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Abstract
On-device training is currently the most com-
mon approach for training machine learning (ML)
models on private, distributed user data. De-
spite this, on-device training has several draw-
backs: (1) most user devices are too small to train
large models on-device, (2) on-device training is
communication- and computation-intensive, and
(3) on-device training can be difficult to debug
and deploy. To address these problems, we pro-
pose Private Evolution-Text (PrE-Text), a method
for generating differentially private (DP) synthetic
textual data. First, we show that across multiple
datasets, training small models (models that fit
on user devices) with PrE-Text synthetic data out-
performs small models trained on-device under
practical privacy regimes (ε = 1.29, ε = 7.58).
We achieve these results while using 9× fewer
rounds, 6× less client computation per round, and
100× less communication per round. Second,
finetuning large models on PrE-Text’s DP syn-
thetic data improves large language model (LLM)
performance on private data across the same range
of privacy budgets. Altogether, these results sug-
gest that training on DP synthetic data can be
a better option than training a model on-device
on private distributed data. Code is available at
https://github.com/houcharlie/PrE-Text.

1. Introduction
In many language applications, such as mobile keyboard
autocompletion (McMahan et al., 2017b), or instruction-
following large language models (Yu et al., 2024), training a
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model on private user data can significantly improve model
performance. However, user data is often sensitive, neces-
sitating the use of algorithmic techniques for protecting
privacy. Federated Learning (FL) (McMahan et al., 2017a)
is a prominent technique that trains models on user devices
(we call this on-device training) and aggregates the resulting
model updates at a central server. Recent works have shown
that FL combined with differential privacy (DP) (Dwork,
2006)—a combination we refer to as DP-FL—can protect
privacy while also improving model performance in user ap-
plications (McMahan et al., 2017b; Kairouz et al., 2021b;a;
Nguyen et al., 2022; Xu et al., 2023b).

On-device training or federated learning has several draw-
backs. (1) Due to limited on-device storage and computa-
tion, client devices cannot be used to train large language
models (LLMs) (Radford et al., 2019; Touvron et al., 2023).
As LLMs become more critical in many use-cases, this be-
comes more limiting (Charles et al., 2023). (2) On-device
training can have high communication and computation
costs for clients (Cai et al., 2022). Indeed, there is a large
body of literature studying how to improve the efficiency of
on-device training (Wang et al., 2020; Li et al., 2020; Karim-
ireddy et al., 2020; Hou et al., 2021a; Wang et al., 2021;
Mishchenko et al., 2022; Sadiev et al., 2022; Grudzień et al.,
2023). (3) It is difficult to deploy and debug (Augenstein
et al., 2019), requiring extensive infrastructure investment
(Tensorflow, 2018; Zhao et al., 2023; PyTorch, 2024).

An alternative paradigm: Train or finetune on differen-
tially private (DP) synthetic data. We propose to have the
central server first generate DP synthetic data from private
client data, then centrally finetune a pretrained language
model on that private synthetic data. As in on-device train-
ing, clients send DP information to the server; this is used
by the server to generate high-quality synthetic data. Unlike
on-device training, clients do not need to run training steps
for the downstream model. Finetuning on DP synthetic data
located on-server (1) eliminates the model size constraints
of on-device training, (2) is easier to debug as we can ob-
serve the training process without compromising DP, and
(3) does not require new training infrastructure, unlike on-
device training. Furthermore, DP synthetic data located on
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Table 1. PrE-Text provides the privacy guarantees of on-device training while (1) being much cheaper in communication and computation,
and (2) being much easier to practitioners to deploy in real systems.

Method Train
LLMs? (a)

Is communication
cheap? (b)

Is computation
cheap? (c)

Easy to
deploy? (d) Privacy-preserving?

Private on-device training
DP-FedAvg (McMahan et al., 2017b)

DP-FTRL (Kairouz et al., 2021b)

7 7 7 7 3

Centralized
non-private training 3 3 3 3 7

PrE-Text
(proposed)

3 3 3 3 3

(a) Training LLMs. On-device finetuning of large models (like LLMs) is not feasible because LLMs are too big. PrE-Text allows us
to finetune LLMs because the resulting synthetic data is located on-server.

(b) Communication cost. PrE-Text required 100x less communication per round (and 9x fewer rounds) in our experiments.
(c) Client computation cost. PrE-Text required 6x less client computation per round (and 9x fewer rounds) than on-device training in

our experiments. This comes at the cost of more server-side computation resources, which is often much less constrained.
(d) Practicality. PrE-Text produces synthetic data on-server, which allows practitioners to see the training process end-to-end; this

improves debuggability (Augenstein et al., 2019). Furthermore, the synthetic data can be reused an unlimited number of times
without incurring additional privacy cost.

server can be reused an unlimited number of times to train
many models without incurring additional privacy cost, due
to the post-processing property of DP (Dwork, 2006).

Unfortunately, existing techniques for generating DP syn-
thetic language data from federated clients are too low-
quality to train or fine-tune a language model (Augenstein
et al., 2019). We fill this gap by leveraging Private Evolution
(PE) (Lin et al., 2023), a recent algorithmic breakthrough in
DP synthetic data. PE is a framework for generating realistic
DP synthetic image data (Lin et al., 2023), which achieves
high scores in realism metrics like FID (Heusel et al., 2017).
However, Lin et al. (2023) do not apply PE to text, nor do
they show that training on DP synthetic data is a competitive
alternative to direct DP training (DP-FL or DP-SGD (Abadi
et al., 2016)) on private data. Our work utilizes PE in the
natural language setting (which is a nontrivial adaptation)
as part of our overall algorithm, then demonstrates through
extensive experiments that the resulting synthetic data can
produce better models than DP-FL at a fraction of the cost.

We list our contributions below:

(1) PrE-Text (Private Evolution-Text) algorithm. We
propose PrE-Text, a new algorithm for DP synthetic text
generation. We build on the following insights: (1) PE must
generate variations of samples (e.g., similar images). We
adapt this requirement to the language domain by carefully
utilizing mask-filling models (Devlin et al., 2018; Lewis
et al., 2019) instead of the diffusion models they used for
images. (2) PE alone does not generate enough high-quality
synthetic data to effectively finetune an LLM. Hence, we
add a post-processing phase, in which we use the outputs
of PE to seed high-quality LLMs trained on public data

to generate more similar text.1 Done carefully, this can
generate orders of magnitude more useful training data,
greatly aiding generalization (all without incurring more
privacy cost, due to the post-processing property of DP
(Dwork, 2006)).

(2) Experimental results. We produce high-quality DP
synthetic language data using PrE-Text, and demonstrate its
superiority over other methods in two major settings:

a) Models served on-device. These models are small
enough to fit on user devices. We show that in this set-
ting, models trained on synthetic data produced by PrE-Text
achieve similar or better performance to models trained
on-device (at ε = 1.29 and ε = 7.58, these privacy levels
are standard (McMahan et al., 2017b)), with ∼100× less
communication per round, ∼6× lower client computation
per round, and 9× fewer rounds. We show that in these
important privacy regimes, PrE-Text outperforms on-device
training for training next-token-prediction models.

b) Models served on-server. These are the models that are
too large (in our setting, LLMs) to be served on user devices.

1In concurrent work, Xie et al. (2024) extend PE to the text do-
main using similar techniques to ours, developing a new algorithm
called Aug-PE. Some differences: (1) Their focus is purely on
generating better DP synthetic text data, whereas ours is on under-
standing whether DP synthetic data can take the place of on-device
learning. To this end, they study the centralized setting, while we
study the federated setting. (2) PrE-Text uses the original PE as a
subroutine in a larger algorithm, whereas Aug-PE is Private Evo-
lution with core components rewritten. (3) Their approach relies
on a closed-source model (ChatGPT) for consistent improvements
over baselines, whereas ours uses open-source models (LLaMA).
This matters because prompts for synthetic data generation that
work on ChatGPT did not work well on LLaMA, and the OpenAI
API policy might not allow training on outputs (OpenAI, 2024).

2



PrE-Text: Training Language Models on Private Federated Data in the Age of LLMs

Figure 1. A high-level description of PrE-Text. PrE-Text consists of two main phases: (1) (iterative) DP synthetic seed collection, (2)
(single-shot) synthetic seed expansion. A detailed description of steps in the diagram is given in Section 3.

We demonstrate that in this setting, large models finetuned
on synthetic data produced by PrE-Text perform better in
next-token-prediction than non-finetuned pretrained LLMs.
To the best of our knowledge, we are the first to privately
finetune an LLM in the federated setting without requiring
the model to be held on user devices. With major LLM
providers running out of useful public data to train on (Xu,
2022; Seetharaman, 2024; Needleman, 2024; Tong et al.,
2024), PrE-Text offers a promising path forward. PrE-Text
can use private client data in a way that is both mindful of
user hardware constraints and is also privacy-compliant.

2. Preliminaries
In this section, we provide formal definitions for our setting.
Definition 2.1 (Neighboring datasets). Two federated
datasetsX,X ′ are said to be neighboring (denotedX ∼ X ′)
if they differ at most with respect to only one user’s data (i.e.
X has an extra user compared to X ′ or vice versa). Note
that we consider a user-level notion of neighboring datasets
(McMahan et al., 2017b).
Definition 2.2 (Differential Privacy). A randomized algo-
rithmA is (ε, δ)-differentially private (DP) if for any pair of
neighboring datasets X , X ′ and for all subsets E of outputs,

Pr[A(X) ∈ E] ≤ eε Pr[A(X ′) ∈ E] + δ. (1)

In this work, we use the Gaussian Mechanism (Dwork,
2006) for DP, which adds Gaussian noise of a specific scale
to released statistics. The required scale of noise depends
on the sensitivity of the statistical query we wish to release.
When defining the Gaussian noise, we use In to represent
the identity matrix of size n× n.

Definition 2.3 (`2 sensitivity (Dwork et al., 2014)). Let g :
X → Rp be a vector-valued function operating on datasets.
Let X,X ′ be neighboring datasets. The `2-sensitivity of g
is defined as ∆g := maxX∼X′ ‖g(X)− g(X ′)‖2.

2.1. Problem formulation

Private clients setup. We consider a setting where a cen-
tral server wishes to learn a model M from N user de-
vices (or, “clients”). Client i has the language dataset Di
which consists of |Si| language samples. M of these clients,
Ctest ⊂ [N ] are considered test clients, and we cannot access
their data during synthetic data generation and the training
process. The remaining N −M clients, Ctrain ⊂ [N ], are
considered training clients, and their data can be accessed
during model training and/or synthetic data generation. We
assume that the client language datasets are drawn from
a distribution of possible client datasets D̂, so each Di is
drawn independently from D̂, Di ∼ D̂.

We divide the space of models into two: on-device models,
which can fit on a client device, and on-server models, which
cannot. We assume that large language models (LLMs) and
other large foundation models are on-server models.

Server setup. The server has access to pretrained LLMs
(for example, the LLaMA models in our setting (Touvron
et al., 2023)) which were trained only on public data.

Task. We focus on the language modeling task, where a
language model predicts token sk from the previous tokens
s0, · · · , sk−1 for each text sample. The server’s final goal is
to learn a language model that performs well on next-token-
prediction on the private test dataset Ctest.
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Algorithm 1 PrE-Text
Input: Number of iterations: T

1: Number of generated samples: Nsyn
2: Initial population: S1

3: Output: Synthetic data Ssyn
4: for t← 1 . . . T do
5: // SEE ALGORITHM 2
6: histt ← Histogram(St)
7: Pt← histt/sum(histt)
8: S′t← draw Nsyn samples from Pt

9: St ← Variation(S′t)

10: end for
11: Ssyn ← Expand(∪Tt=1Set(S′t))

12: return Ssyn

Algorithm 2 Histogram
1: Settings: Private samples: Clients {Ci}i∈Ctrain

2: Noise multiplier for histogram: σ
3: Number of generated samples: Nsyn
4: Threshold for histogram: H
5: Distance function: d(·, ·)
6: Input: Generated samples S = {zi}

Nsyn
i=1

7: Output: Nearest neighbors histogram on S
8: for i ∈ Ctrain do
9: histi ← [0, . . . , 0]

10: for xpriv ∈ Di do
11: l← argminj∈[Nsyn]

d(xpriv, zj)

12: histi[l]← histi[l] + 1
13: end for
14: histi ← histi +N (0, (σ2/|Ctrain|)INsyn)
15: end for
16: hist←

∑
i∈Ctrain

histi
17: hist← max(hist−H, 0) (elementwise subtraction)
18: return hist

Privacy and threat model. We consider an honest-but-
curious threat model (Nguyen et al., 2022). Using secure
aggregation (Bonawitz et al., 2016), the server does not see
individual client uploads, but rather the aggregated upload
across clients. By adding DP noise, clients prevent the server
from inferring any single client’s data from the aggregated
upload (which contains an aggregated amount of noise).
The server then aims to learn an (ε, δ)-DP language model
(where the notion of DP is user-level distributed DP2).

2Note that technically, using the Gaussian Mechanism together
with secure aggregation requires discretization as secure aggrega-
tion uses modular arithmetic (Kairouz et al., 2021a; Bagdasaryan
et al., 2021; Agarwal et al., 2021). This is an important consid-
eration when practically deploying end-to-end DP applications
relying on secure aggregation and the Gaussian mechanism.

3. PrE-Text
The main intuition of PrE-Text (and PE) is that public foun-
dation models should be capable of producing samples that
are similar to the private data with some non-negligible
probability. Therefore, to generate DP synthetic data similar
to private data, we steer the foundation model (privately)
towards the user data in a multi-round process. Briefly, we
make several important changes to the PE algorithm: (1) we
adapt it from the image setting to the text setting; (2) we
exploit synthetic data from the entire PE process, rather than
only the last round; and (3) we add a post-processing phase
that utilizes the output of PE as seeds for another LLM. We
provide pseudocode in Algorithm 1, and highlight the new
contributed steps in color. We now explain Algorithm 1.

(1) Population of samples. We start with an initial pop-
ulation of samples S1 (Line 2). These samples can come
from many different sources as long as they do not contain
private information: for example public samples collected
from the internet or samples randomly generated by a public
generative foundation model.

(2) Clients vote for the best synthetic samples. For round
t ≥ 1, we determine which of the generated samples St
represent the private samples the best. We send all the
generated samples St to each client. Each client counts for
each generated sample s ∈ St how many private samples
had s as their nearest neighbor in St. The higher this count
is, the “better” a generated sample is. Thus, each client
produces a nearest neighbors histogram with |St| entries
(Line 9). We determine nearest neighbor according to a
distance function d(y, z) = ‖Φ(y)−Φ(z)‖2, where Φ is an
embedding model.

Lookahead. To more accurately assess the closeness of
a synthetic sample to a private sample, we amend the
distance function from d(y, z) = ‖Φ(y) − Φ(z)‖2 to
d(y, z) = ‖Φ(y) − 1

K

∑K
i=1 Φ(zi)‖2, where z0, . . . , zK

are K variations of z produced by using Variation. Lin
et al. (2023) also uses this modification. Instead of sending
the actual generated samples directly to all the clients, we
send 1

K

∑K
i=1 Φ(zi) to all the clients for every i for their

nearest neighbors calculation (Line 11).

(a) DP Noise. In Line 14 each client adds noise to their
nearest neighbors histogram to ensure DP. We compute
client-level sensitivity assuming a known upper bound on
the number of samples per client (e.g., via thresholding).

(b) Federated Secure Aggregation. In Line 16 we securely
aggregate the histograms across the users. Because the
generated samples given to all the clients are the same, we
sum the histograms using secure aggregation (Bonawitz
et al., 2016) to get an aggregate histogram.

(c) Thresholding. When we generate many samples, the
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majority of the probability mass of the histogram will be
noise. We improve the signal-to-noise ratio by thresholding
the histogram at H in Line 17 (Lin et al., 2023).

(3) Use votes to choose the surviving samples. We sample
from the nearest neighbors histogram to produce surviving
generated samples in Line 8, S′t+1. This new list of gener-
ated samples (there may be duplicates) tends to give more
representation to generated samples that had more private
samples close to them.

(4) Produce variations of surviving samples. We use
Variation to generate a variation of the surviving sam-
ples S′t+1 as the new population of samples (Line 9). In PE,
this was accomplished using diffusion models, which can-
not be used for text. We instead implement Variation as
follows. For each sample in S′t, we produce a variation of it
by masking MASK% of the tokens randomly, then filling in
those masked tokens in with a masked language model. The
resulting sample is then masked and filled-in again. This
mask-fill process happens Wsteps times before returning the
variation. We use RoBERTa-large (Liu et al., 2019) as the
masked language model.

(5) Making efficient use of iterates. We make several ma-
jor modifications to the core Private Evolution algorithm to
improve our usage of the iterates. First, Lin et al. (2023)
use the final ST (Line 9) as the synthetic dataset. How-
ever, S′T contains more information about the private dataset
than ST because Variation destroys information. There-
fore, we use S′T instead of ST . Second, we find that S′t
for t = 1, . . . , T all have valuable synthetic samples and
show significant diversity between iterations. Therefore, we
choose to utilize

⋃T
t=1 Set(S′t) (Line 11) instead of just

S′T . This more effectively utilizes the privacy budget.

(6) Post-processing: Use LLM to expand the DP seed set.
PE originally used the final ST as the target synthetic data.
However, we find that these samples are not high enough
quality to fine-tune an LLM. We instead use Expand to
generate more samples similar to the synthetic samples⋃T
t=1 Set(S′t), which we use as our (DP) seed set to prompt

the LLM. Expand utilizes the synthetic data generation
capabilities of large language models (LLMs) to generate
a larger and more useful synthetic dataset. Note that by
the post-processing property of differential privacy (Dwork,
2006), Expand will not leak any additional privacy. Next
we describe how Expand works.

Inspired by highly successful synthetic text generation
(Taori et al., 2023; Wang et al., 2022; Honovich et al., 2022;
Rozière et al., 2023), we generate synthetic text by using
large foundational language models. We follow a process
similar to Honovich et al. (2022): for each synthetic sam-
ple to generate, we randomly choose three text samples to
emulate from

⋃T
t=1 Set(S′t) (our DP seed set), and ask the

LLM to generate a similar sample. We use open-source
LLaMA-2-7B (Touvron et al., 2023) as our large language
model. We provide the full prompt (Figure 3).

3.1. Privacy analysis

As noted in Lin et al. (2023), the only function that uti-
lizes private information is Algorithm 2. The DP histogram
(Line 16) contains private information. As in Lin et al.
(2023), we use the Gaussian mechanism with constant noise
multiplier σ each time we receive a histogram. Since this is
a Gaussian mechanism, we can use the moments accountant
from the Opacus library (Yousefpour et al., 2021). Details
can be found in Appendix D.1.

4. Experiments
Models. We use RoBERTa-large (Liu et al., 2019) for mask-
filling. We use all-MiniLM-L6-v2 for text embeddings. We
use DistilGPT2 (Sanh et al., 2019) to evaluate our methods.
Finally, we use LLaMA-2-7B (Touvron et al., 2023) for
synthetic seed expansion.

Datasets. We produce three federated private datasets from
the c4-English (Raffel et al., 2019) (c4-en): JOBS, FORUMS,
and MICROBLOG, which are subsets of c4-en. In these
datasets, the federated datasets are uniformly randomly
partitioned among clients. We also produce another fed-
erated private dataset CODE, a question-and-answer dataset
focused on coding and technical topics. For all training
datasets, there are 1250 clients. The evaluation sets are
created from a held-out portion of the data. For the initial
population used in PrE-Text, we use a subset of c4-en that
is not part of any of the private datasets. More details on the
datasets are provided in Appendix C.

Note that many LLMs do not document what datasets were
used in their pretraining, which makes it difficult to pre-
vent contamination. Even text released after the release
of the model may be contaminated, as it may have been
AI-generated. We used the most recent large-scale dataset
we could find (though it was released before the release of
LLaMA-2) that is (a) compliant with terms of service (many
sources of recent text data have closed their APIs for ML
training) and (b) readily accessible. Systematically detect-
ing dataset contamination is an important open problem in
LLM research (Gunasekar et al., 2023).

Task. We focus on the language modeling task, and report
evaluation loss (cross-entropy) and accuracy. We consider
two experimental settings: (small) models stored on-device,
and (large) models stored on-server.

Baselines. We compare PrE-Text to several baselines.

(1) ε = 0 baselines: Our first two baselines, c4-only and
Expand-only, give lower bounds on performance by not

5



PrE-Text: Training Language Models on Private Federated Data in the Age of LLMs

using the private data at all, and relying only on public data.
c4-only is a DistilGPT2 model finetuned on a subset of c4-
en that came from website sources not represented in any of
the private data. As Xu et al. (2023c) found, finetuning on
c4-en improved privacy-utility tradeoff greatly in next-token
prediction, so this is an important baseline. Expand-only is
a DistilGPT2 model finetuned on the subset of c4-en used in
the c4-only baseline, expanded to 2 million samples using
expand.

(2) ε =∞ baselines: Our next baseline provides an upper
bound on model performance, obtained by ignoring privacy
constraints. To this end, we evaluate Expand-private. This
is a DistilGPT2 model finetuned on (1) the subset of c4-
en used in c4-only baseline, and (2) the private dataset
expanded to 2 million samples using expand. We found
that this performs better than a model finetuned on only the
private dataset itself.

(3) On-device baselines: We next evaluate two representa-
tive on-device training baselines that use DP optimization
to provide a privacy guarantee: DP-FedAvg (McMahan
et al., 2017b) and DP-FTRL (Kairouz et al., 2021b), which
are two of the most widely-used algorithms for private on-
device training in practice. Specifically, we first finetune
DistilGPT2 on the subset of c4-en used in the c4-only base-
line, and then finetune it further using DP-FedAvg or DP-
FTRL (which are on-device training methods). We use the
DP-FTRL-TreeRestart variant of DP-FTRL, as we consider
full participation in each communication round.

(4) Text-to-text privatization baseline: We finally compare
PrE-Text against DP-Prompt, a different approach for gen-
erating DP synthetic data with paraphrasing. In this ap-
proach, clients hold an LLM on-device and release privacy-
preserving paraphrases of their text directly to the server.
The representative method we use here is DP-Prompt (Ut-
pala et al., 2023). We use the same prompt and model
(flan-t5-3b) as Utpala et al. (2023). Note that these methods
cannot take advantage of secure aggregation (text cannot
be summed) which necessitates adding much more noise
to the privatized text to guarantee user-level privacy. We
first finetune a DistilGPT2 model on a subset of c4-en used
in the c4-only baseline, and then finetune it further on the
privatized text received by the server.

4.1. Models stored on-device

We consider a setting where users do not send data directly
to a server-side LLM and instead keep a small model on-
device for inference. We use DistilGPT2 as our representa-
tive example of a small model, with 82M parameters.

Experimental setup. For PrE-Text, we generate a syn-
thetic dataset of 2 million samples. We first finetune Distil-
GPT2 on the subset of c4-en used in the c4-only baseline,

and then finetune it further on the synthetic dataset gener-
ated by PrE-Text. We compare against all the baselines
mentioned at the beginning of the section. For more details
on how we instantiated each method including hyperparam-
eter grids, see Appendix D.2.

Results. We present our results in Table 2 and Table 3. We
find that PrE-Text outperforms all other baselines at ε =
1.29 and ε = 7.58. As a sanity check, it also performs better
than the ε = 0 baseline and worse than the ε =∞ baseline.
The results show that in practical privacy regimes, PrE-Text
outperforms private on-device training. As synthetic data
generation methods improve (for example, better prompts
and models for expand), synthetic data generation may
continue to greatly improve as a strategy for learning from
private federated datasets.

Efficiency differences. We compare the efficiency of DP-
FL vs PrE-Text in our experimental setup, demonstrating
that PrE-Text is much more efficient in terms of computation
and communication in our setting.

(1) Communication cost. DP-FL requires each client to
download and upload the model (DistilGPT2) to/from the
server. DistilGPT2 has a size of 82M parameters, which
means clients are downloading and uploading 82M floats
each round. On the other hand, PrE-Text requires clients to
download at most 2048 embedding vectors of size 384 repre-
senting the synthetic samples each round. This means each
client downloads around 800K floats. On upload, clients
upload at most 2048 floats (the size of the histogram). So
client download cost is 100× cheaper with PrE-Text per
round, and upload cost is 41000× cheaper with PrE-Text
per round. In addition, PrE-Text uses 9× fewer rounds than
the on-device baselines. Conservatively, this is at least a
100× improvement in communication cost per round when
using PrE-Text (possibly more, given that upload speeds
can be 15× slower than download (speedtest.net, 2023)).
The embedding model we use, miniLM-L6-v2 (Reimers &
Gurevych, 2019), is itself only 10M floats, and only needs
to be downloaded once per user, and can be done offline.

(2) Client computation cost. PrE-Text is also much more
computationally efficient for clients. We assume that user de-
vices only have access to CPU computation, as most smart-
phones do not have GPUs (or have fairly limited GPUs).
When tested on a VM with five Intel(R) Xeon(R) Gold 6248
CPU @ 2.50GHz, training with DistilGPT2 requires 3 sec-
onds per sample to train while the client computation for
PrE-Text (nearest neighbors calculation and client embed-
ding generation) requires less than 0.5 seconds per sample.
This computation gain comes from the fact that clients per-
form inference (not training), which requires fewer opera-
tions and can be sped up (Kwon et al., 2023; Reimers &
Gurevych, 2019). This gives at least a 6× improvement in
computation cost per round for clients with PrE-Text. In
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Table 2. We compare the next token prediction accuracies (higher is better) achieved by PrE-Text against DP-Prompt/DP-FedAvg/DP-
FTRL, under (1.29, 3× 10−6)-DP and (7.58, 3× 10−6)-DP. We also compare these methods against baselines with ε = 0, ε =∞. We
see that PrE-Text outperforms the alternatives at ε = 1.29 and ε = 7.58. The error bars are stderr.

Method Privacy JOBS (↑) FORUMS(↑) MICROBLOG (↑) CODE (↑)
c4-only

Expand-only ε = 0
0.695 ± 0.000
0.702 ± 0.000

0.650 ± 0.000
0.661 ± 0.000

0.658 ± 0.000
0.669 ± 0.000

0.622 ± 0.000
0.635 ± 0.001

DP-Prompt
DP-FedAvg
DP-FTRL
PrE-Text

ε = 1.29

0.673 ± 0.000
0.701 ± 0.000
0.703 ± 0.000
0.718 ± 0.000

0.636 ± 0.000
0.663 ± 0.000
0.665 ± 0.000
0.672 ± 0.000

0.642 ± 0.000
0.665 ± 0.000
0.667 ± 0.000
0.680 ± 0.000

0.599 ± 0.000
0.636 ± 0.000
0.643 ± 0.000
0.644 ± 0.001

DP-Prompt
DP-FedAvg
DP-FTRL
PrE-Text

ε = 7.58

0.672 ± 0.000
0.703 ± 0.000
0.704 ± 0.000
0.721 ± 0.000

0.637 ± 0.000
0.666 ± 0.000
0.667 ± 0.000
0.673 ± 0.000

0.642 ± 0.000
0.666 ± 0.000
0.668 ± 0.000
0.680 ± 0.000

0.598 ± 0.000
0.643 ± 0.000
0.644 ± 0.000
0.652 ± 0.000

Expand-private ε =∞ 0.730 ± 0.000 0.684 ± 0.000 0.689 ± 0.000 0.687 ± 0.000

Table 3. We compare the next token prediction (cross-entropy) losses (lower is better) achieved by PrE-Text against DP-Prompt/DP-
FedAvg/DP-FTRL, under (1.29, 3 × 10−6)-DP and (7.58, 3 × 10−6)-DP. We also compare these methods against baselines with
ε = 0, ε =∞. We see that PrE-Text outperforms the alternatives at ε = 1.29 and ε = 7.58. The error bars are stderr.

Method Privacy JOBS (↓) FORUMS(↓) MICROBLOG (↓) CODE (↓)
c4-only

Expand-only ε = 0
1.781 ± 0.004
1.611 ± 0.000

2.154 ± 0.007
1.883 ± 0.000

2.103 ± 0.004
1.858 ± 0.000

2.492 ± 0.007
2.158 ± 0.002

DP-Prompt
DP-FedAvg
DP-FTRL
PrE-Text

ε = 1.29

1.799 ± 0.003
1.644 ± 0.000
1.594 ± 0.000
1.482 ± 0.001

2.049 ± 0.001
1.888 ± 0.000
1.850 ± 0.000
1.779 ± 0.001

2.055 ± 0.000
1.916 ± 0.000
1.874 ± 0.000
1.770 ± 0.000

2.312 ± 0.003
2.143 ± 0.000
2.007 ± 0.000
2.004 ± 0.010

DP-Prompt
DP-FedAvg
DP-FTRL
PrE-Text

ε = 7.58

1.801 ± 0.002
1.598 ± 0.000
1.589 ± 0.000
1.456 ± 0.003

2.047 ± 0.000
1.854 ± 0.000
1.845 ± 0.000
1.773 ± 0.001

2.055 ± 0.001
1.879 ± 0.000
1.867 ± 0.000
1.771 ± 0.000

2.317 ± 0.001
2.008 ± 0.000
2.001 ± 0.000
1.920 ± 0.001

Expand-private ε =∞ 1.374 ± 0.002 1.682 ± 0.001 1.668 ± 0.001 1.585 ± 0.001

addition, PrE-Text uses 9× fewer rounds than the on-device
baselines. This comes at the cost of more server-side com-
pute in our experiments. However, using server resources is
often more acceptable than using client resources.

4.2. Models stored on-server

We next consider the setting where models are stored and
trained on-server (as opposed to on-device). This setting
arises when the model is too large to fit on-device, for in-
stance. On-device training and inference are infeasible in
this setting. We instead obtain a DP synthetic dataset from
the private federated training set and then finetune the server-
side LLM on this synthetic dataset.

Experimental details. We use the same settings for PrE-
text as in Section 4.1, except we only expand to 50000 sam-

ples (due to computational constraints of finetuning LLMs).
We use LLaMA-2-7B as our evaluation model instead of
DistilGPT2. We compare against the relevant and com-
petitive baselines. For the non-finetuned (on private data)
baseline, we simply report the evaluation loss on the private
datasets for LLaMA-2-7B. To evaluate our proposed alter-
native, we finetune LLaMA-2-7B on the synthetic dataset
produced by PrE-Text for one epoch with LoRA finetuning
(with rank 4, α = 8, applied to all the projection matrices in
LLaMA-2-7B) with the AdamW optimizer at a learning rate
of 0.0002 and a batch size of 512. For the Expand-private
(ε =∞) baseline we finetune on 50000 samples expanded
from the private train set. The on-device baselines are not
appropriate for this setting. We also do not compare against
DP-Prompt in this setting because it performed very poorly
in Section 4.1, even worse than the ε = 0 baseline.
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Table 4. Next token prediction accuracy on private data for LLaMA-2-7B finetuned on PrE-Text synthetic data (under (7.58, 3×10−6)-DP
and (1.29, 3× 10−6)-DP). The finetuned model outperforms non-finetuned LLaMA-2-7B performance across four datasets. The error
bars are stderr.

Method Privacy JOBS (↑) FORUMS(↑) MICROBLOG (↑) CODE (↑)
Non-finetuned ε = 0 0.510 ± 0.000 0.466 ± 0.000 0.473 ± 0.000 0.460 ± 0.000

PrE-Text ε = 1.29 0.522 ± 0.000 0.479 ± 0.001 0.484 ± 0.000 0.473 ± 0.001
PrE-Text ε = 7.58 0.523 ± 0.000 0.480 ± 0.000 0.483 ± 0.000 0.473 ± 0.000

Expand-private ε =∞ 0.526 ± 0.000 0.484 ± 0.000 0.488 ± 0.001 0.476 ± 0.000

Table 5. Next token prediction cross-entropy loss on private data for LLaMA-2-7B finetuned on PrE-Text synthetic data (under (7.58, 3×
10−6)-DP and (1.29, 3× 10−6)-DP). The finetuned model outperforms non-finetuned LLaMA-2-7B performance across four datasets.
The error bars are stderr.

Method Privacy JOBS (↓) FORUMS(↓) MICROBLOG (↓) CODE (↓)
Non-finetuned ε = 0 2.915 ± 0.000 3.250 ± 0.000 3.220 ± 0.000 3.218 ± 0.000

PrE-Text ε = 1.29 2.811 ± 0.000 3.177 ± 0.004 3.133 ± 0.002 3.110 ± 0.000
PrE-Text ε = 7.58 2.795 ± 0.008 3.164 ± 0.005 3.139 ± 0.008 3.101 ± 0.000

Expand-private ε =∞ 2.746 ± 0.002 3.085 ± 0.001 3.088 ± 0.001 3.026 ± 0.000

Results. In Table 4 and Table 5 we observe that LLaMA-
2-7B finetuned on PrE-Text DP synthetic data outperforms
zero-shot LLaMA-2-7B. To the best of our knowledge, we
are the first to demonstrate a way to privately finetune a large
language model (that cannot fit on-device) in the federated
setting. With major LLM providers running out of use-
ful public data (Xu, 2022; Seetharaman, 2024; Needleman,
2024; Tong et al., 2024) for training, our proof-of-concept
shows a promising new path forward: using private client
data in a privacy-compliant and resource-conscious way.

4.3. Performance Scaling by Dataset Size

In this subsection, we investigate how the performance of
PrE-Text scales as we change the number of samples gen-
erated in Expand. We finetune DistilGPT2 on DP syn-
thetic datasets of sizes ranging from 50000 to 2 million, at
ε = 7.58 across the four private datasets JOBS, FORUMS,
MICROBLOG, CODE. All the experimental details are the
same as in the on-device PrE-Text experiment, except we
scale the batch size according to the fraction of synthetic
data we use over the full amount (2 million). For example,
at a synthetic data size of 50000, we use [0.0025 × the orig-
inal batch size] as the batch size. As shown in Figure 2, we
find that like in (Honovich et al., 2022), the quality of the
downstream model mostly improves log-linearly with the
amount of synthetic data. However, in the case of CODE, the
performance of the downstream model starts getting dimin-
ishing returns at around 1M samples, and even decreases in
performance at 2M samples. The best number of synthetic
samples for downstream may depend on the dataset.

5. Related Work
DP Federated Learning. Differentially Private Feder-
ated Learning (FL) is a widely-used approach for learn-
ing ML models from distributed private data (McMahan
et al., 2017b; Kairouz et al., 2021c). In DP-FL, model
weights are sent to users who train the model locally on
their private data; private local model updates are then col-
lected at a central server. Researchers have many techniques
for improving privacy-utility tradeoffs in DP-FL. Some in-
clude shuffle-based privacy amplification (Bonawitz et al.,
2016; Girgis et al., 2021; Agarwal et al., 2018), pretraining
on public datasets (Xu et al., 2023c), private selection of
the best pretraining datasets (Hou et al., 2023; Gu et al.,
2022), and DP-FL methods that do not rely on uniform
sampling/shuffling (Kairouz et al., 2021b).

Today, growing efforts study how to train larger models
on client data. Charles et al. (2022) propose to have users
optimize slices of large models, though they have not demon-
strated the approach on models larger than shallow lo-
gistic regression and convolutional neural network mod-
els. Collins et al. (2023); Cai et al. (2022); Zhang et al.
(2023a); Zhao et al. (2022a); Guo et al. (2023) only tune
sub-components of the models in the federated setting to
reduce client computational burden and communication, but
this still requires having clients store and perform inference
with large models on their device. Zhang et al. (2023c)
use foundation models to produce synthetic data to pretrain
smaller models. None of these methods consider privacy.

Synthetic Data. Synthetic data is increasingly being used
to train language models (Taori et al., 2023; Wang et al.,
2022; Honovich et al., 2022). Common approaches involve
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Method
Per-Round Communication
(Number of floats transmitted) Per-sample Runtime

(s)
Number of rounds

Upload Download

DP-FL 82M 82M 3 100
PrE-Text 2048 800K 0.5 11

Reduction 41,000× 100× 6× 9×

Table 6. Communication and runtime cost of PrE-Text vs DP-FL. We find that PrE-Text achieves at least a 100× reduction in per-round
communication, a 6× reduction in per-round runtime, and a 9× reduction in the number of rounds in our experiments. These costs are the
same for all datasets and values of ε in our evaluation, for private clients with 8 samples each. The number of synthetic samples sent to
each client for PrE-Text is 2048.
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Figure 2. Next-token prediction accuracy for PrE-Text as we vary
the number of synthetic examples generated by the Expand part
of the algorithm. We find that increasing the number of synthetic
examples across several orders of magnitude improves the accu-
racy of the downstream model (DistilGPT2) roughly log-linearly,
though the growth peaks on CODE after 1M samples.

carefully designing prompts to ChatGPT (Radford et al.,
2019) to generate synthetic training data for another open
source model, e.g. LLaMA (Touvron et al., 2023), to repli-
cate ChatGPT behavior. In these works, the synthetic data
is used solely to enhance final model utility, and does not
satisfy any formal privacy guarantees. In the image setting,
useful synthetic data is often produced using dataset distilla-
tion (Wang et al., 2018; Zhao et al., 2020; Cazenavette et al.,
2022). This approach has been adapted to the federated
setting (Song et al., 2023).

DP Synthetic Data. Much of the work on producing private
(i.e., DP) synthetic data from deep generative models is in
the image domain (Lin et al., 2021; Cao et al., 2021; Dock-
horn et al., 2022; Chen et al., 2022). Common approaches
involve training a generative adversarial network (GAN)
or diffusion model in a differentially private way, e.g., via
DP-SGD, a DP version of stochastic gradient descent (SGD)
(Abadi et al., 2016). Tang et al. (2023) generate DP syn-
thetic text in the federated setting, but their method requires
users to send private data to ChatGPT (which is located

on-server). Such actions are not allowed under our threat
model, where the central server is not trusted to hold private
data. In concurrent work, (Xie et al., 2024) propose a pri-
vate evolution algorithm for DP synthetic text data. Their
method is similar to ours (we summarize differences in Sec-
tion 1); the most important difference is that our focus is on
understanding the relation between synthetic data and on
device training, while their work aims to improve the quality
of DP synthetic text data more generally. Also in the text
domain, (Li et al., 2021; Yu et al., 2021a) demonstrate that
it is possible to finetune pretrained large language models
in a central-DP manner (i.e., the private data is available to
the model developer).

Recently, several papers (some of them concurrent to ours)
have proposed to finetune LLMs on DP synthetic data in the
central DP setting (Yue et al., 2022; Kurakin et al., 2023;
Yu et al., 2024; Ding et al., 2024). In the private feder-
ated setting, work by Wang et al. (2023a); Wu et al. (2024)
also considers using LLM synthetic data. They propose
to filter LLM synthetic data to samples that are relevant
to the private data. The model is subsequently finetuned
using DP-FL on-device. Their work shows a substantial
improvement in next-word prediction accuracy compared to
vanilla pre-training with DP-FL finetuning. In contrast, our
work uses DP synthetic data to replace the DP-FL step itself,
while keeping pre-training untouched. These methods are
complementary and could potentially be combined. Overall,
the literature suggests that DP synthetic data may be useful
for training models from private, client data.

6. Conclusion
We propose PrE-Text, a method for generating privacy-
preserving synthetic text from user devices that (1) surpasses
federated learning approaches across privacy settings and
(2) allow us to privately finetune LLMs on distributed user
data. As model developers run out of useful data, our pos-
itive results suggest that DP synthetic data is a promising
new privacy-preserving and resource-conscious data source
for improving language models both big and small.
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Impact Statement
PrE-Text relies on models that were pretrained on public
data. It does not provide privacy guarantees for the public
data that was used to train these models. Although that
training data was public, it may not have been intended for
use in language models, which raises questions about the
ethics of using the resulting models (Tramèr et al., 2022).
Therefore, in real deployments for PrE-Text, it is important
to ensure that the public data used to pretrain the base mod-
els has been properly audited. Broadly, it is also important
to communicate to users how much privacy protection they
are getting when private algorithms are run on their data,
and collect informed consent.

Acknowledgments
This work used Bridges-2 GPU at the Pittsburgh Supercom-
puting Center through allocation CIS240135 from the Ad-
vanced Cyberinfrastructure Coordination Ecosystem: Ser-
vices & Support (ACCESS) program, which is supported
by National Science Foundation grants 2138259, 2138286,
2138307, 2137603, and 2138296 (Boerner et al., 2023). The
authors acknowledge the National Artificial Intelligence Re-
search Resource (NAIRR) Pilot and Delta GPU for con-
tributing to this research result. GF and CH were supported
in part by C3.ai, JP Morgan Chase, Bosch, Intel, and the
Sloan Foundation.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

Abourayya, A., Kleesiek, J., Rao, K., Ayday, E., Rao, B.,
Webb, G., and Kamp, M. Little is enough: Improving
privacy by sharing labels in federated semi-supervised
learning. 2023. URL https://api.semanticsc
holar.org/CorpusID:263829949.

Agarwal, N., Suresh, A. T., Yu, F. X. X., Kumar, S., and
McMahan, B. cpsgd: Communication-efficient and
differentially-private distributed sgd. Advances in Neural
Information Processing Systems, 31, 2018.

Agarwal, N., Kairouz, P., and Liu, Z. The skellam mech-
anism for differentially private federated learning. Ad-
vances in Neural Information Processing Systems, 34:
5052–5064, 2021.

Anil, R., Ghazi, B., Gupta, V., Kumar, R., and Manurangsi,
P. Large-scale differentially private bert. arXiv preprint
arXiv:2108.01624, 2021.

Augenstein, S., McMahan, H. B., Ramage, D., Ramaswamy,
S., Kairouz, P., Chen, M., Mathews, R., et al. Generative
models for effective ml on private, decentralized datasets.
arXiv preprint arXiv:1911.06679, 2019.

Bagdasaryan, E., Kairouz, P., Mellem, S., Gascón, A.,
Bonawitz, K., Estrin, D., and Gruteser, M. Towards
sparse federated analytics: Location heatmaps under
distributed differential privacy with secure aggregation.
arXiv preprint arXiv:2111.02356, 2021.

Bistritz, I., Mann, A., and Bambos, N. Distributed distilla-
tion for on-device learning. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, volume 33,
pp. 22593–22604. Curran Associates, Inc., 2020. URL
https://proceedings.neurips.cc/paper
files/paper/2020/file/fef6f97160533
6724b5e6c0c12dc2534-Paper.pdf.

Boerner, T. J., Deems, S., Furlani, T. R., Knuth, S. L., and
Towns, J. Access: Advancing innovation: Nsf’s advanced
cyberinfrastructure coordination ecosystem: Services &
support. In Practice and Experience in Advanced Re-
search Computing, pp. 173–176. 2023.

Bonawitz, K. A., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for feder-
ated learning on user-held data. In NIPS Workshop
on Private Multi-Party Machine Learning, 2016. URL
https://arxiv.org/abs/1611.04482.

Brown, H., Lee, K., Mireshghallah, F., Shokri, R., and
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A. Additional Related Work
Federated Distillation. To sidestep the problem of high communication overheads, federated distillation has been proposed
as a promising approach recently (Bistritz et al., 2020; Abourayya et al., 2023; Wang et al., 2023b; Wu et al., 2021; Lin
et al., 2020; Cho et al., 2021), which draw inspiration from the PATE line of work (Papernot et al., 2016; 2018). As far
as we know, these federated distillation methods have not developed algorithms for the private federated language setting
that we study. There have been works studying DP synthetic data in settings outside of text (Torkzadehmahani et al., 2019;
Neunhoeffer et al., 2020).

Clipping strategies. Clipping is a critical component of DP training of deep learning models, as it limits the sensitivity of the
output. Li et al. (2021); Bu et al. (2024; 2023); Kong & Munoz Medina (2024) study how to (1) improve the computational
efficiency of clipping, and (2) make it more privacy-efficient.

Unlearning. Chen & Yang (2023); Jang et al. (2022); Kumar et al. (2022); Yao et al. (2024) take a machine unlearning
approach to remove sensitive data from a model. This approach avoids having to retrain a non-private model using private
methods from scratch.

Private inference of language models. Tang et al. (2023); Wu et al. (2023) show how to do in-context learning with
differential privacy. Duan et al. (2024) show how to protect the privacy of data that is used in in-context learning. Du et al.
(2023) show how to add differential privacy in the forward pass of an LLM. Mattern et al. (2022) show how to anonymize
data release in language models using differential privacy.

Private dataset selection. Gu et al. (2023); Hou et al. (2023) show how to privately choose pretraining datasets. Zhou et al.
(2020) use gradient subspaces calculated from public data to reduce the amount of noise needed for differential privacy
guarantees.

DP finetuning. Li et al. (2023) investigate differentially private prompt tuning. Li et al. (2022) show conditions under which
LLMs do not suffer much accuracy drop-off from using DPSGD (Abadi et al., 2016). Yu et al. (2021b) show that by using
a LoRA-like reparameterization, large language models can perform differentially private training without losing much
performance. Nasr et al. (2023) modify DPSGD to more effectively use public data. Zhang et al. (2023b); Tang et al. (2024)
show how to do zeroth order optimization of language models with differential privacy. Yu et al. (2024) show how to do DP
instruction tuning. Kairouz et al. (2020) show that DP adagrad can achieve better regret guarantees than plain DP SGD.
Tramèr & Boneh (2020) develop strong simple baselines for DP learning of models. Wang et al. (2023c) studies how to
analyze overparameterized private linear regression via a theoretical lens. Yu et al. (2022) show how to account for privacy
on an individual example level in DPSGD. Anil et al. (2021) show how scale allows product DP finetuning of BERT. Xu
et al. (2021); Mireshghallah et al. (2021) consider DP language models satisfying empirical notions of privacy.

(Private) federated learning. Hou et al. (2021b) study how to do saddle point optimization in the federated setting. Weller
et al. (2022) study the multilingual language model learning problem in federated learning. Ramaswamy et al. (2020) train
production next-token-prediction models with differential privacy. Xu et al. (2023a) study the private federated learning
setting, modifying private on-device training to be more noise and communication efficient. Gupta et al. (2022) show an
attack on how to recover text used to train federated text models (if differential privacy is not used). Liu et al. (2023) study
how to obtain low-error estimates of the aggregated histogram across user histograms under differential privacy.

Public pretraining. Ganesh et al. (2023) perform a theoretical analysis to show why public pretraining is so critical to the
deployment of DP language models. Kerrigan et al. (2020) show that public pretraining helps with producing DP language
models.

Best practices in DP published work. Brown et al. (2022); Zhao et al. (2022b) studies the issue of LLM pretraining data
often not explicitly designated for public use, undermining typical assumptions made about public data in DP language
models. Ponomareva et al. (2023) describe best practices when publishing DP work.

B. Prompt
We provide the prompt used for expand here.
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List of 6 diverse original text samples:

Original Text Sample 1
As you meet with employers this summer, get in touch with the team 
and find out how they plan to find the person that will build their 
organization.

Original Text Sample 2
You can also of course change culture across your organization to 
ensure your team members work as a unit, with each working 
together to accomplish the company goal.

Original Text Sample 3
We're here to tell you how too take a close look and view the journey 
you've made here, based on how you left the hero behind.

Original Text Sample 4
Risk points can be validated in two or more ways. Here are some 
procedures that can be used in decision-making:

Original Text Sample 5
…

Figure 3. The synthetic data generation prompt for Expand. The blue text after “Original Text Sample 4” is generated. We parse the
generated text for the text between Original Text Sample 4 and Original Text Sample 5 and use that as a synthetic sample.

C. Dataset generation details
We use the train split of the c4 English (c4-en) dataset (Raffel et al., 2019). We start by producing three federated private
datasets from c4-en: JOBS, FORUMS, and MICROBLOG. We illustrate the process for JOBS; the process is similar for the
other two. First, we take the first 11,000 samples in the c4-en dataset that come from a jobs site. The private train set consists
of 10,000 randomly chosen samples, and the private evaluation set consists of the remaining 1000 samples. The federated
dataset is then constructed by splitting the 10,000 training samples into 1250 clients of 8 samples each, split uniformly at
random. The same is done for FORUMS (from an online forum site) and MICROBLOG (from an online microblogging site).

We also evaluate our method on a question-and-answer dataset focused on coding and technical topics, which has text
content partitioned by users. We construct 1250 users by making a federated dataset where each client has the comments
associated with that user in the dataset. For each user, we cap the number of comments to 128. This forms the training
dataset. The evaluation dataset is made up of the first 2000 samples of the next 100 users from the same dataset. We call this
dataset CODE.

For the initial population used in Algorithm 1, we take random samples from c4-en that are not in the private training sets
nor even from the same website sources represented in the private datasets.

D. Experimental details
D.1. Privacy Details

For our privacy estimate in our evaluation, we use OPACUS.ACCOUNTANTS.ANALYSIS.RDP to compute the privacy guarantee
for PrE-Text. We input T = 11 steps, q = 1.0, and set the NOISE MULTIPLIER to be the ratio of σ to the sensitivity (the
max number of samples per client for PrE-Text), setting σ to the value that gets us the desired ε value).

D.2. Baselines

(1) ε = 0 baselines: We evaluate c4-only and Expand-only. c4-only is a DistilGPT2 model finetuned on a subset of c4-en
that was not in any of the private datasets. As Xu et al. (2023c) found, finetuning on c4-en improved privacy-utility tradeoff
greatly in next-token prediction, so this is an important baseline. Expand-only is a DistilGPT2 model finetuned on the subset
of c4-en used in the c4-only baseline expanded to 2 million samples using expand. We use the AdamW optimizer with
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a learning rate of 0.0002 and a batch size of 256 for c4-only, and a batch size of 65536 for Expand-only. We train for 20
epochs. The subset of c4-en is a subset of roughly 87k samples from c4-en that was not in any of the private datasets nor
even from the same websites as any of the private datasets. We provide the precise dataset under data/initialization.json in
the code repository.

(2) ε =∞ baselines: We evaluate Expand-private, which is a DistilGPT2 model finetuned on (1) the subset of c4-en used in
c4-only baseline, and (2) the private dataset expanded to 2 million samples using expand. We found that this performed
better than a model finetuned on only the private dataset itself. We use the AdamW optimizer with a learning rate of 0.0002
and a batch size of 256 for c4-only, and a batch size of 65536 and train for 20 epochs.

(3) On-device baselines: We evaluate DP-FedAvg (McMahan et al., 2017b) and DP-FTRL (Kairouz et al., 2021b) at
privacy levels of ε = 1.29, ε = 7.58. We first finetune DistilGPT2 on the subset of c4-en used in the c4-only baseline, and
then finetune it further using DP-FedAvg or DP-FTRL (which are on-device training methods). We use the DP-FTRL-
TreeRestart variant of DP-FTRL, which makes the most sense in our setting which considers full participation in each
communication round. For both DP-FedAvg and DP-FTRL, we tune the client learning rate in {0.1, 0.01, 0.001}, the number
of communication rounds in {10, 20, 100}, and clipping in {1.0, 0.1, 0.01, 0.001}. Similar to (Kairouz et al., 2021b), we
found that more rounds always helped, (i.e. 100 rounds is better than 20 and 10). The batch size is 4, and server momentum
is 0.9. We report the best evaluation metric, evaluated at the end of each round.

(4) Text-to-text privatization baseline: In this approach, clients hold an LLM on-device (which may not be practical)
and release privacy-preserved paraphrases of their text directly to the server. The representative method we use here is
DP-Prompt (Utpala et al., 2023). We use the same prompt and model (flan-t5-3b) as Utpala et al. (2023). Note that these
methods cannot take advantage of secure aggregation (text cannot be summed together) which necessitates much more noise
to be added to the privatized text. We first finetune a DistilGPT2 model on the subset of c4-en used in the c4-only baseline,
and then finetune it further on the privatized text received by the server. We clip according to the top and bottom logits just
like Utpala et al. (2023). For the finetuning step, we use the AdamW optimizer with a learning rate of 0.0002 and a batch
size of 256 and choose the best evaluation metric over 20 epochs.

(5) PrE-Text: We use PrE-Text to generate a synthetic dataset of 2 million samples. We first finetune DistilGPT2 on
the subset of c4-en used in the c4-only baseline, and then finetune it further on the synthetic dataset generated by PrE-
Text. The Φ we use is miniLM-L6-v2 (Reimers & Gurevych, 2019), which produces an embedding of size 384. In
Variation we use RoBERTa-large as the mask filling model with top p parameter set to 1.0 and temperature set to 1.0,
Wsteps = 2, and MASK% = 30%. In Expand we use LLaMA-2-7B with top p set to 1.0 and temperature set to 1.0. When
implementing Expand we use the library vLLM to speed up inference (Kwon et al., 2023). For ε = 1.29: Nsyn = 1024,
H = 5.9× 8.0× 1.541×

√
2. For ε = 7.58: Nsyn = 2048, H = 8.0× 1.541×

√
2. For JOBS, FORUMS, MICROBLOG,

there is a max of 8 samples per client, which limits the sensitivity to 8. For CODE, we deliberately clip the number of
samples per client to 16, which limits sensitivity to 16. In CODE, both the noise and the threshold H is doubled compared to
the other datasets to adjust to the increased sensitivity.
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