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Abstract
Cell phenotype transition refers to the dynamic
changes in cellular morphology, function, and
marker expression under specific environmen-
tal or physiological conditions, driven by ge-
nomic information and external signals. It plays
a key role in development, tissue repair, and im-
mune responses. Traditional approaches, often
hypothesis-driven, struggle to capture the inherent
complexity and heterogeneity of these processes.
We propose KD-CPT, a Markov process-based
model for cell phenotype transition and differen-
tiation, comprising two branches: a prediction
branch for phenotype classification, evaluated via
a multi-metric framework, and a screening branch
that identifies key regulatory genes using a to-
ken pruning strategy. An enhanced multi-head
attention mechanism is employed to strengthen
information flow between full-sequence contexts
and prioritized regulatory loci. The model further
demonstrates strong performance in uncertainty
quantification and confidence calibration. Gene
knockout experiments reveal that disruption of
critical genes significantly alters transition proba-
bilities and can even terminate specific transition
pathways, highlighting the model’s utility in un-
covering regulatory mechanisms.

1. Introduction
Traditional bioinformatics methods for addressing cell type
transition often rely on hypothesis-driven models (Ritchie
et al., 2015), which may not fully capture the complex-
ity and heterogeneity of the transition processes (Eraslan
et al., 2019). The rise of machine learning, particularly
deep learning techniques (Vaswani et al., 2017; Wang et al.,
2024) in recent years, has provided new opportunities to
develop more accurate models of cell type transition (Wang
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et al., 2021). By learning potential patterns from large-scale
single-cell data (He et al., 2020), machine learning methods
can reveal interactions and dynamic changes between cells
(You et al., 2020), thereby enhancing our understanding
of the mechanisms underlying cell type transitions (Zhang
et al., 2022).

To address the challenges associated with key gene identi-
fication and information integration in cellular phenotype
transitions, we propose a biologically informed foundation
model, KD-CPT. It leverages attention mechanisms along-
side an enhanced multi-head attention module to integrate
full-sequence contextual information with key regulatory
loci, enabling sparse yet interpretable gene prioritization.
An adaptive feature recalibration mechanism is further em-
ployed to dynamically fuse global transcriptomic patterns
with localized regulatory signals. To evaluate the effec-
tiveness of KD-CPT, we conduct experiments on datasets
comprising both cancer and control groups. Given the non-
directional nature of phenotype transitions and the intrinsic
uncertainty of biological systems, we introduce a cosine
similarity-based uncertainty index to quantify model reliabil-
ity. Moreover, we design gene perturbation experiments to
assess the model’s robustness. Our work offers new insights
into cellular dynamics and contributes to methodological ad-
vancements in the biomedical domain, promoting progress
in health and disease management while underscoring the
principles of scientific rigor and collaboration.
Our contribution is summarized as follows: i) Paradigm
shift: For the first time, we have considered the regulatory
roles of critical loci and developed a biologically-informed,
inherently interpretable dual-branch architecture, ensuring
that locus discovery extends beyond post-hoc interpretable
validation. ii) Cell selection module: We designed a token
selection module based on genetic regulatory mechanisms
to identify key genes. iii) Global-local information fusion:
We have designed an enhanced multi-head attention mecha-
nism that better integrates global and local information by
processing the global features from the prediction branch
through 1×1 convolutions and the local features from the
screening branch through 7×7 convolutions, before feeding
them into the multi-head attention module.

2. Preliminary
In this section, we introduce a mathematical framework
aimed at modeling cellular phenotype transitions, which is
an essential biological process underlying differentiation,
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Figure 1. The overall pipeline of KD-CPT. The prediction branch performs sparse sequence representation compression based on bipartite
graph matching, while the transition branch models the modulation effect through a token selection module.

reprogramming, and disease progression. Our goal is to
predict changes in cell identity by integrating global expres-
sion profiles with localized regulatory signals derived from
single-cell sequencing data.

Problem Formulation. Let X = {x1,x2, . . . ,xn} de-
note the set of gene expression profiles from n single cells,
where each profile xi ∈ Rm represents the expression levels
of m genes. We define two phenotypic states, C1 and C2,
corresponding to distinct cellular identities. Each cell i is
associated with a binary phenotype label yi ∈ {0, 1}, where
yi = 0 indicates that the cell belongs to phenotype C1 and
yi = 1 indicates phenotype C2.

Full Sequence Modeling. To capture the underlying biolog-
ical variability, we transform the raw gene expression data
into a latent representation

Y = f(X; θ1), (1)

where f : Rm → Rm is a learnable mapping model, θ1 are
the parameters of the model. The prediction for each cell is
obtained by applying a classification function g:

ŷfull
i = g(Yfull,i; θg), (2)

where g is typically a softmax function or a logistic regres-
sion model, and θg are the parameters for this classification.

Quantifying Regulatory Influence. A crucial aspect of
phenotype transition is the modulation of gene expression by
key regulatory genes. For each target gene g, we quantify its
regulation by aggregating contributions from a selected set
of k candidate regulatory genes. Let R = {r1, r2, . . . , rk}
denote these regulators. We model the regulatory influence
on gene g as:

Rg =

k∑
j=1

wj · ϕ(rj), (3)

where ϕ(rj) is a function that captures the regulatory activ-
ity of gene rj , wj are learnable weights that quantify the

strength of influence of each regulator on the target gene.
This effectively integrates the diverse regulatory signals into
a single measure of influence for each gene.

The output can be expressed as:

Yreg = freg(R,X; θ2), (4)

where freg is a function that combines regulatory informa-
tion with the original gene expression profiles, parameter-
ized by θ2.

3. Methodology
We design a dual-branch framework to capture both the
deterministic patterns in gene expression and the regula-
tory influences that drive phenotype transitions discussed
in Sec. 2. As shown in Figure 1, our model consists of
two distinct branches: 1) Prediction Branch for capturing
the full expression profiles of the cells; 1) Selection Branch
model regulatory influences through a top-k selection mech-
anism. KD-CPT performs multi-omics sequence modeling
by leveraging token pruning to efficiently integrate and pro-
cess both scRNA-seq and regulatory site information. The
dual-branch architecture is designed to support this integra-
tion, enabling both global expression modeling and targeted
regulatory analysis.

3.1. Uncertainty-based Cellular Phenotype Prediction
Branch

As shown in Figure 1, the feature representations of cells
obtained from embeddings generated by a pretrained single-
cell model capture the information about cell phenotype in
various biological environments.

Specifically, we process single-cell RNA expression data
through a pretrained single-cell model to obtain latent rep-
resentations, which are subsequently fed into a multilayer
perceptron (MLP) network for classification. The MLP
architecture consists of three fully connected layers with
ReLU activation functions, where the forward propagation
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process can be formulated as:

h(l) = σ
(
W(l)h(l−1) + b(l)

)
, l ∈ {1, 2, 3} (5)

where h(l) denotes the output of the l-th layer, W(l) and
b(l) represent the weight matrix and bias vector respectively,
and σ(·) is the ReLU activation σ(x) = max(0, x).

3.2. Cell Learner

Token reduction reduces computational load by pruning
unimportant tokens (Kong et al., 2025), thereby facilitating
the processing of long input sequences. Previous meth-
ods (Bolya et al., 2022; Kong et al., 2022) were not specif-
ically designed for modeling cellular phenotypic transdif-
ferentiation (Lotfollahi et al., 2021). We proposed a Cell
Learner module that identifies critical regulatory sites us-
ing attention scores from the Transformer encoder, where
the self-attention mechanism captures sequence dependen-
cies and aggregates scores across layers/heads (via mean
or weighted summation), highlighting biologically signif-
icant regions. This aligns with the theory that attention
weights reflect context-aware feature importance, and se-
lected sites guide cellular transitions via learnable parame-
ters. We determine Top-k tokens by integrating domain prior
knowledge (e.g., expected transcription factor binding sites
in genomics) rather than pure data optimization, a hybrid
approach balancing biological plausibility and model flexi-
bility supported by prior-guided sparse attention studies.

3.3. Regulatory Gene Screening Branch

In the process of cellular phenotype transition modeling,
we assess the uncertainty of the trained Markov transition
probability matrix using the information entropy of each
category and the overall entropy.

Information Entropy is used to quantify the uncertainty of
a random variable. Given the transition probability matrix
P for a specific category Ci, the information entropy H(Ci)
can be calculated as follows:

H(Ci) = −
n∑

j=1

Pij log(Pij) (6)

where Pij represents the probability of transitioning from
state Ci to state Cj , and n is the total number of states. A
higher information entropy indicates greater uncertainty in
the state transitions of that category.

Overall Entropy is computed as a weighted average of
the information entropy across all categories, reflecting the
overall uncertainty of the system. The overall entropy Htotal

is calculated as follows:

Htotal = −
m∑
i=1

πiH(Ci) (7)

where πi is the prior probability of category Ci, and m is the
total number of categories. This overall entropy provides a

Figure 2. The overall pipeline of the proposed cross-function fu-
sion module.

global perspective on the cell state transition process, reveal-
ing the uncertainty of transitions across different cellular
phenotypes.

3.4. Cross-Function Fusion Module (CFFM)

We perform a fusion process that combines the transition ma-
trix derived from the Markov chain with the Transition Fac-
tor, which is computed based on probability and uncertainty.
As shown in Figure 2, the output embeddings from the two
branches are denoted as Ep ∈ Rd×c and Et ∈ Rd×c, where
d is the sequence length and c is the channel dimension.
For multi-head attention, the channel dimension c can be
divided into n subspaces. We first generate query/key/value
projections for both branches:

Qi = EiW
i
q , Ki = EiW

i
k, Vi = EiW

i
v, i ∈ {p, t},

(8)
where {W i

q ,W
i
k,W

i
v} are learnable projection matrices for

each branch i. We use 1x1 Convolution to extract global
features and 7x7 Convolution to extract local features of
the input. We concatenate the projections and use cross-
attention for fusion:

Q = Concat(Qp, Qt),

K = Concat(Kp,Kt),

V = Concat(Vp, Vt)

(9)

The normalization operation is implemented through layer-
wise transformations: Q̄ = LayerNorm(Q), K̄ =
LayerNorm(K).

The attention score A can be calculated by:

A = softmax

(
Q̄K̄⊤√
c/n

)
. (10)

The fused representation is then obtained through value
aggregation and the following feedforward layer. Finally,
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Table 1. Ablation study of the proposed method.

Model CFFM Cell Learner Confidence Uncertainty Accuracy F1 Kappa
KD-CPT × × 89.16 28.52 90.24 89.89 88.36

✓ × 89.56 28.01 90.83 90.89 89.91
× ✓ 90.53 23.43 90.53 90.42 88.76
✓ ✓ 91.82 21.28 91.60 91.43 89.94

Table 2. Comparison of cellular phenotype classification.

Baseline Accuracy F1 Kappa
ResNet 88.82 88.68 86.79
Res2Net 88.95 88.79 86.94
ConNeXt 88.81 88.66 86.79
Informer 88.90 88.74 86.91
Metaformer 89.63 89.55 87.78
scBERT 45.16 42.13 36.59
scFoundation 90.13 88.31 86.53
Ours 91.60 91.43 89.94

Table 3. Comparison of XAI baseline

.

Baseline Confidence Uncertainty
Feature Importance 90.12 29.37
LIME 89.27 28.34
Diffrate 90.33 27.31
Token Learner 90.62 25.60
Ours 91.82 21.28

the output Eo is reconstructed back to the original spatial
dimension through transposed convolution and projection.
This architecture enables dynamic information flow between
the two branches while preserving gradient stability through
residual connections.

4. Experiments
4.1. Experimental Setup

Datasets. We utilize public datasets comprising over
590,000 samples (Dann et al., 2023) for single-cell foun-
dation model training. Additionally, we employ three cell
annotation datasets from scGPT (Cui et al., 2024) to perform
transfer learning and conduct downstream tasks.

Baselines. We compare with multiple deep learning models
including: 1) CNN-based models – ResNet (He et al., 2016),
Res2Net (Gao et al., 2019), ConvNeXt (Liu et al., 2022);
2) Transformer-based models – Transformer (Vaswani
et al., 2017), Informer (Zhou et al., 2021), Metaformer
citeyu2022metaformer; 3) Specific Model – scBERT (Yang
et al., 2022) and scGPT (Cui et al., 2024). Each model
undergoes the same testing phase to ensure a consistent and
fair comparison of their capabilities within the legal domain.

Evaluation Metrics. In the prediction branch, we evaluate

the model’s accuracy in cell phenotype prediction based
on Accuracy, F1, and Kappa coefficient; in the screening
branch, we assess the feasibility of the screening process
based on accuracy, uncertainty, and confidence. Addition-
ally, we optimize the confidence calculation process based
on Top-K.

Implementation Details. We conducted the training of our
model over 10 epochs using two L20 GPUs. Additionally,
we configured the model’s dropout rate at 0.1 and set the
learning rate to e−3.

4.2. Comparison Results

We compared the performance of six mainstream base-
line models within the KD-CPT architecture, including
ResNet, Res2Net, ConvNext, Transformer, Informer, and
Metaformer. According to the experimental results in Ta-
ble 2, we exhibit the best performance. Table 3 summarizes
results from the explainable AI (XAI) baseline comparison.
Our KD-CPT approach achieves the highest confidence
(91.82%) and lowest uncertainty (21.28%) scores compared
to conventional XAI methods.

4.3. Ablation Study

We conduct ablation experiments to evaluate the rational-
ity of the screening branch and the design of CFFM. We
compare four scenarios: with/without the CFFM module
and with/without the Cell Learner module. As shown in Ta-
ble 1, the ablation results demonstrate that the introduction
of both the Cell Learner module and the CFFM improves
the accuracy of cell phenotype prediction. These modules
significantly reduce the model’s uncertainty while causing
only a minor performance decline.

5. Conclusion
This paper proposes a novel framework, KD-CPT, whose
innovation lies in its ability to incorporate regulatory sites as
critical biological priors during the training process, effec-
tively circumventing biases introduced by traditional manual
design approaches. Additionally, we have designed a global-
local aware cross-attention module to fuse information from
two modalities: the full sequence and regulatory sites. Ex-
tensive transfer learning experiments and gene knockout
studies demonstrate that the KD-CPT model exhibits high
robustness and accuracy.
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