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Abstract

A significant amount of protein function requires binding small molecules, includ-1

ing enzymatic catalysis. As such, designing binding pockets for small molecules2

has several impactful applications ranging from drug synthesis to energy storage.3

Towards this goal, we first develop HARMONICFLOW, an improved generative4

process over 3D protein-ligand binding structures based on our self-conditioned5

flow matching objective. FLOWSITE extends this flow model to jointly generate6

a protein pocket’s discrete residue types and the molecule’s binding 3D struc-7

ture. We show that HARMONICFLOW improves upon the state-of-the-art gener-8

ative processes for docking in simplicity, generality, and performance. Enabled9

by this structure model, FLOWSITE designs binding sites substantially better than10

baseline approaches and provides the first general solution for binding site design.11

1 Introduction12

Figure 1: Binding site design. Given
the backbone (green) and multi-ligand
without structure, FLOWSITE generates
residue types and structure (orange) to
bind the multi-ligand and its jointly gen-
erated structure (blue). The majority of
the pocket is omitted for visibility.

Designing proteins that can bind small molecules has13

many applications, ranging from drug synthesis to energy14

storage or gene editing. Indeed, a key part of any pro-15

tein’s function derives from its ability to bind and inter-16

act with other molecular species. For example, we may17

design proteins that act as antidotes that sequester toxins18

or design enzymes that enable chemical reactions through19

catalysis, which plays a major role in most biological pro-20

cesses. We develop FLOWSITE to address this design21

challenge by building on recent advances in deep learn-22

ing (DL) based protein design [Dauparas et al., 2022] and23

protein-molecule docking [Corso et al., 2023].24

Specifically, we aim to design protein pockets to bind a25

certain small molecule (called ligand). We assume that26

we are given a protein pocket via the 3D backbone atom27

locations of its residues as well as the 2D chemical graph28

of the ligand. We do not assume any knowledge of the29

3D structure or the binding pose of the ligand. Based30

on this information, our goal is to predict the amino acid31

identities for the given backbone locations (see Figure 1).32

We also consider the more challenging task of designing33

pockets that simultaneously bind multiple molecules and ions (which we call multi-ligand). Such34

multi-ligand binding proteins are important, for example, in enzyme design, where the ligands cor-35

respond to reactants.36
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Figure 2: Overview of FlowSite. The generative process starts from a protein pocket’s backbone
atoms, initial residue types ã0, and initial ligand positions x0. Our joint discrete-continuous self-
conditioned flow updates them to at, xt by following its vector field defined by the model outputs
ãt1, x̃t1. This integration is repeated until reaching time = 1 with the produced sample a1, x1.

This task has not been addressed by deep learning yet. While deep learning has been successful37

in designing proteins that can bind to other proteins [Watson et al., 2023], designing (multi-)ligand38

binders is different and arguably harder in various aspects. For example, no evolutionary informa-39

tion is directly available, unlike when modeling interactions between amino acids only. The existing40

approaches, such as designing 6 drug binding proteins Polizzi & DeGrado [2020] or a single en-41

zyme Yeh et al. [2023], build on expert knowledge and require manual steps. Therefore, we develop42

FLOWSITE as a more general and automated approach and the first deep learning solution for de-43

signing pockets that bind small molecules.44

FLOWSITE is a flow-based generative model over discrete (residue identities) and continuous (ligand45

pose) variables. Our flow matching training criterion guides the model to learn a self-conditioned46

flow that jointly generates the contact residues and the (multi-)ligand 3D binding pose structures.47

To achieve this, we first develop HARMONICFLOW as a suitable generative process for 3D poses of48

(multi-)ligands. FLOWSITE extends this process to residue types. Starting from initial residue types49

and ligand atom locations sampled from a harmonic prior FLOWSITE updates them by iteratively50

following the learned vector field, as illustrated in Figure 2.51

The HARMONICFLOW component of FLOWSITE performs the task known as docking, i.e., it real-52

izes the 3D binding pose of the multi-ligand. As a method, it is remarkably simple in comparison to53

existing generative processes for docking, including the state-of-the-art diffusion process of DIFF-54

DOCK [Corso et al., 2023] that operates on ligand’s center of mass, orientation, and torsion angles.55

HARMONICFLOW simply updates the cartesian coordinates of the atoms, yet manages to produce56

chemically plausible molecular structures without restricting ligand flexibility to torsions. More-57

over, HARMONICFLOW outperforms DIFFDOCK’s diffusion in multiple new pocket-level docking58

tasks on PDBBind. For instance, HARMONICFLOW achieves 24.4% of its predictions to be within59

root-mean-square-distance (RMSD) below 2Å as opposed to 16.3% for DIFFDOCK’s diffusion.60

Having established HARMONICFLOW as an improved generative process over ligand positions, we61

extend it to include discrete residue types to obtain FLOWSITE. We also adopt an additional ”fake-62

ligand” data augmentation step where side chains are treated as ligands in order to realize additional63

training cases. Altogether, FLOWSITE is able to recover 47.0% of binding site amino acids compared64

to 39.4% of a baseline approach. This nearly closes the gap to an oracle method (51.4% recovery)65

with access to the ground truth 3D structure/pose of the ligand. Next to technical innovations such66

as self-conditioned flow matching or equivariant refinement TFN layers, our main contributions are:67

1. The first application and investigation of flow matching for real-world biomolecular struc-68

ture generation tasks and comparisons with diffusion model approaches.69

2. FLOWSITE as the first deep learning solution to design binding sites for small molecules70

and a novel elegant framework to jointly generate discrete and continuous data.71

3. HARMONICFLOW which improves upon the state-of-the-art generative process for gener-72

ating 3D ligand binding structures in performance, simplicity, and applicability/generality.73

2 Related Work74

Deep learning for Docking. Designing binding sites with high affinity for a ligand requires rea-75

soning about the binding free energy, which is deeply interlinked with modeling ligand binding 3D76
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structures. This task of molecular docking has recently been tackled with deep-learning approaches77

[Stärk et al., 2022; Lu et al., 2022; Zhang et al., 2023] including generative models [Corso et al.,78

2023; Qiao et al., 2023]. These generative methods are based on diffusion models, building on DIFF-79

DOCK [Corso et al., 2023], which combines diffusion processes over the ligand’s torsion angles and80

position with respect to the protein. For the task of multi-ligand docking, no deep learning solutions81

exist yet, and we provide the first with HARMONICFLOW. We refer to Appendix D for additional82

important related work on this and the following topics.83

Protein Design. A significant technical challenge for protein design is jointly modeling structure84

and sequence. Inverse folding approaches [Dauparas et al., 2022; Gao et al., 2023a; Yi et al., 2023;85

Hsu et al., 2022; Gao et al., 2023b] attempt this by designing new sequences given a protein structure.86

This is akin to our task where the protein pocket’s backbone structure is given, and we aim to design87

its residue types to bind a (multi-)ligand. However, the only inverse folding method that models88

small molecules is Carbonara [Krapp et al., 2023], which is restricted to the 31 most common ligands89

of PDB and requires their 3D structure and position relative to the protein to be known. For general90

binding site design, this would not be the case, and predicting them with traditional docking methods91

would not be possible since they require the pocket side chain’s 3D structure.92

Flow Matching. This recent generative modeling paradigm [Lipman et al., 2022; Albergo &93

Vanden-Eijnden, 2022; Albergo et al., 2023] generalizes diffusion models [Ho et al., 2020; Song94

et al., 2021] in a simpler framework. Flow matching admits more design flexibility and multiple95

works [Tong et al., 2023b; Pooladian et al., 2023] showed how it enables learning flows between96

arbitrary start and end distributions in a simulation-free manner. It is easily extended to data on97

manifolds [Chen & Lipman, 2023] and comes with straighter paths that enable faster integration.98

We provide the first applications of flow matching to real-world biomolecular tasks (multi-ligand99

docking and binding site design). While Klein et al. [2023] explored flow matching for 3D100

point clouds, their application was limited to overfitting on the Boltzmann distribution of a single101

molecule. We explain flow matching in Section 3.1.102

3 Method103

Our goal is to design binding pockets for a ligand where we assume the inputs to be the ligand’s104

2D chemical graph and the backbone coordinates of the pocket’s residues. In this section, we lay105

out how FLOWSITE achieves this by first explaining our HARMONICFLOW generative process for106

docking in 3.1 before covering how FLOWSITE extends it to include discrete residue types in 3.2107

and concluding with our model architecture in 3.3.108

Overview and definitions. As visualized in Figure 2, FLOWSITE is a flow-based generative model109

that jointly updates discrete residue types and continuous ligand positions. The inputs are a protein110

pocket’s backbone atoms y ∈ RL×4×3 for L residues with 4 atoms each and the chemical graph111

of a (multi-)ligand. Based on the ligand connectivity, its initial coordinates x ∈ Rn×3 are sampled112

from a harmonic prior, and we initialize residue types a ∈ {1, . . . , 20}L with an initial token (we113

drop the chemical information of the ligands in our notation for brevity).114

Given this at time t = 0, the flow model vθ with learned parameters θ iteratively updates residue115

types and ligand coordinates by integrating the ODE it defines. These integration steps are repeated116

from time t = 0 to time t = 1 to obtain the final generated binding pocket designs.117

3.1 HarmonicFlow Structure Generation118

We first lay out HARMONICFLOW for pure structure generation without residue type estimation.119

Our notation drops vθ’s conditioning on the pocket y and residue estimates a in this subsection (see120

the Architecture Section 3.3 for how y is included). Simply put, HARMONICFLOW is flow matching121

with a harmonic prior, self-conditioning, and x1 prediction (our refinement TFN layers in Section122

3.3 are also important for performance). In more detail:123

Conditional Flow Matching. Given the data distribution p1 of bound ligand structures and any124

easy-to-sample prior p0 over Rn×3, we wish to learn an ODE that pushes the prior forward to the125

data distribution when integrating it from time 0 to time 1. The ODE will be defined by a time-126
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dependent vector field vθ(·, ·) : Rn×3 × [0, 1] 7→ Rn×3. Starting with a sample x0 ∼ p0(x0) and127

following/integrating v through time will produce a sample from the data distribution p1.128

To see how to train vθ, let us first assume access to a time-dependent vector field ut(·) that would129

lead to an ODE that pushes from the prior p0 to the data p1 (it is not straightforward how to construct130

this ut). This gives rise to a probability path pt by integrating ut until time t. If we could sample131

x ∼ pt(x) we could train vθ with the unconditional flow matching objective [Lipman et al., 2022]132

LFM = Et∼U [0,1],x∼pt(x)∥vθ(x, t)− u(x, t)∥
2. (1)

Among others, Tong et al. [2023b] show that to construct such a ut (that transports from prior p0 to133

p1), we can use samples from the data x1 ∼ p1(x1) and prior x0 ∼ p0(x0) and define ut via134

ut(x) = Ex1∼p1(x1),x0∼p0(x0)
ut(x|x0,x1)pt(x|x0,x1)

pt(x)
(2)

where we can choose easy-to-sample conditional flows pt(·|·, ·) that give rise to simple conditional135

vector fields ut(·|·, ·). We still cannot efficiently compute this ut(x) and use it in LFM because136

we do not know pt(x), but there is no need to: it is equivalent to instead train with the following137

conditional flow matching loss since∇θLFM = ∇θLCFM .138

LCFM = Et∼U [0,1],x1∼p1(x1),x0∼p0(x0),x∼pt(x|x0,x1)∥vθ(x, t)− ut(x|x0,x1)∥2. (3)

Our simple choice of conditional probability path is pt(x|x0,x1) = N (x|tx1 + (1 − t)x0, σ
2),139

which gives rise to the conditional vector field ut(x|x0,x1) = x1 − x0. Notably, we find it helpful140

to parameterize vθ to predict x1 instead of (x1 − x0).141

Training with the conditional flow matching loss then boils down to 1) Sample data x1 ∼ p1(x1)142

and prior x0 ∼ p0(x0). 2) Interpolate between between the points. 3) Add noise to the interpolation143

to obtain x. 4) Evaluate and minimize LCFM = ∥vθ(x, t) − x1∥2 with it. Inference is just as144

straightforward. We sample from the prior x0 ∼ p0(x0) and integrate from t = 0 to t = 1 with145

an arbitrary ODE solver. We use an Euler solver, i.e., we iteratively predict x1 as x̃1 = vθ(xt, t),146

and then calculate the step size scaled velocity estimate from it and add it to the current point147

xt+∆t = xt +∆t(x̃1 − x0). Training and inference algorithms are in Appendix A.4.148

Figure 3: Harmonic Prior. Initial positions for the
same single multi-ligand from an isotropic Gaussian
(left) and from a harmonic prior (right). (Bound struc-
ture for this multi-ligand is in Figure 1).

Harmonic Prior. Any prior can be used149

for p0 in the flow matching framework.150

We choose a harmonic prior as in Eigen-151

Fold [Jing et al., 2023] that samples atoms152

to be close to each other if they are con-153

nected by a bond. We identify this as154

an especially valuable inductive bias when155

dealing with multiple molecules and ions156

since atoms of different molecules are al-157

ready spatially separated at t = 0 as visu-158

alized in Figure 3.159

This prior is constructed based on covalent160

bonds that define a graph with adjacency161

matrix A from which we can construct the162

graph Laplacian L = D −A where D is163

the degree matrix. The harmonic prior is then p0(x0) ∝ exp(− 1
2x

T
0 Lx0) which can be sampled as164

a transformed gaussian.165

Structure Self-conditioning. With this, we aim to bring AlphaFold2’s [Jumper et al., 2021] suc-166

cessful recycling strategy to flow models for structure generation. Recycling enables training a167

deeper structure predictor without additional memory cost by performing multiple forward passes168

while only computing gradients for the last. For flow matching, we achieve the same by adapting169

the discrete diffusion model self-conditioning approach of Chen et al. [2023] as follows:170

Instead of defining the vector field vθ(xt, t) as a function of xt and t alone, we additionally condition171

it on the prediction x̃t1 of the previous integration step and use vθ(xt, x̃t1, t). At the beginning172
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of inference the self-conditioning input is a sample from the harmonic prior x̃0
1 ∼ p0(x̃

0
1). In173

all following steps, it is the flow model’s output (its prediction of x1) of the previous step x̃t1 =174

vθ(xt−∆t, x̃
t−∆t
1 , t−∆t). To train this, in a random 50% of the training steps, the self-conditioning175

input is a sample from the prior x̃0
1. In the other 50%, we first generate a self-conditioning input176

x̃t+∆t
1 = vθ(xt, x̃

0
1, t), detach it from the gradient computation graph, and then use vθ(xt, x̃t+∆t

1 , t)177

for the loss computation. Algorithms 3 and 4 show these training and inference procedures.178

3.2 FlowSite Binding Site Design179

In the FLOWSITE binding site design framework, HARMONICFLOW x̃t+∆t
1 = vθ(xt, x̃

t
1, t) is aug-180

mented with an additional self-conditioned flow over the residue types to obtain (x̃t+∆t
1 , ãt+∆t

1 ) =181

vθ(xt, x̃
t
1,at, ã

t
1, t). The flow no longer produces x̃t+∆t

1 as an estimate of x1 and then inter-182

polates to xt+∆t but instead produces (x̃t+∆t
1 , ãt+∆t

1 ) from which we obtain the interpolation183

(xt+∆t,at+∆t) and use it for the next integration step (see Figure 4). The start a0, ã
0
1 are initialized184

as a mask token while the structures x0, x̃
0
1 are drawn from a harmonic prior.185

Figure 4: FlowSite self-conditioned updates.
Residue type predictions ãt1 from invariant GAT
layers and position predictions x̃t1 from equivari-
ant TFN layers are used as self-conditioning in-
puts and to interpolate to the updates at, xt.

This joint discrete-continuous data flow is186

trained with the same self-conditioning strategy187

as in structure self-conditioning, but with the188

additional discrete self-conditioning input ã1
1189

that is either a model output or a mask token. To190

the training loss we add the cross-entropy Ltype191

between a and ãt1. In practice, we find that the192

a1 prediction ãt1 already carries most informa-193

tion that is useful for predicting a1 and we omit194

the interpolation at as model input to obtain the195

simpler (x̃t+∆t
1 , ãt+∆t

1 ) = vθ(xt, x̃
t
1, ã

t
1, t).196

This formulation admits a direct interpretation197

as recycling Jumper et al. [2021] and a clean198

joint discrete-continuous process without defin-199

ing a discrete data interpolation.200

Fake Ligand Data Augmentation. This strategy is based on the evidence of Polizzi & DeGrado201

[2020] that a protein’s sidechain-sidechain interactions are similar to sidechain-ligand interactions202

for tight binding. In our optional data augmentation, we train with 20% of the samples having a203

”fake ligand”. Given a protein, we construct a fake ligand as the atoms of a randomly selected204

residue that has at least 4 other residues within 4Å heavy atom distance. Additionally, we modify205

the protein by removing the residue that was chosen as the fake ligand and the residues that are206

within 7 positions next to that residue in the protein chain, as visualized in Figure 5.207

3.3 Architecture208

Here, we provide an overview of the FLOWSITE architecture (visualized in Appendix Figure 6)209

that outputs ligand positions x̃1 and uses them for a residue type prediction ã1. The structure210

prediction is produced by a stack of our SE(3)-equivariant refinement TFN layers that are crucial for211

the performance of HARMONICFLOW’s structure generation. This is followed by invariant layers212

to predict the invariant residue types. The precise architecture definition is in Appendix A.6 and an213

architecture visualization in Figure 6.214

Radius Graph Representation. We represent the (multi-)ligand and the protein as graphs where215

nodes are connected based on their distances. Each protein residue and each ligand atom is a node.216

These are connected by protein-to-protein edges, ligand-to-ligand edges, and edges between ligand217

and protein. While only a single node is assigned to each residue, they contain information about all218

backbone atom positions (N, Ca, C, O).219

Equivariant refinement Tensor Field Network (TFN) layers. Based on TFN [Geiger et al.,220

2020], these layers capture the important inductive bias of SE(3)-equivariance (translating and rotat-221

ing the input will equally translate and rotate the output). They are a remarkably simple yet effective222

tweak from previous message passing TFNs [Jing et al., 2022; Corso et al., 2023], where we instead223

update and refine ligand coordinates with each layer akin to EGNNs [Hoogeboom et al., 2022].224
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The k-th refinement TFN layer takes as input the protein positions y, current ligand positions xt,225

and features hk−1 (with h0 being zeros for the ligand and vectors between N, Ca, C, O for the pro-226

tein). We construct equivariant messages for each edge via a tensor-product of neighboring nodes’227

invariant and equivariant features. The messages include the structure self-conditioning informa-228

tion by using the interatomic distances of the self-conditioning input xt1 to parameterize the tensor229

products. We sum the messages to obtain new node features hk+1 and use them as input to an230

O(3) equivariant linear layer to predict intermediate refined ligand coordinates x̂k1 . Before passing231

x̂k1 to the next refinement TFN layer, we detach them from the gradient computation graph for the232

non-differentiable radius graph building of the next layer.233

After a stack of K TFN refinement layers, the positions x̂K1 are used as final prediction x̃t+∆t
1 .234

While x̃t+∆t
1 is supervised with the conditional flow matching loss LCFM = ∥x̃t+∆t

1 − x1∥2 the235

intermediate positions x̂k1 contribute to an additional refinement loss Lrefine =
∑K−1
k=1 ∥x̂k1 −x1∥2.236

Invariant Network. The inputs to this part of FLOWSITE are the TFN’s ligand structure prediction237

x̃1, the protein structure y, the invariant scalar features of the refinement TFN layers, and the self-238

conditioning input at1. From the protein structure, we construct on PiFold’s [Gao et al., 2023a]239

distance-based invariant edge features and node features that encode the geometry of the backbone.240

For the edges between protein and ligand, we construct features that encode the distances from a241

ligand atom to all 4 backbone atoms of a connected residue.242

These are processed by a stack of graph attention layers that update ligand and protein node features243

as well as edge features for each type of edge (ligand-to-ligand, protein-to-protein, and between244

the molecules). For each edge, the convolutional layers first predict attention weights from the245

edge features and the features of the nodes they connect. We then update a node’s features by246

summing messages from each incoming edge weighted by the attention weights. Then, we update an247

edge’s features based on its nodes’ new features. A precise definition is in Appendix A.6. From the248

residue features after a stack of these convolutions, we predict new residue types at+∆t together with249

side chain torsion angles α. We use those in an auxiliary loss Ltorsion defined as in AlphaFold2’s250

Appendix 1.9.1 [Jumper et al., 2021]. Thus, the complete loss for FLOWSITE is a weighted sum of251

LCFM ,Lrefine,Ltype, and Ltorsion, while HARMONICFLOW only uses LCFM and Lrefine.252

4 Experiments253

We evaluate FLOWSITE with the PDBBind and Binding MOAD datasets detailed in Appendix F.254

Every reported number is averaged over 10 generated samples for each ligand. Precise experimental255

details are in Appendix E and code to reproduce each experiment is at https://anonymous.256

4open.science/r/wolf.257

4.1 Question: HarmonicFlow Structure Generation Capability258

Here, we consider the HARMONICFLOW component of FLOWSITE and investigate its binding struc-259

ture generation capability. This is to find out whether HARMONICFLOW is fit for binder design260

where good structure generation is necessary for taking the 3D structure of the bound ligand into261

account. Additionally, we aim to determine how HARMONICFLOW compares with state-of-the-art262

structure generation and if its use for docking should be further explored.263

Task Setup. This subsection only uses the HARMONICFLOW component of FLOWSITE - the ar-264

chitecture only contains refinement TFN layers, and there is no sequence prediction. The inputs are265

the (multi-)ligand’s chemical graph and the protein pocket’s backbone atoms and residue types (see266

Appendix Table 6 for experiments without residue type inputs). From this, the binding structure of267

the (multi-)ligand has to be inferred. There is also no fake ligand data augmentation. And we per-268

form docking to Distance-Pockets and Radius-Pockets as described in Appendix A.1 and we provide269

preliminary blind docking results in Appendix C270

Baseline. We compare with the state-of-the-art diffusion process of DIFFDOCK [Corso et al., 2023].271

Note that this is not the full DIFFDOCK docking pipeline: Both HARMONICFLOW and DIFFDOCK’s272

diffusion can generate multiple samples and, for the task of docking, a further discriminator (called273

confidence model in DIFFDOCK) could be used to select the most likely poses. We only compare the274
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Table 1: HARMONICFLOW vs. DIFFDOCK DIFFUSION. Comparison on PDBBind splits for
docking into Distance-Pockets (residues close to ligand) and Radius-Pockets (residues within a ra-
dius of the pocket center). The columns ”%<2” show the fraction of predictions with an RMSD to
the ground truth that is less than 2Å (higher is better). ”Med.” is the median RMSD (lower is better).

Sequence Similarity Split Time Split
Distance-Pocket Radius-Pocket Distance-Pocket Radius-Pocket

Method %<2 Med. %<2 Med. %<2 Med. %<2 Med.

DIFFDOCK DIFFUSION 28.4 3.1 16.3 3.9 26.6 3.2 15.5 4.1
HARMONICFLOW 31.8 3.0 24.4 3.2 45.9 2.3 37.8 2.7

3D structure generative models and neither use language model residue embeddings. See Appendix275

E for details on retraining DIFFDOCK.276

PDBBind docking results. In Table 1, we find that our flow matching based HARMONICFLOW277

outperforms DIFFDOCK’s diffusion in producing ligand structures close to the ground truth for278

both splits of PDBBind. This shows that DIFFDOCK’s restriction of the generative process to the279

lower dimensional manifold of rotations, torsions, and translations is not necessary. Flow match-280

ing’s straighter paths, along with our well-chosen prior and self-conditioning, can achieve better281

performance (we investigate flow matching further in Section 4.3). Furthermore, the sampled con-282

formations in Figure 7 and videos of the generation process show that HARMONICFLOW produces283

chemically plausible structures and well captures the physical constraints of interatomic interactions.284

Table 2: Multi-Ligand Docking. Structure genera-
tion performance on Binding MOAD’s multi-ligands.
”%<2” means the fraction of predictions with an
RMSD to the ground truth less than 2Å (higher bet-
ter). ”Med.” is the median RMSD (lower better).

Method %<2 %<5 Med.

EIGENFOLD DIFFUSION 39.7 73.5 2.4
HARMONICFLOW 44.4 75.0 2.2

Binding MOAD multi-ligand docking re-285

sults. For binding site design, it is often nec-286

essary to model multiple ligands and ions287

(e.g., reactants for an enzyme). We test288

this with Binding MOAD, which contains289

such multi-ligands. Since no deep learn-290

ing solutions for multi-ligands exist yet and291

traditional docking methods would require292

side-chain atom locations, we compare with293

EIGENFOLD’s [Jing et al., 2023] Diffusion294

and provide qualitative evaluation in Appendix Figure 7. For EIGENFOLD DIFFUSION, we use the295

same model as HARMONICFLOW, including its improved coordinate update layers and predict x0296

(in what corresponds to x0 prediction in diffusion models), which we found to work better. Table297

2 shows HARMONICFLOW as viable for docking multi-ligands - thus, the first ML method for this298

task with important applications besides binding site design.299

4.2 Question 2: Binding Site Recovery300

Setup. The input to FLOWSITE is the binding pocket/site specified by its backbone and the chemical301

identity of the ligand (without its 3D structure). We use two metrics, sequence recovery (percentage302

of correctly predicted residues) and our new residue similarity aware BLOSUM score defined in303

Appendix A.2.304

Baselines. PIFOLD (no ligand) is the architecture of Gao et al. [2023a] and does not use any ligand305

information. In PIFOLD (2D ligand), we first process the ligand with PNA [Corso et al., 2020] mes-306

sage passing and pass its features as additional input to the PIFOLD architecture. Lastly, GROUND307

TRUTH POS and RANDOM LIGAND POS use the architecture of FLOWSITE without the ligand308

structure prediction layers. Instead, the ligand positions are either the ground truth bound struc-309

ture or sampled from a standard Normal at the pocket’s alpha carbon center of mass. The oracle310

GROUND TRUTH POS method also uses fake ligand data augmentation.311

Pocket Recovery Results. Table 3 shows that FLOWSITE consistently is able to recover the original312

pocket better than simpler treatments of the (multi-)ligand, closing the gap to the oracle method that313

has access to the ground truth ligand structure. The joint structure generation helps in determining314

the original residue types (keeping in mind that these are not necessarily the only or best). RANDOM315
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Table 3: Binding Site Recovery. Comparison on PDBBind and Binding MOAD sequence similarity
splits for recovering residues of binding sites. Recovery is the percentage of correctly predicted
residues, and BLOSUM score takes residue similarity into account. 2D ligand refers to a simple
GNN encoding of the ligand’s chemical graph as additional input. The GROUND TRUTH POS row
has access to the, in practice, unknown ground truth 3D crystal structure of the ligand and protein.

Binding MOAD PDBBind
Method BLOSUM score Recovery BLOSUM score Recovery

PIFOLD (no ligand) 35.2 39.4 40.7 43.5
PIFOLD (2D ligand) 35.7 40.4 42.2 44.5
RANDOM LIGAND POS 38.2 41.8 41.5 43.7

FLOWSITE 44.3 47.0 47.1 48.5

GROUND TRUTH POS 48.4 51.4 51.3 51.2

LIGAND POS further confirms that inferring approximate ligand coordinates, like HARMONICFLOW316

in FLOWSITE, is crucial for recovering the binding pocket.317

4.3 Question 3: Ablations and Flow-Matching Investigation318

Table 4: Flow matching investigation. Variations
of flow matching, diffusion, and architecture choices
compared with our HARMONICFLOW on a PDBBind
sequence similarity split with Radius-Pockets.

Method %<2 %<5 Med.

EIGENFOLD DIFFUSION 21.0 65.2 3.8
VELOCITY PREDICTION 16.4 64.6 3.7
STANDARD TFN LAYERS 16.6 71.9 3.4
NO SELF-CONDITIONING 20.7 69.3 3.4

HARMONICFLOW σ = 0 25.4 69.9 3.2
HARMONICFLOW σ = 0.5 24.4 69.8 3.2

Investigations. EIGENFOLD DIFFUSION,319

as described in 4.1 is an adaption of Jing320

et al. [2022]’s diffusion process. This es-321

sentially replaces the flow matching based322

generative process of HARMONICFLOW323

with a diffusion process. In VELOC-324

ITY PREDICTION, the TFN model pre-325

dicts (x1−x0) instead of x1 meaning that326

LCFM = ∥vθ − (x1 − x0)∥2. In STAN-327

DARD TFN LAYERS, our refinement TFN328

layers are replaced, meaning that there are329

no intermediate position updates - only the330

last layer produces an update. NO SELF-331

CONDITIONING does not use our structure332

self-conditioning. SIGMA=0 uses σ = 0 for the conditional flow, corresponding to a deterministic333

interpolant for training.334

Results. Table 4 shows the importance of our self-conditioned flow matching objective, which335

enables refinement of the binding structure prediction x̃t1 next to updates of xt at little additional336

training time - a 12.8% increase in this experiment. Furthermore, the refinement TFN layers improve337

structure prediction substantially. Lastly, parameterizing the vector field to predict x1 instead of338

(x1 − x0) appears more suitable for flow matching applications in molecular structure generation.339

5 Conclusion340

We proposed the HARMONICFLOW generative process for binding structure generation and341

FLOWSITE for binding site design. Our HARMONICFLOW improves upon the state-of-the-art gen-342

erative process for docking in simplicity, applicability, and performance in various docking settings.343

We investigated how flow matching contributes to this, together with our technical innovations such344

as self-conditioned flow matching, harmonic prior ligands, or equivariant refinement TFN layers.345

With FLOWSITE, we leverage our superior binding structure generative process and extend it to dis-346

crete residue types, resulting in a joint discrete-continuous flow model for designing ligand binding347

pockets. This is an important task for which FLOWSITE is the first general solution. FLOWSITE is348

a step toward binding site design, but recovery results cannot replace biological validation - this is349

future work we pursue. Additionally, we will address enzyme design by incorporating more prereq-350

uisites for catalytic activity besides binding the reactants.351
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Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Liò, and Yu Guang Wang. Graph denoising diffusion for505

inverse protein folding, 2023.506

Yangtian Zhang, Huiyu Cai, Chence Shi, Bozitao Zhong, and Jian Tang. E3bind: An end-to-end507

equivariant network for protein-ligand docking, 2023.508

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng509

Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.510

In The Eleventh International Conference on Learning Representations, 2023. URL https:511

//openreview.net/forum?id=6K2RM6wVqKu.512

12

https://doi.org/10.1038/s41586-023-05696-3
https://doi.org/10.1038/s41586-023-05696-3
https://doi.org/10.1038/s41586-023-05696-3
https://openreview.net/forum?id=6K2RM6wVqKu
https://openreview.net/forum?id=6K2RM6wVqKu
https://openreview.net/forum?id=6K2RM6wVqKu


Figure 5: Visualization of Fake Ligand creation. Depicted is a fake ligand created for the Ubiquitin
protein. Out of all residues that have at least 4 contacts with other residues (apart from those that are
within 7 locations in the chain) a residue is randomly selected as the fake ligand. Then we remove
the residue itself from the protein and all residues that are within 7 locations in the chain.

A Method Details and Explanations513

A.1 Pocket Definitions514

We test docking on the pocket level since that is the structure modeling capability required for the515

binding site design task (in Appendix C, we show preliminary results for docking to the whole516

protein). We define the binding pocket in two ways. The Distance-Pocket definition follows prior517

work [Méndez-Lucio et al., 2021a; Zhou et al., 2023] and includes any residue that has a heavy atom518

within 12 Å of any ground truth ligand heavy atom. This type of pocket might allow the models to519

reason where the ground truth ligand was based on which residues are included. Therefore, we520

additionally use Radius-Pockets: first, we select residues within 5 Å heavy atom distance of any521

ligand atom. The center of mass of these residues’ alpha carbons is the pocket center. The final522

pocket includes all residues with an atom in a radius around the pocket center. This radius is the523

distance between the pocket center and the farthest ligand heavy atom plus 10Å.524

A.2 BLOSUM Score525

Next to sequence recovery, we also evaluate with our BLOSUM Score in an attempt to penalize526

amino acid predictions less if the predicted residue type is similar yet different from the original527

residue. With A ∈ R20×20 being the BLOSUM62 matrix, X ∈ Rn×20 the one hot encoded ground528

truth residues types and X̂ ∈ Rn×20 the predicted residues types the BLOSUM Score is:529

Score(X, X̂) =
1T diag(XAX̂T )

1T diag(XAXT )
(4)

A.3 Fake Ligand Data Augmentation Visualization530

In Figure 5, we visualize the construction of our fake ligands as described in Section 3.2. When531

constructing the fake ligand from a residue, we drop the backbone oxygen and nitrogen of the amino532

acid and keep the carbon, alpha carbon, and the side chain as the ligand’s atoms.533

A.4 Flow Matching Training and Inference534

In Section 3.1, we lay out the conditional flow matching objective as introduced by Lipman et al.535

[2022] and extended to arbitrary start and end distributions by multiple works concurrently [Albergo536

& Vanden-Eijnden, 2022; Albergo et al., 2023; Pooladian et al., 2023; Tong et al., 2023b]. We537

presented conditional flow matching in this more general scenario where the prior p0 and the data538

p1 can be arbitrary distributions, as long as we can sample from the prior.539
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Algorithm 1: Conditional Flow Matching training with x1 prediction and simple constant width
gaussian conditional path.
Input: Training data distribution p1, prior p0, σ, and initialized vector field vθ
while Training do

x0 ∼ p0(x0); x1 ∼ p1(x1); t ∼ U(0, 1);
µt ← tx1 + (1− t)x0;
x ∼ N (µt, σ

2I);
LCFM ← ∥vθ(x, t)− x1∥2;
θ ← Update(θ,∇θLCFM ) ;

return vθ

Algorithm 2: Conditional Flow Matching inference with x1 prediction and simple constant
width gaussian conditional path.
Input: Prior p0, number of integration steps T, and trained vector field vθ
steps← 1;
∆t← 1/T ;
t← 0;
x0 ∼ p0(x0);
xt ← x0;
while steps ≤ T − 1 do

x̃1 ← vθ(xt, t) ;
xt ← xt +∆t(x̃1 − x0) ;
t← t+∆t ;

return xt

Many choices of conditional flows and conditional vector fields are possible. For different applica-540

tions and scenarios, some choices perform better than others. We find it to already work well to use a541

very simple choice of conditional probability path pt(x|x0,x1) = N (x|tx1+(1−t)x0, σ
2), which542

gives rise to the conditional vector field ut(x|x0,x1) = x1 − x0. With this conditional flow and543

with parameterizing vθ to predict x1, the optimization and inference is remarkably straightforward544

as algorithms 1 and 2 show.545

A.5 Self-conditioned Flow Matching Training and Inference546

In Section 3.1, we also explain the self-conditioning training and inference procedure. When addi-547

tionally using self-conditioning, the training and inference algorithms are only slightly modified and548

still very simple as presented in algorithms 3 and 4.549

A.6 FLOWSITE Architecture550

Here, we detail the FLOWSITE architecture as visualized in Figure 6 in more detail. The first half of551

the architecture is an equivariant Tensor Field Network [Thomas et al., 2018] while the second part552

is an invariant architecture with graph attention layers similar to the architecture of PIFOLD [Gao553

et al., 2023a] where edge features are also initialized and updated.554

Radius Graph. The protein and (multi-)ligand are represented as graphs: each residue corresponds555

to a node, and each ligand atom is a node. Edges are drawn between residue nodes if they are within556

50 Å, between ligand nodes if they are within 50 Å, and between the two molecules’ nodes if they557

are within 30 Å. The locations of the residue nodes are given by their alpha carbons, while the atom558

locations provide the node positions for the ligand nodes.559

Node Features. The ligand features as input to the TNF and to the invariant part of the architecture560

are atomic number; chirality; degree; formal charge; implicit valence; the number of connected561

hydrogens; hybridization type; whether or not it is in an aromatic ring; in how many rings it is; and562

finally, 6 features for whether or not it is in a ring of size 5 or 6.563
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Algorithm 3: Conditional Flow Matching training with x1 prediction and simple constant width
gaussian conditional path.
Input: Training data distribution p1, prior p0, σ, and initialized vector field vθ
while Training do

x0 ∼ p0(x0); x1 ∼ p(x1); t ∼ U(0, 1); s ∼ U(0, 1);
µt ← tx1 + (1− t)x0;
x ∼ N (µt, σ

2I);
x̃1 ∼ p0(x̃1);
if s > 0.5 then

x̃1 ← vθ(x, x̃1t));

LCFM ← ∥vθ(x, x̃1t)− x1∥2;
θ ← Update(θ,∇θLCFM ) ;

return vθ

Algorithm 4: Conditional Flow Matching inference with x1 prediction and simple constant
width gaussian conditional path.
Input: Prior p0, number of integration steps T, and trained vector field vθ
steps← 1;
∆t← 1/T ;
t← 0;
x̃1 ∼ p(x0);
x0 ∼ p(x0);
xt ← x0;
while steps ≤ T − 1 do

x̃1 ← vθ(x, x̃1t) ;
xt ← xt +∆t(x̃1 − x0) ;
t← t+∆t ;

return xt

The initial receptor features for the TFN are scalar feature encodings of the invariant residue types564

together with vector features, which are three vectors from the alpha carbon to N, C, and O.565

For the invariant graph attention layer stack, the residue inputs are the invariant geometric encodings566

of PIFOLD [Gao et al., 2023a]. Additionally, they contain the residue type self-conditioning infor-567

mation via embeddings of the previously predicted features ãt1 and the invariant scalar node features568

of the last refinement TFN layer.569

Additionally, radial basis encodings of the sampling time t of the conditional flow are added to all570

initial node features.571

Edge Features. For the Tensor Field Network, the edge features are a radial basis embedding572

of the alpha carbon distances for the protein-to-protein edges, atom distances for the ligand-to-573

ligand edges, and alpha carbon to ligand atom distances for the edges between the protein and574

the ligand. Additionally, the ligand-to-ligand edges features obtain information of the structure575

self-conditioning by also adding the radial basis interatomic distance embeddings of the previously576

predicted ligand coordinates x̃t1 to them.577

Meanwhile, for the invariant graph attention part of the architecture, the ligand-to-ligand edge fea-578

tures are only radial basis embeddings of the interatomic distances. The protein-to-protein edge579

features are given by radial basis encodings of all pairwise distances between the backbone atoms580

N, C, Ca, O, and an additional virtual atom (as introduced by PIFOLD) associated with each residue.581

The edges between the protein and ligand are featurized as the embeddings of the four possible582

distances between a single ligand atom and the four backbone atoms of a residue.583

Tensor Field Network. The equivariant part of FLOWSITE uses our equivariant refinement TFN584

layers based on tensorfield networks [Thomas et al., 2018] and implemented using the e3nn library585

[Geiger et al., 2020]. These rely on tensor products between invariant and equivariant features. We586
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Figure 6: FlowSite architecture. The refinement TFN layers of HARMONICFLOW first update the
ligand coordinates xt−∆t multiple times to produce the structure prediction x̃t1 from which x̃t1 is
computed. The TFN’s invariant features and x̃1 are fed to invariant layers to produce side chain
angles α̃ as auxiliary training targets and the new residue estimate at.

denote the tensor products as ⊗w where w are the path weights. Further, we write the i-th node587

features after the k-th layer as hki for the equivariant Tensorfield network layers. h0
i is initialized as588

described above in the Node Features paragraph. Lastly, Ni denotes the neighbors of the i-th node589

in the radius graph.590

Equivariant TFN Refinement Layer. Each layer has a different set of weights for all four types of591

edges: ligand-to-ligand, protein-to-protein, ligand-to-protein, and protein-to-protein. The layers first592

update node features before updating ligand coordinates based on them. For every edge in the graph,593

a message is constructed based on the invariant and equivariant features of the nodes it connects.594

This is done in an equivariant fashion via tensor products. The tensor product is parameterized by595

the edge embeddings and the invariant scalar features of nodes that are connected by the edge. To596

obtain a new node embedding, the messages are summed:597

hk+1
i ← hki + BN

(
1

|Ni|
∑
j∈Ni

Y (r̂ij) ⊗ψij hkj

)
with ψij = Ψ(eij ,h

k
i ,h

k
j )

(5)

Here, BN is the (equivariant) batch normalization of the e3nn library. The orders of all features are598

always restricted to a maximum of 1. The neural networks Ψ have separate sets of weights for all599

4 kinds of edges. Using these new node features and the previous layer’s ligand position update x̂k600

(or the input positions x̂0 = xt for the first layer), the next ligand position update x̂k+1 is produced601

via an O(3) equivariant linear layer Φ of the e3nn library:602

x̂k+1 ← x̂k+1 +Φ(hk+1) (6)

Invariant Graph Attention Layers. These layers are based on PIFOLD and update both node and603

edge features. The initial features are described in the paragraphs above. We denote these as hli and604

elji for the l-th graph attention layer to disambiguate with the features hki of the equivariant refine-605

ment TFN layers. When aggregating the features for the i-th node, attention weights are first created606

and then used to weight messages from each neighboring node. With || denoting concatenation and607

Ω, Ξ, and Π being feed-forward neural networks, the update is defined as:608

wji ← Π(hlj ||elji||hli)

aji ←
expwji∑

a∈Ni
expwai

vj = Ξ(elji||hlj)

hl+1
i =

∑
j∈Ni

ajivj .

(7)
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We drop the global context attention used in PIFOLD as we did not find them to be helpful for609

sequence recovery in any of our experiments. This was with and without ligands.610

Based on the new node features, the edge features are updated as follows:611

el+1
ji = Ω(hl+1

j ||elji||h
l+1
i ) (8)

B Discussion612

HARMONICFLOW has the ability to produce arbitrary bond lengths and bond angles. This distin-613

guishes it from DIFFDOCK [Corso et al., 2023], which only changes torsion angles, translation, and614

rotation of an initial seed conformer. Thus, unlike DIFFDOCK, HARMONICFLOW would be able to615

produce unrealistic local structures. That this is not the case, as shown in Figure 7 attests to how616

HARMONICFLOW learns physical constraints. Still, we argue that the role of deep learning genera-617

tive models should be to solve the hard problem of finding the correct coarse structure. If one desires618

a conformer with low energy with respect to some energy function, this can be easily and quickly619

obtained by relaxing with that energy function.620

C Additional Results621

C.1 Docking without residue idenitities622

Table 5: HARMONICFLOW vs. DIFFDOCK DIFFUSION without residue idenitites. Comparison
on PDBBind splits for docking without residue identities into Distance-Pockets (residues close to
ligand) and Radius-Pockets (residues within a radius of the pocket center). The columns ”%<2”
show the fraction of predictions with an RMSD to the ground truth that is less than 2Å (higher is
better). ”Med.” is the median RMSD (lower is better). *These runs do not yet use self-conditioning.

Sequence Similarity Split Time Split
Distance-Pocket Radius-Pocket Distance-Pocket Radius-Pocket

Method %<2 Med. %<2 Med. %<2 Med. %<2 Med.

DIFFDOCK DIFFUSION 27.1 3.2 14.3 4.3 22.5 3.6 12.5 4.8
HARMONICFLOW 29.9 3.0 19.2* 3.4* 31.5* 3.0* 29.2* 3.2*

For our binding site design, it is important that the structure modeling of the ligand is accurate given623

the evidence that having a good model of the (multi-)ligand structure is important for recovering624

pockets and given the interlink between 3D structure and binding affinity / binding free energy. In625

the main text Section 4.1, we investigated HARMONICFLOW’s performance for docking with known626

residue identities. However, when using HARMONICFLOW for binding site design, the residue627

identities are not known a prior, and structure reasoning abilities in this scenario are required.628

C.2 Blind Docking629

Table 6: HARMONICFLOW vs. DIFFDOCK DIFFUSION for blind docking. Comparison on
PDBBind splits for blind docking where the binding pocket of the protein is not known, and the
whole protein is given as input. The columns ”%<2” show the fraction of predictions with an
RMSD to the ground truth that is less than 2Å (higher is better). ”Med.” is the median RMSD in Å
(lower is better).

Sequence Split Time Split
Method %<2 %<5 Med. %<2 %<5 Med.

DIFFDOCK DIFFUSION 10.7 40.6 5.9 12.6 44.1 5.6
HARMONICFLOW 10.1 41.9 5.8 20.4 49.4 5.0
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In blind docking, the binding site/pocket of the protein is unknown, and the task is to predict the630

binding structure given the whole protein. While in, e.g., drug discovery efforts and in our binding631

site design task, the pocket is known, many important applications exist where discovering the bind-632

ing site is necessary. In these experiments, the runs take longer to converge than in the pocket-level633

experiments. Thus, the DiffDock runs were trained for 500 epochs while the HARMONICFLOW634

runs were trained for 250 epochs instead of the 150 epochs in the pocket-level experiments. Table635

6, shows that HarmonicFlow is also bett636

C.3 Predicted Complex Visualizations637

We visualize generated structures of HARMONICFLOW in Figure 7 from the PDBBind test set under638

the time-based split of Stärk et al. [2022] in which there are no ligands whose SMILES string was639

already in the training data. The generated complexes show very chemically plausible ligand struc-640

tures even though there are no local structure constraints as in DIFFDOCK and HARMONICFLOW641

has full flexibility in modeling bond angles and bond lengths.642

In Table 5, we provide the docking results without residue identities and find that HARMOICFLOW643

substantially outperforms DIFFDOCK’s diffusion generative process, justifying HARMONICFLOW’s644

use in FLOWSITE for binding site design.645

D Additional Related Work646

D.1 Flow Matching, Stochastic Interpolants, and Schrodinger Bridges647

While our exposition of flow matching in the main text focused on the works of Lipman et al. [2022]648

and Tong et al. [2023b], the innovations in this field were made by multiple papers concurrently.649

Namely, Action Matching [Neklyudov et al., 2023], stochastic interpolants [Albergo & Vanden-650

Eijnden, 2022], and rectified flow [Liu et al., 2022] also proposed procedures for learning flows651

between arbitrary start and end distributions.652

An improvement to learning such flows would be if their transport additionally performs the optimal653

transport between the two distributions with respect to some cost. With shorter paths with respect to654

the cost metric, even fewer integration steps can be performed, and integration errors are smaller.655

Towards this, Tong et al. [2023b] and Pooladian et al. [2023] concurrently propose mini-batch OT656

where they train with conditional flow matching but define the conditional paths between the optimal657

transport solution within a minibatch. They show that in the limit of the batch size, the flow will658

learn the optimal coupling.659

This can be extended to learning Schrodinger bridges in a simulation-free manner [Tong et al.,660

2023a] by learning both a flow and a score or via an iterative flow-matching and coupling definition661

procedure [Shi et al., 2023] akin to rectified flows. Simulation-free here means that the learned662

vector fields no longer need to be rolled out / simulated during training, which is memory and time-663

consuming and prohibits learning Schrodinger bridges for larger applications. This was required for664

previous procedures for learning Schrodinger bridges [Bortoli et al., 2023; Chen et al., 2022].665

D.2 Antibody Design666

Another domain where joint sequence and structure design has already been heavily leveraged is667

antibody design [Jin et al., 2022; Verma et al., 2023; Martinkus et al., 2023]. In this task, the goal668

is to determine the residue types of the complementary determining regions/loops of an antibody to669

bind an epitope. These epitopes are proteins, and we have the opportunity to leverage evolutionary670

information. A modeling approach here only has to learn the interactions with the 20 possible amino671

acids that the epitope is built out of. Meanwhile, in our design task, where we wish to bind arbitrary672

small molecules, we are faced with a much wider set of possibilities for the ligand.673

D.3 Small molecule design674

Another frontier where designing structure and ”2D” information simultaneously has found appli-675

cation is in molecule generation. For instance, Vignac et al. [2023a] and Vignac et al. [2023b] show676

how a joint diffusion process over a small molecule’s positions and its atom types can be used to677

18



successfully generate novel realistic molecules. This task was initially tackled by EDM [Hooge-678

boom et al., 2022] and recently was used to benchmark diffusion models with changing numbers of679

dimensions [Campbell et al., 2023].680

Often, it is relevant to generate molecules conditioned on context. In particular, a highly valuable681

application, if it works well enough, would be generating molecules conditioned on a protein pocket682

to bind to that pocket [Lin et al., 2022; Schneuing et al., 2023]. These applications would be most683

prominent in the drug discovery industry, where the first step in many drug design campaigns is684

often to find a molecule that binds to a particular target protein that is known to be relevant for a685

disease. In our work with FLOWSITE, we consider the opposite task where the small molecule is686

already given, and we instead want to design a pocket to bind this molecule. Here, the applications687

range from enzyme design (for which the first step of catalysis is binding the reactants [Nelson &688

Cox, 2004]) over antidote design to producing new biomedical marker proteins for use in medicinal689

diagnosis and biology research.690

D.4 Protein-Ligand Docking691

Historically, docking was performed with search-based methods [Trott & Olson, 2010; Halgren692

et al., 2004; Thomsen & Christensen, 2006] that have a scoring function and a search algorithm.693

The search algorithm would start with an initial random conformer and explore the energy land-694

scape defined by the scoring function before returning the best scoring pose as the final prediction.695

Recently, such scoring functions have been parameterized with machine learning approaches [Mc-696

Nutt et al., 2021; Méndez-Lucio et al., 2021b]. In these traditional docking methods, to the best of697

our knowledge, only extensions of Autodock Vina [Trott & Olson, 2010] support multiligand dock-698

ing. However, this still requires knowledge of the complete sidechains, which is not available in our699

binding site design scenario.700

E Experimental Setup Details701

In this section, we provide additional details on how our experiments were run next to the ex-702

act commands and code to reproduce the results available at https://anonymous.4open.703

science/r/wolf. In all of the paper, we only consider heavy atoms (no hydrogens).704

Training Details. For optimization, we use the Adam optimizer [Kingma & Ba, 2014] with a705

learning rate of 0.001 for all experiments. The batch size for pure structure prediction experiments is706

4, while that for binding site recovery experiments is 16. To choose the best model out of all training707

epochs, we run inference every epoch for experiments that do not involve structure modeling and708

every 5 epochs for the ones that do. The model that is used for the test set is the one with the best709

metric in terms of sequence recovery or fraction of predictions with an RMSD below 2 Å. When710

training for binding site recovery, we limit the number of heavy atoms in the ligand to 60. We note711

that for the structure prediction experiments for Binding MOAD in Table 2, the dataset construction712

for both methods had a mistake where ligands were selected based on their residue ID, which is713

incorrect because a ligand in a different chain could have the same residue ID - we will correct this714

in the next version of the manuscript. All models were trained on a single A100 GPU. The models715

that involve structure prediction were trained for 150 epochs, while those without structure modeling716

and pure sequence prediction converge much faster in terms of their validation metrics and are only717

trained for 50 epochs. The DIFFDOCK models are all trained for 500 epochs.718

Hyperparameters. We tuned hyperparameters on small-scale experiments in the Distance-Pocket719

setup for HARMONICFLOW and transferred these parameters to FLOWSITE, whose additional pa-720

rameters we tested separately. The tuning for both methods was light, and we mainly stuck with721

the initial settings that we already found to work well. By default, our conditional probability path722

pt(x|x0,x1) = N (x|tx1 + (1 − t)x0, σ
2) uses σ = 0.5 for which we also tried 0.1, 0.3, 0.5, 0.8.723

The number of integration steps we use is 20 for all methods, including EIGENFOLD DIFFUSION724

and DIFFDOCK DIFFUSION. The number of scalar features we use is 32, and we have 8 vector725

features and 6 of our equivariant refinement TFN layers.726

DIFFDOCK DIFFUSION baseline. This only uses the score model, the diffusion generative model727

component of DIFFDOCK [Corso et al., 2023]. We do not use the confidence model, which is728

a significant part of their docking pipeline. Such a discriminator could also be used on top of729
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HARMONICFLOW, and here, we only aim to compare the generative models. For this, we use730

the code at https://github.com/gcorso/DiffDock to train DIFFDOCK with our pocket731

definitions using the same number of scalar features and vector features using 5 of its default TFN732

layers followed by its pseudo torque convolution and center-convolution. We train all experiments733

with DIFFDOCK for 500 epochs.734

EIGENFOLD DIFFUSION baseline. Here, we use an identical architecture as for HARMONICFLOW735

and only replace the flow matching training and inference with the diffusion training and inference736

approach of EIGENFOLD [Jing et al., 2023]. The models were trained in the same settings, and most737

parameters that we use in HARMONICFLOW were first optimized with EIGENFOLD DIFFUSION738

since we used it initially.739

F Dataset Details740

We use PDBBind version 2020 with 19k complexes to evaluate the structure generation capability741

of flow matching and the ability of FLOWSITE to design binders for a single connected ligand.742

We employ two dataset splits. The first is based on time, which has been heavily used in the DL743

community [Stärk et al., 2022; Corso et al., 2023]. The second is sequence-based with a maximum744

of 30% chain-wise similarity between train, validation, and test data. Buttenschoen et al. [2023]745

found DL docking methods to be significantly more challenged by sequence similarity splits.746

For many binding pocket design tasks, it is required to bind multi-ligands. For example, when747

designing enzymes for multiple reactants. Such multi-ligands are present in Binding MOAD. We748

use its 41k complexes with a 30% sequence similarity split carried out as described above. We749

construct our multi-ligands as all molecules and ions that have atoms within 4Å of each other. An750

example of an enzyme with all substrates in the pocket as multi-ligand is in Figure 1.751

F.1 PDBBind752

We use PDBBind dataset [Liu et al., 2017] with protein-ligand complexes of high binding affinity753

extracted and hand curated from the Protein Data Bank (PDB) [Berman et al., 2003]. For this, we754

use two splits.755

Splits. Firstly, the time split proposed by Stärk et al. [2022], which now is commonly used in the756

machine learning literature when benchmarking docking approaches, although Buttenschoen et al.757

[2023] among others found many shortcomings of this split, especially for blind docking. Chiefly758

among them is the fact that of the 363 test complexes, only 144 are not already included in the train-759

ing data if a protein is counted the same based on UniProtID. The split has 17k complexes from 2018760

or earlier for training/validation, and the mentioned 363 test samples are from 2019. Additionally,761

there is no ligand overlap with the training complexes based on SMILES identity. The data can be762

downloaded from https://zenodo.org/record/6408497 as preprocessed by These files763

were preprocessed by Stärk et al. [2022] with Open Babel before ”correcting” hydrogens and flip-764

ping histidines with by running reduce https://github.com/rlabduke/reduce. For765

benchmarking traditional docking software, this preprocessed data should not be employed since766

the hydrogen bond lengths are incorrect. For our deep learning approaches that only consider heavy767

atoms, this is not relevant.768

Secondly, a sequence similarity, which Buttenschoen et al. [2023] found to be a more difficult split769

than the time split for the blind docking scenario. To create this split, we cluster each chain of every770

protein with 30% sequence similarity. The clusters for training, validation, and test are then chosen771

such that each protein’s chains have at least 30% sequence similarity with any other chain in another772

part of the split. This way, we obtain 17741 train, 688 validation, and 469 test complexes. After773

filtering for complexes that have at least one contact (a protein residue with a heavy atom within774

4Å), 17714 train complexes remain while no validation or test complexes are filtered out.775

Dataset Statistics. In Figure 8, we show the number of atoms per ligand in two histograms, while776

Figure 9 shows the number of contacts (a protein residue with a heavy atom within 4Å) per ligand.777

These statistics are for the training data.778
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F.2 Binding MOAD Dataset779

Split. The sequence similarity split that we use for BindingMOAD is carried out equivalently as for780

PDBBind described in Section F.1. This way, we obtain 56649 of Binding MOAD’s biounits for781

training, 1136 for validation, and 1288 as the test set. We discarded some of the biounits and only782

ended up with 54575 of them since 2.1k of them did not contain any other atoms besides protein783

atoms and waters. From these, we only use the complexes denoted as the first biounit to reduce784

redundancy and have only one biounit per PDB ID after which 38477 training complexes remain.785

We further filter out all ligands that have only one contact (a protein residue with a heavy atom786

within 4Å) with their protein to obtain 36203 train, 734 validation, and 756 test proteins with a787

unique PDB ID for each of them.788

Dataset Statistics. Here, we provide statistics for the Binding MOAD training data. In Figure 10,789

we show the number of ligands per protein that is obtained under our definition of ligands and multi-790

ligands. Each ligand in the depicted histogram can either be a multi-ligand or a single molecule.791

Each multi-ligand is only counted once. In Figure 11, we show the number of atoms per ligand in792

two histograms, while Figure 12 shows the number of contacts per ligand.793
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Figure 7: HARMONICFLOW generated complexes. Generated complexes of HARMONICFLOW
for eight randomly chosen complexes in the PDBBind test set in the Distance-Pocket setup with a
time-split where none of the ligands were seen during training.
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Figure 8: Number of atoms per ligand: PDBBind. Histograms showing the number of heavy
atoms for all ligands under our ligand definition. This includes many ions, which can be important
to filter out if not relevant to the desired application.
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Figure 9: Number of protein contacts per Ligand: PDBBind. Histograms showing the number of
contacts that each ligand has with its protein. A contact is defined as having a residue with a heavy
atom within 4A of any ligand heavy atom.
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Figure 10: Number of Ligands per Protein: Binding MOAD. Histograms showing the number of
(multi-)ligands per protein in the Binding MOAD dataset under our ligand definition. Each ligand
here can be a multi-ligand. In that case, it is only counted once.
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Figure 11: Number of atoms per ligand: Binding MOAD. Histograms showing the number of
heavy atoms for all ligands under our ligand definition. This includes many ions, which can be
important to filter out if not relevant to the desired application.
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Figure 12: Number of protein contacts per Ligand: Binding MOAD. Histograms showing the
number of contacts that each ligand has with its protein. A contact is defined as having a residue
with a heavy atom within 4A of any ligand-heavy atom.
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