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ABSTRACT

It has recently been discovered that the conclusions of many highly influential econometrics studies
can be overturned by removing a very small fraction of their samples (often less than 0.5%). These
conclusions are typically based on the results of one or more Ordinary Least Squares (OLS) regres-
sions, raising the question: given a dataset, can we certify the robustness of an OLS fit on this dataset
to the removal of a given number of samples? Brute-force techniques quickly break down even on
small datasets. Existing approaches which go beyond brute force either can only find candidate small
subsets to remove (but cannot certify their non-existence) Broderick et al. (2020); Kuschnig et al.
(2021), are computationally intractable beyond low dimensional settings Moitra & Rohatgi (2022), or
require very strong assumptions on the data distribution and too many samples to give reasonable
bounds in practice Bakshi & Prasad (2021); Freund & Hopkins (2023). We present an efficient
algorithm for certifying the robustness of linear regressions to removals of samples. We implement
our algorithm and run it on several landmark econometrics datasets with hundreds of dimensions and
tens of thousands of samples, giving the first non-trivial certificates of robustness to sample removal
for datasets of dimension 4 or greater. We prove that under distributional assumptions on a dataset,
the bounds produced by our algorithm are tight up to a 1 + o(1) multiplicative factor.

1 INTRODUCTION

Consider a supervised learning problem with feature vectors X1, . . . , Xn ∈ Rd and labels Y1, . . . , Yn ∈ R, to which
we fit a model f : Rd → R. Robustness auditing addresses the question:

How would f have differed if we had been missing a small fraction of the data?

We study this question in the context of ordinary least squares (OLS) linear regression, where f(X) = ⟨β,X⟩ is the
linear function minimizing the mean squared error 1

n

∑
i≤n(f(Xi)− Yi)

2. We focus on OLS for two reasons. First,
OLS is a statistics workhorse, with widespread use across economics, social science, finance, machine learning, and
beyond. Second, its relative simplicity affords us the opportunity to design algorithms with provable guarantees, and
offers a stepping stone to more complex models (logistic regression, kernel methods, neural networks).
Problem 1 (Robustness Auditing for OLS Regression). Given a linear regression instance (X1, Y1), . . . , (Xn, Yn) ∈
Rd+1, a direction e ∈ Rd, and an integer k ≤ n, what is

∆k(e) = max
S⊆[n]

|S|=n−k

⟨β[n] − βS , e⟩ (1)

where for T ⊆ [n], βT ∈ Rd denotes the vector of OLS coefficients for the dataset {(Xi, Yi)}i∈T ?

In particular, for a threshold θ ∈ R what is the minimal number of removals kθ(e) for which ∆k(e) > θ?

Context and Applications for Robustness Auditing Problem 1 was introduced in this form by Broderick, Giordano,
and Meager Broderick et al. (2020), who use a heuristic algorithm, AMIP, to identify very small subsets of landmark
datasets from econometrics which can be removed to overturn important conclusions of the respective studies Finkelstein
et al. (2012); Angelucci & De Giorgi (2009); often this can be achieved by removing less than 0.5% of a dataset.
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Researchers have subsequently used AMIP to audit a wide range of recent studies in economics Martinez (2022); Di &
Xu (2022); Davies et al. (2024); Zachmann et al. (2023); Burton & Roach (2023); Beuermann et al. (2024); Bondy et al.
(2023). Subsequent algorithmic works Kuschnig et al. (2021); Moitra & Rohatgi (2022); Freund & Hopkins (2023)
develop additional algorithms for auditing a similar notion of robustness; we discuss prior work in detail below.

It is important that, similar to these prior works, we focus on robustness to a shift of β in only a single user-specified
direction e. This is because the main conclusion of a regression is often determined by the projection of its result on a
particular axis. For instance:

ROBUSTNESS OF PARAMETER ESTIMATE A researcher may want to estimate the correlation ⟨β, e⟩ between a specific
explanatory variable and a target variable, controlled for additional factors, where e is the indicator vector corresponding
to the explanatory variable. Moreover, the sign and statistical significance of ⟨β, e⟩ is often of greatest interest.

This correlation can have a causal interpretation. For instance, in a randomized control trial, where e is the indicator for
the treatment variable, the projection ⟨β, e⟩ can be used to estimate the “average treatment effect” (ATE) of a new drug
or policy on the outcome Y , while including the control variables in the regression can help reduce the variance of this
estimate. Even more complex causal inferences (e.g., instrumental variables regression) can often be decomposed into a
small number of OLS regressions, where the result of the causal inference depends on a single coefficient from the
result of each regression.

Conclusions from a study where this shift ∆k(e) is large when k ≪ n are therefore driven by a small number of
data points, meriting at minimum reinspection of a dataset, and perhaps casting doubt on generalizability. In many
real world regressions, the sign of ⟨β, e⟩ is not robust to a small number of removals, even though it is statistically
significant Broderick et al. (2020). Non-existence of a small set of highly influential samples indicates robustness of the
measured effect to an interesting class of distribution shifts – any removal of a small fraction of the population.

DATA ATTRIBUTION Suppose that instead of looking for the effect of a particular feature on the label Y , instead we
use the linear model f to predict the label of a fresh point Xnew, and we want to identify what part of the training data
led to the prediction that Ynew ≈ f(Xnew). Following the counterfactual formulation of this data attribution problem
from Koh & Liang (2017); Ilyas et al. (2022), we arrive again at robustness auditing: using e = Xnew, we can find the
smallest set of whose removal would significantly shift f(Xnew). We can evaluate the brittleness of the prediction by
measuring the size of the smallest set of samples we could remove to cause f(Xnew) to cross a decision boundary.

Intractability, Heuristics and Upper Bounds As soon as k exceeds single digits, robustness auditing by brute-force
search over all |S| = n− k takes times

(
n
k

)
, which is computationally intractable. In fact, under standard computational

complexity assumptions, some degree of intractability is inherent Moitra & Rohatgi (2022), so we need either some
assumptions on {(Xi, Yi)}i∈[n], a relaxed version of Problem 1, or both.

The works Broderick et al. (2020); Kuschnig et al. (2021) relax the goal to finding upper bounds on kθ(e), for which
they use greedy/local search algorithms. This approach leaves open the risk that kθ(e) might be much smaller than
the upper bound suggests. Indeed, later experiments by us (see Figure 2), Moitra & Rohatgi (2022), and Freund &
Hopkins (2023) uncover numerous real-world examples where local search techniques give loose upper bounds. Figure 1
illustrates a simple synthetic example where a small number of datapoint removals can shift ⟨β, e⟩, but greedy/local
search algorithms only find much larger sets.

Following Moitra & Rohatgi (2022), we aim for algorithms which provide unconditionally valid upper and lower
bounds on kθ(e) for every dataset {(Xi, Yi)}i∈[n], and which return high-quality upper/lower bounds (as close to
matching each other as possible) under reasonable assumptions on {(Xi, Yi)}i∈[n]. Prior approaches to go beyond
greedy algorithms and provide lower bounds on kθ(e) Klivans et al. (2018); Bakshi & Prasad (2021); Moitra & Rohatgi
(2022); Freund & Hopkins (2023) so far don’t yield results in practice for datasets of dimension 4 or greater, due to
running times which scale exponentially in d and/or prohibitively strong assumptions on X1, . . . , Xn.

1.1 OUR CONTRIBUTIONS

We present and analyze two new algorithms, ACRE and OHARE , which provide lower bounds on kθ(e), certifying
robustness of OLS regression. Our algorithms provide the first nontrival bounds on the number of samples which must
be removed to flip the signs of important parameter estimates for benchmark datasets studied in prior work (including
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(a) A robust dataset whose robustness cannot be certified
by continuous algorithms such as Bakshi & Prasad (2021);
Freund & Hopkins (2023).

(b) A small perturbation on 1a creates brittleness which is
not detected by AMIP (Broderick et al. (2020)) or Kuschnig
et al. (2021).

Figure 1: A comparison of two regressions. Figure 1a shows a regression from a main variable X1 and an indicator
variable X2 which is set to 1 on only a very small subset of the samples (≈ 1%). The label values Y are drawn iid
from a normal distribution around X1, resulting in an OLS vector β whose first coefficient is positive and whose sign
is robust to removing any 158 samples. We use e = (1, 0). Using the procedure detailed in Claim G.1, we perturb
only the X2 values of the inlier samples to produce an extremely brittle regression (Figure 1b). Because most current
efficient approaches to estimating the robustness of a linear regression produce outputs which vary smoothly with the
input dataset (such as gradient descent Broderick et al. (2020), semidefinite programming Bakshi & Prasad (2021), or
spectral decompositions Freund & Hopkins (2023)), they cannot be used to differentiate between these cases.

regressions with dimension d > 200 and with n > 30000 samples). We evaluate our algorithms experimentally and in
theory.

ACRE (Algorithm for Certifying Robustness Efficiently) takes as input a dataset X ∈ Rn×d, Y ∈ Rn and a vector
e ∈ Rd, runs in time O

(
n2d+ n2 log(n)

)
, and outputs a set of upper and lower bounds U,L ∈ Rn on the removal

effects such that Uk ≥ ∆k(e) ≥ Lk. In particular, this runtime avoids exponential dependence on k, d, and n. The
upper and lower bounds ACRE provides are valid even making no assumptions whatsoever on X and Y . When X
and Y are drawn from a sufficiently “nice” distribution (such as a linear model with subgaussian features and labels),
then the bounds are also good, meaning that the upper and lower bounds are close to matching (see Theorem 1.2). We
present ACRE in Section 3.

However, there is a very important class of datasets on which ACRE still provides very loose bounds: those using
one-hot encodings (also known as indicator or dummy variables) to express categorical features. Even though one-hot
encoded datasets can yield robust regressions, certifying this is challenging because of singularities which emerge in
the covariance when samples are removed (see Figure 1).

OHARE (One-Hot aware Algorithm for certifying Robustness Efficiently) extends ACRE to certify robustness of
datasets with a mix of continuous and categorical features. It uses dynamic programming in conjunction with a
fine-grained linear-algebraic analysis of the contribution of categorical features. OHARE takes as input a dataset
X ∈ Rn×(d+m) (where m of the features represent a one-hot encoding and the other d are some continuous features)
and a direction of interest e ∈ Rd within the continuous features, runs in time O

(
n2(d+m) + n2m log(n)

)
and

outputs upper and lower bounds on the removal effect along the axis e. We present an overview of OHARE in
Section 3.5, with a detailed description deferred to Appendix F.

The most important property of both ACRE and OHARE is that the bounds they produce are valid regardless of any
assumptions on the dataset:

3



Theorem 1.1 (Correctness). Given e,X , and Y , ACRE and OHARE output lists of upper/lower bounds U,L ∈ Rn s.t.

∀k ∈ [n] Lk ≤ ∆k(e) = max
S⊆[n]

|S|=n−k

⟨β − βS , e⟩ ≤ Uk

The proof of Theorem 1.1 is given in Section 3.3 for ACRE and Section A for OHARE . On its own, Theorem 1.1 says
little about the usefulness of the upper and lower bounds Lk, Uk. We provide two types of evidence that the bounds
produced by ACRE and OHARE are interesting. First, we demonstrate on real-world econometric datasets studied in
prior work on robustness auditing that ACRE and OHARE produce significantly better lower bounds bounds than were
previously known (see Table 1 and Figure 2). Second, we prove that both ACRE and OHARE produce nearly-matching
upper and lower bounds under relatively mild distributional assumptions on X and Y , for the interesting range of k.

INTERESTING VALUES OF k For a direction e, we emphasize two values of k: k2σ(e), the number of removals
needed to shift ⟨β, e⟩ outside its 95% confidence interval, and ksign(e) = k⟨β,e⟩, the number to flip the sign of ⟨β, e⟩. In
the parameter estimation setting, ⟨β, e⟩ and 2σ are often of similar magnitude, because rejecting a null hypothesis often
involves placing the estimator ⟨β, e⟩ in a confidence interval which does not contain 0.

Experimental Results For comparison with prior works, we focus our experiments on ksign(e). We provide lower
bounds on ksign(e) for benchmark datasets drawn from important studies in economics and social sciences, first
investigated in the context of robustness auditing by Broderick et al. (2020).

We study real-world datasets corresponding to each of the parameter estimation use-cases listed above: Nightlights Mar-
tinez (2022) (correlation controlled for additional features), Cash Transfer Angelucci & De Giorgi (2009) (randomized
control trial), and the Oregon Health Insurance Experiment (OHIE) Finkelstein et al. (2012) (IV regression), with 14
distinct linear or instrumental-variables regressions drawn from the corresponding papers, all of which appeared in top
econometrics journals. In many cases, our lower bounds match known upper bounds up to a factor of 2 or 3, where no
nontrivial lower bounds were previously known; see Table 1 and Figure 2.

To illustrate, consider Nightlights: Martinez (2022) studies whether democractic countries publish more accurate
economic growth estimates than dictatorships, after controlling for variables like regional stability and wealth in natural
resources. Martinez formulates this as a linear regression with dimension d = 209, over 200 of which correspond
to one-hot encoded categorical variables. The sign and statistical significance of a single coordinate of β govern the
conclusion of the study. Algorithms from prior work find a subset of 2.8% of the samples which can be removed
to reverse Martinez (2022)’s main conclusion, but prior algorithms could not rule out the existence of much smaller
subsets. Our algorithm OHARE provides a certificate that no subset of ≤ 0.7% of the samples would reverse the
study’s conclusion. See Table 1 for our results on Nightlights and the other 13 regressions we audit, and Appendix C
for detailed discussion of our experiments.

An implementation of our algorithms is available via Github. Our implementation is efficient enough to run our
algorithms with n up to 3× 104 and d up to 103 on a single CPU core with < 64GB of RAM. The main bottleneck in
practice is storing 3 floating-point matrices of size n× n each.

Theory for ACRE Without some assumptions on X,Y , finding matching upper and lower bounds on ∆k(e) is
computationally intractable, under standard complexity assumptions Moitra & Rohatgi (2022). So, we analyze tightness
of the bounds produced by ACRE and OHARE under some relatively mild distributional assumptions on X and Y . Our
main assumption for ACRE will be that the samples X1, . . . , Xn are drawn iid from a well-behaved distribution:
Definition 1 (Well-Behaved Distribution). We say that a mean-zero distribution X on Rd with covariance Σ =
EX∼X [XX⊺] is well-behaved if it has exponentially decaying tails in the sense that

∃C > 0 ∀v ∈ Sd−1, t > 0 Pr
X∼X

[∣∣∣〈v,Σ−1/2X
〉∣∣∣ > t

]
≤ exp

(
−Ω

(
tC
))

.

Note that the class of well-behaved distributions contains all subgaussian (C = 2) and all subexponential distributions
(C = 1), but is not limited to these sets.

We will assume that the labels Y1, . . . , Yn are drawn according to a ground-truth linear model specified by an unknown
vector βgt ∈ Rd. Concretely, we assume Yi = ⟨βgt, Xi⟩+ ϵi, where ϵ1, . . . , ϵn are iid from N (0, σ2) for an unknown
variance parameter σ2 > 0.
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(a) A comparison of OHARE and known upper bounds on
benchmark datasets.
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(b) A comparison of ACRE and known bounds on a syn-
thetic dataset (AMIP and KZC coincide).

Figure 2: A comparison of our ACRE and OHARE algorithms with previous techniques. In Figure 2a, we plot the
number of removals required to flip the sign of several linear regressions from landmark econometrics studies Martinez
(2022); Angelucci & De Giorgi (2009); Finkelstein et al. (2012). Each of these studies contains a number of linear
regression central to their analyses, which include several applications of linear regression, such as estimating correlation
controlled for additional covariates, treatment effects, and instrumental variables regression. For each regression, we run
AMIP Broderick et al. (2020) and KZC Kuschnig et al. (2021) to obtain base-line upper bounds on ksign and compare
the results to lower bounds produced by OHARE . We list the number of samples and the dimension of each regression
below the plot. In Figure 2b, we consider a synthetic dataset comprised of n = 4000 samples in dimension d = 50, and
plot bounds on the removal effects ∆k(e). In this plot, the roles are reversed, with AMIP and KZC representing lower
bounds on the removal effects, while our ACRE algorithm gives the first practical upper bound. We compare the bounds
produced by ACRE to the previous state-of-the-art for efficiently computable upper bounds Freund & Hopkins (2023).
Moreover, to ground the scale of the plot, consider the different bounds on k2σ (the number of removals required to
shift the regression results outside of their 95% confidence intervals). The ACRE algorithm has two possible backends –
spectral or RTI (see Section 4). RTI is more efficient and performs better in practice, while the spectral analysis which
uses ideas from Freund and Hopkins’ algorithm has a somewhat slower runtime (Õ

(
n3
)
) and offers a logarithmic

advantage in some synthetic datasets. The bound produced by ACRE is almost tight on this range of values of k, while
Freund and Hopkins’ algorithm yields a trivial bound.

Theorem 1.2 (Tightness of ACRE , Proof in Section E). Let n, d ∈ N, e, βgt ∈ Rd, X, Y , and σ > 0 be as

above. There exists kthreshold = Θ̃
(
min

{
n√
d
, n2

d2

})
such that for all k ≤ kthreshold, the bounds Lk, Uk produced by

ACRE satisfy

Uk

Lk
= 1 + Õ

(
d+ k

√
d

n

)
. (2)

Note that this theorem holds even when the covariance Σ of X is unknown a priori.

RELATIONSHIP OF k, d, AND n Theorem 1.2 guarantees that ACRE gives nearly optimal bounds so long as n≫ d

and the number of removals is at most k ≤ Θ̃(min{n/
√
d, n2/d2}); note that in this regime the RHS of (2) is 1 + o(1).

First of all, OLS is only appropriate when n ≥ d, and all of the datasets on which we perform experiments have n well
in excess of d. The range of interesting values of k is more subtle – to illustrate, consider k2σ(e). Assuming reasonably
well-behaved samples, we expect k2σ(e) = O(

√
n), so as long as we also have n ≫ d4/3, ACRE gives nearly tight

bounds on k2σ(e). This represents a mild multiplicative overhead of d1/3 samples compared to the n ≥ d required
anyway to use OLS regression.
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Paper Regression n d AMIP KZC21 OHARE Runtime Memory
Nightlights 3895 209 136 110 29 25 s 3.81 GiB
Cash Transfer (np, 8) 4543 18 5 5 5 6 s 1.78 GiB

(np, 9) 3769 18 21 21 17 4 s 2.80 GiB
(np, 10) 4191 18 26 26 20 5 s 1.73 GiB

(p, 8) 10781 18 225 224 119 50 s 11.20 GiB
(p, 9) 9489 18 321 314 126 24 s 5.37 GiB
(p, 10) 10368 18 570 555 178 29 s 6.59 GiB

OHIE Health genflip 23361 18 257 257 77 9 m 5 s 34.19 GiB
Health notpoor 23361 18 149 149 40 9 m 10 s 43.50 GiB

Health change flip 23407 18 184 184 52 9 m 10 s 43.55 GiB
Not bad days total 21881 18 72 72 21 7 m 39 s 38.64 GiB

Not bad days physical 21384 18 84 84 25 7 m 17 s 45.77 GiB
Not bad days mental 21601 18 118 118 31 7 m 20 s 46.21 GiB

Nodep Screen 23147 18 116 116 32 8 m 57 s 51.53 GiB

Table 1: A comparison of the lower bounds on ksign(e) produced by OHARE vs the corresponding upper bounds
produced by AMIP and KZC. In all cases, no non-trivial lower bound was previously known. The runtimes listed are
for a single core AMD processor. For detailed notes on the data analysis and experimental procedures, see Appendix C.

Theory for OHARE Even though they are mild, the assumptions for ACRE are not satisfied by the real-world
datasets used in our experiments, because of the presence of one-hot encoded categorical features, which is the reason
we design OHARE in the first place. We also prove a tightness theorem for OHARE – we now turn to the assumptions
on X,Y which underlie it.

We study regression in d +m dimensions – that is, X ∈ Rn×(d+m). The block of m coordinates will be a one-hot
encoding of a categorical variable, while the block of d coordinates will act as in the ACRE setting. Formally, let n ∈ N
and let B1, . . . , Bm partition [n] into m buckets. Let e, βgt ∈ Rd+m, with e supported only on the first d coordinates,
and σ > 0. For i ∈ [n], let X ′

1, . . . , X
′
n be iid draws from a d-dimensional well-behaved distribution and let Xi be X ′

i
concatenated with the j-th indicator vector, where j = j(i) is such that i ∈ Bj . Finally, let Yi = ⟨βgt, Xi⟩+ ϵi where
ϵ1, . . . , ϵn ∼ N (0, σ2).

Theorem 1.3 (Tightness of OHARE , informal, see Section F). Let X,Y, e be as described above. For any arbitrarily
small ε > 0, if all buckets have sizes nε

√
d < |Bj | < 0.49n, and n ≥ d5/4+o(1), then with high probability, for all

k < kthreshold, where kthreshold = Θ̃
(
min

{
n√
d
, n2

d2 , n
1−ε
})

, the upper and lower bounds produced by OHARE satisfy

Uk

Lk
= 1 +O

(
1√
log n

)
.

Careful analysis is needed to prove Theorem 1.3 under the relatively weak assumptions |Bj | > nε
√
d and n ≥ d5/4+o(1).

The stronger assumptions |Bj | > d or n ≥ d2 would simplify the analysis. But neither assumption would be valid for
all of our real-world datasets. Getting away with such weak assumptions ultimately requires us to put together a number
of technical tools, including novel matrix concentration arguments (e.g. Lemma F.12).

Additionally, the error term 1/
√
log n, which we believe is nearly tight, goes to zero slowly compared to the error term in

Theorem 1.2 – to capture this fine-grained behavior of Uk/Lk, our proof carefully exploits Gaussian anticoncentration.

2 PRELIMINARIES

Let (X1, Y1), . . . , (Xn, Yn) ∈ R(d+1) represent features/covariates and labels/target variables of a linear regression
instance. We always assume n ≥ d. Let Σ = X⊺X ∈ Rd×d denote the (un-normalized) empirical second moment of
X , let β denote the OLS fit β = Σ−1X⊺Y ∈ Rd, and let R = Y − βX ∈ Rn denote the residuals on the complete
regression. Finally, let e ∈ Rd be some “direction of interest” along which we wish to certify the robustness of β. Using
standard normalization techniques, we may ensure that e ∈ Sd−1 has norm 1 and Σ = I .

6



For any S ⊆ [n] representing some subset of the samples, let XS , YS represent the samples limited to only those whose
indices lie in S. Similarly, let ΣS , βS denote the empirical second moment and regression when using only the samples
in S = T . Note that while we could set Σ = I , removing some of the samples may change the covariance matrix
ΣS = Σ− ΣT ̸= Σ.

Finally, we use standard asymptotic notation O(·),Θ(·), and we write f(n) = Õ(g(n)) if there is a constant C such
that f(n) = O(g(n) · logC n), and similarly for Θ̃.

3 ACRE: CERTIFYING ROBUSTNESS WITHOUT CATEGORICAL FEATURES

In this section we present ACRE (Algorithm for Certifying Robustness Efficiently), our algorithm for certifying
robustness of regressions without categorical features. At the end of this section we give an overview of OHARE , but
due to space constraints we defer the details of OHARE to Appendix A.

3.1 SEPARATING FIRST ORDER AND HIGHER ORDER EFFECTS ON THE OLS FIT β

We split the effect of data removal on β into a first order term and a higher order correction. The first order term is linear
in the datapoints Xi, allowing us to analyze it exactly. For well-behaved datasets, the higher order term is smaller in
magnitude, so even loose bounds on the higher order will suffice to generate tight bounds on the overall removal effect.

More concretely, let T ⊆ [n] be a set of k = |T | ≪ n samples we might remove from the regression data, and set
S = [n] \ T . A simple analysis yields the identity

β − βS = Σ−1
S

∑
i∈T

RiXi (3)

where R denotes the residuals of the original regression and ΣS denotes the empirical 2nd moment of the retained
samples ΣS = X⊺

SXS =
∑

i∈S XiX
⊺
i .

The difficulty in analyzing equation (3) is the effect induced by the non-linear matrix inversion operation. Recall that
we normalized our datasets so that the empirical second moment over the entire dataset Σ is the identity matrix. ΣS is
generated by removing some of the samples, so it is no longer normalized.

Because only a very small number of samples were removed, we might hope ΣS = I − ΣT is still close to the identity
matrix. Therefore, it makes sense to try to develop equation (3) in orders of ΣT .

More concretely, we use the identity (I − ΣT )
−1 = I + (I − ΣT )

−1ΣT to derive:

β − βS = Σ−1
S

∑
i∈T

RiXi =
∑
i∈T

RiXi︸ ︷︷ ︸
first order term

+Σ−1
S ΣT

∑
i∈T

RiXi︸ ︷︷ ︸
higher order correction

(4)

Projecting the first order term onto some axis e ∈ Sd−1 yields the gradients / influence scores used by the AMIP
algorithm of Broderick et al. (2020). Our analysis will focus on bounding the higher order term.

3.2 MAXIMAL SUBSET SUM NORM (MSN) – THE BACKEND OF ACRE

Under the hood of ACRE is a simple algorithm which places upper/lower bounds on the following optimization problem.

Problem 2 (Maximal Subset sum Norm (MSN)1). Given a set of vectors v1, . . . , vn ∈ Rd with Gram matrix G =
(⟨vi, vj⟩)i,j∈[n], we define

∀k ∈ [n] MSNk (G) = max
T⊆[n]
|T |=k

{∥∥∥∥∥∑
i∈T

vi

∥∥∥∥∥
2

}
= max

T⊆[n]
|T |=k

{√
1⊺TG1T

}
1When the vectors have 0 mean (

∑
i∈[n] vi = 0), MSN is equivalent to resilience Steinhardt et al. (2017).
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A constant-factor approximation to MSN would refute the small-set expansion hypothesis Hopkins & Li (2019), so we
aim for MSN-bounding algorithms which place upper and lower bounds on the optimal value, with the aim that these
bounds are close to tight on well-behaved vis. For our purposes, a simple algorithm in Section 4 gives useful bounds,
but ACRE can use any MSN-bounding algorithm as a subroutine, and improved MSN-bounding algorithms will lead to
improved performance for ACRE .

For now, we treat MSN-bounding as a black-box, and show how ACRE produces its upper and lower bounds Uk, Lk by
making a few calls to an MSN-bounding algorithm.

3.3 REDUCING ROBUSTNESS CERTIFICATION TO MSN-BOUNDING

Recall equation (4) for the effect of removals on an OLS regression. Projecting onto e, we have

⟨e, β − βS⟩ =

〈
e,Σ−1

S

∑
i∈T

RiXi

〉
=
∑
i∈T

Ri ⟨Xi, e⟩︸ ︷︷ ︸
first order term

+

〈
Σ−1

S ΣT e,
∑
i∈T

RiXi

〉
︸ ︷︷ ︸

high order term

(5)

We compute the first order term of equation (5) exactly for all k ∈ [n] via a greedy algorithm in time O(n log(n)). For
the rest of our analysis, we focus on bounding the maximum value of the high order term. We use the following bound:

|high order term| ≤ max(λ(Σ−1
S )) ∥(ΣS − I)e∥

∥∥∥∥∥∑
i∈T

XiRi

∥∥∥∥∥ (6)

where max(λ(Σ−1
S )) is the largest eigenvalue of Σ−1

S . We show that each of the three terms in the RHS of equation (6)
can be upper-bounded by the value of an MSN problem. The last term, ∥

∑
i∈T XiRi∥, is already corresponds to an

MSN problem with the Gram matrix GRX = diag (R)GX diag (R), so we focus on the other two terms.

MSN bound for max(λ(Σ−1
S )) We start by simplifying the Σ−1

S term. Recall that ΣS = I − ΣT , allowing us to use

max
{
λ
(
Σ−1

S

)}
≤ 1

1−max {λ(ΣT )}
(7)

so long as max {λ (ΣT )} < 1. Over the next few lines we bound ∥ΣT ∥, allowing us to verify this assumption. We
apply the inequality

max {λ (ΣT )} ≤
√ ∑

λi∈λ(ΣT )

λ2
i = ∥ΣT ∥F =

∥∥∥∥∥∑
i∈T

Xi ⊗Xi

∥∥∥∥∥
where ∥M∥F is the Frobenius norm of a matrix M (ℓ2 norm of the vector of eigenvalues) and ⊗ denotes tensor product.
So we have an MSN problem with the vectors Xi ⊗Xi.

Even though this MSN is represented by n vectors of dimension d2, its Gram matrix representation GX⊗X can still be
computed in time O(n2d), by computing the Gram matrix GX = (⟨Xi, Xj⟩)i,j∈[n], and squaring its entries to obtain

GX⊗X = (⟨Xi ⊗Xi, Xj ⊗Xj⟩)i,j∈[n] =
(
⟨Xi, Xj⟩2

)
i,j∈[n]

MSN bound for ΣT e Recall ΣT =
∑

i∈T XiX
⊺
i . Let GX⟨X,e⟩ be the Gram matrix of {Xi⟨Xi, e⟩}i∈[n]. So,

∥ΣT e∥ =

∥∥∥∥∥∑
i∈T

Xi⟨Xi, e⟩

∥∥∥∥∥ ≤ MSN
(
GX⟨X,e⟩

)
,

3.4 ALGORITHM

Combining the results of the analysis above yields the following expression and the corresponding Algorithm 1:

|∆k(e)− (first-order term)k| ≤
1

1−MSNk (GX⊗X)
·MSNk (GXR) ·MSNk (GXZ)
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Algorithm 1: ACRE (Algorithm for Certifying Robustness Efficiently)

Input: Linear regression problem X ∈ Rn×d, Y ∈ Rd, direction of interest e ∈ Rd, MSN-bounding algorithmM
Output: Upper and lower bounds U,L ∈ Rn such that Uk ≥ ∆k(e) ≥ Lk

1 Compute the Gram matrix GX = XX⊺ ∈ Rn×n;
2 Compute the projection of the samples on the direction of interest Z = Xe;
3 Define A = cumulative sum (sorted(RZ));

4 GX⊗X = pointwise square of the entries of GX ;
5 GXR = diag (R)GX diag (R);
6 GX⟨X,e⟩ = diag (Z)GX diag (Z);

7 Run the MSN-bound algorithmM on these GX⊗X , GXR, GX⟨X,e⟩ to compute upper bounds
MX⊗X ,MXR,MX⟨X,e⟩ ∈ Rn;

8 return U,L = A± 1
1−MX⊗X

MXRMX⟨X,e⟩ ; // pointwise operations

3.5 OHARE: AWARENESS OF CATEGORICAL FEATURES

We present an overview of OHARE (One-Hot aware Algorithm for certifying Robustness Efficiently), deferring details
to the appendix. Suppose that X1, . . . , Xn ∈ Rd+m consist of d continuous-valued features and a single categorical
feature with m categories, one-hot encoded.

The bounds computed by ACRE are valid for such X1, . . . , Xn. But, consider removing the samples T comprising any
single category, encoded in coordinate i; let S = [n] \ T . The matrix ΣS is singular, since all variance from category i
has been removed. So our approach to bounding the high-order term from (6) by pulling out max(λ(Σ−1

S )) is doomed
to failure once k exceeds the size of the smallest category, since max(λ(Σ−1

S ))→∞. We will assume that the direction
of interest e lies orthogonal to the one-hot features, so e ∈ Rd.

The key idea in OHARE is to rephrase the OLS algorithm as a two-phase process, first explicitly controlling for the
categorical feature by computing a “controlled” dataset {(X̃i, Ỹi)}i∈[n] ⊆ Rd+1, then performing OLS on the controlled
dataset to arrive at β ∈ Rd. We show that this process yields the same β which would have been produced by running
OLS on the original dataset {(Xi, Yi)}i∈[n] (Claim A.1) and restricting to the span orthogonal to the one-hot encoding.

We derive explicit formulae for X̃i, Ỹi by analyzing the Gram-Schmidt orthogonalization process which we call
“reaveraging”. The upshot is that we replace each term in (6) as well as the first order effect, with two terms: one
corresponding to the direct effect of sample removals on the X̃, Ỹ regression, and one corresponding to effects of
removing XT , YT on the remaining controlled samples X̃S , ỸS through reaveraging. Crucially, this process allows us
to certify that the matrix Σ̃S is nonsingular even in cases where ΣS can be singular.

To bound the new correction term coming from the influence of categorical features on the sample-removal effect, we
use a knapsack-style dynamic program to combine bounds on the influence of data removals from each category into a
single bound by searching over partitions k = k1 + . . .+ km.

4 MSN-BOUNDING ALGORITHMS

In this section we discuss the simple MSN-bounding algorithm we use as the backend of ACRE and OHARE for all
our experiemnts on real-world data. We call this algorithm Refined Triangle Inequality (RTI). We implemented other
MSN-bounding algorithms, in particular one based on eigenvalues and eigenvectors of the Gram matrix G, but found
that they improved over RTI only on synthetic data, so we defer them to the appendix.

RTI relies on the following inequality, evaluating the RHS via a greedy algorithm:

max
|T |=k

∥∥∥∥∥∑
i∈T

Xi

∥∥∥∥∥
2

= max
|T |=k

∑
i,j∈T

⟨Xi, Xj⟩ ≤ max
|T |,|S1|,...,|Sk|=k

∑
i∈T,j∈Si

⟨Xi, Xj⟩ . (8)
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Algorithm 2: Refined Triangle Inequality
Input: Gram matrix G of size n× n where Gij = ⟨Zi, Zj⟩
Output: A vector V of length n, where Vk is an upper bound on the ℓ2 norm of the sum of any k vectors in Z, for

k = 1 to n
1 Sort each row of G in decreasing order;
2 Compute the cumulative sum of the rows of G and store the result in C;
3 Sort the columns of C in decreasing order;
4 Compute the cumulative sums of the columns of C and store the results in S;
5 for k ← 1 to n do
6 Set Vk to be

√
Sk,k;

7 return V ;

Greedy Algorithm for Diagnosing Robustness Failures via MSN We also implement a simple greedy algorithm to
compute lower bounds on MSN, discussed in Section B. This algorithm is not used in ACRE or OHARE , but can be
used to diagnose robustness failures by finding subsets of influential samples, thereby complementing AMIP.

5 PRIOR WORK AND FUTURE DIRECTIONS

Prior Work Robustness in linear regression is too vast to survey here, so we restrict attention to recent works in
robustness auditing. As previously discussed, our work is preceded by Broderick et al. (2020); Kuschnig et al. (2021);
Moitra & Rohatgi (2022); Freund & Hopkins (2023), all studying robustness auditing for least-squares regression.
Unlike any of these prior works, our algorithms provide nontrivial lower bounds on kθ in practice for datasets with
tens/hundreds of dimensions. All these algorithms and ours fit into the broader tradition of influence functions as a
measure of robustness in regression, dating at least to Cook & Weisberg (1980).

Our algorithms are partly inspired by recent developments in algorithmic robust statistics – see Diakonikolas & Kane
(2023) and references therein. While the main goal in robust statistics differs somewhat from robustness auditing,
modern algorithms for robust regression typically contain subroutines for tasks very similar to robustness auditing.
But the subroutines in recent breakthroughs in robust regression Klivans et al. (2018); Bakshi & Prasad (2021) are not
practically implementable due to reliance on semidefinite programming.

Future Directions We propose several directions for future work:

BEYOND OLS Given the prevalence of regression beyond ordinary least squares in machine learning, an important
next step is to design algorithms to certify robustness of other regression methods which arise by minimizing a convex
loss – e.g. logistic regression and LASSO Tibshirani (1996).

APPLICATIONS TO DIFFERENTIAL PRIVACY (DP) DP Dwork et al. (2006) is the gold-standard mathematically
rigorous approach to protecting privacy of individuals represented in a dataset. Tighter certificates of robustness for
regression have great potential to improve privacy-accuracy tradeoffs in private regression Dwork & Lei (2009); poor
privacy-accuracy tradeoffs are a major roadblock to widespread adoption of private data analysis techniques.

INTERPRETATIONS OF ROBUSTNESS CERTIFICATES It is an appealing intuition that statistical conclusions which
are robust to removing many samples should generalize better – formalizations of the relationship between stability
and generalization have been highly influential, e.g. Bousquet & Elisseeff (2002). Can rigorous interpretations of
robustness certificates be formalized? Can robustness certificates yield e.g. tighter empirical confidence intervals, or
out-of-distribution generalization guarantees?

BEYOND SAMPLE REMOVAL Removing a small set of datapoints is just one of many potential ways to perturb a
dataset. Can we certify robustness of OLS or other regression algorithms to other types of dataset perturbation, e.g. ℓ2
or ℓ∞-bounded perturbations of the feature vectors?
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A CATEGORICAL-AWARE ROBUSTNESS ANALYSIS (OHARE)

ACRE encounters an issue when the regression includes a one-hot encoding of a categorical feature. This is because
removing all the samples from one category of the one-hot encoding could cause ΣS to have a singularity, making our
bound, which depends linearly on max{λ(Σ−1

S )}, effectively meaningless.

Moreover, as we show in Appendix G, it is possible to perturb datasets with one-hot encodings, even those which are
robust to many sample removals, to make them extremely brittle to sample removals. Therefore, any “continuous”
algorithm which does not somehow utilize the discreteness of the one-hot encoding is doomed to fail.

A.1 REGRESSING OVER A CATEGORICAL FEATURE

Consider a linear regression over a set of feature vectors, Fi ∈ Rd for i ∈ n, and an additional m dimensions
corresponding to a one-hot encoding with buckets B1 ⊔ · · · ⊔Bm = [n], where we want to fit our labels Li to a model
of the form

Li ≈
∑
j∈[d]

βjFi,j +
∑
j∈[m]

tj1i∈Bj

This linear regression would be represented by a matrix X ∈ Rn×(m+d) whose rows are the samples Xi =
(Fi, 1i∈B1

, . . . , 1i∈Bm
). Then, if we are interested in the correlation between one of the continuous features F:,j

and the labels Y (controlled for the rest of our categorical / continuous features), we may compute this correlation by
running an OLS regression β = (X⊺X)−1X⊺Y and output the relevant entry βj of the fit.

Analyzing the robustness of this process is challenging, and we proceed by performing the Gram Schmidt orthogo-
nalization between the dummy variables and the continuous features explicitly. Before delving into the details of this
analysis, we note that OHARE can be used to certify robustness for a slightly more general class of regressions. Using
this more general notation will help motivate our orthogonalization process and is crucial for certifying the robustness
of weighted regressions with categorical features (such as the ones in the OHIE study - see Appendix C.4).

Indeed, let u1, . . . , um be the columns representing the dummy variables. So long as for any sample i ∈ [n] there is
a unique j = b(i) (representing the bucket to which the ith sample belongs) such that uj,i ̸= 0 (and for all j ̸= j′,
we have uj′,i = 0). This property ensures that for any S ⊆ [n], these columns are still perpendicular to one another
uj,S ⊥ uj′,S .

1. For each bucket Bj ⊆ [n], we compute the weighted averages over the features fj,i = uu⊺

∥u∥2F =∑
i∈Bj

uj,ifi,:

∥uj∥2 uj,i and over the labels ℓj =

∑
i∈Bj

uj,iℓi

∥uj∥2 uj,i for samples from this bucket. When the sam-
ples are unweighted uj,i = 1i∈Bj , these are equal to the averages over the features / labels fj = Ei∈Bj [Fi,:]
and ℓj = Ei∈Bj

[Li], and when the samples are weighted, these are the projections of the continuous features /
labels onto the space spanned by the indicator columns.

2. Compute the normalized features X ∈ Rd×n obtained by subtracting the feature averages of each bucket from
its samples, and the normalized labels Y ∈ Rn obtained by subtracting the average label from each bucket:

Xi = Fi,: − fb(i),i

Yi = Li − ℓb(i),i

3. Perform a linear regression on Y as a function of X and output the fit β = (X⊺X)−1X⊺Y .
Claim A.1. The output of the process described above β is equal to the coefficients for the continuous features on a full
OLS with the dummy variables.

The proof of Claim A.1 follows directly by performing the Gram-Schmidt orthogonalization (to compute Σ−1) explicitly
while taking the one-hot encoding columns into account (see Section A.6). This approach of explicitly writing out a
Gram-Schmidt orthogonalization to remove the effects of some of the controls could potentially be used whenever we
have two sets of features, one of which is easier to analyze than the other.

Our focus on one-hot encodings is due to their prevalence in econometrics datasets, along with the fact that, as we will
see over the next few pages, the perpendicular structure of the indicator variables makes them particularly amenable to
such a divide and conquer strategy (and much harder to deal with using previous techniques).
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For ease of notation, we will normalize the dummy variables so that ∥uj∥ = 1 for all j ∈ [m].

A.2 FIRST ORDER EFFECTS

Claim A.1 allows us to reduce the problem of performing a regression on d continuous feature and a categorical feature
with m potential values into a regression on just a reaveraged version of the d continuous features. Using this reduction,
we can split the effects of removing samples from the smaller linear regression into direct removal effects that change
the regression fit directly by removing samples from the d-dimensional regression X,Y , and reaveraging effects that
shift the regression fit by causing the expectation of the data within each bucket to change (effectively shifting the
values of the retained rows of X,Y ).

In particular, we may again write

⟨e, β − βS⟩ = −

〈
e, Σ̂−1

S

∑
i∈S

X̂iR̂i

〉
(9)

where ·̂ is the value of · after the new reaveraging due to the removal of the elements in T . More concretely, we have

X̂i = Xi − xb(i)ub(i),i where xj =
∑

i′∈Bj∩S

Xiuj,i′

R̂i = Ri − rb(i)ub(i),i where rj =
∑

i′∈Bj∩S

Riuj,i′

(10)

From here, we can derive closed form formula for the new versions of all the terms in the previous analysis. For
instance, the “first order effect” (i.e., the effect we would have seen on the regression, had ΣS been equal to I), which
was previously given by First Ordercontinuous =

∑
i∈T Ri ⟨e,Xi⟩ is now given by

First Orderone-hot = −

〈
e,
∑
i∈S

X̂iR̂i

〉
= −

〈
e,
∑
i∈S

(Xi − xb(i)ub(i),i)R̂i

〉
=

= −

〈
e,
∑
j∈[m]

∑
i∈Bj∩S

(Xi − xjuj,i)R̂i

〉
=

= −

〈
e,
∑
j∈[m]

∑
i∈Bj∩S

XiR̂i

〉
−

〈
e,
∑
j∈[m]

xj

∑
i∈Bj∩S

uj,iR̂i︸ ︷︷ ︸
=0

〉
=

= −

〈
e,
∑
j∈[m]

∑
i∈Bj∩S

XiRi

〉
+

〈
e,
∑
j∈[m]

rj
∑

i∈Bj∩S

uj,iXi︸ ︷︷ ︸
=−

∑
i∈Bj∩T Xiuj,i

〉
=

=

〈
e,
∑
i∈T

XiRi

〉
︸ ︷︷ ︸

First Ordercontinuous

+
∑
j∈[m]

1

∥uj,S∥2

 ∑
i∈T∩Bj

Riuj,i

 ∑
i∈T∩Bj

⟨e,Xi⟩uj,i


︸ ︷︷ ︸

Correction Term

(11)

In order to bound the right-hand-side of equation (11), we consider each of the 3 terms
∑

i∈T∩Bj
Ri ⟨e,Xi⟩,∑

i∈T∩Bj
Riuj,i and

∑
i∈T∩Bj

⟨e,Xi⟩uj,i separately. Using a greedy algorithm, we can maximize / minimize
each of these terms separately as a function of kj = |T ∩Bj |. We can then combine these into a bound of the form

bound±j (kj) = dj(kj) +
c±j (kj)

min
Sj∈(Bj

kj
)

{∥∥uj,Sj

∥∥2}
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where

dj(kj) = max
Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Ri ⟨e,Xi⟩

c+j (kj) = max


 max

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Riuj,i


 max

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

⟨e,Xi⟩uj,i

 ,

 min
Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Riuj,i


 min

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

⟨e,Xi⟩uj,i




c−j (kj) = min


 min

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Riuj,i


 max

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

⟨e,Xi⟩uj,i

 ,

 max
Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Riuj,i


 min

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

⟨e,Xi⟩uj,i




For kj = nj , there is no reaveraging effect and bound±j (nj) = dj(nj).

We can then combine these bounds on the individual buckets by using a dynamic programming algorithm to solve the
integer knapsack problem of

max
k1+···+km=k

∑
j∈[m]

bound±j (kj) .

From equation (11), it is clear that these maximizations yield upper and lower bounds on the maximal first order
removal effect

max k1 + · · ·+ km = k
∑
j∈[m]

bound−j (kj) ≤ max
S∈( [n]

n−k)

{
−

〈
e,
∑
i∈S

X̂iR̂i

〉}
≤ max

k1+···+km=k

∑
j∈[m]

bound+
j (kj) .

The upper bound on the overall first order effect tends to be larger than the continuous first order effect but only by a
1 + o(1) factor. This is because dj tends to be the dominant effect, while cj are typically much smaller.

For instance, consider an unweighted regression on normally distributed samples (Xi, Yi), and let σR =
√

1
n

∑
i∈[n] R

2
i

denote the root-mean-square (RMS) / scale of the residuals. With high probability, we can find removal sets that would
have dj ≈ kj√

n
σR log(n/k) (by taking only samples which are on the ε tail end of the distribution of having both

large residual and large inner product with the direction of interest). On the other hand, for sufficiently large buckets

|Bj | ≫ log(n), we expect to have cj = O
(

k2
j

|Bj |
√
n
σR

)
< O

(
kj√
n
σR

)
, so they tend to be somewhat smaller than dj .

Moreover, by using a dynamic programming algorithm, we can enforce the constraint that the number of samples
removed from each bucket kj has to be the same for the direct effects and for the reaveraging effect. This constraint
limits causes the contribution of the reaveraging effects to be even smaller, as they require taking many samples from
the same bucket to enjoy the quadratic scaling of kj , while the more dominant direct effects are typically optimized by
selecting samples evenly from the buckets.
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Algorithm 3: Dynamic Programming Algorithm for Integer Knapsack
Input: List of bounds {boundj(kj)}mj=1, maximal budget kmax

Output: Array F where F [k] is the highest total score possible for budget k
1 m← |{boundj(kj)}|;
2 kmax ← kmax + 1;
// Adjusting for 0-based indexing in NumPy arrays

3 Initialize F array of size (m+ 1)× kmax with −∞;
4 Set the first column of F to 0;
5 for j ← 1 to m do
6 bound← boundj ;
7 F [j, 0 : len(bound)]← bound[0 : kmax];
8 F [j, :]← max(F [j, :], F [j − 1, :]);
9 for δk ← 1 to min(kmax,len(bound))− 1 do

10 F [j, δk :]← max(F [j, δk :], F [j − 1, : −δk] + bound[δk]);

11 return F [m, : kmax − 1]

A.3 HIGH ORDER TERMS

We continue our analysis of equation (9). As in the continuous analysis, we have

⟨e, β − βS⟩ = −

〈
e, Σ̂−1

S

∑
i∈S

X̂iR̂i

〉
=

= −

〈
e, I

∑
i∈S

X̂iR̂i

〉
−

〈
e,
(
Σ̂−1

S − I
)∑

i∈S

X̂iR̂i

〉
=

= First Orderone-hot +

〈
Σ̂−1

S

(
I − Σ̂S

)
e,
∑
i∈S

X̂iR̂i

〉
≤

≤ First Orderone-hot +max
{
λ
(
Σ̂−1

S

)}
×
∥∥∥(I − Σ̂S

)
e
∥∥∥× ∥∥∥∥∥∑

i∈S

X̂iR̂i

∥∥∥∥∥

(12)

To analyze the first 2 higher order terms, we begin with an analysis of Σ̂S . This analysis shows that Σ̂S essentially
behaves like ΣS with a minor correction for each bucket:

Σ̂S =
∑
i∈S

X̂iX̂
⊺
i =

∑
j∈[m]

∑
i∈Bj∩S

(Xi − xjuj,i)X̂
⊺
i =

=
∑
j∈[m]

∑
i∈Bj∩S

Xi(Xi − xjuj,i)
⊺ −

∑
j∈[m]

xj

∑
i∈Bj∩S

X̂⊺
i uj,i︸ ︷︷ ︸

=0

=

=
∑
j∈[m]

∑
i∈Bj∩S

XiX
⊺
i −

∑
j∈[m]

 ∑
i∈Bj∩T

Xiuj,i

 ∑
i∈Bj∩T

Xi

⊺

=

= I − ΣT −
∑
j∈[m]

1

∥uj,S∥2

 ∑
i∈Bj∩T

Xiuj,i

 ∑
i∈Bj∩T

Xiuj,i

⊺

(13)

In order to bound max
{
λ
(
Σ̂−1

S

)}
= min

{
λ
(
Σ̂S

)}−1

from above, we begin by bounding max {λ (ΣT )} from
above (using the same MSN-bounding reductions from Section 3). We then use a MSN-bounding algorithm and the
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same dynamic programming as above to bound the term in equation (14) (MSN-bounding to bound the individual terms
and dynamic programming to combine them).

max

λ

∑
j∈[m]

1

∥uj,S∥2

 ∑
i∈Bj∩T

Xiuj,i

 ∑
i∈Bj∩T

Xiuj,i

⊺ =

= max
k1+···+km=k

∑
j∈[m]

1

minSj

{∥∥uj,Sj

∥∥2} max
Tj⊆Bj

|Tj |=kj


∥∥∥∥∥∥
∑
i∈Tj

Xiuj,i

∥∥∥∥∥∥
2


(14)

For each j, we can bound max Tj⊆Bj

|Tj |=kj

{∥∥∥∑i∈Tj
Xiuj,i

∥∥∥} from above by performing a call to an MSN bounding

algorithm. However, we can refine the results of this MSN bounding call (especially with regards to larger values of
kj ≥ nj

2 ), by utilizing the fact that
∑

i∈Bj
Xi = 0, which implies that

max
Tj⊆Bj

|Tj |=kj


∥∥∥∥∥∥
∑
i∈Tj

Xiuj,i

∥∥∥∥∥∥
 = max

Tj⊆Bj

|Tj |=nj−kj


∥∥∥∥∥∥
∑
i∈Tj

Xiuj,i

∥∥∥∥∥∥
 .

Therefore, if Mj is the result of an MSN bounding algorithm (such as RTI) on the nj × nj Gram matrix of the samples
in the jth bucket, we have the bound

max
Tj⊆Bj

|Tj |=kj


∥∥∥∥∥∥
∑
i∈Tj

Xiuj,i

∥∥∥∥∥∥
 ≤ min {Mj(kj),Mj(nj − kj)} .

Similarly, we may bound the other terms. Using equation (13), we have

(
I − Σ̂S

)
e =

ΣT +
∑
j∈[m]

 ∑
i∈Bj∩T

Xiuj,i

 ∑
i∈Bj∩T

Xiuj,i

⊺ e =

=
∑
i∈T

Xi ⟨Xi, e⟩+
∑
j∈[m]

1

∥uj,S∥2

 ∑
i∈T∩Bj

Xiuj,i

 ∑
i∈T∩Bj

⟨Xi, e⟩uj,i

 (15)

As usual, we bound the norm of the first term
∑

i∈T Xi ⟨Xi, e⟩ using an MSN-bounding algorithm, and for each bucket,

we bound
∥∥∥∑i∈T∩Bj

Xiuj,i

∥∥∥ and
∣∣∣∑i∈T∩Bj

⟨Xi, e⟩uj,i

∣∣∣ as a function of kj = |T ∩Bj |. We then combine these
bounds using the triangle inequality, and the same symmetry and dynamic programming algorithm as above.

Finally, to bound
∥∥∥∑i∈S X̂iR̂i

∥∥∥, we use the same analytic techniques to write

∑
i∈S

X̂iR̂i =
∑
j∈[m]

∑
i∈Bj∩S

(Xi − xjuj,i)R̂i = · · ·

· · · =
∑
i∈T

XiRi +
∑
j∈[m]

1

∥uj,S∥2

 ∑
i∈Bj∩T

Xiuj,i

 ∑
i∈Bj∩T

Riuj,i

 (16)

which can be bounded by the same MSN + symmetry + dynamic programming above.
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A.4 THE OHARE ALGORITHM

Algorithm 4: The OHARE Algorithm

Input: Samples Xi ∈ Rd (s.t. X⊺X = I ∈ Rd×d) and residuals Ri ∈ R for i ∈ [n], vector e ∈ Rd, separation of
the samples into buckets b : [n]→ [m] (based on some additional categorical feature), weights w ∈ Rn (by
default all 1s).

Output: U,L ∈ Rn that bound the removal effects ∆k(e).
/* Step 1: Split the samples and residuals by their b value into buckets

B1, . . . , Bm ⊆ [n] */
1 for j ← 1 to m do
2 for kj ← 1 to |Bj | do
3 Compute boundj(kj) = dj(kj) +

cj(kj)
|Bj |−kj

with cj and dj as defined above;

/* Step 2: Compute Influences using the 1D Dynamic Programming Algorithm
*/

4 Use the “1D Dynamic Programming Algorithm” defined above to compute the bounds on the direct influences and
store the result as Influences;
/* Step 3: Compute upper bounds on Mkj

, Ukj
, ρkj

, and ζkj
for each bucket */

5 for j ← 1 to m do
6 Use an MSN bounding algorithm to compute an upper bound on Mkj ≥ maxT⊆Bj ,|T |=kj

∥∥∑
i∈T Xi

∥∥ for all
kj ∈ [|Bj |];

7 Use a sort + cumulative sum to compute Ukj
= 1−maxT⊆Bj ,|T |=kj

{∑
i∈T u2

i,j

}
;

8 Use a similar sort + cumulative sum to compute ρkj = maxT⊆Bj ,|T |=kj

{∑
i∈T |Riui,j |

}
;

9 Use a similar sort + cumulative sum to compute ζkj
= maxT⊆Bj ,|T |=kj

{∑
i∈T |Ziui,j |

}
;

10 Use the symmetry to refine our bounds
Mkj

:= min
{
Mkj

,Mnj−kj

}
; ρkj

:= min
{
ρkj

, ρnj−kj

}
; ζkj

:= min
{
ζkj

, ζnj−kj

}
;

/* Step 4: Compute indirect contributions using the 2D Dynamic Programming
Algorithm */

11 Use 3 calls to the 2D Dynamic Programming Algorithm 6 to generate arrays from k, u to the maximum over the
choice of k1, . . . , km with total k of which u are non-zero of:

1. Indirect CS Contribution:
∑

j∈[m]

M2
kj

Ukj

2. Indirect XR Contribution:
∑

j∈[m]

Mkj
ρkj

Ukj

3. Indirect XZ Contribution:
∑

j∈[m]

Mkj
ζkj

Ukj

/* Step 5: Compute direct contributions using the KU Triangle Inequality
*/

12 Use the KU Triangle Inequality 5 to also compute upper bounds on the Direct CS, XR, and XZ Contributions;
/* Step 6: Compute final bounds and return the result */

13 return Uk, Lk = Influences±maxu
|Direct XR+Indirect XR|×|Direct XZ+Indirect XZ|

1−Direct CS−Indirect CS

A.5 SUPPLEMENTARY ALGORITHMS

We begin by an extension of the RTI Algorithm 2 that bounds the triangle inequality terms as a function of k (number
of removals) and u (number of unique buckets from which samples were removed). The basic idea is the same as with
the original RTI algorithm and requires only minor adaptations to track which row-column pairs are largest in their
respective buckets.
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Algorithm 5: KU Triangle Inequality
Input: Gram matrix G of size n× n where Gij = ⟨vi, vj⟩ representing an MSN-bounding problem
Output: Matrix V of size umax × kmax, where Vu,k is an upper bound on the ℓ2 norm of the sum of k vectors

taken from u unique buckets.
/* Split each row of G into the largest and the non-largest entries per

bucket. */
1 Initialize m as the number of buckets;
2 Initialize n as the number of vectors;
3 Compute bucket indices from bucket sizes;
4 for j ← 1 to m do
5 Sort entries in each bucket j in decreasing order;
6 Store the largest entry of each bucket in best_entries;
7 Remove these entries from the Gram matrix;
/* Compute the cumulative contributions of the largest and non-largest

entries per bucket. */
8 Compute best_u_contributions as cumulative sums of sorted best_entries;
9 Compute best_kmu_contributions as cumulative sums of the modified Gram matrix;
/* Compute the contributions of each sample for the triangle inequality.

*/
10 Initialize sample_contributions as an array of −∞;
11 for u← 1 to min(umax, kmax) do
12 for k ← u to kmax do
13 Compute contributions by combining best_u_contributions and best_kmu_contributions;

/* Enforce the constraint that T must use exactly u separate buckets. */
14 for j ← 1 to m do
15 Move the largest elements of each bucket to the start using partition;
16 Copy the largest elements to best_contributions;
17 Remove these elements from sample_contributions;
18 Sort best_contributions and compute their cumulative sums as cumsum_best_contributions;
/* Compute the norms squared using the constraints. */

19 Initialize norms_squared as an array of −∞;
20 for u← 1 to umax do
21 for k ← u to kmax do
22 Compute sum over k − u largest elements of sample_contributions and u largest elements of

cumsum_best_contributions;
23 Update norms_squared[u, k];

/* Compute the norms and handle invalid values. */
24 Compute norms as the square root of norms_squared;
25 return norms;

We also adapt Algorithm 3 to the case where we wish to keep track of both the total number of removals and the number
of unique buckets from which we remove samples.
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Algorithm 6: Dynamic Programming 2D
Input: A list of bucket scores B
Output: A table V where V [u, k] is the maximal score for using u unique buckets with total budget k
/* Initialize parameters and dynamic programming table */

1 Compute cumulative sums of bucket lengths;
2 Initialize dp_table with −∞ and set dp_table[:, 0, 0] = 0;
/* Fill the dynamic programming table */

3 for j ← 1 to length of B do
4 Get the current bucket B[j];
5 Set u as min(m, j);
6 Set k as min(n, cumsum_bucket_lengths[j]);

/* Base case for the first bucket */
7 if j == 0 then
8 Set dp_table[0, 1, : k] = B[0][: k];
9 else

/* Case where we do not update the table with new bucket values */
10 Set dp_table[j, 1 : u, : k] = dp_table[j − 1, 1 : u, : k];

/* Case where we add values from the new bucket */
11 for δk ← 1 to min(length of B[j], k)− 1 do
12 Update dp_table[j, 1 : u, δk : k] with the maximum of the current value and

dp_table[j − 1, : u− 1, : k − δk] +B[j][δk];

13 return dp_table[−1, :, :];

A.6 PROOF OF CLAIM A.1

The main analytic idea we use in the OHARE algorithm is an alternative description of what happens when we perform
a linear regression while controlling for a categorical feature. We formalise this process in Claim A.1, which we prove
here:

Proof of Claim A.1. Let X = (F | U) be the covariates for the original regression. Consider the Gram-Schmidt
orthogonalization process, and define

X̂ =
(
F −D−1U⊺F | U

)
where D = U⊺U is the diagonal matrix whose jth entry is ∥uj∥.

X̂ now has a block-diagonal covariance matrix

Σ̂ = X̂⊺X̂ =

(
(F −D−1U⊺F )⊺(F −D−1U⊺F ) 0

0 D

)

Similarly, let Ŷ = Ŷ = Y −D−1U⊺Y . These labels are now also perpendicular to the dummy variables U . Therefore,
for X̂ = F −D−1U⊺F , Σ̂ = X̂⊺X̂ , we have

β̂ = Σ̂−1X̂⊺Ŷ

=

(
(F −D−1U⊺F )⊺(F −D−1U⊺F ) 0

0 D

)−1(
F −D−1U⊺F

U

)⊺ (
Y −D−1U⊺Y

)
=

(
Σ̃−1X̃⊺Ỹ

D−1U⊺
(
Y −D−1U⊺Y

)) =

(
β̂
⋆

) (17)
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B ADDITIONAL MSN-BOUNDING ALGORITHMS

B.1 SPECTRAL DECOMPOSITION

At a high-level, this algorithm similarly tries to bound
∥∥∑

i∈T Zi

∥∥2 = 1⊺TG1T for the same Gram matrix G, but here
we use a spectral decomposition. We refine on the standard spectral algorithms which might output ∥1T ∥maxλ(G) =√
kmaxλ(G), by computing naive bounds on the inner products between 1G and each of the top eigenvalues using a

standard greedy algorithm.

Algorithm 7: Spectral Bound Algorithm
Input: A matrix G of size n× n representing a Gram matrix of a set of vectors Gi,j = ⟨Zi, Zj⟩
Output: A vector V whose kth entry is an upper bound on max|T |=k

∥∥∑
i∈T Zi

∥∥
1 Compute eigenvalues λ1 ≥ · · · ≥ λn and corresponding eigenvectors v1, . . . , vn of G;
2 for k = 1 to n− 1 do

/* For each of the eigenvectors, compute upper and lower bounds on
αi = ⟨1T , vi⟩. To do this, we note that αi is the sum of k entries of vi,
so it is bounded from below by ℓi = sum over k smallest entries of vi
and from above by ui = sum over k largest entries of vi. */

3 Sort the entries of each vi in ascending order and store the cumulative sum in ℓi;
4 Sort the entries of each vi in descending order and store the cumulative sum in ui;

/* Compute upper bound on αi
2 ≤ max{ℓ2i , u2

i }. */
5 Compute bi = max{ℓ2i , u2

i };
/* Combine this with bound on overall weight of spectral decomposition∑

i αi
2 = k. */

6 If
∑

j≤i bi ≥ k, set bi = max{0, k −
∑

j<i bi};
7 Set Vk =

√∑
i λibi;

8 return V ;

B.2 GREEDY LOWER BOUND

In order to get some additional diagnostic capabilities and improve the interpretability of our results, we also imple-
mented a simple greedy algorithm that helps us generate lower-bounds on the MSNs. Algorithm 8 initializes candidate
set T to contain the longest vector vi in our MSN instance, and greedily adds vectors to this set in an attempt to increase∥∥∑

i∈T vi
∥∥ as fast as possible.

Algorithm 8: Greedy Algorithm for Lower Bound and Candidate Set
Input: A matrix G of size n× n representing a Gram matrix of a set of vectors, where Gi,j = ⟨vi, vj⟩
Output: An ordering of the indices T , and a series of lower bounds Lk = 1⊺T:k

G1T:k
≤ max

T ′∈([n]
k )

1⊺T ′G1T ′

1 Initialize an empty list T := [];
2 Initialize the scores array ∆ where ∆i = Gi,i for all i ∈ [n];
/* ∆ maps each index i ∈ [n] to the change in 1⊺TG1T caused by adding i to T.

*/
3 Initialize L0 := 0;
4 while |T | < n do
5 Select i := argmaxj /∈T ∆j ;

/* Choose the index i not in T with the maximum change in score. */
6 Add i to T and update Lk = Lk−1 +∆i;

/* Update the lower bounds by adding the score of the newly added index.
*/

7 Update the scores ∆ := ∆+ 2Gi,:;
/* Adjust ∆ to reflect the change in 1⊺TG1T after adding i to T. */

8 return T and L;
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In real-world datasets, we found that the upper bounds obtained by Algorithms 2 and 7 tend to be very close to the
greedy lower bounds on their respective MSNs.

Moreover, when analyzing the Cash Transfer study (see Section C.3), we noticed that our analysis behaved poorly in
some regimes. Using this greedy lower bound technique, we were able to identify that this behaviour was caused by a
small number of households (< 0.5%) dominating the variance in land-ownership (> 80%), which was included in the
study in linear scale. Converting the land-ownership to a logarithmic scale resolved this issue (allowing us to certify
robustness to removing many more samples).

C APPLIED EXPERIMENTS

C.1 METHODOLOGY OF TABLE 1

In Table 1, we compare several bounds on ksign(e) (the number of removals required to flip the sign of the “main”
coefficient e) for a several regressions taken from highly influential econometrics datasets.

Before delving into the source of each regression we give a brief overview of the methodology used to construct each
column of the table.

Metadata The first few columns (“Paper”, “Regression”, n and d) give some of the metadata for the regression.

The paper column details which paper each regression was drawn from, and for papers with multiple regressions we list
the name of each regression in the paper. For more details about each of these papers see the following subsections.

The n and d columns list the number of samples and the dimension of each regression.

AMIP The AMIP algorithm by Broderick et al. Broderick et al. (2020) can be used to estimate the robustness of
a linear regression in one of two ways. The fastest option is to compute the AMIP gradients / influence scores, and
estimate that the number of samples one must remove in order to change the fit by a certain amount by taking a
cummulative sum over the sorted gradients.

However, this method both typically tends to overestimate the robustness of a dataset, and despite this does not even
provide a formal upper bound on ksign or k2σ . Instead, for our experiments we sort the samples from most influential to
least influential and remove them one at a time until the fit crosses the threshold we are considering.

KZC The robustness estimation algorithm by Kusching et al. Kuschnig et al. (2021) utilizes a greedy approach – at
each point we select the sample whose removal would have the greatest effect on our metric of interest and remove that
sample. We repeat this process until the decision boundary has been crossed (in our case, until the sign of the regression
coefficient has been flipped).

As with AMIP, we report the size of the smallest set produced by the algorithm that actually produced a sign flip.

OHARE Assume WLOG that our coefficient of interest is positive in the original regression ⟨β, e⟩ > 0 (otherwise
we set e′ = −e).

Running the OHARE algorithm yields a series of upper bounds Uk on the removal effects. In particular, we know that
for k = ksign, we must have ∆k(e) > ⟨β, e⟩, so by computing

kOHARE(e) = min {k ∈ [n] | Uk > ⟨β, e⟩}

yields a lower bound as ksign(e) ≥ kOHARE(e).

Computational Resources In the columns “Runtime” and “Memory”, we list the total runtime and memory cost of
running the OHARE algorithm in this case. All experiments were run on a single core of an AMD EPYC 9654 96-Core
Processor.
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C.2 HOW MUCH SHOULD WE TRUST THE DICTATOR’S GDP GROWTH ESTIMATES?

C.2.1 PAPER OVERVIEW

Reliable estimates of GDP figures are crucial for analysts to assess the performance of an economy. However, leaders
often have a variety of political and financial incentives manipulate GDP figures in order to improve their perception.
Therefore, economists often use proxies to obtain independent estimates of these figures that may be harder to manipulate.
One such method which has gained a lot of attention in recent years is to simply measure the amount of light emitted
from a region at night (nightlights or NTL), as observed by satellite imaging Henderson et al. (2012).

Martinez Martinez (2022) uses this proxy in conjunction with several well-known measures for the democracy of a
country (such as the freedom-in-the-world or FiW metric), in an effort to find evidence of GDP figure manipulation in
autocratic regimes. One methods used by Martinez is to measure the “autocracy gradient in the NTL elasticity of GDP”.
In practice, this translates to running a regression of the form

ln(GDP)i,t = µi + δt + ϕ0 ln(NTL)i,t + ϕ1FiWi,t + ϕ2FiW2
i,t + ϕ3[ln(NTL)× FiW]i,t + εi,t (18)

where i represents the index of a country, t the year from which this sample was taken, µi and δt control for country-
specific or time-specific effects, ϕ0, ϕ1, ϕ2 control for the direct correlation between nightlights and GDP, as well as for
any ≤ 2nd order dependence between GDP and democracy. ϕ3 is the main effect we wish to observe, and a positive
value of ϕ3 could be explained by autocratic regimes being more prone to embellishing their GDP figures.

Martinez reports a statistically significant positive value of ϕ3, as well as additional evidence for GDP figure manipula-
tion in autocratic regimes (such as a larger difference between NTL-based estimates and reported GDP in years leading
up to IMF evaluations of autocratic regimes). Martinez hypothesises that the separation of powers and cross-examination
of figures by opposition contribute to making GDP figures more reliable in democratic countries.

C.2.2 ROBUSTNESS

Martinez uses the AMIP tool Broderick et al. (2020) to assess the robustness of the regression (18). AMIP finds a set of
136 samples whose removal flips the sign of the OLS fit on the [ln(NTL)× FiW]i,t term. Kusching et al. Kuschnig et al.
(2021) improve this upper bound on the stability by finding a set of 110 samples that flip the sign of the fit parameter.

Running our continuous regression toolkit on the Martinez dataset can only certify robustness to the removal of at most
7 samples, as the dataset contains a one-hot encoding of the country and it contains only 8 samples from Monetenegro.
To overcome this, we apply our one-hot aware algorithms to the same data, and are able to certify the sign of this
parameter in Martinez’ regression requires at least ksign ≥ 29 to overturn.

C.3 INDIRECT EFFECTS OF AN AID PROGRAM: HOW DO CASH TRANSFERS AFFECT INELIGIBLES’
CONSUMPTION?

C.3.1 PAPER OVERVIEW

Angelucci and De Giorgi Angelucci & De Giorgi (2009) study the indirect effect of the Progresa welfare program
in Mexico. This program gave financial aid to eligible households within “treated” villages, and did not give aid to
ineligible households or households from “untreated” villages.

Angelucci and De Giorgi then track spending patterns of eligible and ineligible households from both treated and
untreated villages. They then use linear regressions to estimate the treatment effects on both eligible and ineligible
households when controlling on various other features.

C.3.2 MINOR DIFFICULTIES IN USING THE DATA

We found two different regression formula that have been attributed to this paper. The formula use slightly different
control, with one option controlling for: head of household age, sex, literacy and education level, household poverty
index and amount of land owned, local poverty index, number of households in the village and “average shock” (to
the best of our knowledge, this was the regression used in Angelucci and De Giorgi’s original paper). The regression
used in the later paper by Broderick et al. Broderick et al. (2020) also controls for head of household marital status and
which region the samples came from (using a one-hot encoding). Ultimately, these additional controls had very little
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effect on the fit parameters or their error bars, and we chose to focus on the latter to maintain consistency with previous
benchmarks.

A more significant issue is that the dataset also contained many clear outliers. For instance, almost all the entries of the
column for head of household sex were either “hombre” or “mujer” with a very small fraction (roughly 16 out of 59455
samples) having the value 9.0, and many columns had entries of “nr” (presumably no response).

We removed these “bad samples” for the sake of our analysis (both to avoid regressing over a clearly problematic
dataset, and also because not doing so would cause the regression to include nearly empty categories in several different
one-hot encodings which is beyond the scope of the OHARE algorithm). This had only a minor effect on the regression
results.

Column Values Removed Samples Removed
hhhsex 9.0, nr 16
hhhalpha nr 21
hhhspouse nr, 2.0 546
p16 nr 146
hhhage 97 y más, no sabe, nr 205
Total 921

Table 2: Number and values of outliers we removed from each of the covariates in Angelucci and De Giorgi’s
study Angelucci & De Giorgi (2009).

C.3.3 ROBUSTNESS

We ran our tools on the 6 regressions from Angelucci and De Giorgi’s paper (treatment effects on eligible / ineligible
over 3 periods). Our robustness lower bounds nearly match the AMIP upper bound for the ineligible studies, but left
room for improvement on the eligible regressions.

To find the root of this gap, we first noted that the main component of our bound that failed was that after removing
≈ 50 samples, our bound on max

{
λ(Σ−1

S )
}

becomes very large. Using Algorithm 8, we were able to find the samples
responsible for these loose bounds: ≈ 50 households (out of > 10000) that account for more than 80% of the variance
in the amount of land owned by each household.

When one of the columns of a linear regression is heavy-tailed, it is not uncommon to replace this column with its
logarithm. This presented a slight challenge in this case, as many of the household in the eligible studies owned no land at
all. To overcome this, we replace the hectacres (amount of land owned) column with log (hectacres + median hectacres).
We then reran the regression and robustness analysis to see the effects of this change to produce the results in Table 1
and Figure 2.

C.4 THE OREGON HEALTH INSURANCE EXPERIMENT: EVIDENCE FROM THE FIRST YEAR

C.4.1 PAPER OVERVIEW

The Oregon Health Insurance Experiment provides a unique opportunity to assess the effects of expanding access to
public health insurance on low-income adults using a randomized controlled design. In 2008, Oregon implemented a
lottery to select uninsured low-income adults to apply for Medicaid. This random assignment allows researchers to
compare the outcomes of the treatment group (those selected by the lottery) with the control group (those not selected).

Finkelstein et al. Finkelstein et al. (2012) analyze data from the first year after the lottery to evaluate the impacts on
health care utilization, financial strain, and health outcomes. The study finds that individuals in the treatment group
were about 25 percentage points more likely to have health insurance compared to the control group. The results show
that the treatment group experienced higher health care utilization, including increased primary and preventive care
visits, and hospitalizations. They also faced lower out-of-pocket medical expenditures and medical debt, evidenced by
fewer bills sent to collection agencies.

Moreover, the treatment group reported better physical and mental health than the control group. The authors suggest
that the increase in health care utilization due to insurance coverage led to improved health outcomes and reduced
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financial strain. These findings provide significant evidence on the benefits of expanding Medicaid coverage to
low-income populations.

C.4.2 REGRESSION ANALYSIS

The regression analysis conducted by Finkelstein et al. utilized instrumental variable (IV) regression to estimate the
impact of Medicaid coverage on various health and financial outcomes. They used a treatment variable as the instrument
and several dummy variable controls corresponding to different medical metrics (e.g., “Not bad days physical”).

IV regression is particularly useful in this context as it helps address potential endogeneity issues, where the treatment
(Medicaid enrollment) might be correlated with unobserved factors affecting the outcomes. By using the lottery
selection as an instrument for Medicaid enrollment, they ensured a more accurate estimation of the causal effect.

The IV regression can be computed as the ratio of two ordinary least squares (OLS) regressions: one estimating the
relationship between the instrument (lottery selection) and the endogenous variable (Medicaid enrollment), and the
other estimating the relationship between the instrument and the outcome (health or financial metrics). This implies that
if both OLS regressions are robust to sign changes, so is their ratio. In this study, the correlation between the instrument
and the endogenous variable was very strong and robust, making the primary robustness concern the OLS regression
between the endogenous variable and the outcome.

Finkelstein et al. used weighted OLS regressions with several dummy variables, some of which had very sparse
categories. This sparsity caused singularities after 13-14 removals, making it difficult to certify robustness with the
ACRE algorithm. Therefore, the OHARE algorithm was used to certify the robustness of these regressions.

Outcome Type ACRE OHARE AMIP KZC21

Health genflip Instrument vs Endogenous 14 752 ≥ 10% ≥ 10%
Instrument vs Outcome 14 77 257 257

Health notpoor Instrument vs Endogenous 14 752 ≥ 10% ≥ 10%
Instrument vs Outcome 14 40 149 149

Health change flip Instrument vs Endogenous 14 755 ≥ 10% ≥ 10%
Instrument vs Outcome 14 52 184 184

Not bad days total Instrument vs Endogenous 13 685 ≥ 10% ≥ 10%
Instrument vs Outcome 13 21 72 72

Not bad days physical Instrument vs Endogenous 13 669 ≥ 10% ≥ 10%
Instrument vs Outcome 13 25 84 84

Not bad days mental Instrument vs Endogenous 13 676 ≥ 10% ≥ 10%
Instrument vs Outcome 13 31 118 118

Nodep Screen Instrument vs Endogenous 14 742 ≥ 10% ≥ 10%
Instrument vs Outcome 14 32 116 116

D SYNTHETIC DATA EXPERIMENTS

D.1 METHODOLOGY

We evaluate the performance of the ACRE algorithm on synthetic datasets drawn from two distinct distributions:

Normally Distributed Regressions As a baseline, we test the algorithm on normally distributed covariates. Specifi-
cally, the covariates are drawn i.i.d. from a standard normal distribution, N (0, 1).

Power-Law Distribution To stress-test the algorithm, we evaluate its performance on covariates drawn i.i.d. from
a heavy-tailed power-law (Pareto) distribution. In this setting, we set the power b = 4 and draw covariates Xi,j i.i.d.
from a distribution with density:

f(x) ∝ 1|x|≥1 · |x|−(b+1) .

This distribution has finite first, second, and third moments, but its fourth moment diverges, making it a challenging test
case.
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Target Variable In both cases, the target variables (labels) Yi are drawn independently from a standard normal
distribution: Yi ∼ N (0, 1).

D.2 RESULTS

D.2.1 COMPARISON OF KNOWN BOUNDS

We evaluate the performance of the ACRE algorithm on synthetic regression datasets drawn from the two distributions
described earlier, with n = 4000 samples and d = 50 covariates. Specifically, we compare the upper bounds produced
by ACRE, denoted Uk, with the state-of-the-art upper bounds by Freund and Hopkins, as well as the lower bounds
produced by AMIP and KZC (see Figure 3).

As shown in the results, ACRE produces significantly tighter bounds than Freund and Hopkins across both normally
distributed and power-law distributed covariates. Furthermore, ACRE’s upper bounds closely approach the lower
bounds from AMIP and KZC for values of k up to removal effects that push the regression outside the 2σ confidence
interval2 k2σ .
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(a) Normally distributed covariates.
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(b) Power-law distributed covariates.

Figure 3: Comparison of the upper bounds Uk produced by the ACRE algorithm with the state-of-the-art bounds from
Freund and Hopkins and the lower bounds from AMIP and KZC. Each dataset consists of n = 4000 samples and
d = 50 covariates, with covariates drawn i.i.d. from either a normal distribution (Figure 3a) or a power-law distribution
(Figure 3b). For each figure, we plot two versions of the ACRE algorithm: one that uses RTI as its MSN bounding
component in the backend, and another that uses a spectral algorithm. On these synthetic datasets, the spectral bound
slightly outperforms the RTI backend, but has a longer runtime.

D.2.2 SCALING OF kthreshold WITH n

In this experiment, we aim to analyze how kthreshold (the maximal value of k for which the bounds of ACRE are close to
tight) scales with the number of samples n.

We fix the dimension d = 20 and draw nmax = 5000 samples with covariates drawn i.i.d. from either a normal or a
power-law distribution. The ACRE algorithm is then run on a series of regressions, corresponding to subsets of this
dataset, with the number of samples varying from n = 7d to n = nmax.

For each regression, we compute the ACRE upper and lower bounds, Uk and Lk, and use a heatmap to visualize the
ratio Uk

Lk
as a function of k and the sample size n. Contour plots indicate the regions where Uk

Lk
falls below specific

thresholds (e.g., 1.1), highlighting the values of k for which our bounds are close to tight.

2ksign is not an appropriate metric for this experiment, as it is directly influenced by our choice of the ground truth model.
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As shown in Figure 4, for both normally and power-law distributed covariates, kthreshold appears to scale approximately
linearly with n. This is consistent with the scaling predicted by Theorem 1.2, which gives:

kthreshold = Ω̃

(
min

{
n√
d
,
n2

d2

})
≈ n√

d
.
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Figure 4: The ratio Uk

Lk
between the upper and lower bounds produced by ACRE for synthetic linear regressions with

covariates drawn from either a normal distribution (Figure 4a) or a power-law distribution (Figure 4b). Heatmaps show
the tightness of the bounds as a function of k and the number of samples n. Contour plots indicate regions where Uk

Lk
is

below specific thresholds (e.g., 1.1), highlighting the scaling of kthreshold. In both cases, kthreshold scales roughly linearly
with n, consistent with the theoretical prediction of Theorem 1.2.

D.2.3 SCALING OF kthreshold WITH d

Finally, we examine how kthreshold (the maximal value of k for which the bounds of ACRE are close to tight) scales with
the dimension d of the regression for a fixed number of samples n.

In this experiment, we fix the number of samples to n = 4000 and sample a regression with n samples and dmax = 500
features, where the covariates are drawn i.i.d. from either a normal or a power-law distribution. We then vary d by
limiting each regression to subsets of the features, varying the dimension from d = 5 to d = dmax.

Theoretically, we expect kthreshold to scale as:

kthreshold = Ω̃

(
min

{
n√
d
,
n2

d2

})
,

which predicts two regimes:

• For relatively small d, the first term dominates and we have kthreshold ≈ n√
d

.

• For larger d, the second term dominates and we have kthreshold ≈ n2

d2 .
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Figure 5: The ratio Uk

Lk
between the upper and lower bounds produced by ACRE for synthetic linear regressions with

covariates drawn from either a normal distribution (Figure 5a) or a power-law distribution (Figure 5b). Contour plots
illustrate the values of kthreshold for some given thresholds, as a function of the dimension d. For relatively small d (right
side of the plot), kthreshold scales approximately as n√

d
. Conversely, for larger d (left side of the plot), kthreshold decays

faster, consistent with the n2

d2 scaling predicted by our theoretical analysis.

E TIGHTNESS OF ACRE

In this section, we will prove that the ACRE algorithm produces tight bounds on “well-behaved” distributions, proving
Theorem 1.2.

E.1 PRELIMINARIES

Throughout this section, we use Õ/Θ̃/Ω̃ to denote big-O statements that hold up to a factor of polylog(n). We will
make no attempt to optimize the polylog(n) factors in this analysis.

Moreover, we say that a term η is negligible if η−1 = nω(1) is superpolynomial in n. Finally, we say an event happens
with very high probability if it happens with probability 1− η for negligible η.

E.2 MAIN RESULT

Our main goal for this section will be to prove that ACRE produces good bounds with high probability when the
regression data is drawn from a well behaved distribution:

Theorem E.1 (ACRE Bounds are Tight on Well-behaved Data). Let X ∈ Rn×d, Y ∈ Rn be a linear regression
problem such that the covariates (i.e., the rows of X) are drawn iid from a well-behaved distribution Xi ∼ X and the
outcomes Y are drawn iid from Y ∼ N (Xβgt, In).

Then, for any axis e ∈ Sd−1, with very high probability, the upper and lower bounds produced by ACRE on this
regression are close to tight

Uk

Lk
= 1 + Õ

(
d+ k

√
d

n

)

for all k < kthreshold, where kthreshold = Θ̃
(
min

{
n√
d
, n2

d2

})
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In particular, if the samples Xi, Yi are drawn iid from some normal distribution N (0,Σ′) (for some covariance
Σ′ ∈ R(d+1)×(d+1)), or if the covariates Xi are drawn iid from the hypercube or unit sphere and the target variable
Yi ∼ ⟨βgt, Xi⟩+N (0, σR) are drawn iid from a normal distribution around some ground truth model, then Theorem E.1
holds for them. Therefore, Theorem 1.2 follows from Theorem E.1.

Our goal for the rest of this section will be to prove Theorem E.1.

E.3 PROOF SKETCH

First, we note that if n = Õ(d), Theorem E.1 holds vacuously, as kthreshold < 1. Therefore, we limit our analysis to
the cases where n > nthreshold for some nthreshold = d× polylog(n) (the exact power of this polylogarithmic factor will
depend on the specific constant C in the exponential decay assumption in Definition 1.

To prove Theorem E.1, we first define a set of condition under which we can prove that ACRE will produce good
bounds:
Definition 2 (ACRE-friendly). Let X,Y be the covariates and target variable of a regression. Let Σ = X⊺X denote
the unnormalized empirical covariance of the covariates, and let R = Y −XΣ−1XTY denote the residuals.

We say that this regression is ACRE-friendly for direction e ∈ Rd with k removals and parameters P1, P2, P3, P4, P5 ≥
0 if

1. The covariates are bounded in Mahalanobis distance maxi∈[n] X
⊺
i Σ

−1Xi ≤ P1
d
n .

2. The inner products of samples are bounded maxi ̸=j∈[n] X
⊺
i Σ

−1Xj ≤ P2

√
d

n .

3. The residuals are bounded maxi∈[n] R
2
i ≤ P3σ

2
R, where σR =

√
1
n

∑
i∈[n] R

2
i .

4. The inner products between the covariates and the axis of interest are bounded maxi∈[n]

(
e⊺Σ−1Xi

)2 ≤
P4

n

∑
i∈[n]

(
e⊺Σ−1Xi

)2
= P4

n e⊺Σ−1e.

5. Let αi = e⊺Σ−1XiRi be the AMIP influence scores. We require that the sum over the k largest influence
scores is at least

ak = max
T∈([n]

k )

{∑
i∈T

αi

}
≥ 1

P5
σZσRk

where σZ =
√

1
n

∑
i∈[n] Z

2
i , for Zi = e⊺Σ−1Xi.

When P1, . . . , P5 are at most polylogarithmic in n, we say that the regression is ACRE-friendly.

Our proof of Theorem E.1 will have two main components. The first and smaller portion of the proof will be to show
that the bounds produced by ACRE are close to tight when a regression is ACRE-friendly. It should not be surprising
that Definition 2 is sufficient condition for producing good bounds with ACRE, since ACRE essentially checks a slightly
more robust version of these conditions.
Claim E.2 (ACRE bounds are nearly tight on ACRE-friendly regressions). Let X,Y, e be an ACRE-friendly regression
with parameters P1, . . . , P5 for all k ≤ k0. Then, there exists kthreshold = Θ

(
min

{
n√
d
, n2

d2
, k0

}
/poly (P1, . . . , P5)

)
such

that for all k ≤ kthreshold, the bounds Lk, Uk produced by ACRE satisfy

Uk

Lk
≤ 1 +O

(
d+ k

√
d

n
× poly (P1, . . . , P5)

)

The second and longer portion of our proof will be devoted to showing that well-behaved distributions yield ACRE-
friendly regressions with high probability.
Claim E.3 (Well-behaved distributions yield ACRE-friendly regressions with high probability). Let n, d be as above,
and let X,Y be as in Theorem E.1.
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Then, for any axis e ∈ Sd−1, with very high probability, the regression X,Y is ACRE-friendly for all k ≤ k0, for
k0 = Ω̃(n).

Combined, Claims E.2 and E.3 yield Theorem E.1.

E.4 SYMMETRIES

Before proceeding to the proofs of Claims E.2 and E.3, we note that our definitions of well-behaved distributions and of
ACRE-friendly regressions are normalized in a way that permits some symmetries. Indeed, it is easy to see that for any
invertible matrix L ∈ Rd×d and positive scalars αe, αy ∈ R+, a regression X,Y, e is well-behaved / ACRE-friendly
if and only if the regression X̃ = XL, Ỹ = αyY, ẽ = αeLe is well-behaved / ACRE-friendly. Moreover, such a
reparametrizations also has no effect on the robustness of the regression, so we may apply this symmetry on the input
and output of Theorem E.1 or Claims E.2 and E.3.

For Theorem E.1 or Claim E.3, we may apply this symmetry with L = Σ−1/2, where Σ is the ground truth covariance
of the distribution X , resulting in a distribution with covariance identity. Note that this renormalization is not the
same as the renormalization process in the ACRE algorithm. In the ACRE algorithm, we renormalize by the empirical
covariance, whereas the renormalization above is by the ground-truth covariance. One of the steps of our analysis will
be to show that when the regression is drawn from a well-behaved distribution, the two are close to one another with
high probability, but this is not immediate.

For the proof of Claim E.2, we renormalize the samples according to their empirical covariance. This would result in a
set of samples X such that Σ∗ = X⊺X = I . Moreover, we use the αY symmetry to ensure that the residuals to have
standard deviation σR = 1 and the αe symmetry to ensure that e has norm 1.

E.5 PROOF OF CLAIM E.2

After this renormalization step above, the conditions on the normalized regression simplify to:

1. The covariates are bounded in ℓ2 norm maxi∈[n] ∥Xi∥2 ≤ P1
d
n

2. The inner products of samples are bounded maxi ̸=j∈[n] ⟨Xi, Xj⟩ ≤ P2

√
d

n

3. The residuals are bounded maxi∈[n] R
2
i ≤ P3.

4. The inner products between the covariates and the axis of interest are bounded maxi∈[n] ⟨e,Xi⟩2 ≤ P4

n

5. Let αi = ⟨e,Xi⟩Ri be the AMIP influence scores. We require that the sum over the k largest influence scores
is at least

ak = max
T∈([n]

k )

{∑
i∈T

αi

}
≥ 1

P5
× k√

n

We prove Claim E.2, working with the normalized regression. Recall that ACRE produces its bounds by combining
RTI bounds on the following Gram matrices:

1. GX⊗X whose entries are the squared entries of the Gram matrix GX of the original covariates. By our
assumptions on the maximal norm and inner products of covariates, we know that the diagonal entries of this
matrix are bounded by d2

n2P
2
1 and its off-diagonal entries are bounded by d

n2P
2
2 .

2. GXR whose entries are inner products between covariates multiplied by the product of two residuals. Therefore,
the diagonal entries of this matrix are bounded (in absolute value) by d

nP1P3 and its off-diagonal entries by
√
d

n P2P3.

3. and GXZ whose entries are inner products between covariates, rescaled by the product of their weights on
the axis of interest e. Therefore, its diagonal entries are bounded (in absolute value) by d

n2P1P4 and its
off-diagonal entries by

√
d

n2 P2P4.
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Note that the output of the RTI algorithm is an upper bound on the resulting MSN problem. The output of the
RTI algorithm squared is always equal to the sum of k diagonal entries of the Gram matrix plus fewer than k2

off-diagonal entries. Therefore, we have:

RTI Bound ≤
√
k × Largest Diagonal Entry + k2 × Largest Off-Diagonal Entry (19)

The X ⊗ X Term Let MX⊗X denote the MSN-bound obtained by running the RTI algorithm on the GX⊗X .
Combining equation (19) with our knowledge of the diagonal and off-diagonal entries of GX⊗X , we clearly have:

MX⊗X ≤
√
k
d2

n2
P 2
1 + k2

d

n2
P 2
2

Therefore, for all k ≤ kthreshold = min
{

n√
dP22

, n2

d2P 2
1 4

}
, MX⊗X is at most

MX⊗X ≤
√

1

2
< 1

The XR and XZ Terms Similarly, let MXR and MXZ denote the MSN bounds obtained by the RTI algorithm on
GXR and GXZ respectively. As before, we combine equation (19) with our bounds on the diagonal and off-diagonal
terms of GXR and GXZ to show that

MXR ≤

√
k
d

n
P1P3 + k2

√
d

n
P2P3 ≤

√
k
d

n
P1P3 +

√
k2
√
d

n
P2P3

and

MXZ ≤

√
k
d

n2
P1P4 + k2

√
d

n2
P2P4 ≤

√
k
d

n2
P1P4 +

√
k2
√
d

n2
P2P4

Wrapping Up Therefore, for all k ≤ kthreshold, we have

bk =
1

1−MX⊗X
MXRMXZ ≤

√
2P3P4√
2− 1

×

(
kd

n3/2
P1 + 2

k3/2d3/4

n3/2

√
P1P2 +

k2
√
d

n3/2
P2

)
= O

(
kd+ k2

√
d

n3/2
× poly (P1, . . . , P4)

)

Finally, applying the 5th condition, we have

Uk

Lk
=

ak + bk
ak − bk

= 1 +O

(
bk
ak

)
= 1 +O

(
d+ k

√
d

n
× poly (P1, . . . , P5)

)
completing the proof of Claim E.2.

E.6 PROOF OF CLAIM E.3

We now move on to the main portion of the proof which will be devoted to showing that when the covariates Xi ∼ X are
drawn from a well-behaved distribution and the target variable Yi ∼ N(X⊺

i βgt, 1) are drawn from a normal distribution
around some ground truth linear model, the resulting regression is ACRE-friendly with very high probability (i.e.,
to prove Claim E.3). Recall that as we showed in Section E.4, it suffices to prove this result for the case where the
ground-truth covariance of the distribution X is equal to identity.

Main Challenge and Proof Strategy The main challenge will be that the requirements of Definition 2 (ACRE-
friendly) require statements like v⊺Σ−1w = small, where v and w are related to the samples of the regression (e.g.,
v, w might be two samples Xi, Xj) and from here on out, Σ = X⊺X denotes the unnormalized empirical covariance
(recall that we normalized the ground truth covariance to be the identity).

Because of our assumption that n > d× polylog(n), we can use matrix Bernstein to prove that the empirical covariance
is close to its expectation Σ ≈ nI , but even for moderate dimensions d, our bounds on the overall error of this
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approximation (i.e., ∥Σ− nI∥) would not be strong enough to prove Claim E.3. For any fixed v, w ∈ Rd that do not
depend on the sample distributions, we can easily prove sufficiently strong concentration bounds on v⊺Σ−1w. However,
the v, w pairs for which we will need to prove our concentration bounds do depend on the samples, creating the potential
for an alignment between the large eigenvectors of Σ− nI and this pair.

Our proof strategy will be to expand Σ−1 into terms that depend on v, w and terms that do not. The terms that do not
depend on v, w can be tightly bounded using simple concentration bounds, and the terms that do depend on v, w will be
so small to begin with that we can bound them very loosely using the matrix Bernstein inequality (see Lemma E.4).

E.6.1 MATRIX BERNSTEIN INEQUALITY

Throughout our analysis we will often make use of the matrix Bernstein inequality:

Lemma E.4 (Matrix Bernstein Tropp et al. (2015)). Let Z1, . . . , Zn be independently-distributed random symmetric
d× d matrices with mean E [Zi] = 0. Moreover, assume that ∥Zi∥ ≤ L and

∥∥∥∑i∈[n] E
[
Z2
i

]∥∥∥ ≤ σ2, then

Pr

∥∥∥∥∥∥
∑
i∈[n]

Zi

∥∥∥∥∥∥ ≥ t

 ≤ 2d · exp
(
−t2/2

σ2 + Lt/3

)

In many cases however, our input will not directly fit the assumptions of this inequality and instead of a statement of
the form ∥Zi∥ ≤ L, we will only have a statement of the form Pr [∥Zi∥ ≥ L] ≤ δ for some negligible probability δ.
Therefore it will be useful for us to have an extension of this theorem to cases when the assumption fails, but with a
very small probability:

Lemma E.5 (Approximate Matrix Bernstein). Let Z1, . . . , Zn be independently-distributed random symmetric d× d
matrices with mean E [Zi] = 0. Moreover, assume that for all i, Pr [∥Zi∥ ≥ L] ≤ δ and

∥∥E [Z2
i

]∥∥ ≤ τ2, and that∥∥∥∑i∈[n] E
[
Z2
i

]∥∥∥ ≤ σ2, then

Pr

∥∥∥∥∥∥
∑
i∈[n]

Zi

∥∥∥∥∥∥ ≥ t+ nτ
√
δ

 ≤ 2d · exp
(
−t2/2

σ2 + Lt/3

)
+ nδ

Proof of Lemma E.5. Let Sd =
{
Z ∈ Rd×d

∣∣Z = ZT
}

denote the space of symmetric real valued d× d matrices.

Consider the random variable ζi = Zi × 1∥Zi∥≤L. At first it might seem like we can directly apply the matrix Bernstein
inequality to these new variables, and then use the fact that Zi = ζi for all i w.p. ≥ 1− nδ.

The issue is that we no longer know that these ζi maintain the other assumptions of the matrix Bernstein inequality. In
particular, we will bound ∥E [ζi]∥ and

∥∥∥∑i∈[n] E
[
ζi

2
]∥∥∥ from above.

Let fi denote the probability density function of Zi, and consider

E [ζi] = E [ζi]− E [Zi] =

∫
∥Z∥>L

Zfi(Z)

Let v, w ∈ Sd−1 be any two points on the unit sphere. Using the CS inequality, we have

v⊺E [ζi]w =

∫
∥Z∥>L

v⊺Zwfi(Z) =

∫
Z∈Sd

1∥Z∥>Lv
⊺Zwfi(Z) ≤

√∫
Z∈Sd

1∥Z∥>Lfi(Z)×

√∫
Z∈Sd

(v⊺Zw)
2
fi(Z)

The first term in the RHS is bounded by√∫
Z∈Sd

1∥Z∥>Lfi(Z) =
√
Pr [∥Zi∥ ≥ L] ≤

√
δ
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For the latter term, we use the CS inequality again:√∫
Z∈Sd

(v⊺Zw)
2
fi(Z) ≤

√∫
Z∈Sd

∥Zv∥2 ∥w∥2 fi(Z) =

√∫
Z∈Sd

v⊺Z2vfi(Z) =
√
v⊺E [Z2

i ]v ≤ τ

Therefore
∥E [ζi]∥ ≤ τ

√
δ

Finally, we bound the change in the variance of these variables.

Cov (ζi) = E
[
ζ2i
]
− E [ζi]

2 ⪯ E
[
ζ2i
]
⪯ E

[
Z2
i

]
⇒

∥∥∥∥∥∥
∑
i∈[n]

Cov (ζi)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑
i∈[n]

E
[
Z2
i

]∥∥∥∥∥∥ ≤ σ2

Therefore, we may apply the matrix Bernstein inequality (Lemma E.4) on the matrices zi = ζi − E [ζi] to obtain the
bound

Pr

∥∥∥∥∥∥
∑
i∈[n]

ζi

∥∥∥∥∥∥ ≥ t+ nτ
√
δ

 ≤ Pr

∥∥∥∥∥∥
∑
i∈[n]

ζi −
∑
i∈[n]

E [ζi]

∥∥∥∥∥∥ ≥ t

 ≤ 2d · exp
(
−t2/2

σ2 + Lt/3

)
,

yielding the main claim.

E.6.2 A USEFUL COROLLARY OF LEMMA E.5

Recall that we defined a “well-behaved distribution” to be a distribution whose tails decay rapidly when projected on
any direction. It will be beneficial to our use-case to work with a more relaxed condition on the decay of these tails, by
allowing an additional poly(n) factor. Note that any well-behaved distribution is clearly also almost well-behaved.
Definition 3. We say that a mean-zero distribution X on Rd is almost well-behaved with respect to the scaling
parameter n, if it has exponentially decaying tails in the sense that

∃C > 0 ∀v ∈ Sd−1, t > 0 Pr
X∼X

[∣∣∣〈v,Σ−1/2X
〉∣∣∣ > t

]
≤ poly(n)× exp

(
−Ω

(
tC
))

where
Σ = E

X∼X
[XX⊺] = Covariance(X )

In the previous section, we proved a generalisation of the matrix Bernstein inequality that can deal with a small
probability that the norm bound assumption of the Bernstein inequality is violated. A corollary of this result is that
almost well-behaved distributions are closed to summation over polynomially many iid samples. More concretely:
Lemma E.6. Let X be a distribution that is almost well-behaved with respect to the scaling parameter n. Let
k = poly(n) and let X1, . . . , Xk ∼ X be iid random variables in Rd, drawn from X .

Then, the distribution of their empirical mean (i.e., of the variable X̂ = 1
k

∑
i∈[k] Xi) is also almost well-behaved.

Proof of Lemma E.6. Let X̂ denote the distribution of X̂ .

First, we note that from linearity of expectation E
[
X̂
]
= 1

k

∑
i∈[k] E [Xi] = 0, so X̂ is indeed a mean zero distribution.

Let Σ = EX∼X [XX⊺]. Again, using linearity of expectation, we have

Σ̂ = E
X∼X̂

[XX⊺] =
1

k2

∑
i∈[k]

Σ =
1

k
Σ

Finally, we need to show that the tails of X̂ are bounded. Let v ∈ Sd−1 be any vector on the unit sphere. From our
assumption that X is well-behaved, for any t > 0, we have

Pr
X∼X

[∣∣∣〈v,Σ−1/2X
〉∣∣∣ ≥ t

]
≤ poly(n)× exp

(
−Ω

(
tC
))
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Now, consider

Z =
〈
v, Σ̂−1/2X̂

〉
=

1√
k

∑
i∈[k]

〈
v,Σ−1/2Xi

〉
.

We would like to bound the probability that |Z| is greater than some threshold T .

Let Zi =
〈
v,Σ−1/2Xi

〉
. These are iid random variables and our goal is to prove a concentration bound on their sum,

so we may try to use Bernstein-type inequalities to do so.

Since E [Xi] = 0 and E [XiX
⊺
i ] = Σ, we have that E [Zi] = 0 and E [Zi]

2
= 1. Moreover, from the assumption that X

is well behaved, we have concentration bounds on these individual variables. Indeed, for any t, we have that

δt
def
= Pr [|Xi| ≥ t] = poly(n)× exp

(
−Ω

(
tC
))

Therefore, from the d = 1 dimensional case of the approximate matrix Bernstein inequality (Lemma E.5), we have that

Pr
[∣∣∣〈v, Σ̂−1/2X̂

〉∣∣∣ ≥ τ + k
√
δt

]
≤ exp

(
−

1
2τ

2k

k + 1
3 tτ
√
k

)
+ k × poly(n)× exp

(
−Ω

(
tC
))

Setting t =
√

T
2 , we consider two regimes. When t < tthreshold = Θ

(
log(n)1/C

)
, the bound

Pr
[∣∣∣〈v, Σ̂−1/2X̂

〉∣∣∣ ≥ T
]
≤ poly(n)× exp

(
−Ω

(
tC
))

holds vacuously, since the RHS is greater than 1 and the LHS is a probability.

When t ≥ tthreshold, we can ensure that δt < 1/k2 = 1/poly(n). Therefore in this case for τ = t2, we have

Pr
[∣∣∣〈v, Σ̂−1/2X̂

〉∣∣∣ ≥ T
]
≤ Pr

[∣∣∣〈v, Σ̂−1/2X̂
〉∣∣∣ ≥ τ + k

√
δt

]
≤ exp

(
−Ω

(
τ1/2

))
+k×poly(n)×exp

(
−Ω

(
τC/2

))
completing our proof of Lemma E.6.

E.6.3 RENORMALIZATION

Our goal in this portion of the proof will be to show that the empirical covariance matrix Σ = X⊺X is not far from the
expectation Σgt = EX∼Xn [X⊺X] = nI . In particular, we prove the following claim:
Claim E.7. Let X1, . . . , Xn ∼ X be samples drawn iid from an almost well-behaved distribution X with covariance
identity. Let Σ =

∑
i∈[n] XiX

⊺
i denote the unnormalized empirical covariance, and set Σgt

def
= E [Σ] = nI . Then,

With very high probability, ∥Σ− Σgt∥ < Õ
(√

nd+ d
)
= o(n).

Moreover, for all i, we have
∥∥∥E [∥Xi∥2 XiX

⊺
i

]∥∥∥ = O (d) and with very high probability ∥Xi∥2 = Õ (d).

Proof of Claim E.7. We prove Claim E.7 using our adaptation of the matrix Bernstein inequality (see Lemma E.5). We
will apply this inequality for the Zi = XiX

⊺
i − Id, allowing us to obtain probabilistic bounds on

Σ− Σgt =

n∑
i=1

Zi

To use the approximate matrix Bernstein, we begin by proving a bound on the norm of maxi ∥Zi∥ that holds with
probability 1− 1

superpoly(n) . Note that

∥Zi∥ ≤ ∥XiX
⊺
i ∥+ ∥I∥ = ∥Xi∥2 + 1 =

∑
j∈[d]

⟨ej , Xi⟩2
+ 1
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Next, we use the fact that Xi is drawn from a well-behaved distribution X to prove strong tail bounds on the distribution
of its norm. In particular for any primary axis ej (for j ∈ [d]), we have ⟨ej , Xi⟩ ≤ polylog(n) with very high probability.
Therefore, using the union bound over all i, j, we also have that with very high probability

max
i∈[n]
j∈[d]

{
⟨ej , Xi⟩2

}
≤ polylog (n) .

Therefore, with very high probability

∥Zi∥ ≤ Õ (d) (20)

Next, we consider the second moment of Zi.

E
[
Z2
i

]
= E

[
∥Xi∥2 XiX

⊺
i − 2XiX

⊺
i + I

]
= E

[
∥Xi∥2 XiX

⊺
i

]
− I

Fix some pair of primary axis es and unit vector v ∈ Sd−1. Recall that by our definition of X being a well-behaved
distribution, we have an exponentially decaying concentration bound on the projection of our samples onto either of
these axes

Pr
X∼X

[max {|⟨X, es⟩|, |⟨X, v⟩|} ≥ t] = exp
(
−Ω

(
tC
))

Therefore, a similar exponential tail bound also holds on the square of the product of these projections

Pr
X∼X

[
|⟨X, es⟩|2|⟨X, v⟩|2 ≥ t

]
= exp

(
−Ω

(
tC/4

))
In particular, we can conclude the far milder bound that the expectation of the squared product of these projections has
bounded mean:

E
X∼X

[
|⟨X, es⟩|2|⟨X, v⟩|2

]
=

∫
t∈[0,∞)

Pr
X∼X

[
|⟨X, es⟩|2|⟨X, v⟩|2 ≥ t

]
≤
∫
t∈[0,∞)

exp
(
−Ω

(
tC/4

))
= O(1) (21)

Note that equation (21) is no longer a concentration bound that holds with high probability, but a bound on the
expectation of a random variable, that holds for any such pair v, es. In particular, we have

max
v,es∈Sd−1

{
E

X∼X

[
|⟨X, es⟩|2|⟨X, v⟩|2

]}
= O(1)

Therefore, for any v ∈ Sd−1,

v⊺E
[
∥Xi∥2 XiX

⊺
i

]
v = E

[
⟨v,Xi⟩2 ∥Xi∥2

]
= E

∑
s∈[d]

⟨v,Xi⟩2 ⟨es, Xi⟩2
 =

∑
s∈[d]

E
[
⟨v,Xi⟩2 ⟨es, Xi⟩2

]
= O(d)

and since this holds for all v, it is also true when maximizing over the unit sphere∥∥∥E [∥Xi∥2 XiX
⊺
i

]∥∥∥ = max
v∈Sd−1

{
v⊺E

[
∥Xi∥2 XiX

⊺
i

]
v
}
= O(d)

Therefore ∥∥∥∥∥∥
∑
i∈[n]

E
[
Z2
i

]∥∥∥∥∥∥ ≤
∑
i∈[n]

∥∥E [Z2
i

]∥∥ = O(nd) (22)

Combining equations (20) and (22) with Lemma E.5 yields Claim E.7
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E.6.4 MAXIMAL NORM

We now proceed to prove that each of the conditions required for the regression to be well-behaved occurs with very
high probability. The first (and easiest to prove) is the condition that maxi∈[n] X

⊺
i Σ

−1Xi is bounded.
Claim E.8. Let X1, . . . , Xn ∼ X be samples drawn iid from an almost well-behaved distribution X with covariance
identity. Let Σ =

∑
i∈[n] XiX

⊺
i denote the unnormalized empirical covariance, and set Σgt

def
= E [Σ] = nI .

Then, with very high probability

max
i∈[n]

{
X⊺

i Σ
−1Xi

}
= Õ

(
d

n

)
Proof of Claim E.8. Let λ denote the spectrum of a matrix. In the proof of Claim E.7, we already showed that with
very high probability ∥Σ− Σgt∥ = o(n) = o (minλ (Σgt)). When this holds, we also have

λ
(
Σ−1

)
⊆ (1± o(1))× 1

n
.

Moreover, the second part of Claim E.7 states that with very high probability maxi∈[n] ∥Xi∥2 = Õ(d).

Combining these results, we have that with very high probability

max
i∈[n]

{
X⊺

i Σ
−1Xi

}
≤ maxλ

(
Σ−1

)
×max

i∈[n]

{
∥Xi∥2

}
= Õ

(
d

n

)

E.6.5 BOUNDED INNER PRODUCTS

For the next step of our proof, we show that the second condition of ACRE-friendliness of the regression holds with
very high probability. In particular, we will show that
Claim E.9. Let X1, . . . , Xn ∼ X be samples drawn iid from an almost well-behaved distribution X with covariance
identity. Let Σ =

∑
i∈[n] XiX

⊺
i denote the unnormalized empirical covariance, and set Σgt

def
= E [Σ] = nI .

Then, with very high probability

max
i ̸=j∈[n]

{∣∣X⊺
i Σ

−1Xj

∣∣} = Õ

(√
d

n

)
.

Proof of Claim E.9. Denote A = Σ−XiX
⊺
i = Σ[n]\{i}, and v = Xi. Note that from Claim E.7, we know that with

very high probability v⊺A−1v ≤ ∥Xi∥2
∥∥A−1

∥∥ = Õ
(
d
n

)
= o(1).

Therefore, in this regime we may apply the Sherman-Morrison formula to show that

Σ−1 = (A+ vv⊺)
−1

= A−1 − A−1vv⊺A−1

1 + v⊺A−1v⊺
.

Note that neither A nor Xj depend on Xi, so from our assumption that X is well behaved, with very high probability∣∣X⊺
i A

−1Xj

∣∣ = Õ
(∥∥A−1Xj

∥∥) = Õ

(√
d

n

)
.

Similarly, for our target expression, with very high probability,∣∣X⊺
i Σ

−1Xj

∣∣ = ∣∣∣∣X⊺
i

(
A−1 − A−1XiX

⊺
i A

−1

1 +X⊺
i A

−1X⊺
i

)
Xj

∣∣∣∣ =
=

(
1− X⊺

i A
−1Xi

1−X⊺
i A

−1Xi

) ∣∣X⊺
i A

−1Xj

∣∣ = Õ

(√
d

n

)
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E.6.6 PROJECTION ON THE e AXIS

For the next property of well-behaved regressions, we will want to show that with very high probability e⊺Σ−1Xi is
bounded for all i. Note that from the exponential decay assumption due to X being well-behaved would suffice to give
a good bound on e⊺Σ̂−1Xi, but as before, the challenge will be to show that Σ−1 doesn’t rotate Xi onto e.
Claim E.10. Let X1, . . . , Xn ∼ X be samples drawn iid from an almost well-behaved distribution X with covariance
identity. Let Σ =

∑
i∈[n] XiX

⊺
i denote the unnormalized empirical covariance, and set Σgt

def
= E [Σ] = nI . Let

e ∈ Sd−1 be any fixed vector independent of the Xi.

Then, with very high probability

∀i ∈ [n] e⊺Σ−1Xi =
e⊺Xi

n
± o

(
1

n

)
.

In particular, with very high probability

max
i∈[n]

∣∣〈Σ−1Xi, e
〉∣∣ = Õ

(
1

n

)
=

√
Õ

(
1

n

)
× e⊺Σ−1e

Proof of Claim E.10. As in the proof of Claim E.9, let v = Xi and A = Σ− vv⊺. Moreover, because with very high
probability v⊺A−1v = o(1) < 1, we may apply the Sherman-Morrison formula

Σ−1 = (A+ vv⊺)
−1

= A−1 − A−1vv⊺A−1

1 + v⊺A−1v⊺
.

Therefore, with high very high probability,

e⊺Σ−1Xi = e⊺A−1Xi −
e⊺A−1XiX

⊺
i A

−1X⊺
i

1 +X⊺
i A

−1Xi
=

= e⊺Σ−1
gt Xi + e⊺

(
A−1 − Σ−1

gt

)
Xi −

e⊺A−1XiX
⊺
i A

−1X⊺
i

1 +X⊺
i A

−1Xi

From Claim E.7, we know that with very high probability∥∥A−1 − Σ−1
gt

∥∥ ≤ 1

2n2
∥A− Σgt∥ = Õ

(
d+
√
nd

n2

)

X⊺
i A

−1Xi ≤ ∥Xi∥2
∥∥A−1

∥∥ = Õ

(
d

n

)
.

Therefore, using the fact that Xi is well-behaved and independent of e and A, we have that with very high probability∣∣e⊺Σ−1Xi − e⊺Σ−1
gt Xi

∣∣ ≤ ∣∣e⊺ (A−1 − Σ−1
gt

)
Xi

∣∣+ ∣∣∣∣e⊺A−1XiX
⊺
i A

−1X⊺
i

1 +X⊺
i A

−1Xi

∣∣∣∣ = Õ

(
d+
√
nd

n2

)
= o

(
1

n

)
.

E.6.7 BOUNDED RESIDUALS

For the next step of our analysis we will show that the residuals are bounded with very high probability. Recall that
under the assumptions of Claim E.3, we assume that the labels are drawn from the distribution

Y = Xβgt + ζ ∼ Xβgt +N
(
0⃗, In

)
Therefore, we clearly have that with very high probability maxi∈[n] |ζi| ≤ log(n) = Õ(1) as required. The issue is that
the residuals of the regression are not necessarily equal to ζ.
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Recall that the residuals are equal to

R
def
= Y −XΣ−1X⊺Y = ζ −XΣ−1X⊺ζ

Claim E.11. With very high probability
∀i |Ri − ζi| = o(1)

Proof of Claim E.11. Fix some index i ∈ [n].

Ri = ζi −X⊺
i Σ

−1X⊺ζ = ζi −
∑
j

X⊺
i Σ

−1Xjζj = ζi − ζiX
⊺
i Σ

−1Xi −
∑
j ̸=i

ζjX
⊺
i Σ

−1Xj (23)

Therefore, from Claim E.8, we have

|Ri − ζi| =

∣∣∣∣∣∣
∑
j ̸=i

ζjX
⊺
i Σ

−1Xj

∣∣∣∣∣∣+ Õ

(
d

n

)
=

∣∣∣∣∣∣
∑
j ̸=i

ζjX
⊺
i Σ

−1Xj

∣∣∣∣∣∣+ o(1)

This leaves us with the task of analyzing the term

X⊺
i Σ

−1

∑
j ̸=i

ζjXj

 =
∑
j ̸=i

Zj

where Zj = X⊺
i Σ

−1Xjζj . To bound this term, we view the process of generating the samples as first generating the
covariates Xi, and then after fixing some values for the Xi, it generates the errors ζj .

In other words, we will show that with very high probability over the Xi

Pr
ζj∼N (0,1)

∣∣∣∣∣∣
∑
j ̸=i

Zj

∣∣∣∣∣∣ > o(1)

 <
1

super-poly(n)
.

In particular, with very high probability over the covariates, we have

∀j ̸= i
(
X⊺

i Σ
−1Xj

)2
= Õ

(
d

n2

)
⇒

∑
j∈[n]\{i}

(
X⊺

i Σ
−1Xj

)2
= Õ

(
d

n

)
.

Therefore, fixing the covariates Xi, and viewing
∑

j ̸=i Zj as a random variable dependent on the randomness of the
errors ζj , we have ∑

j ̸=i

Zj ∼ N

0,
∑

j∈[n]\{i}

(
X⊺

i Σ
−1Xj

)2 = N
(
0, Õ

(
d

n

))
,

yielding the claim.

E.6.8 LARGE INFLUENCE SCORES

For the final step of our proof of Claim E.3, we will show that with very high probability, there are many samples in the
regression that have relatively high AMIP influence scores.
Claim E.12. Let αi = e⊺Σ−1XiRi denote the AMIP influence score of the ith sample. Then with very high probability,
there are is a set T0 ⊆ [n] of least k0 = Ω̃(n) “influential samples” – i.e., such that ∀i ∈ T αi ≥ 1

10n .

Proving Claim E.12 will also conclude our proof of Claim E.3, as this will show that all conditions required for a
regression to be well-behaved are fulfilled with very high probability.
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Proof of Claim E.12. To prove Claim E.12 we first show that a very large number of samples must have a relatively
high inner product with the axis of interest. In other words, we will show that with very high probability∣∣∣∣{i∣∣∣∣∣∣e⊺Σ−1Xi

∣∣ ≥ 1

2n

}∣∣∣∣ = Ω̃(n) (24)

To prove equation (24), note that:

• e⊺Σ−1e = 1±o(1)
n (this follows immediately from Claim E.7).

•
∑

i∈[n]

∣∣e⊺Σ−1Xi

∣∣2 =
∑

i∈[n] e
⊺Σ−1XiX

⊺
i Σ

−1e = e⊺Σ−1e.

• In Claim E.10, we showed that wvhp ∀i
(
e⊺Σ−1Xi

)2 ≤ Õ
(
1
n

)
× e⊺Σ−1e.

Therefore, we must have at least Ω̃(n) samples with
∣∣e⊺Σ−1Xi

∣∣ ≥ 1
2n . Let i be the index of such a sample. If

sign
(
e⊺Σ−1Xi

)
×Ri ≥ 1

5 , then we will also have αi ≥ 1
10n .

In the proof of Claim E.11, we showed that wvhp |Ri − ζi| = o(1) for all i (where ζi = Yi −X⊺
i βgt are the “ground

truth residuals”, and are drawn iid from a normal distribution). In particular, wvhp ∀i |Ri − ζi| < 1
4 −

1
5 , so as long as

sign
(
e⊺Σ−1Xi

)
ζi ≥ 1

4 , we have αi ≥ 1
10n .

But ζi is drawn iid from a normal distribution, so sign
(
e⊺Σ−1Xi

)
ζi ≥ 1

4 has constant probability and is independent
of Xi. Therefore, applying the Hoeffding-Chernoff bound, we can easily see that wvhp at least a constant fraction of
the Ω̃(n) samples for which

∣∣e⊺Σ−1Xi

∣∣ ≥ 1
2n also have αi ≥ 1

10n , thus concluding our proof of Claims E.12 and E.3.

F TIGHTNESS OF OHARE

In the previous section, we proved Theorem E.1 which says that for “well-behaved” data, the ACRE algorithm outputs
nearly tight bounds on the removal effects for a range of removal set sizes k. In this section, we will extend those results
to the one-hot aware version of the algorithm – OHARE .

Theorem F.1 (OHARE Bounds are Tight on Well-behaved Data). Consider a linear regression from a set of continuous
features X ∈ Rn×d and a set of m dummy variables, representing a categorical feature B1 ⊔ · · · ⊔ Bm = [n], to a
target variable Y .

For any fixed ε > 0, there exists ν ∈ polylog(n) such that:

If nj = |Bj | denote the number of samples that take the value j in the categorical feature, and for all j ∈ [m], we have

nε + ν
√
d < nj < 0.49n ,

that the dimension of the continuous features d is at most d ≤ n4/5/ν, and that the continuous features are then drawn
iid from a well-behaved distribution Xi ∼ X independently of their value on the categorical feature.

And if the outcomes Y are drawn iid from a normal distribution around a linear model of the features

Yi ∼ µj(i)︸︷︷︸
categorical contribution

+ ⟨Xi, βgt⟩︸ ︷︷ ︸
continuos contribution

+N (0, 1)︸ ︷︷ ︸
error

,

for some unknown ground truth linear model (µ, βgt) ∈ Rm+d.

Then, for any axis e ∈ Sd−1, with very high probability, the upper and lower bounds produced by OHARE on this
regression are close to tight

Uk

Lk
= 1 +O

(
polyloglog(n)√

log(n)

)
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for all k < kthreshold, where

kthreshold = Θ̃

(
min

{
n√
d
,
n2

d2
, n1−ε

})
.

Our goal for the rest of this section will be to prove Theorem F.1.

F.1 MAIN CHALLENGES AND PROOF STRUCTURE

Recall from Section F that the key idea of the OHARE algorithm is to analyse a process that is equivalent to the
regression with a one-hot encoding. In this alternative formulation of one-hot controlled regression, we first split our
samples into buckets Bj ⊆ [n] corresponding to each of the potential values of the categorical feature, reaverage the
samples in each bucket

X̃i = Xi − E
i′∈Bj(i)

[Xi′ ] ∈ Rd

Ỹi = Yi − E
i′∈Bj(i)

[Yi′ ] ∈ R

and perform a regression with just the reaveraged continuous features. The OHARE algorithm then computes the same
MSN bounds as the ACRE algorithm would, but on these reaveraged continous features and combines them with terms
corresponding to the effect a removal might have on the reaveraging process.

Our proof of Theorem F.1 will follow a similar path. We will first prove a claim very similar to Claim E.3 adapted to
the OHARE case:

Claim F.2 (Well-behaved distributions yield well-behaved regressions with high probability after reaveraging). Let
n, d,m,X, Y be as in Theorem F.1.

Then, for any axis e ∈ Sd−1, with very high probability, the regression X̃, Ỹ is ACRE-friendly for all k ≤ k0, for
k0 = Ω̃(n1−ε).

Note that Claim F.2 does not follow immediately from the corresponding Claim E.3 for ACRE, since the continuous
features X̃ are no longer drawn iid from a well-behaved distribution as the reaveraging step could have changed them
and similarly the reaveraged labels Ỹ are not drawn iid from a normal distribution around a linear combination of the
continous features. The proof of Claim F.2 will follow a very similar path to the proof of Claim E.3, but will also have
to account for these additional corrections.

Finally, we will prove that the additional corrections taken into account by OHARE will not change the upper and lower
bounds too much, yielding Theorem F.1.

F.2 PROOF OF CLAIM F.2

We begin by adapting the analysis from the continuous features (Claim E.3) to the reaveraged samples. Throughout
this section, let X ∈ Rn×d denote just the continuous covariates and X̃ ∈ Rn×d denote the reaveraged continuous
covariates.

As in the proof of Claim E.3, we normalize our samples so that the ground truth covariance of the continuous features
is equal to the identity, and denote by Σ = X⊺X ∈ Rd×d the unnormalized empirical covariance of X and by
Σ̃ = X̃⊺X̃ ∈ Rd×d denote the unnormalized empirical covariance of the reaveraged samples covariates.
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F.2.1 REAVERAGING

The first step of our analysis will be to show that with very high probability the reaveraging step makes only a small
change to the covariates as well as the target variable. Let j ∈ [m] be the index of any bucket of samples and let

ξj =
1

nj

∑
i∈Bj

Xi = E
i∈Bj

[Xi]

yj =
1

nj

∑
i∈Bj

Yi = E
i∈Bj

[Yi]

denote the averaging effect for this bucket.
Claim F.3. The mean and covariance of ξj are

E [ξj ] = 0

E
[
ξjξ

⊺
j

]
=

1

nj
I

Moreover, with very high probability

∥ξj∥ ≤ Õ

(√
d/nj

)
= o(
√
d)

|yj − µj − ⟨ξj , βgt⟩| ≤ Õ
(
1/
√
nj

)
= o(1)

Finally, the fourth moments of ξj are also bounded∥∥∥E [∥ξj∥2 ξjξ⊺j ]∥∥∥ = O

(
d

n2
j

)

Proof of Claim F.3. First, recall that our covariate distribution X was normalized to have mean 0 and covariance
identity, yielding the first part of Claim F.3 immediately from the fact that ξj is the empirical average of nj iid samples
drawn from X .

Recall that we assumed the target variable was drawn from a normal distribution

Yi ∼ µj + ⟨Xi, βgt⟩+N (0, 1)

In particular,
E

i∈Bj

[Yi]− µj − E
i∈Bj

[⟨Xi, βgt⟩]

is the empirical average over nj samples of this normal distribution, yielding the claim that with very high probability

|yj − µj − ⟨ξj , βgt⟩| ≤ Õ
(
1/
√
nj

)
= o(1) .

The rest of Claim F.3 will follow from a combination of Claim E.7 (which bounds the norms and higher moments
of well-behaved distributions), and Lemma E.6 (which states that the sum over iid samples from a well-behaved
distribution is also well-behaved).

Indeed ξj is the empirical average over nj = poly(n) samples from a well-behaved distribution X , so Lemma E.6
ensures that for all j, the variable √njξj is well behaved, and, as noted above, it has covariance identity. Therefore, it
follows from Claim E.7 that ∥∥∥E [∥ξj∥2 ξjξ⊺j ]∥∥∥ ≤ O

(
d

n2
j

)
and that with very high probability

∥ξj∥ ≤ Õ

(√
d/nj

)
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F.2.2 RENORMALIZATION

Let Σ = X⊺X =
∑

i∈[n] XiX
⊺
i be the unnormalized empirical covariance of the continuous features, and let

Σgt = nI = E [Σ] be the ground truth mean of these features. We continue along the same lines as the proof of
Claim E.3 by adapting Claim E.7 to the reaveraged setting:

Claim F.4. With very high probability,
∥∥∥Σ̃− Σ

∥∥∥ = Õ (d+m).

In particular, due to Claim E.7 and the triangle inequality∥∥∥Σ̃− Σgt

∥∥∥ ≤ ∥∥∥Σ̃− Σ
∥∥∥+ ∥Σ− Σgt∥ = Õ

(√
nd+ d+m

)
= Õ

(√
nd+m

)
= o(n)

Proof of Claim F.4. We have

Σ̃ =
∑
i∈[n]

X̃iX̃
⊺
i =

∑
i∈[n]

(
Xi − ξj(i)

) (
Xi − ξj(i)

)⊺
=
∑
i∈[n]

XiX
⊺
i −

∑
i∈[n]

ξj(i)ξ
⊺
j(i) = Σ−

∑
j∈[m]

njξjξ
⊺
j

Therefore, it only remains to bound ∥∥∥∥∥∥
∑
i∈[n]

ξj(i)ξ
⊺
j(i)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
j∈[m]

njξjξ
⊺
j

∥∥∥∥∥∥
We do this using our approximate matrix Bernstein inequality – Lemma E.5. Let Zj = njξj(i)ξ

⊺
j(i).

In Claim F.3, we showed that E [Zj ] = I , that E
[
Z2
j

]
= E

[
n2
j ∥ξj∥

2
ξjξ

⊺
j

]
has bounded norm∥∥∥E [n2

j ∥ξj∥
2
ξjξ

⊺
j

]∥∥∥ = O (d) ,

and that with very high probability
∥Zj∥ = nj ∥ξj∥2 = Õ(d) .

Therefore, from Lemma E.5, with very high probability∥∥∥∥∥∥
∑
j∈[m]

Zj

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑
j∈[m]

Zj −
∑
j∈[m]

E [Zj ]

∥∥∥∥∥∥+m = Õ
(
d+
√
md+m

)
= Õ (d+m)

Finally, recall that we assumed to have at least nε samples in the smallest category. Therefore, m ≤ n1−c ≪ n,
completing the proof.

F.2.3 MAXIMAL NORM

We proceed to prove that each of the conditions required for the regression to be well-behaved occurs with very high
probability. The first (and easiest to prove) is the condition that maxi∈[n] X

⊺
i Σ

−1Xi is bounded.
Claim F.5. With very high probability

max
i∈[n]

{
X̃⊺

i Σ̃
−1X̃i

}
= Õ

(
d

n

)
Proof of Claim F.5. Let λ denote the spectrum of a matrix. In the proof of Claim F.4, we already showed that with very
high probability

∥∥∥Σ̃− Σgt

∥∥∥ = o(n) = o (minλ (Σgt)) (where Σgt = nI). When this holds, we also have

λ
(
Σ̃−1

)
⊆ (1± o(1))× 1

n
.
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Moreover, in Claim E.7 we show that with very high probability maxi∈[n] ∥Xi∥2 = Õ(d). Combined with Claim F.3

and the triangle inequality, we can derive a bound on
∥∥∥X̃i

∥∥∥ < ∥Xi∥+
∥∥ξj(i)∥∥ = Õ

(√
d
)

with very high probability.

Therefore, with very high probability

max
i∈[n]

{
X̃⊺

i Σ̃
−1X̃i

}
≤ max

{
λ
(
Σ̃−1

)}
×max

i∈[n]

{∥∥∥X̃i

∥∥∥2} = Õ

(
d

n

)

F.2.4 BOUNDED INNER PRODUCTS

For the next step of our proof, we show that the second condition of ACRE-friendliness of the regression holds with
very high probability. In particular, we will show that

Claim F.6. For M ∈
{
Σ−1, Σ̃−1

}
, the following inequalities hold with very high probability

•

max
j1 ̸=j2∈[m]

{∣∣ξ⊺j1Mξj2
∣∣} = Õ

( √
d

n
√
nj1nj2

×
(
1 +

d
√
nj1

n

))
•

∀i ∈ [n], j ∈ [m] |X⊺
i Mξj | = Õ

( √
d

n
√
nj

+
d

nnj
1i∈Bj

)
•

max
i1 ̸=i2∈[n]

{∣∣∣X̃⊺
i1
M−1X̃i2

∣∣∣} = Õ

(√
d

n

)

Claim E.9 proves the third inequality of Claim F.6 for the case where M = Σ−1. The following Lemma F.7 will prove
the first inequality for this same case.
Lemma F.7. Let j1 ̸= j2 ∈ [m] be the indices of two distinct buckets, and let Σ = X⊺X =

∑
i∈[n] XiX

⊺
i denote the

unnormalized empirical covariance of the unaveraged samples.

With very high probability ∣∣ξ⊺j1Σ−1ξj2
∣∣ = Õ

( √
d

√
nj1nj2 × n

×
(
1 +

d
√
nj1

n

))
.

The proof of Lemma F.7 is very long and technical, and we devote Section F.3 to it. For now, let us continue with our
proof of the rest of the inequalities in Claim F.6 assuming Lemma F.7.

Proof of Claim F.6. We begin by bounding the inner product between the bucket averages through the covariance Σ̃−1.
Define

η
def
= max

j1,j2


∣∣∣ξ⊺j1Σ̃−1ξj2

∣∣∣
√
d√

nj1
nj2

×n ×
(
1 +

d
√
nj1

n

)
 .

Our first goal will be to show that with very high probability η = Õ(1).

Consider the following identity (where A and B are d× d matrices such that A and A−B are invertible):

A = (A−B) +B .

Multiplying this equation by (A−B)
−1 from the left and A−1 yields the following identity that we will use in our

analysis.
(A−B)

−1
= A−1 + (A−B)

−1
BA−1 (25)
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We apply equation (25) for A = Σ, B = Σ− Σ̃ =
∑

j∈[m] njξjξ
⊺
j , giving us the identity

Σ̃−1 = Σ−1 +
∑
j∈[m]

Σ̃−1ξjnjξ
⊺
j Σ

−1 .

Therefore, from the triangle inequality,

η ×
√
d

√
nj1nj2n

×
(
1 +

d
√
nj1

n

)
=
∣∣∣ξ⊺j1Σ̃−1ξj2

∣∣∣ ≤ ∣∣ξ⊺j1Σ−1ξj2
∣∣+ ∑

j∈[m]

∣∣∣ξ⊺j1Σ̃−1ξjnjξ
⊺
j Σ

−1ξj2

∣∣∣ .
For all j ̸= j1, j2, from Lemma F.7, with very high probability∣∣∣ξ⊺j1Σ̃−1ξjnjξ

⊺
j Σ

−1ξj2

∣∣∣ = Õ

(
η

d

n2√nj1nj2

(
1 +

d2nj

n2

))
.

Therefore, with very high probability∑
j ̸=j1,j2

∣∣∣ξ⊺j1Σ̃−1ξjnjξ
⊺
j Σ

−1ξj2

∣∣∣ = Õ

(
md

n2√nj1nj2

+
d3

n3√nj1nj2

)
× η = Õ

( √
d

√
nj1nj2n

η

)
,

where the last step utilized our assumptions that m ≤ n
nmin
≪ n√

d
and that n4 ≫ d5.

When j = j1, we have∣∣∣ξ⊺j1Σ̃−1ξjnjξ
⊺
j Σ

−1ξj2

∣∣∣ = ∣∣∣ξ⊺j1Σ̃−1ξj1nj1ξ
⊺
j1
Σ−1ξj2

∣∣∣ = Õ

(
d

n× nj1

× nj1 ×
√
d

√
nj1nj2

(
1 +

d
√
nj1

n

))
=

= Õ

( √
d

√
nj1nj2

(
1 +

d
√
nj1

n

))
.

Similarly, for j = j2, we have∣∣∣ξ⊺j1Σ̃−1ξjnjξ
⊺
j Σ

−1ξj2

∣∣∣ = ∣∣∣ξ⊺j1Σ̃−1ξj2nj2ξ
⊺
j2
Σ−1ξj2

∣∣∣ = Õ

(
d

n× nj2

× nj2 ×
√
dη

√
nj1nj2

(
1 +

d
√
nj1

n

))
=

= o

( √
dη

√
nj1nj2

(
1 +

d
√
nj1

n

))
.

Therefore, with very high probability

η =

∣∣∣ξ⊺j1Σ̃−1ξj2

∣∣∣
√
d√

nj1
nj2

n ×
(
1 +

d
√
nj1

n

) ≤
∣∣ξ⊺j1Σ−1ξj2

∣∣+∑j∈[m]

∣∣∣ξ⊺j1Σ̃−1ξjnjξ
⊺
j Σ

−1ξj2

∣∣∣
√
d√

nj1
nj2

n ×
(
1 +

d
√
nj1

n

) = Õ (1) + o(η) .

Therefore, with very high probability η = Õ (1), proving the first portion of our claim.

Next, consider a term of the form X⊺
i Σ̃

−1ξj . To bound this term, we open Σ̃−1 again using equation (25). Indeed, we
have ∣∣∣X⊺

i Σ̃
−1ξj

∣∣∣ ≤ ∣∣X⊺
i Σ

−1ξj
∣∣+∑

j′

∣∣∣X⊺
i Σ

−1ξj′nj′ξ
⊺
j′Σ̃

−1ξj

∣∣∣ .
Define

ζi,j = ξj −
1

nj
Xi1i∈Bj

=

{
ξj − 1

nj
Xi i ∈ Bj

ξj i /∈ Bj
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ζi,j over Bj bucket had the Xi sample been replaced with the 0 vector. Note that with very high probability∣∣X⊺
i Σ

−1 (ξj − ζi,j)
∣∣ ≤ 1i∈Bj

nj
∥Xi∥2

∥∥Σ−1
∥∥ = Õ

(
d1i∈Bj

nnj

)
.

To proceed, we apply the Sherman-Morrison identity with v = Xi and A = Σ[n]\{i} = Σ− vv⊺, to show that

Σ−1 = A−1 − A−1vv⊺A−1

1− v⊺A−1v
.

Moreover, because both A and ζi,j are independent of the ith sample and X is well-behaved, with very high probability∣∣X⊺
i A

−1ζi,j
∣∣ = Õ

(∥∥A−1ζi,j
∥∥) = Õ

( √
d

√
njn

)

Combining this with the Sherman-Morrison formula, we have∣∣X⊺
i Σ

−1ζi,j
∣∣ = (1− X⊺

i A
−1Xi

1−X⊺
i A

−1Xi

) ∣∣X⊺
i A

−1ζi,j
∣∣ = Õ

( √
d

√
njn

)
.

Therefore, for all j ∈ [m], with very high probability∣∣X⊺
i Σ

−1ξj
∣∣ = Õ

( √
d

√
njn

+
1i∈Bjd

njn

)
.

Therefore, with very high probability∑
j′∈[m]

∣∣∣X⊺
i Σ

−1ξj′nj′ξ
⊺
j′Σ̃

−1ξj

∣∣∣ ≤
≤
∑

j′∈[m]

Õ

(( √
d

n
√
nj′

+
d1i∈Bj′

nnj′

)
× nj′ ×

( √
d

√
njnj′n

(
1 +

d
√
nj′

n

)
+

1j=j′d√
njnj′n

))
=

=
∑

j′∈[m]

Õ

(
d

n2√nj
+

d2
√
nj′

n3√nj
+

d3/21j=j′√
njn2

+
d3/21i∈Bj′√
njnj′n2

×
(
1 +

d
√
nj′

n

)
+

d21i∈Bj1j=j′

njn2

)
=

= Õ

( √
d

√
njn

+
1i∈Bjd

njn

)
+ Õ

(
md

n2√nj
+

√
mnd2

n3√nj
+

d3/2
√
nj′n2

+
d1i∈Bj

nnj

)
= Õ

( √
d

√
njn

+
1i∈Bjd

nnj

)
,

where the last step utilizes our assumptions that m = Õ
(

n√
d

)
and that d5 = Õ

(
n4
)
.

Finally, let i1 ̸= i2 be the indices of two samples. From Claim E.9, we have that with very high probability∣∣X⊺
i1
Σ−1Xi2

∣∣ = Õ
(√

d
n

)
. Opening Σ̃−1 again using equation (25), we see that with very high probability∣∣∣X⊺

i1
Σ̃−1Xi2

∣∣∣ ≤ ∣∣X⊺
i1
Σ−1Xi2

∣∣+ ∑
j∈[m]

∣∣∣X⊺
i1
Σ−1ξjnjξ

⊺
j Σ̃

−1Xi2

∣∣∣ =
= Õ

(√
d

n

)
+
∑
j∈[m]

Õ

(( √
d

√
njn

+
1i1∈Bjd

njn

)
×

( √
d

√
njn

+
1i2∈Bjd

njn

)
× nj

)
=

= Õ

(√
d

n

)
+ Õ

(
md

n2
+

d2

n2nmin

)
= Õ

(√
d

n

)
.

where nmin
def
= minj∈[m] {nj} = Ω̃

(√
d
)

.
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F.2.5 PROJECTION ON THE e AXIS

For the next property of well-behaved regressions, we will want to show that with very high probability e⊺Σ−1Xi is
bounded for all i. Note that from the exponential decay assumption due to X being well-behaved would suffice to give
a good bound on e⊺Σ−1

gt Xi (where Σgt = nI), but as before, the challenge will be to show that Σ−1 doesn’t rotate Xi

onto e.
Claim F.8. With very high probability

∀i ∈ [n]
〈
Σ̃−1X̃i, e

〉
=

e⊺Xi

n
± o

(
1

n

)
.

In particular, with very high probability

max
i∈[n]

∣∣∣〈Σ̃−1X̃i, e
〉∣∣∣ = Õ

(
1

n

)
=

√
Õ

(
1

n

)
× e⊺Σ̃−1e

Our proof of Claim F.8, will make use of the following Lemma F.9 that will also be proved in Section F.3.
Lemma F.9. For any j ∈ [m], with very high probability,∣∣e⊺Σ−1ξj

∣∣ = Õ

(
1

n
√
nj
×
(
1 +

d
√
nj

n

))
.

Proof of Claim F.8. As in the proof of Claim F.6, we will use the matrix identity in equation (25) to show that

Σ̃−1 = Σ−1 +Σ−1CΣ̃−1 ,

where C = Σ− Σ̃ =
∑

j∈[m] njξjξ
⊺
j .

Define
η

def
= max

j∈[m]

{∣∣∣e⊺Σ̃−1ξj

∣∣∣}
Using Lemma F.9, we see that with very high probability

η =
∣∣∣e⊺Σ̃−1ξj

∣∣∣ ≤ ∣∣e⊺Σ−1ξj
∣∣+∑

j′

∣∣∣e⊺Σ−1ξj′nj′ξ
⊺
j′Σ̃

−1ξj

∣∣∣ = Õ

(
1

n
×

(
m
√
d+ d

n
√
nj

))
= Õ

(
1

n
√
nj

)
.

Opening Σ̃−1 again, we have ∣∣∣e⊺Σ̃−1Xi − e⊺Σ−1Xi

∣∣∣ = ∑
j∈[m]

∣∣∣e⊺Σ̃−1ξjnjξ
⊺
j Σ

−1Xi

∣∣∣
From Claim E.10, we know that with very high probability∣∣∣∣e⊺Σ−1Xi −

e⊺Xi

n

∣∣∣∣ = o

(
1

n

)
.

Therefore, from Claim F.6, with very high probability∣∣∣e⊺Σ̃−1Xi − e⊺Σ−1Xi

∣∣∣ ≤ ∑
j∈[m]

∣∣∣e⊺Σ̃−1ξjnjξ
⊺
j Σ

−1Xi

∣∣∣ =
=
∑
j∈[m]

Õ

(
1

n
√
nj
× nj ×

( √
d

n
√
nj

+
d1i∈Bj

nnj

))
=

= Õ

(√
dm

n2
+

d

n2
√
nmin

)
= o

(
1

n

)
.
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Altogether, we have that with very high probability∣∣∣∣e⊺Σ̃−1X̃i −
e⊺Xi

n

∣∣∣∣ ≤ ∣∣∣e⊺Σ̃−1ξj(i)

∣∣∣+ ∣∣∣e⊺Σ̃−1Xi − e⊺Σ−1Xi

∣∣∣+ ∣∣∣∣e⊺Σ−1Xi −
e⊺Xi

n

∣∣∣∣ = o

(
1

n

)
.

F.2.6 BOUNDED RESIDUALS

Recall that we assumed that the samples of our regression were drawn from a ground truth linear model plus an iid
normally distributed error. Therefore, in order to bound the empirical residuals, it suffices to show that they are close to
the ground truth residuals with very high probability.

In particular, in the setting of Theorem F.1, we assumed that

Yi ∼ µj(i)︸︷︷︸
categorical contribution

+ ⟨Xi, βgt⟩︸ ︷︷ ︸
continuous contribution

+N (0, 1)︸ ︷︷ ︸
error

Define the ground truth residuals to be

Rgt =
(
Yi − µj(i) − ⟨Xi, βgt⟩

)
i∈[n]

,

and the empirical residuals to be
R = Ỹ − X̃β = Ỹ − X̃Σ̃−1X̃⊺Ỹ .

Claim F.10. With very high probability,
∥R−Rgt∥∞ = o(1) .

Proof of Claim F.10. Denote

µ∗
j

def
=

1

nj

∑
i∈Bj

Yi = µj + ξ⊺j βgt +
1

nj

∑
i∈Bj

(Rgt)i

From the definitions of the residuals and the ground truth residuals, we have

Ri − (Rgt)i =
(
Yi − µ∗

j(i)

)
−
(
Xi − ξj(i)

)⊺
β −

(
Yi − µj(i) −X⊺

i βgt
)
=

= −ξ⊺j(i)βgt −
1

nj(i)

∑
i′∈Bj(i)

(Rgt)i′ −X⊺
i (β − βgt) + ξ⊺j(i)β =

= − 1

nj(i)

∑
i′∈Bj(i)

(Rgt)i′ − X̃⊺
i (β − βgt) .

Expanding on the difference between the results of the reaveraged OLS and the ground truth linear model, we have

β − βgt = Σ̃−1X̃⊺
(
Ỹ − X̃βgt

)
= Σ̃−1X̃⊺

(
Yi − µ∗

j(i) −
(
Yi − µj(i) − (Rgt)i

)
+ ξ⊺j(i)βgt

)
i∈[n]

=

= Σ̃−1X̃⊺

(Rgt)i − ξ⊺j(i)βgt −
1

nj(i)

∑
i′∈Bj(i)

(Rgt)i′ + ξ⊺j(i)βgt


i∈[n]

=

= Σ̃−1X̃⊺

(Rgt)i −
1

nj(i)

∑
i′∈Bj(i)

(Rgt)i′


i∈[n]

.

Therefore,

Ri − (Rgt)i = −
1

nj(i)

∑
i′∈Bj(i)

(Rgt)i′ − X̃⊺
i Σ̃

−1X̃⊺

(Rgt)i∗ −
1

nj(i∗)

∑
i′∈Bj(i∗)

(Rgt)i′


i∗∈[n]

.
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Summing over the contributions of the second term, we have

∑
i∗∈[n]

X̃⊺
i Σ̃

−1X̃i∗

(Rgt)i∗ −
1

nj(i∗)

∑
i′∈Bj(i∗)

(Rgt)i′

 =
∑

i∗∈[n]

X̃⊺
i Σ̃

−1
(
X̃i∗ − ξj(i∗)

)
(Rgt)i∗ ∼

∼ N

0,
∑

i∗∈[n]

(
X̃⊺

i Σ̃
−1
(
X̃i∗ − ξj(i∗)

))2 = N
(
0, Õ

(
d

n
+

d

nnmin
+

d2

n2

))
,

so with very high probability this contribution is bounded in absolute value by o(1).

Similarly,
1

nj(i)

∑
i′∈Bj(i)

(Rgt)i′ ∼ N
(
0,

1

nj(i)

)
= N

(
0, O

(
1

nε

))
,

so with very high probability this term is also o(1), concluding our proof of Claim F.10.

F.2.7 LARGE INFLUENCE SCORES

For the final step of our proof of Claim F.2, we will show that with very high probability, there are many samples in the
regression that have relatively high AMIP influence scores.

Claim F.11. Let αi = e⊺Σ̃−1X̃iRi denote the AMIP influence score of the ith sample. Then with very high probability,
there are is a set T0 ⊆ [n] of least k0 = Ω̃(n1−ε) “influential samples” – i.e., such that

∀i ∈ T αi ≥

(√
log(n)

n

)
= ω

(
1

n

)

Proving Claim F.11 will also conclude our proof of Claim F.2, as this will show that all conditions required for a
regression to be well-behaved are fulfilled with very high probability.

Proof of Claim F.11. The proof of Claim F.11 will follow the same approach as our proof of its ACRE counterpart –
Claim E.12. Indeed, we first note that from the definition of Σ̃ and Claim F.4, with very high probability,∑

i∈[n]

(
e⊺Σ̃−1X̃i

)2
=
∑
i∈[n]

e⊺Σ̃−1X̃iX̃i

⊺
Σ̃−1e = e⊺Σ̃e =

1± o(1)

n
.

Moreover, from Claim F.8, with very high probability, the contribution of each individual sample to this sum is at most
Õ
(
1
n

)
-fraction of this total. Therefore, with very high probability∣∣∣∣{i∣∣∣∣∣∣∣e⊺Σ̃−1X̃i

∣∣∣ ≥ 1

2n

}∣∣∣∣ = Ω̃ (n) .

As in the proof of Claim E.12, we note that Claim F.10 guarantees that with very high probability ∀i
∣∣Ri − (Rgt)i

∣∣ =
o(1) < 1

20 . Moreover, because the ground truth residuals (Rgt)i are normally distributed independently of anything

else, it follows that so are ρi
def
= sign

(
e⊺Σ̃−1X̃i

)
× (Rgt)i.

Therefore, with very high probability, at least Ω̃
(
n1−ε

)
of the samples such that

∣∣∣e⊺Σ̃−1X̃i

∣∣∣ ≥ 1
2n have ρi ≥

Ω(
√
log(n)) (this is because we can set the constants in the Ω to be such that the probability of each of ρi being above

this threshold is≫ n−ε, allowing us to apply Hoeffding on the Ω̃ (n) iid ρi).
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Therefore, for this set of samples it holds that

αi = e⊺Σ̃−1X̃iRi = (1± o(1))
∣∣∣e⊺Σ̃−1X̃i

∣∣∣ρi = Ω

(√
log(n)

n

)
.

F.3 PROOF OF LEMMAS F.7 AND F.9

Recall the lemma we wish to prove:
Lemma F.12. Let X1, . . . , Xn ∼ X be n iid samples of a well-behaved distribution X with covariance Id×d. Let
ξ = 1

k

∑
i∈[k] Xi be the empirical average over the first k < 0.49n of these samples, and let v ∈ Rd be any vector that

is independent of these first k samples (but may depend on the other samples). Finally, denote by Σ
def
=
∑

i∈[n] XiX
⊺
i

the unnormalized empirical second moment of these samples.

Then, with very high probability, ∣∣ξ⊺Σ−1v
∣∣ = Õ

(
∥v∥√
kn
×

(
1 +

d
√
k

n

))
.

Clearly, Lemma F.12 implies Lemma F.7 (set ξ = ξj1 and v = ξj2 ) and Lemma F.9 (set ξ = ξj and v = e).

F.3.1 PROOF SKETCH

We will split the proof of Lemma F.7 into 3 main steps. To do this, let S =
∑n

i=k+1 XiX
⊺
i = Σ[n]\[k] be the

contributions to the empirical covariance due to samples not amongst the first k, and let C = Σ−S be the contributions
from within the bucket. From a standard analysis, so long as C ≺ S, we have

Σ−1 = S−1 − Σ−1CS−1 = S−1 − S−1CS−1 −
(
Σ−1 − S−1

)
CS−1 ,

and these components will correspond to the main components of our analysis. We will show that the inequality C ≺ S
holds with very high probability, before proving the following claims over the rest of this section:
Claim F.13. With very high probability ∣∣ξ⊺S−1v

∣∣ = Õ

(
∥v∥√
k × n

)
Claim F.14. Let w ∈ Rd be any vector that does not depend on the first k samples.

Then, with very high probability, ∣∣ξ⊺S−1Cw
∣∣ = Õ

(
∥w∥√

k

(
1 +

d
√
k

n

))
Claim F.15. Let w ∈ Rd be any vector that does not depend on the first k samples. Then, with very high probability,∣∣ξ⊺ (S−1 − Σ−1

)
Cw
∣∣ = Õ

(
∥w∥√

k

(
1 +

d
√
k

n

))

The proofs of Claims F.13, F.14 and F.15 will grow progressively more complex and each claim will build on ideas
from the previous one. Throughout the latter two, the key challenge will be to deal with cases where both the ζ

def
= kξ

term and the C or Σ multiplicand may depend on the same samples.

In these cases, we will proceed by applying a sort of divide-and-conquer approach by splitting the bucket into two
subsets. For instance, instead of analyzing ζ⊺S−1Cw directly, we will split the samples in the bucket into two subsets
and track their contributions to both ζ = ζ0 + ζ1 and C = C0 + C1.

ζ⊺S−1Cw = (ζ0 + ζ1)S
−1 (C0 + C1)w =

= ζ⊺0S
−1C0w + ζ⊺1S

−1C1w︸ ︷︷ ︸
diagonal terms

+ ζ⊺1S
−1C0w + ζ⊺0S

−1C1w︸ ︷︷ ︸
off-diagonal terms

(26)
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The “off-diagonal” subsets will be relatively simple to bound as they contain inner products of independent vectors in
Rd (and this independence will give us a 1/

√
d scaling to their inner product), and the diagonal elements will be split

again recursively. This will also leave us with a large number of “single sample” diagonal elements of the form

X⊺
i S

−1XiX
⊺
i w

These single-sample terms will no longer enjoy the same 1/
√
d scaling the other terms gain due to independence, but

will instead gain a sort of 1/k scaling, because instead of having k2 sample-times-sample contributions in

ζ⊺S−1C =
∑

i,i′∈[k]

X⊺
i AXi′X

⊺
i′w ,

we have only k terms in the sum ∑
i∈[k]

X⊺
i AXiX

⊺
i w

Finally, in Claim F.15, we will have 2 types of diagonal vs off-diagonal splits. The first will be to track the cases where
ζ and C may depend on the same samples and will be very similar to our analysis of Claim F.14. The second and much
more difficult of the two will be dealing with dependencies between Σ and ζ.

F.3.2 SETUP AND PROOF OF CLAIM F.13

Recall our assumption from Lemma F.7 that k ≤ 0.49n. Therefore n− k ≥ 0.51n > k +Ω(n).

Let S =
∑

i∈[n]\[k] XiX
⊺
i = Σ[n]\[k]. From Claim E.7, we have that with very high probability

∥S − (n− k) I∥ = o(n) .

Combined with Lemma E.6, which shows that ξ is well-behaved, we have that with high probability∣∣ξ⊺S−1v
∣∣ = Õ

(
1√
k
×
∥∥S−1v

∥∥) = Õ

(
1√
k
×max

{
λ
(
S−1

)}
× ∥v∥

)
= Õ

(
∥v∥√
k × n

)
Our goal for the rest of the proof will be to show a similar bound for ξ⊺Σ−1v. Let S and C = Σ− S be our “main”
and “correction” terms. Applying Claim E.7 again, we have that with very high probability C ⪯ kI + o(n) ≺
(n− k)I − o(n) ⪯ S, so both S and I ± S−1C are invertible. We have

Σ−1 = (S + C)
−1

=
(
I + S−1C

)−1
S−1 = S−1 −

(
I + S−1C

)−1
S−1CS−1 = S−1 − Σ−1CS−1

Therefore, it remains to bound ξ⊺Σ−1CS−1v = ξ⊺Σ−1Cw (where w = S−1v) in absolute value. To do this, we once
again use the intuition that in some sense S ≈ Σ, and first bound ξ⊺S−1CS−1v. We will then slowly break down the
difference between ξ⊺S−1CS−1v and ξ⊺j1Σ

−1CS−1v into a series of corrections and bound each of these corrections
in absolute value.

F.3.3 PROOF OF CLAIM F.14

Before proving Claim F.14, we prove a lemma that will help us in our analysis.
Lemma F.16. With very high probability

∥Cw∥ = Õ
((

k +
√
kd
)
∥w∥

)
.

Proof of Lemma F.16. At first glance, it might seem like Lemma F.16 should follow immediately from Claim E.7, but
this is only true when k = Ω̃ (d), and we will want to apply Lemma F.16 even when k ≪ d.

We prove Lemma F.16 using the approximate matrix Bernstein inequality (Lemma E.5). Indeed,

Cw =
∑
i∈[k]

XiX
⊺
i w =

∑
i∈[k]

vi ,
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can be written as the sum of k iid vectors vi
def
= XiX

⊺
i w.

From the fact that the Xis are well behaved and independent of w, we have that with very high probability,

∥vi∥ ≤
√
d ∥w∥ .

Moreover, from our assumption that X has covariance identity, we have that

E [vi] = E [XiX
⊺
i ]w = Iw = w .

Finally, from Claim E.7, we have that

E
[
∥vi∥2

]
= w⊺E

[
∥Xi∥2 XiX

⊺
i

]
w = Õ

(
d ∥w∥2

)
.

Therefore, applying the approximate matrix Bernstein inequality on the standard embedding matrix

Vi =

(
0 v⊺i
vi 0

)
∈ R(d+1)×(d+1) ,

yields the desired result.

We now return to the proof of of Claim F.14.

Proof of Claim F.14. Let ζ def
= kξ =

∑
i∈[k] Xi. Using this notation, we have

ξ⊺S−1Cw =
1

k
ζ⊺S−1Cw (27)

We will bound the RHS of equation (27) by breaking the contributions to ζ and to C into smaller and smaller subsets of
the bucket [k].

We will split the contributions from the first k samples into “clusters” based on their index modulus some number, and
the assumption above is just to ensure that the subsets are of roughly equal size.

Indeed, for any string of bits a = (a0, . . . , at) ∈ {0, 1}∗, define the ath cluster of samples to be the set of indices from
[k] whose bitwise representation ends with the string a:

Ca
def
=
{
i ∈ [k]

∣∣i mod 2t+1 = a0 + a12
1 + · · · at2t

}
If ϵ is the empty string, then Cϵ = [k], and for all a, we have

Ca = Ca0 ⊔ Ca1

Similarly, we may split the contributions of samples in [k] to C and ζ based on their cluster

Ca
def
=
∑
i∈Ca

XiX
⊺
i

ζa
def
=
∑
i∈Ca

Xi

(28)

Moreover, we have the property that Ca = Ca0 + Ca1 and ζa = ζa0 + ζa1. Using this property, we may begin to split
the RHS of equation (27) to smaller components

ζ⊺S−1Cw = (ζ0 + ζ1)A (C0 + C1)w =

= ζ⊺0S
−1C0w + ζ⊺1S

−1C1w︸ ︷︷ ︸
diagonal terms

+ ζ⊺1S
−1C0w + ζ⊺0S

−1C1w︸ ︷︷ ︸
off-diagonal terms

(29)
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We split the terms in the RHS of equation (29) into “diagonal” terms which correspond to the contributions where the
C term and the ζ term correspond to the same samples and “off-diagonal” terms where ζ and C depend on disjoint sets
of samples.

To bound the contribution of the off-diagonal terms, we note that for any bitstring a = (a0, . . . , at), it holds that ζa
is well-behaved (as it is the sum over |Ca| iid samples from X ) and has covariance |Ca|I = Θ

(
k
2t

)
I (this is because

|Ca| ≈ k
2t+1 ). Moreover, the other terms in the product do not depend on the samples in Ca, so with very high probability∣∣ζ⊺0S−1C1w

∣∣ = Õ
(√

k ×
∥∥S−1C1w

∥∥) .

Moreover, applying Claim E.7, we have that with very high probability

∥S − (n− k)I∥ = o(n)⇒
∥∥S−1

∥∥ = O

(
1

n

)
,

and applying Lemma F.16, we have that with very high probability,

∥C1w∥ = Õ
((

k +
√
kd
)
∥w∥

)
.

Therefore, with very high probability

∣∣ζ⊺0S−1C1w
∣∣ = Õ

(√
k ×

∥∥S−1C1w
∥∥) = Õ

(
√
k
k +
√
kd

n
∥w∥

)
,

and similarly for the other off-diagonal term, with very high probability

∣∣ζ⊺1S−1C0w
∣∣ = Õ

(
√
k
k +
√
kd

n
∥w∥

)
.

It now remains to bound the diagonal terms. Consider ζ⊺0S
−1C0w. We can open up the next bit of the indices of the

samples to obtain

ζ⊺0S
−1C0w = (ζ00 + ζ01)

⊺
A (C00 + C01)w =

= ζ⊺00S
−1C00w + ζ⊺01S

−1C01w + ζ⊺00S
−1C01w + ζ⊺01S

−1C00w
(30)

We split the RHS of equation (30) again into diagonal and off-diagonal terms. The off-diagonal terms can be bounded
again in exactly the same manner and the off diagonal can again be split by specifying another bit of the sample indices.
Applying this logic recursively, we have

Diagonalϵ = ζ⊺S−1Cw = ζ⊺0S
−1C0w︸ ︷︷ ︸

Diagonal0

+ ζ⊺1S
−1C1w︸ ︷︷ ︸

Diagonal1

+ ζ⊺1S
−1C0w︸ ︷︷ ︸

Off-Diagonal1,0

+ ζ⊺0S
−1C1w︸ ︷︷ ︸

Off-Diagonal0,1

= Diagonal00 + Diagonal01 + Diagonal10 + Diagonal11 + Off-Diagonal1,0 + Off-Diagonal0,1+

+ Off-Diagonal00,01 + Off-Diagonal01,00 + Off-Diagonal10,11 + Off-Diagonal11,10 = · · ·

· · · =
∑
i∈[k]

Diagonali +
t=⌈log2(k)⌉∑

t=1

∑
a∈{0,1}t

Off-Diagonala|0,a|1 + Off-Diagonala|1,a|0

(31)

From the same analysis as the one above, we see that for any bitstring a ∈ {0, 1}t and bit b ∈ {0, 1}, it holds that with
very high probability∣∣∣Off-Diagonala|b,a|b

∣∣∣ = Õ

(√
|Ca|
|Ca|+

√
|Ca|d

n
∥w∥

)
= Õ

(
2−t
√
k
k +
√
kd

n
∥w∥

)
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Union bounding over the O (2t) = poly(n) off-diagonal combinations, we see that with very high probability they are
all bounded. Summing over these off-diagonal terms gives us∣∣∣∣∣∣

t=⌈log2(k)⌉∑
t=1

∑
a∈{0,1}t

Off-Diagonala|0,a|1 + Off-Diagonala|1,a|0

∣∣∣∣∣∣ ≤
≤

t=⌈log2(k)⌉∑
t=1

2tÕ

(
2−t
√
k
k +
√
kd

n
∥w∥

)
= Õ

(
√
k
k +
√
kd

n
∥w∥

)
.

Now, consider a Diagonali term X⊺
i S

−1XiX
⊺
i w. Because w is independent of the ith sample Xi, with very high

probability,
|X⊺

i w| = Õ (∥w∥) ,
and from Claim E.7, we have that with very high probability,∣∣X⊺

i S
−1Xi

∣∣ ≤ ∥Xi∥2
∥∥S−1

∥∥ = Õ

(
d

n

)
.

Therefore, from the triangle inequality, with very high probability∣∣∣∣∣∣
∑
i∈[k]

Diagonali

∣∣∣∣∣∣ ≤
∑
i∈[k]

|Diagonali| = Õ

(
kd

n
∥w∥

)
.

Altogether, we have ∣∣ξ⊺S−1Cw
∣∣ = Õ

(
∥w∥√

k
×

(
1 +

d
√
k

n

))
,

concluding the proof of Claim F.14.

F.3.4 PROOF OF CLAIM F.15

In the previous portion of the proof, we bounded ξ⊺S−1Cw, when w is independent of ξ. The rest of our analysis will
be devoted to bounding the effect that replacing S−1 with Σ−1 will not make this inner product much larger.

As in the previous portion of the proof, we set ζ = kξ, and separate samples into clusters based on the least significant
bits of the bitwise representations of their indices. In particular, for any bitstring a, let Ca, ζa and Ca be as defined
above, and define

Sa = Σ− Ca = Σ[n]\Ca
=

∑
i∈[n]\Ca

XiX
⊺
i

to be the unnormalized empirical covariance of the samples not in the Ca cluster.

As in the proof of Claim F.14, we will separate the contributions to ζ⊺
(
S−1 − Σ−1

)
Cw based on the cluster of the

samples and label these contributions as diagonal or off-diagonal based on whether or not the same samples were used
in ζ and C.

ζ⊺
(
S−1 − Σ−1

)
Cw = (ζ0 + ζ1)

⊺ (
S−1 − Σ−1

)
(C0 + C1)w =

= ζ⊺0
(
S−1 − Σ−1

)
C0w + ζ⊺1

(
S−1 − Σ−1

)
C1w︸ ︷︷ ︸

diagonal terms

+

+ ζ⊺0
(
S−1 − Σ−1

)
C1w + ζ⊺1

(
S−1 − Σ−1

)
C0w︸ ︷︷ ︸

off-diagonal terms

(32)

In other words, we have the recursive formula that for all a ∈ {0, 1}∗,

Diagonal Terma = Diagonal Terma|0 + Diagonal Terma|1+

+ Off-Diagonal Terma|0,a|1 + Off-Diagonal Terma|1,a|0
(33)
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Applying equation (33) recursively, we have

ζ⊺
(
S−1 − Σ−1

)
Cw = Diagonal Termϵ = · · · =

∑
i∈[k]

Diagonal Termi+

+

⌈log(k)⌉∑
t=0

∑
a∈{0,1}t

(
Off-Diagonal Terma|0,a|1 + Off-Diagonal Terma|1,a|0

)
In Claim F.17, we will bound the off-diagonal terms. We will show that with very high probability,∣∣Off-Diagonal Terma,b

∣∣ = Õ

(√
|Ca|
n
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥ ×

(
1 +

d
√
k

n

))
=

= Õ

(
2−(|a|+|b|)/2

√
k

n2
×
(
k +
√
kd
)
× ∥w∥ ×

(
1 +

d
√
k

n

))
.

Since in our case |a| = |b| = t, we may conclude that with very high probability∣∣Off-Diagonal Terma,b

∣∣ = Õ

(
2−t

√
k

n2
×
(
k +
√
kd
)
× ∥w∥ ×

(
1 +

d
√
k

n

))
.

Applying the triangle inequality, with very high probability the total contribution of all the off-diagonal terms is of order∣∣∣∣∣∣
⌈log(k)⌉∑

t=0

∑
a∈{0,1}t

(
Off-Diagonal Terma|0,a|1 + Off-Diagonal Terma|1,a|0

)∣∣∣∣∣∣ =
=

⌈log(k)⌉∑
t=0

∑
a∈{0,1}t

∣∣∣Off-Diagonal Terma|0,a|1

∣∣∣+ ∣∣∣Off-Diagonal Terma|1,a|0

∣∣∣ =
=

⌈log(k)⌉∑
t=0

∑
a∈{0,1}t

Õ

(
2−t

√
k

n2
×
(
k +
√
kd
)
× ∥w∥ ×

(
1 +

d
√
k

n

))
=

=

⌈log(k)⌉∑
t=0

Õ

(√
k

n2
×
(
k +
√
kd
)
× ∥w∥ ×

(
1 +

d
√
k

n

))
=

= Õ

(√
k

n2
×
(
k +
√
kd
)
× ∥w∥ ×

(
1 +

d
√
k

n

))

This leaves us with only the “single-sample” diagonal terms

Diagonal Termi = X⊺
i

(
S−1 − Σ−1

)
XiX

⊺
i w .

To analyse this term, simply note that from Claim E.7 and the CS inequality, with very high probability,∣∣X⊺
i

(
S−1 − Σ−1

)
Xi

∣∣ ≤ ∥Xi∥2
(∥∥S−1

∥∥+ ∥∥Σ−1
∥∥) = Õ

(
d

n

)
.

Moreover, from our assumption that Xi ∼ X is well-behaved and that w is independent of Xi, we have that with very
high probability

|X⊺
i w| = Õ (∥w∥) .

Therefore, with very high probability

1

k

∑
i∈[k]

|Diagonal Termi| = Õ

(
∥w∥√

k
× d
√
k

n

)
.
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Bounding the Off-Diagonal Terms
Claim F.17. Consider the off-diagonal term

ζ⊺a
(
S−1 − Σ−1

)
Cbw ,

where a ̸= b are bitstrings representing disjoint clusters Ca ∩ Cb = ∅.
With very high probability,

ζ⊺a
(
S−1 − Σ−1

)
Cbw = Õ

(√
|Ca|
n
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥ ×

(
1 +

d
√
k

n

))
.

Proof of Claim F.17. Our goal is to bound the following term in absolute value
ζ⊺a
(
S−1 − Σ−1

)
Cbw .

The difficulty in analysing this term is that both ζa and
(
S−1 − Σ−1

)
may depend on the same samples. To circumvent

this, we begin by splitting
(
S−1 − Σ−1

)
into a term that is easy to deal with and a small correction:(

S−1 − Σ−1
)
=
(
S−1 − S−1

a

)
+
(
S−1
a − Σ−1

)
,

where Sa = Σ− Ca =
∑

i/∈Ca
XiX

⊺
i .

The first component has the property that it does not depend on the samples in Ca, while ζa depends only on the samples
in a. Therefore, because ζa is well-behaved with covariance |Ca|I , with very high probability∣∣ζ⊺a (S−1 − S−1

a

)
Cbw

∣∣ = Õ
(√
|Ca|

∥∥(S−1 − S−1
a

)
Cbw

∥∥)
We begin by bounding the norm of

(
S−1 − S−1

a

)
Cbw. First, we note that Lemma F.16, with very high probability

∥Cbw∥ = Õ
((
|Cb|+

√
|Cb|d

)
∥w∥

)
.

To continue, we bound the norm of
(
S−1 − S−1

a

)
. Let A = Sa and B = Sa − S =

∑
i∈[k]\Ca

XiX
⊺
i . We utilize the

identity
(A−B)

−1 −A−1 = (A−B)
−1

BA−1 ,

as well as Claim E.7 which states that with very high probability
∥∥∥(A−B)

−1
∥∥∥ ,∥∥A−1

∥∥ = O
(
1
n

)
and that ∥B∥ =

Õ (k + d) to show that with very high probability∥∥S−1 − S−1
a

∥∥ = Õ

(
k + d

n2

)
Therefore, with very high probability∣∣ζ⊺a (S−1 − S−1

a

)
Cbw

∣∣ = Õ

(√
|Ca| ×

k + d

n2
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)
=

= Õ

(√
|Ca|
n
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)
.

It remains to bound the contribution of the S−1
a −Σ−1 term, which brings with it the added difficulty that it may depend

on the samples in Ca. To bound the effect of this term, we split the contributions to ζ once more

Hard Terma,b
def
= ζ⊺a

(
S−1
a − Σ−1

)
Cbw =

= (ζa0 + ζa1)
⊺ (

S−1
a − Σ−1

)
Cbw =

= ζ⊺a0
(
S−1
a − S−1

a0

)
Cbw + ζ⊺a1

(
S−1
a − S−1

a1

)
Cbw︸ ︷︷ ︸

Easy Terms

+

+ ζ⊺a0
(
S−1
a0 − Σ−1

)
Cbw + ζ⊺a1

(
S−1
a1 − Σ−1

)
Cbw︸ ︷︷ ︸

Hard Terms

=

= Easy Terma0,b + Easy Terma1,b + Hard Terma0,b + Hard Terma1,b

(34)
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We split the right hand side of equation (34) into “easy” terms which can be dealt with using the same logic above and
hard terms which can again be split into smaller easy and hard terms. Applying equation (34) recursively, we have that:

Hard Terma,b = Easy Terma,0,b + Easy Terma,1,b + Hard Terma0,b + Hard Terma1,b =

...

=
∑
i∈Ca

Hard Termi,b +

log(|Ca|)+1∑
t=1

∑
a′∈{0,1}t−1

z∈{0,1}

Easy Terma|a′,z,b

(35)

To bound the easy terms, we note that as in the analysis above, the samples included in their ζ are disjoint from the
samples included in their other factors. Therefore, with very high probability∣∣Easy Terma,z,b

∣∣ def
=
∣∣ζ⊺az (S−1

a − S−1
az

)
Cbw

∣∣ = Õ
(√
|Caz| ×

∥∥(S−1
a − S−1

az

)
Cbw

∥∥)
Recall that we showed above that with very high probability

∥Cbw∥ = Õ
((
|Cb|+

√
|Cb|d

)
× ∥w∥

)
.

From here, we set A = Saz and B = Caz = Saz − Sa, and recall the identity

(A−B)
−1 −A−1 = A−1B (A−B)

−1

to obtain the equation
S−1
a − S−1

az = S−1
az CazS

−1
a .

From here, it might be tempting to simply bound the norm of this product, but that would result in too loose of a bound.
Instead, we perform the somewhat finer relaxation∥∥(S−1

a − S−1
az

)
Cbw

∥∥ =
∥∥S−1

az CazS
−1
a Cbw

∥∥ ≤ ∥∥S−1
az

∥∥× ∥∥CazS
−1
a Cbw

∥∥ .

The advantage of this finer analysis is that we can now use Lemma F.16 again, but this time on the matrix Caz . Indeed,
Sa depends only on the samples outside Ca ⊇ Caz , Cb depends only on the samples in Cb which is disjoint from Ca, and
S and w do not depend on the first k samples. Therefore, Caz is independent of them all, so applying Lemma F.16, we
have that with very high probability∥∥CazS

−1
a Cbw

∥∥ = Õ
(
|Caz|+

√
|Caz|d

)
×
∥∥S−1

a Cbw
∥∥ ≤ Õ

(
|Caz|+

√
|Caz|d

)
×
∥∥S−1

a

∥∥ ∥Cbw∥ =

= Õ

(
|Caz|+

√
|Caz|d

n
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)

Altogether, we have that with very high probability∣∣Easy Terma,z,b

∣∣ = Õ

(√
|Ca| ×

|Ca|+
√
|Ca|d

n2
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)
.

Therefore, for a′ of length t− 1, we have
∣∣Ca|a′

∣∣ ≈ 2−t|Ca|, so with very high probability

∣∣∣Easy Terma|a′,z,b

∣∣∣ = Õ

√∣∣Ca|a′
∣∣× ∣∣Ca|a′

∣∣+√∣∣Ca|a′
∣∣d

n2
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

 =

= Õ

(
2−t
√
|Ca| ×

2−t/2|Ca|+
√
|Ca|d

n2
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)
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Therefore, summing over all of the easy terms and applying the triangle inequality, we have that with very high
probability∣∣∣∣∣∣∣∣∣

log(|Ca|)+1∑
t=1

∑
a′∈{0,1}t−1

z∈{0,1}

Easy Terma|a′,z,b

∣∣∣∣∣∣∣∣∣ ≤
log(|Ca|)+1∑

t=1

∑
a′∈{0,1}t−1

z∈{0,1}

∣∣∣Easy Terma|a′,z,b

∣∣∣ =
= Õ

(√
|Ca|
|Ca|+

√
d|Ca|

n2
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)
=

= Õ

(√
|Ca|
n
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)

It remains to bound the single-sample hard terms. That is, we want to bound∣∣∣X⊺
i

(
Σ−1

[n]\{i} − Σ−1
)
Cbw

∣∣∣ .
Using the same matrix identity as in the previous terms, we have that

Σ−1
[n]\{i} − Σ−1 = Σ−1XiX

⊺
i Σ

−1
[n]\{i}

Therefore, with very high probability, we have∣∣∣X⊺
i

(
Σ−1

[n]\{i} − Σ−1
)
Cbw

∣∣∣ ≤ ∥Xi∥
∥∥∥(Σ−1

[n]\{i} − Σ−1
)
Cbw

∥∥∥ =

= ∥Xi∥
∥∥∥Σ−1XiX

⊺
i Σ

−1
[n]\{i}Cbw

∥∥∥ ≤
≤ ∥Xi∥

∥∥Σ−1
∥∥ ∥Xi∥

∣∣∣X⊺
i Σ

−1
[n]\{i}Cbw

∣∣∣ ≤
≤ ∥Xi∥

∥∥Σ−1
∥∥ ∥Xi∥ × Õ

(∥∥∥Σ−1
[n]\{i}Cbw

∥∥∥) =

= Õ
(
∥Xi∥2

∥∥Σ−1
∥∥ ∥∥∥Σ−1

[n]\{i}

∥∥∥ ∥Cbw∥
)
= Õ

d
(
|Cb|+

√
|Cb|d

)
n2

∥w∥


(36)

Therefore, from the triangle inequality, with very high probability∣∣∣∣∣∑
i∈Ca

Hard Termi,b

∣∣∣∣∣ ≤∑
i∈Ca

|Hard Termi,b| = Õ

(
|Ca|

d
(∣∣Cb +√Cbd∣∣)

n2
∥w∥

)
,

completing our proof of Claim F.17.

F.4 PROOF OF THEOREM F.1

Recall that the OHARE algorithm works by computing each of the MSN style bounds produced by the ACRE algorithm
and then adds a correction term to each one, where these correction terms correspond to the indirect removal effects due
to the change in the reaveraging step.

In the previous subsection, we proved Claim F.2 which shows that with very high probability the ACRE components of
the OHARE algorithm will produce good bounds on well-behaved regressions with categorical features. In order to
conclude Theorem F.1, we would also need to bound the higher order corrections that OHARE takes into account.

Finally, note that for the case of an unweighted one-hot encoding, we have ui,j = 1i∈Bj
(i.e., the columns corresponding

to the dummy variables are indicators of their respective buckets).
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F.4.1 INDIRECT CONTRIBUTIONS TO THE FIRST ORDER TERM

Analysing the indirect contributions to the first order term in OHARE will require significantly more care than our
analysis of the higher order terms. This is because the first order term is the dominant one to begin with and the indirect
contributions to it are smaller than the main effect by only a

√
log(n) factor, forcing us to track polylog(n) factors

much more carefully.

Recall from Section A.2, that the OHARE algorithm bounds the first order effect of removals on the regression result
from above/below by

bound±j (kj) = dj(kj) +
c±j (kj)

nj − kj

where dj represents AMIP gradients on the reaveraged samples X̃i:

dj(kj) = max
Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Rie
⊺Σ̃−1X̃i ,

and c±j (kj) represents the effect that reaveraging after the removals can have on the AMIP gradients of the retained
samples:

c+j (kj) = max


 max

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Ri


 max

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

e⊺Σ̃−1X̃i

 ,

 min
Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Ri


 min

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

e⊺Σ̃−1X̃i




c−j (kj) = max


 min

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Ri


 max

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

e⊺Σ̃−1X̃i

 ,

 max
Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Ri


 min

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

e⊺Σ̃−1X̃i




For kj = nj , there is no reaveraging effect and bound±j (nj) = dj(nj).

Our goal will be to show that dj(kj), which is the contribution of the AMIP gradients to this first order effect, is the
dominant effect. In particular, the main claim we will prove in this subsection is

Claim F.18. Let kthreshold = Ω̃
(
n1−ε

)
be as promised by Claim F.11.

Then, with very high probability

∀k ≤ kthreshold, max
k1+···+km=k

∑
j∈[m]

bound±j (kj)

 =

(
1±O

(
1√

log(n)

))
AMIP(k) ,

where

AMIP(k) = max
T∈([n]

k )

{∑
i∈T

αi

}
is the sum over the k largest AMIP influence scores

αi = e⊺Σ̃−1X̃iRi .

Proof of Claim F.18. We expect dj(kj) to grow roughly linearly with kj , which motivates us to focus on the expression

Scaled Indirect Effect = ηj(kj)
def
=

max
{∣∣c+j (kj)∣∣, ∣∣c−j (kj)∣∣}
kj(nj − kj)

.

We will bound these ηj in the following lemma:
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Claim F.19. There exists some ν = polylog(n) such that for all kj ≤ nj

ν , with very high probability

ηj(kj) = O

(
1

n

)
.

Moreover, for any ν′ = polylog(n) there exists some threshold τ = polyloglog(n), such that with very high probability,

|{i ∈ Bj | |Ri| > τ}| < nj

ν′∣∣∣{i ∈ Bj |
∣∣∣e⊺Σ̃−1X̃i

∣∣∣ > τ

n

}∣∣∣ < nj

ν′

In particular, for all kj ≥ nj

ν , with very high probability

max
Tj∈(Bj

kj
)

∑
i∈Tj

αi

 = O

(
polyloglog(n)

n
× kj

)

ηj(kj) = O

(
polyloglog(n)

n

)
,

where αi = e⊺Σ̃−1X̃iRi are the AMIP influence scores.

The first part of Claim F.19 promises that the ηj components to the bound are very small in any bucket for which
there are not too many removals kj <

nj

polylog(n) , while the second portion of the claim will help us bound the total
contribution of buckets from which more than nj

polylog(n) have been removed.

Let T = argmax
T∈([n]

k )
{∑

i∈T αi

}
denote the set of k samples with largest AMIP influences, and let κj = |Bj ∩ T |

denote the distribution of these samples across the buckets. By definition, we have∑
i∈T

αi = AMIP(k) .

From Claim F.11, we know that with very high probability all the samples in T must have influence at least

mini∈T {αi} = Ω

(√
log(n)

n

)
. But from the second part of Claim F.19, we know that with very high probabil-

ity, for all j, the jth bucket cannot have more than nj

ν such samples, so with very high probability κj <
nj

ν .

Consider our maximization problem

MaxScore = max
k1+···+km=k

∑
j∈[m]

bound±
j (kj)

 .

This maximization is lower bounded by every valid assignment to k1, . . . , km, so in particular it is lower bounded by
the score of κ1, . . . , κm. Utilising the first part of Claim F.19 to bound ηj(κj), we have

max
k1+···+km=k

∑
j∈[m]

bound±
j (kj)

 ≥ ∑
j∈[m]

bound±
j (κj) =

∑
i∈T

αi −
∑
j∈[m]

κjηj(κj) ∈ AMIP(k)−O

(
k

n

)
.

Now, consider any other assignment k1, . . . , km. If we still have kj ≤ nj

ν for all j, then
∑

j∈[m] bound±
j (kj) will still

be bounded by AMIP(k)±O
(
k
n

)
following the same logic as above.

59



Otherwise, let j1, . . . , jℓ denote the set of buckets for whick kji >
nji

ν , and define k′ def
= k − kj1 − · · · − kjℓ . From the

same analysis as above, we have∑
j∈[m]

bound±j (kj) ≤ AMIP(k′) +
∑
i∈[ℓ]

{
bound±ji(kji)

}
+O

(
k′

n

)
.

Next, note that we know that with very high probability

AMIP(k) ≥ AMIP(k′) + Ω

(√
log(n) (k − k′)

n

)
,

because Claim F.11 tells us that with very high probability, there are at least kthreshold ≥ k samples, each of which has a
sufficiently large contribution to the AMIP score.

Therefore, using the last part of Claim F.19, which bounds with very high probability every term in the bounds of
buckets with more than nj

ν removals, we have∑
j∈[m]

bound±j (kj) ≤ AMIP(k′) +
∑
i∈[ℓ]

{
bound±ji(kji)

}
+O

(
k′

n

)
≤

≤ AMIP(k) +O

(
polyloglog(n)× (k − k′)

n

)
− Ω

(√
log(n) (k − k′)

n

)
︸ ︷︷ ︸

≤0

±O
(
k′

n

)
≤

≤ AMIP(k) +O

(
k

n

)
.

Altogether, we have bounded our maximization target from above and from below by AMIP(k) + O
(
k
n

)
=(

1±O

(
1√

log(n)

))
AMIP(k), completing our proof.

Proof of Claim F.19. If kj <
nj

ν ≪ nj , then we use the bound∣∣c±j (kj)∣∣ < k2j
nj − kj

max
i∈[n]
{|Ri|}max

i∈[n]

{∣∣∣e⊺Σ̃−1X̃i

∣∣∣} = Õ

(
kj
νn

)
= o

(
kj
n

)
.

Next, note that due to Claim F.10 (which states that with very high probability the empirical residuals Ri is close to the
ground truth residual (Rgt)i), we have that with very high probability for all i:∣∣Ri − (Rgt)i

∣∣ = o(1) < 1 .

From our assumption that the ground truth residuals were normally distributed, we have that

Pr
(Rgt)i∼N (0,1)

[∣∣(Rgt)i
∣∣ > τ − 1

]
<

1

2ν′
.

Combining the two, along with the Hoeffding bound which promises us that with very high probability

|{i ∈ Bj | |Ri| > τ − 1}| ≤ nj Pr
(Rgt)i∼N (0,1)

[∣∣(Rgt)i
∣∣ > τ − 1

]
± Õ

(√
nj

)
,

we have that with very high probability

|{i ∈ Bj | |Ri| > τ}| <
∣∣∣{i ∈ Bj |

∣∣∣R̃i

∣∣∣ > τ − 1
}∣∣∣ = nj

ν′
.

We bound
∣∣∣{i ∈ Bj |

∣∣∣e⊺Σ̃−1X̃i

∣∣∣ > τ
n

}∣∣∣ in much the same manner, by utilizing Claim F.8 which states that with very

high probability
∣∣∣e⊺Σ̃−1X̃i − e⊺Xi

n

∣∣∣ = o
(
1
n

)
, and our assumption that the Xi are very well behaved, which shows that

there can’t be too many samples in a given bucket for which |e⊺Xi| > polyloglog(n).
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F.4.2 INDIRECT CONTRIBUTIONS TO THE HIGHER ORDER TERMS

Indirect Contributions to the Covariance Shift Term Recall from Section A.3 that we bound the covariance shift as

max
{
λ
(
Σ̂−1

S

)}
≤ 1

1−max
{
λ
(
Σ̃T

)}
−maxk1+···+km=k

{∑
j∈[m]

1
nj−kj

∥∥∥∑i∈T∩Bj
Σ̃−1/2X̃i

∥∥∥} .

Each component in the denominator is bounded separately by running an MSN-bounding algorithm. The first MSN is
run on the Gram matrix GX⊗X whose i, j entry is:(

X̃⊺
i Σ̃

−1X̃j

)2
.

From Claim F.2, the regression X̃, Ỹ is well-behaved, allowing us to use the same analysis as in Claim E.2 to bound the
output of this MSN by

MX⊗X(k) = Õ

(√
k
d2

n2
+ k2

d

n2

)
.

Similarly, we define Mj to be the MSN bound achieved by RTI on the Gram matrix

Gj [i1, i2] = X̃⊺
i1
Σ̃−1X̃i2 .

Claims F.5 and F.6 promise us that with very high probability the largest diagonal entry of this Gram matrix is at most
Õ
(
d
n

)
and its largest off-diagonal entry is at most Õ

(√
d

n

)
. Therefore, the resulting MSN bounds are at most

Mj(kj) = Õ


√

kjd+ k2j
√
d

n

 .

Recall that for our actual OHARE bound, we also utilize the symmetry that allows us to replace Mj(kj) with
M j(kj) = min {Mj(kj),Mj(nj − kj)}.
For all kj ≤ nj

2 , we have

M j(kj)
2

(nj − kj)kj
≤ Mj(kj)

2

(nj − kj)kj
= Õ

(
d+ kj

√
d

n(nj − kj)

)
= Õ

(√
d

n

)
,

and for all kj >
nj

2 , we have

M j(kj)
2

(nj − kj)kj
≤ Mj(nj − kj)

2

(nj − kj)kj
= Õ

(√
d

n

)
.

Therefore, for all k < kthreshold

max
k1+···+km=k

∑
j∈[m]

M j(kj)
2

nj − kj

 = Õ

(√
dk

n

)
= o

(
MX⊗X(k)2

)
= o (1) .

Therefore, in this regime the covariance shift term does not contribute a factor of more than 3.

Indirect Contributions to the XR Term Recall from Section A.3 that the residual contributions to the indirect XR
term are bounded by

ρj(kj)
def
= min

 max
Tj∈(Bj

kj
)

∑
i∈Tj

|Ri|

 , max
Tj∈(Bj

kj
)

 ∑
i∈Bj\Tj

|Ri|


 ,
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where Ri are the empirical residuals.

With an analysis similar to the one above, we can utilize Claim F.10 which states that with very high probability
maxi∈[n] {|Ri|} = Õ (1) to show that with very high probability

ρj(kj)√
kj(nj − kj)

= Õ (1) .

Combining this with our bound on Mj(kj)√
kj(nj−kj)

, we have

max
k1+···+km=k

∑
j∈[m]

M j(kj)ρj(kj)

nj − kj

 = Õ

√√d
n

k

 .

Note that this is also smaller than the bound we proved for the direct contribution to the XR term in Section E.5,

MXR = Õ

√kd

n
+

√√
d

n
k

 ,

and which we can apply after reaveraging due to Claim F.2 which states that X̃, Ỹ is an ACRE-friendly with very high
probability.

Indirect Contributions to the XZ Term Finally, recall from Section A.3 that the Z component of the indirect effect
on the XZ term was bounded by

ζj(kj) = min

 max
Tj∈(Bj

kj
)

∑
i∈Tj

|Zi|

 , max
Tj∈(Bj

kj
)

 ∑
i∈Bj\Tj

|Zi|


 ,

where Zi = e⊺Σ̃−1X̃i

Using the same analysis as above and Claim F.8 which states that with very high probability |Zi| = Õ
(
1
n

)
for all

i ∈ [n], we have that with very high probability

ζj(kj)√
kj(nj − kj)

= Õ

(
1

n

)
.

Combining this with our bound on Mj(kj), we have

max
k1+···+km=k

∑
j∈[m]

M j(kj)ζj(kj)

nj − kj

 = Õ

√√d
n2

k

 .

As before, this is smaller than our bound on the direct effect

MXZ = Õ

√kd

n2
+

k2
√
d

n2

 .
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Putting it all together In Claim F.18 and over the last few paragraphs, we have bounded all the individual terms that
go into generating the OHARE bounds. In particular, we have shown that

Uk, Lk = First Order︸ ︷︷ ︸(
1±

(
1√

log(n)

))
×AMIP(k)

±|Direct XR + Indirect XR| × |Direct XZ + Indirect XZ|
1− Direct CS− Indirect CS

=

=

(
1±

(
1√

log(n)

))
× AMIP(k)± Õ

(
kd

n3/2
+

k2
√
d

n3/2

)
=

=

(
1±

(
1√

log(n)

))
× AMIP(k) ,

for all k ≤ kthreshold, concluding our proof of Theorem F.1.

G ONE-HOT ENCODINGS ARE ALMOST BRITTLE

In this section, we will prove our claim from the introduction that datasets with one-hot encodings are arbitrarily close
to being extremely brittle. In particular, we will show that
Claim G.1. Let X ∈ Rn×d be an array of features and let Y ∈ Rn be some labels, such that one of the features is 0 on
all but kbucket < n− d of the samples. In other words, for some set S ⊆ [n] of size |S| = n− kbucket, we have

∀i ∈ S Xi,d = 0

Then, for all γ ∈ Rd−1 and for all c > 0, there exists a linear regression X ′, Y ′ such that ∥X ′ −X∥+ ∥Y ′ − Y ∥ < c,
and OLS (X ′

S , Y
′
S)[d−1] = γ.

The reason regressions become so close to brittle is that with one of the features being always 0, we can make a very
small change to its value, in a way that creates very strong correlations.

Proof of Claim G.1. The proof of Claim G.1 is relatively simple.

First, we want to ensure that the original regression problem has no other degeneracies. We do this to ensure that the
resulting OLS has a unique solution.

Let V ⊆ Rn−kbucket be the linear space spanned by the columns of XS,[d−1] and YS . V is spanned by d vectors.
Therefore, dimV ≤ d.

If dimV = d, we can skip this step, and if this inequality is strict we say that XS,[d−1], YS are degenerate. If dimV < d,
it is easy to see that almost all X ′

S,[d−1], Y
′
S in Bc/2

(
XS,[d−1], YS

)
(i.e. in the ball of radius c/2 around the original

regression) are non-degenerate. Therefore, let X ′
S,[d−1], Y

′
S be such a non-degenerate pair.

Now, consider the vector R = Y ′
S −X ′

S,[d−1]γ. This is the residual vector for the linear model Y ′
S ≈ X ′

S,[d−1]γ, and by
our assumption that X ′

S,[d−1], Y
′
S are non-degenerate, R ̸= 0 and is not in the span of the columns of X ′

S,[d−1].

It is only left to decide the values of X ′
S,d. Setting X ′

S,d = c
2∥R∥R, our regression has a perfect fit on the samples in S

Y ′
S = X ′

S

(
γ

− 2∥R∥
c

)
By our construction, Σ = (X ′

S)
⊺
X ′

S is full rank, making this OLS solution unique.
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