê(X)|]− 1

N

∑
n

|e(xn)− ê(xn)| (17)
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ε1 is a zero-mean random variable with asymptotic variance on the order of o(1/
√
N) due to Central

Limit Theorem. As a result we have limn→∞ Pr(ε1 > ϵ) = 0. It follows that

lim
n→∞

Pr(E |e(X)− ê(X)| > ε) = 0 (18)

Combining the two yields

lim
n→∞

Pr(|Q̂(e(x))− Q̂(ê(x))| > ϵ) = 0 (19)

Secondly, by Theorem 3.12, we have
√
N(Q̂(e(x))−Q(e(x))) → N(0, σ2) (20)

It follows that

lim
n→∞

Pr(|Q̂(e(x))−Q(e(x))| > ϵ) = 0 (21)

Finally, notice that

Q̂(ê(x))−Q(e(x)) = [Q̂(ê(x))− Q̂(e(x))] + [Q̂(e(x))−Q(e(x))] (22)

is the sum of two parts. The convergence for the first part is given by (19) and the second part by
(21). It follows that

lim
n→∞

Pr(|Q̂(ê(x))−Q(e(x))| > ϵ) = 0 (23)

B.3 PROOF OF THEOREM 3.7

Proof. Recall Q = P2 − 2P3. We have:

P2(τ̂ ;X2) = EX2 [τ̂
2(X)] (24)

= EX1
[ζ(X)τ̂2(X)] (25)

= EΠ1

[
1

N

∑
n

ζ(xn)τ̂
2(xn)

]
(26)

where the second equation is is due to inverse propensity weighting and the definition of density ratio,
and the third equation is due to the unbiasedness nature of sample mean. Similarly,

P3(τ̂ ;X2) = EX2
[τ(X)τ̂(x)] (27)

= EX1 [ζ(X)τ(X)τ̂(x)] (28)
= EX1 [ζ(X)η(X)τ̂(x)] (29)

= EΠ1

[
1

N

∑
n

ζ(xn)η(xn, tn, yn)τ(xn)

]
(30)

Combining the two yields

Q(τ̂ ;X2) = EΠ1

[
1

N

∑
n

ζ(xn)
[
τ̂2(xn)− 2η(xn, tn, yn)τ̂(xn)

]]
(31)

To summarize, if we compute Q̂(τ̂) on Π1 and weight it by IPW density ratio ζ, we get an unbiased
estimator of Q(τ̂) on Π2.
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B.4 PROOF OF THEOREM 3.8

Proof. First note that, for a given CATE estimator τ̂ , the difference between Q(τ̂) under Π1 and Π2

is bounded by ∆:

|Q(τ̂ ; Π1)−Q(τ̂ ; Π2)| = |EX1 [τ̂
2(X)− 2τ̂(X)τ(X)]− EX2 [τ̂

2(X)− 2τ̂(X)τ(X)]|
= |EX1

[τ̂2(X)− 2τ̂(X)EY1|[Y
(1) − Y (0)]]− EX2

[τ̂2(X)− 2τ̂(X)EY2
[Y (1) − Y (0)]]|

= |EΠ1
[h0(X,Y (0), Y (1))]− EΠ2

[h0(X,Y (0), Y (1))]|
≤ sup

h∈H
|EΠ1

[h(X,Y (0), Y (1))]− EΠ2
[h(X,Y (0), Y (1))]|

= DH(Π1,Π2)

< ∆

where the third equality is due to the definition of h0 and the fifth step is due to the definition of IPM
DH(Π1,Π2).

Let us assume we have two CATE estimators, τ̂1(x) and τ̂2(x), and

Q(τ̂ ; Π1)(τ̂1)−Q(τ̂ ; Π1)(τ̂2) ≥ 2∆ (32)

It follows that

Q(τ̂1; Π2)−Q(τ̂2; Π2) > Q(τ̂1; Π1)−∆− (Q(τ̂2; Π1) + ∆)

> Q(τ̂1; Π1)−Q(τ̂2; Π1)− 2∆

> 0

That is, τ̂2 is also better on Π2.

B.5 PROOF OF PROPOSITION 3.9

Proof. First we show that E[rLI(X,T, Y ; τ̂ ] = 0, i.e., it is a control variates function. This is obvious
because

E[rLI(X,T, Y ; τ̂)] = 2θE
[(

T

E1
− (1− T )

E0

)
τ̂(X)

]
(33)

= 2θE
[
T

E1
− (1− T )

E0

]
E[ ˆτ(X)] (34)

= 2θ(1− 1)E[ ˆτ(X)] (35)
= 0 (36)

where the first step is by definition of rLI(·), and the second step is by property of RCT dataset.

It follows that

E[Q̂(rLI)] = E

[
Q̂+

1

N

∑
n

rLI(xn, tn, yn; τ̂)

]
(37)

= E[Q̂] + E[rLI(X,T, Y ; τ̂)] (38)

= E[Q̂] (39)
= Q (40)

B.6 PROOF OF PROPOSITION 3.10

Proof. First we prove E[rDR(X,T, Y ; τ̂)] = 0. First note that,

E
[
(1− T

E1
)µ̂(1)(X)τ̂(X)

]
= E[(1− T

E1
)]E[µ̂(1)(X)τ̂(X)] (41)

= (1− 1)E[µ̂(1)(X)τ̂(X)] (42)
= 0 (43)
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Similarly

E
[
1− 1− T

1− E0
µ̂(0)(X)τ̂(X)

]
= 0 (44)

Combining the results above yields E(rDR(X,T, Y ; τ̂)] = 0. It follows that E[Q̂DR] = E[Q̂] = Q

Next we show that LDR is a linear function of Q̂(τ̂). Recall

LDR(τ̂) =
1

N

∑
n

[η(xn, tn, yn) + γ(xn, tn)− τ̂(xn)]
2 (45)

=
1

N

∑
n

{
[(η(xn, tn, yn) + γ(xn, tn)]

2
+ τ̂2(xn)− 2[η(xn, tn, yn) + γ(xn, tn)]τ̂(xn)

}
(46)

=
1

N

∑
n

[
η(xn, tn, yn) + γ(xn, tn)

]2
+ Q̂+

1

N

∑
n

[
rDR(xn, tn)τ̂(xn)

]
(47)

=
∑
n

1

N

[
η(xn, tn, yn) + γ(xn, tn)

]2
+ Q̂(rDR) (48)

where the first term is independent from τ̂ and thus can be omitted for ranking purposes.

B.7 PROOF OF PROPOSITION 3.11

Proof. First we prove the zero-mean property:

E[(1− 2T )m(X)τ̂(X)] = E[m(X)τ̂(X)]E[1− 2T ] (49)
= E[m(X)τ̂(X)] · 0 (50)
= 0 (51)

It follows that E[Q̂R] = E[Q̂] = Q.

Next, note that when E1 = E0 = ẽ(x) = 0.5

Q̂ =
1

N

∑
n

[
τ̂2(xn) + 4(1− 2tn)ynτ̂(xn)

]
(52)

It follows that

LR(τ̂) =
1

N

∑
n

[
((yn − m̃(xn))− (tn − ẽ(xn))τ̂(xn))

2
]

(53)

=
1

N

∑
n

[
(yn − m̃(xn))

2 + (tn − ẽ(xn))
2τ̂2(xn)− 2(yn − m̃(xn))(tn − ẽ(xn))τ̂(xn)

]
(54)

=
1

N

∑
n

(yn − m̃(xn))
2 +

1

N

∑
n

[
(tn − ẽ(xn))

2τ̂2(xn)− 2(yn − m̃(xn))(tn − ẽ(xn))τ̂(xn)
]

(55)

=
1

N

∑
n

(yn − m̃(xn))
2 +

1

N

∑
n

[1
4
τ̂2(xn) + (yn − m̃(xn))(1− 2tn)τ̂(xn)

]
(56)

=
1

N

∑
n

(yn − m̃(xn))
2 +

1

4N

∑
n

[
τ̂2(xn) + 4(yn − m̃(xn))(1− 2tn)τ̂(xn)

]
(57)

=
1

N

∑
n

(yn − m̃(xn))
2 +

1

4N

{∑
n

[
τ̂2(xn) + 4yn(1− 2tn)τ̂(xn)

]
−

∑
n

4m̃(xn)(1− 2tn)τ̂(xn)

}
(58)

=
1

N

∑
n

(yn − m̃(xn))
2 +

1

4
Q̂(rR) (59)

where the first term is a constant without impact on ranking.
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B.8 PROOF OF THEOREM 3.12

Proof. Based on the assumptions, it is easy to see that the random variable η(X,T, Y ) is bounded.
Combining this with the boundedness of τ̂(x) we get q(x, t, y|τ) = τ̂2(x) − 2τ̂(x)η(x, t, y) is
bounded. It follow that q(r; τ̂) = q + r is also bounded and thus have finite expectation and finite
variance. Let us denote its variance as σ2(r, τ̂). By Lindeberg–Lévy CLT, the sample mean Q̂(r; τ̂)

converges in distribution to its expectation Q:
√
N(Q̂(r; τ̂)−Q) → N (0, σ2(r, τ̂))

C DETAILED CONFIGURATION OF CATE ESTIMATION MODELS

We train sixteen CATE estimation models listed in Table 3. This includes two S-learners, two
T-learners, two R-learners, two Doubly Robust learners, four Double ML learners, a causal tree
(forest) learner, and one representation learning learner, discussed in Section 2.

We hope the selection covers mainstream CATE estimation methods. We include meta-learner
(e.g., S and T learners in Künzel et al. (2019)) in our empirical study, because they represent the
outcome prediction strategy, arguably the most simple and direct methods for causal inference. We
include Double ML methods (Chernozhukov et al., 2017) because they represent econometric/semi-
parametric view of causal inference, as well as the recent development of orthogonal and debiased
Machine Learning. We include Doubly Robust learners (Kennedy, 2023) because they represent
Inverse Propensity Weighting (Robins et al., 1994), a classic causal inference technique. We include
causal forest because they are one of the earliest ML-based work with theoretical guarantee. Finally,
we include DragonNet to represent recent trend using deep learning and representation learning for
causal inference.

Our limited resource prevents us from including more CATE estimation methods. As a result we do
not claim this list to be complete or “optimal”. Due to resource constraint, we were unable to include
more variations of deep learning models following Shalit et al. (2017), causal tree models following
Athey et al. (2018), or Gaussian Process models following Alaa & van der Schaar (2017). The list
may not be “optimal” because some of the modeling approaches are related, most notably between
Double Machine Learning and R learners.

Table 3: CATE estimation Models

CATE estimation Method Base Learner Model Code
DR learner Ridge Regression dr.ridge.cv
DR learner XGBoost dr.xgb.cv
R learner Ridge Regression r.ridge.cv
R learner XGBoost r.xgb.cv
S learner Ridge Regression s.ridge.cv
S learner XGBoost s.xgb.cv
S learner Ridge Regression s.ext.ridge.cv
S learner XGBoost s.ext.xgb.cv
T learner Ridge Regression t.ridge.cv
T learner XGBoost t.xgb.cv
Double ML Linear Regression dml.linear
Double ML Lasso dml.lasso
Double ML Elastic Net dml.elastic
Double ML XGBoost dml.xgb
Generalized Causal Forest Random Forest cforest
Representation Learning Neural Net dragon.nn

Note that, s.ext.xgb.cv and s.ext.ridge.cv models are variants of S learners where the
interaction X · T are constructed explicitly as model inputs.

We use codebase in Curth (2023) for model estimation and evaluation. Out of the sixteen models listed
in Table 3, eight meta-learners (S-learners, T-learners, R-learners) and two Doubly Robust learners
directly come from Curth (2023) implementation. Following Curth & van der Schaar (2023), we use
two base learners, linear regression (implemented as an sklearn RidgeCV object), and XGBoost
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(implemented as an XGBoost XGBRegressor object with grid search implemented by sklearn
GridSearchCV). See Curth (2023) for details. The five Double Machine Learning learners are
implemented using LinearDML and NonParamDML classes in EconML package, using sklearn
GradientBoostingRegressor as the potential outcome learner and respective base learner as
the residual model learner.

All treatment propensity estimators are implemented using sklearn RandomForestClassifier
class; we clip propensity outputs between 0.05 and 0.95.
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D SECTION 4.3 SUPPLEMENTAL DETAILS

D.1 SEMI-SYNTHETIC DATASET GENERATION DETAILS

We follow the steps below to transform raw covariates into feature x:

• Apply one-hot encoding on all categorical covariates
• Linearly scale all float covariates between 0 and 1
• Colume stack all covariates to generate a feature vector
• If feature vector has more than 100 elements, randomly select 100.

We follow the steps below to generate synthetic outcome:

• Generate two random vectors β0 and β1 with discrete values of [0, 1, 2, 3, 4] and discrete
probability of [0.5, 0.2, 0.15, 0.1, 0.05]

• Compute transformed feature and outcome using the one of following three approaches:
- Linear. First compute z0(x) = x, z1(x) = ex then generate µ0(x) = βT

0 z0(x) and
µ1 = eβ

T
1 z1(x)

- Interaction. First compute z0(x) = [x0x1, x1x2, ..., xD−1x0] and z1(x) =
[x0x2, x1x3, ..., xD−1x1] then generate µ0(x) = βT

0 z0(x) and µ1 = βT
1 z1(x)

- Sine. First compute z0(x) = [x0x1, x1x2, ..., xD−1x0] and z1(x) =
[x0x2, x1x3, ..., xD−1x1] then generate µ0(x) = cos(βT

0 z0(x)) and µ1 = sin(βT
1 z1(x))

• Scale µ0(x) and µ1(x) to have zero mean and unit standard deviation
• generate y0 = µ0(x) +N(0, 1) and y1 = µ1(x) +N(0, 1) + τ , where τ is now the ATE

estimate.

We generate synthetic treatment as follows:

• Generate random vector βT

• Calculate Pr(T |X = x) = 1
1+eβT x+1.

• Sample T using the Pr(t|x)

D.2 AGREEMENT BETWEEN MODEL SELECTION CRITERIA AND ORACLE
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Figure 2: Interaction transformation; τ = 2.0
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Figure 3: Sine transformation; τ = 0.5
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Figure 4: Linear transformation; τ = 0.5
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E DATASET INTRODUCTION

We use twelve RCT datasets in Section 4.3 and 4, listed in Table 4. In this section we discuss the
rationale of data selection, and provide a brief introduction to individual datasets and data handling.

The goal for the dataset selection is to ensure that, collectively, they better represent real applications
of causal inference than those datasets studied by current state of the art (e.g, Curth & van der Schaar
(2023); Mahajan et al. (2023); Neal et al. (2021)): including IHDP, ACIC, and LaLonde. We achieve
that by applying the following four factors when selecting the datasets:

• Real-world heterogeneity. We select datasets collected from real-world, and forgo datasets
with simulated outcomes, to allow evaluation performance of CATE estimator on real-world
heterogeneity. In comparison, simulated outcome on IHDP or ACIC do not achieve the
same rigor.

• Dataset size. we prefer large datasets to allow the asymptotic property of Q̂ to kick in. The
smallest in the selection sandercock has 19,000 samples.

• Diversity. The datasets are curated to cover a diverse sources. They differ in domains (e.g.,
marketing in criteo and hilstrom, consumer behavior in ferman, medical science in
sandercock, and sociology and political science in GSS datasets), geography (GSS from
the United States, ferman from Brazil, sandercock from Europe, and criteo from
Russia), and form of experiments (traditional RCT in sandercock, online A/B testing in
criteo and hillstrom, and field survey in GSS)

• Prior work. We select datasets previously studied by causal inference and related literature.
For example criteo is used for uplift modeling in Diemert et al. (2021); the natfare is
used for regression adjustment in Wager et al. (2016)

Table 4: RCT Datasets

Dataset Samples Treatment % Features References
criteo 13,979,592 85% 12 Diemert et al. (2021)
ferman 103,116 82% 9 Ferman (2015)
hillstrom 64,000 67% 12 Hillstrom (2008)
sandercock 19,435 50% 24 IST Collaborative Group & Sandercock (1997)
nataid 51,957 50% 20 Davern et al. (2023)
natarms 51,987 50% 20 Davern et al. (2023)
natcity 51,915 50% 20 Davern et al. (2023)
natcrime 51,977 50% 20 Davern et al. (2023)
natdrug 51,961 50% 20 Davern et al. (2023)
nateduc 52,017 50% 20 Davern et al. (2023)
natenvir 52,027 50% 20 Davern et al. (2023)
natfare 51,993 50% 20 Davern et al. (2023)

Criteo dataset Diemert et al. (2021) captures advertising related online shopping behavior for
13,979,592 web users (identified by a browser cookie) in RCT. Each user is randomly assigned
to either treatment or control group. Pre-assignment user activities before assignment is used to
construct covariates. If a user is in treatment, they are subject to an ad exposure; if they are in control
group, they are expose to the ad. The dataset tracks multiple outcomes such as visits and conversion.
We use visit as the outcome in the current analysis.

Hillstrom dataset Hillstrom (2008) contains email marketing related activity for 64,000 shoppers
who had purchase records within a year. Through randomization, one third of the shoppers receive
a marketing e-mail campaign featuring Men’s merchandise; one third receive an email featuring
women’s; and the last one third received no marketing email. Covariates include past purchase history,
gender, geo location, etc. In the current paper, we combine the two groups who receive marketing
email into one treatment group; the remaining group (who receives no marketin email) is the control
group. We use visit as the outcome variable.
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Sandercock dataset IST Collaborative Group & Sandercock (1997) includes data on 19,435 patients
with acute stroke. Patients in treatment group are treated with aspirin; patients in control group
are not. Covariates include age, gender, and other medical information. The binary outcome is
whether patient is dead or dependent on other people for activities of daily living at six months after
randomisation.

Ferman dataset Ferman (2015) includes shopping activity related to credit card payment plan on
103,116 customers of a Brazilian credit company. Customers are randomly assigned into three groups:
34,743 customers in the first group were offered a menu of payment plans with interest rate equal to
6:39%, 49,573 customers in second group were offered plans with interest rate equal to 9:59%, and
the third group of 18,800 customers did not receive any payment plan offer. The outcome is whether
the customer defaults within 12 months after the offer. We combine the first and second group into
one treatment group.

GSS datasets include responses to eight questions from more than 50,000 respondents surveyed by
The General Social Survey (GSS) Davern et al. (2023) between 1986 and 2022; response to each
question consistutes a RCT dataset. GSS is an annual sociological survey created in 1972 by the
National Opinion Research Center (NORC) at the University of Chicago. It collects information
biannually and keeps a historical record of the concerns, experiences, attitudes, and practices of
residents of the United States. GSS Survey regularly include randomized wording experiments to
capture heterogeneity in respondent’s opinion on social issues. For a given randomized question,
the question variation forms different treatment arms, the answer to the question forms the outcome.
GSS also collects hundreds of high-quality demographic variables, capturing demographic, work,
family and spouse, household, racial, and region related information. These variables become
the pre-treatment covariates. We use eight wording experiments (nataid, natarms, natcity,
natcrime, natdrug, nateduc, natenvir, natfare)) to construct the binary outcome. Its
value is equal to 1 if and only if when a respondent answers “too much” to a question, and 0 otherwise.

F SECTION 4 ADDITIONAL DETAILS ON OBSERVATIONAL SAMPLING

For every original dataset in Table 4, we vary three parameters when generating Dest: first we set the
estimation dataset size to be one of the following value [1000, 2000, 4000, 8000], to test if certain
models perform better with more (or less) data. Secondly, we set the expected treatment % to be one
of the following values [0.1, 0.5, 0.9], to test if certain models are sensitive to treatment imbalance. 2

Third, we use a MLP in generating assignment mechanism, and set the number of MLP layers to be
1, 2, or 3. This tests if models are sensitive to nonlinearity in assignment mechanism. We enumerate
all parameter combinations, leading to 4× 3× 3 = 36 settings. For every setting, we sample Dest

and Deval jointly 100 times. This gives 3,600 pairs of Dest and Deval. Repeating same process for
the 12 datasets yields 12× 3, 600 = 43, 200 datasets.

We train model on small estimation datasets with selection bias, and evaluate model performance
on large unbiased RCT datasets. The starting point is an RCT dataset D. We first randomly split D
into Deval and D −Deval. We then sample D −Deval to get estimation dataset: for every sample
(x, t, y), define a random variable K ∈ {0, 1} with Pr(K = 1|T = t,X = x) = G(t, x). We keep
the n-th sample in Dest if and only if kn = 1. G(t, x) is the biasing function since it introduces
selection bias to the original RCT dataset. This creates the estimation dataset Dest, a subset of D
with selection bias. We apply any CATE estimation method on Dest to obtain an CATE estimator
τ̂(x), and use τ̂(x) on Deval to compute Q̂. Fig. 5 illustrates the process. Note that, in estimation
dataset, the treatment is a function of covariates; in evaluation dataset, the treatment is randomly
generated based on standard binary distribution. For every dataset and evaluation dataset size, we
repeat simulation 100 times.

The complete algorithm of creating Dest is summarized below:

2Treatment % of 0.9 can be different from 0.1 because different potential outcomes may be different in
real-world datasets.
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Figure 5: Overall approach

Algorithm 1 Creating estimation dataset Dest

Input: RCT dataset D
Input: function G(t, x), 0 < G(t, x) < 1
Output: Observational dataset Dest

Dest = ∅
for every sample n in D do

Sample a binary random variable Kn with Pr(K = 1|X = xn, T = tn) = G(tn, xn)
If Kn = 1, add sample n to Dest

end for
Return Dest

Note that, the biasing function G(t, x) function generates the following assignment mechanism for
Dest:

Pr(T = 1|X = x,K = 1) (60)

=
Pr(T = 1, X = x,K = 1)

Pr(X = x,K = 1)
(61)

=
Pr(T = 1, X = x,K = 1)

Pr(X = x,K = 1)
(62)

=
Pr(T = 1)Pr(X = x) Pr(K = 1|X = x, T = 1)

Pr(X = x) Pr(K = 1|X = x)
(63)

=
Pr(T = 1)Pr(X = x) Pr(K = 1|X = x, T = 1)

Pr(X = x)(Pr(T = 1)Pr(K = 1|X = x, T = 1) + Pr(T = 0)Pr(K = 1|X = x, T = 0))
(64)

=
Pr(T = 1)G(x, 1)

Pr(T = 1)G(x, 1) + Pr(T = 0)G(x, 0)
(65)

=
1

1 + Pr(T=0)
Pr(T=1)

G(x,0)
G(x,1)

(66)

As a result, T is dependent on X , achieving selection bias on Dest.
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Note that

Pr(X ≤ x|K = 1) = Pr(X ≤ x|K = 1, T = 1)Pr(T = 1) + Pr(X ≤ x|K = 1, T = 0)Pr(T = 0)(67)

=
Pr(x ≤ x,K = 1, T = 1)

Pr(K = 1, T = 1)
+

Pr(X ≤ x,K = 1, T = 0)

Pr(K = 1, T = 0)
(68)

=

∫ x

0
f(x)G(x, 1)dx∫∞

0
f(x)G(x, 1)dx

+

∫ x

0
f(x)G(x, 0)dx∫∞

0
f(x)G(x, 0)dx

(69)

=

∫ x

0
f(x)G(x, 1)dx

EX [G(X, 1)]
+

∫ x

0
f(x)G(x, 0)dx

EX [G(X, 0)]
(70)

where f is density of X on Π. It follows that

fest(x) = f(x)

(
G(x, 1)

EX [G(X, 1)]
+

G(x, 0)

EX [G(X, 0)]

)
(71)

The complete CATE estimator evaluation algorithm is summarized below.

Algorithm 2 Selecting best CATE Estimator

Input: A list of A CATE estimation models a = 1, 2, ..., A
Input: RCT dataset D
Input: Biasing function G(t, x)
Output: a∗, 1 ≤ a∗ ≤ A the best performing model
Randomly split D into Dtrain and Deval

Generate Dest from Dtrain using G as the biasing function
for model a, 1 ≤ a ≤ A do

Train a CATE estimator τ̂a(x) using data Dest

Compute qn on every sample (xn, tn, yn) ∈ Deval

Compute Q̂(τ̂a, Deval)
end for
Return a∗ = argmina Q̂(τ̂a, Deval)
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G SECTION 4 RESULTS FOR ALL RCT DATASETS COMBINED
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Figure 6: Model win share by training dataset size: all RCT datasets
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Figure 7: Model win share by treatment ratio: all RCT datasets
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Figure 8: Model win share by assignment mechanism complexity: all RCT datasets
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Figure 9: Win share vs. degenerate rate, by model, all RCT datasets
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H TABLE 1 WITH STANDARD ERROR AND 95% CONFIDENCE INTERVALS

Table 5: Model comparison: summary of 43,200 datasets. The standard error and 95% confidence
interval come from 10,000 bootstrapping

Model Win Rate
Mean (SE)

Win Rate
95% CI

Degeneracy Rate
Mean (SE)

Degeneracy Rate
95% CI

Avg Rank
Mean (SE)

Avg Rank
95% CI

cforest 0.005 ( 0.000 ) (0.004, 0.006) 0.760 ( 0.002 ) (0.756, 0.764) 10.5 ( 0.0 ) (10.4, 10.5)
dml.elastic 0.083 ( 0.001 ) (0.080, 0.086) 0.484 ( 0.002 ) (0.479, 0.488) 5.6 ( 0.0 ) (5.6, 5.6)
dml.lasso 0.080 ( 0.001 ) (0.077, 0.082) 0.484 ( 0.002 ) (0.479, 0.489) 5.7 ( 0.0 ) (5.6, 5.7)
dml.linear 0.000 ( 0.000 ) (0.000, 0.000) 0.942 ( 0.001 ) (0.940, 0.945) 14.3 ( 0.0 ) (14.3, 14.3)
dml.xgb 0.000 ( 0.000 ) (0.000, 0.000) 0.990 ( 0.000 ) (0.989, 0.991) 15.9 ( 0.0 ) (15.9, 15.9)
dr.ridge.cv 0.061 ( 0.001 ) (0.058, 0.063) 0.592 ( 0.002 ) (0.588, 0.597) 7.1 ( 0.0 ) (7.1, 7.2)
dr.xgb.cv 0.012 ( 0.001 ) (0.011, 0.013) 0.714 ( 0.002 ) (0.710, 0.719) 9.9 ( 0.0 ) (9.8, 9.9)
dragon.nn 0.121 ( 0.002 ) (0.118, 0.124) 0.438 ( 0.002 ) (0.433, 0.443) 5.1 ( 0.0 ) (5.1, 5.2)
r.ridge.cv 0.062 ( 0.001 ) (0.059, 0.064) 0.612 ( 0.002 ) (0.608, 0.617) 8.7 ( 0.0 ) (8.7, 8.8)
r.xgb.cv 0.003 ( 0.000 ) (0.002, 0.003) 0.846 ( 0.002 ) (0.842, 0.849) 12.4 ( 0.0 ) (12.4, 12.4)
s.ext.ridge.cv 0.111 ( 0.002 ) (0.108, 0.114) 0.504 ( 0.002 ) (0.499, 0.509) 5.6 ( 0.0 ) (5.6, 5.6)
s.ext.xgb.cv 0.064 ( 0.001 ) (0.062, 0.067) 0.518 ( 0.002 ) (0.514, 0.523) 6.9 ( 0.0 ) (6.9, 6.9)
s.ridge.cv 0.129 ( 0.002 ) (0.126, 0.133) 0.312 ( 0.002 ) (0.307, 0.316) 4.2 ( 0.0 ) (4.2, 4.2)
s.xgb.cv 0.255 ( 0.002 ) (0.251, 0.259) 0.063 ( 0.001 ) (0.061, 0.066) 4.4 ( 0.0 ) (4.4, 4.4)
t.ridge.cv 0.043 ( 0.001 ) (0.041, 0.045) 0.641 ( 0.002 ) (0.636, 0.646) 8.2 ( 0.0 ) (8.2, 8.3)
t.xgb.cv 0.005 ( 0.000 ) (0.004, 0.005) 0.767 ( 0.002 ) (0.763, 0.771) 11.4 ( 0.0 ) (11.4, 11.4)
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I SECTION 4 DATASET LEVEL STATISTICS

I.1 SUMMARY OF DATASET SPECIFIC BEHAVIOR

Does models’ relative performance vary by amount of training data, treatment imbalance, or level
of nonlinearity in assignment mechanism? Looking at the aggregated results (Appendix G), we
found moderate fluctuation of model performance when varying these drivers. This is likely because
variations averages out. Dataset level statistics shows a different picture. We present selected results
in this section and leave more in Appendix I.

Training dataset size can have large impact on model performance. On criteo, Win share of
R-learner (r.ridge.cv) increase from 7% with 1k estimation data, to 26% with 8k estimation
data. See Figure 10.
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Figure 10: Training size on criteo

Treatment imbalance can have large impact on model performance. On natcity, win share of DR
learner is 40% with balanced treatment, and 16% when treated ratio is 0.9. See Figure 11.

Level of nonlinearity in assignment mechanism, we found, has limited impact on model performance.
This is partly, we think, because our propensity estimator (Random Forest with propensity clipping)
is flexible enough to fit different degrees of nonlinearity. See Figure 8 in Appendix.
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Figure 11: treatment % on natcity
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I.2 CRITEO
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Figure 12: Win share vs. degenerate percentage, by model on criteo
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Figure 13: Model win share by estimation data, criteo
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Figure 14: Model win share by treatment ratio, criteo
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Figure 15: Model win share by assignment mechanism complexity, criteo
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I.3 HILLSTROM

0.0% 5.0% 10.0% 15.0% 20.0%
Win rate

0%

20%

40%

60%

80%

100%

De
ge

ne
ra

te
 ra

te
Win vs. degenerate rates: hillstrom

dragon.nn
s.ridge.cv
dml.elastic
dml.lasso
s.ext.ridge.cv
s.xgb.cv
r.ridge.cv
s.ext.xgb.cv
dr.ridge.cv
dr.xgb.cv
t.ridge.cv
r.xgb.cv
t.xgb.cv
dml.xgb
cforest
dml.linear

Figure 16: Win share vs. degenerate percentage, by model on hillstrom
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Figure 17: Model win share by estimation data, hillstrom
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Figure 18: Model win share by treatment ratio, hillstrom
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Figure 19: Model win share by assignment mechanism complexity, hillstrom
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I.4 FERMAN
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Figure 20: Win share vs. degenerate percentage, by model on ferman
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Figure 21: Model win share by estimation data, ferman
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Figure 22: Model win share by treatment ratio, ferman
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Figure 23: Model win share by assignment mechanism complexity, ferman
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I.5 SANDERCOCK
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Figure 24: Win share vs. degenerate percentage, by model on sandercock
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Figure 25: Model win share by estimation data, sandercock
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Figure 26: Model win share by treatment ratio, sandercock
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Figure 27: Model win share by assignment mechanism complexity, sandercock
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I.6 NATAID
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Figure 28: Win share vs. degenerate percentage, by model on nataid
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Figure 29: Model win share by estimation data, nataid
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Figure 30: Model win share by treatment ratio, nataid
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Figure 31: Model win share by assignment mechanism complexity, nataid
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I.7 NATARMS
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Figure 32: Win share vs. degenerate percentage, by model on natarms
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Figure 33: Model win share by estimation data, natarms
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Figure 34: Model win share by treatment ratio, natarms
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Figure 35: Model win share by assignment mechanism complexity, natarms
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I.8 NATCITY
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Figure 36: Win share vs. degenerate percentage, by model on natcity
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Figure 37: Model win share by estimation data, natcity
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Figure 38: Model win share by treatment ratio, natcity
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Figure 39: Model win share by assignment mechanism complexity, natcity
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I.9 NATCRIME
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Figure 40: Win share vs. degenerate percentage, by model on natcrime
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Figure 41: Model win share by estimation data, natcrime
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Figure 42: Model win share by treatment ratio, natcrime
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Figure 43: Model win share by assignment mechanism complexity, natcrime
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I.10 NATDRUG
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Figure 44: Win share vs. degenerate percentage, by model on natdrug
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Figure 45: Model win share by estimation data, natdrug
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Figure 46: Model win share by treatment ratio, natdrug
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Figure 47: Model win share by assignment mechanism complexity, natdrug
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I.11 NATEDUC
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Figure 48: Win share vs. degenerate percentage, by model on nateduc
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Figure 49: Model win share by estimation data, nateduc
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Figure 50: Model win share by treatment ratio, nateduc
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Figure 51: Model win share by assignment mechanism complexity, nateduc
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I.12 NATENVIR
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Figure 52: Win share vs. degenerate percentage, by model on natenvir
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Figure 53: Model win share by estimation data, natenvir
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Figure 54: Model win share by treatment ratio, natenvir
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Figure 55: Model win share by assignment mechanism complexity, natenvir

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

I.13 NATFARE
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Figure 56: Win share vs. degenerate percentage, by model on natfare
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Figure 57: Model win share by estimation data, natfare
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Figure 58: Model win share by treatment ratio, natfare
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Figure 59: Model win share by assignment mechanism complexity, natfare
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