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Abstract

Large multimodal models such as Stable Diffusion can generate, detect, and classify1

new visual concepts after fine-tuning just a single word embedding. Do models2

learn similar words for the same concepts (i.e. <orange-cat> = orange + cat)?3

We conduct a large-scale analysis on three state-of-the-art models in text-to-image4

generation, open-set object detection, and zero-shot classification, and find that5

new word embeddings are model-specific and non-transferable. Across 4,800 new6

embeddings trained for 40 diverse visual concepts on four standard datasets, we7

find perturbations within an ϵ-ball to any prior embedding that generate, detect, and8

classify an arbitrary concept. When these new embeddings are spliced into new9

models, fine-tuning that targets the original model is lost. We show popular soft10

prompt-tuning approaches find these perturbative solutions when applied to visual11

concept learning tasks, and embeddings for visual concepts are not transferable.12

Code for reproducing our work is available at: anonymous-visual-words.github.io.13

1 Introduction14

Fine-tuning prompts is a widely successful technique for adapting large pretrained models to new15

tasks from limited data [20, 23, 41, 9]. In language modelling, these prompts can efficiently teach16

pretrained language models specialized tasks, such as reading tables [23]. In text-to-image generation,17

they can embed subjects with unique, often hard-to-describe appearances into the generations of a18

diffusion model [9, 38]. Large multimodal models, such as Stable Diffusion [37], OWL-v2 [30], and19

CLIP [34, 3, 8], can generate, detect, and classify diverse visual concepts not present in their training20

data after fine-tuning just a single word embedding representing that concept in their prompt [43].21

Do these models learn similar words for the same visual concept? There is an emerging hypothesis22

in multimodal machine learning that text-based models learn to process visual information [25, 18],23

and acquire similar representations for visual information [13, 27], despite training purely on text.24

This investigation aims to determine if the hypothesis extends to visually-grounded soft prompts, and25

whether these prompts converge to a solution that can be re-used by other models, akin to Figure 1.26

For example, do text-based models that can generate, detect, and classify various species of cats27

learn similar words for orange cats (i.e. <orange-cat> = orange + cat)? We conduct a large-scale28

analysis on three state-of-the-art models in text-to-image generation, open-set object detection, and29

zero-shot classification, and find that new word embeddings are model-specific and non-transferable.30

We optimize 4,800 new embeddings for Stable Diffusion [37], OWL-v2 [30], and CLIP [34, 3, 8] to31

generate, detect, and classify 40 diverse visual concepts in four standard datasets with high fidelity.32

Interestingly, <orange-cat> ̸= orange + cat for any model and concept tested. Instead, for all tested33

models we find perturbations within an ϵ-ball to any prior embedding that generate, detect, and34

classify an arbitrary visual concept. We refer to this behavior as fracturing of the embedding space.35

Fractured models have several noteworthy properties. First, their prompts are difficult to interpret:36

prompts for orange cats may be close to prompts for blue cars, and far from prompts for black cats.37

Second, their prompts are not transferable: when embeddings trained for one model are spliced into38

the prompt of a new model, the second model ignores fine-tuning that targets the original model.39
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Figure 1: Large multimodal models can learn new words that represent specific concepts, like <black-dog>
for the black Labrador retriever on the left in the figure. Do models learn similar words for the same concept?
We study the interoperability of new word embeddings that encode visual concepts across three models and
tasks, and show that popular soft prompt-tuning approaches find model-specific and non-transferable solutions.

2 Transfer Evaluation Methodology40

Finding words for visual concepts across models involves finding a map between the embedding41

spaces of different models. We call this mapping the Transfer Function T (v), depicted in Figure 1.42

The goal of the Transfer Function is to map word representations for visual concepts from the43

vector space X = Rdx for word embeddings in one model, to the vector space Y = Rdy for word44

embeddings in another model. X may correspond to Stable Diffusion [37] word embeddings for a45

generation task, and Y may be OWL-v2 [30] word embeddings for a detection task. Given these46

vector spaces, the Transfer Function predicts the representation x⃗(w) in the vector space X for a47

word w originally from the vector space Y given just the word vector representation y⃗(w).48

T y→x : Y → X = argmin
T

Ew∼pw∥x⃗(w)− T (y⃗(w))∥22 (1)

The Transfer Function T (v) minimizes the average prediction error between transferred word embed-49

dings T (y⃗(w)) and real word embeddings x⃗(w) from the vector space X . We average this prediction50

error over a uniform distribution pw of the words that exist in both vector spaces X and Y . In our51

experiments on Stable Diffusion 2.1 [37] and OWL-v2 [30], the number of words in pw is large (>52

40,000), much larger than the number of components dx and dy in each vector space.53

2.1 Evaluating Words On Transferred Tasks54

Using Equation 4, we estimate Transfer Functions between all six ordered subsets of three state-of-55

the-art models, and evaluate words optimized for visual concepts on one task (such as generation),56

and transferred to the same visual concepts on another task (such as classification). Consider a dataset57

D of images I depicting a specific visual concept, such as a black Labrador retriever, and task-specific58

annotations ay, such as bounding boxes (ay ∈ Rb×4), or class labels (ay ∈ N). We first optimize59

word vector embeddings v⃗y ∈ Y to minimize a task-specific loss function Ly. We then zero-shot60

transfer v⃗y to task x using the linear map v⃗x = T y→xv⃗y, and evaluate a task-specific performance61

metric Mx. Loss functions and performance metrics used for each task are shown in Table 1.62

EI,ax∼Dtest Mx(T
y→xv⃗y, I, ax) s.t. v⃗y = argmin

v⃗
EI,ay∼Dtrain Ly(v⃗, I, ay) (2)

We use standard loss functions and performance metrics adapted from recent literature when training63

and evaluating words optimized for visual concepts. Each loss function and performance metric is64

discussed further in Section I. Now equipped for training, evaluating, and transferring words across65

models, we can ask our motivating question: do models learn similar words for the same concepts?66
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Figure 2: Visual word embeddings trained for one task (i.e. generation) perform well on that task, but may
not perform well when transferred to another task (i.e. generation → detection). In certain directions, such as
classification → generation, transfer works better than others. To understand when transfer fails, we perform
extensive ablations across four standard datasets, and three models in generation, detection, and classification.

3 Soft Prompts Are Model-Specific67
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Figure 3: Generations (rows 2-4) from Sta-
ble Diffusion for target concepts (top row)
from the DreamBooth and PASCAL datasets.
The second row trains word embeddings for
generation. The third row transfers word em-
beddings from classification to generation.
The final row transfers from detection.

Prompts optimized for visual tasks can perform great in-68

domain, but are typically not re-usable. In most transfer69

scenarios in Figure 2, words optimized for one task can’t70

solve a different task than they were trained on with com-71

parable fidelity to in-domain training. Words optimized for72

classification transfer best, achieving up to 84% of the per-73

formance of in-domain training for generation (PASCAL),74

and up to 28% of the in-domain detection performance75

(ImageNet). Words optimized for detection are least trans-76

ferable, achieving up to 26% of in-domain classification77

performance (COCO), and up to 30% of in-domain gen-78

eration performance (PASCAL). Words optimized for gen-79

eration are in the middle in terms of their transferability,80

attaining up to 59% of the in-domain classification perfor-81

mance (COCO), and up to 28% of the in-domain detection82

performance (ImageNet). Generation shows a significant83

difference in performance between words transferred from84

classification vs. detection, what’s happening here?85

Understanding The Results Using generation as a case86

study, we show images generated by Stable Diffusion 2.187

in Figure 3 using prompts trained for generation (second88

row), transferred from classification (third row), and from89

detection (fourth row). We select two fine-grain concepts90

from the DreamBooth dataset, and two common concepts91

from the PASCAL dataset. Prompts trained for generation succeed at learning both fine-grain92

details for subjects in the DreamBooth dataset, and common classes in PASCAL. Prompts trained93

for classification miss fine-grain details, but learn common classes. Prompts from detection miss94

fine-grain details, and common classes when transferred to generation, explaining trends in Figure 2.95

4 The Embedding Space Is Fractured96

Results in Section 3 show that most embeddings become random when transferred. We explore this97

phenomenon by considering a constrained objective for soft prompts in Equation 3, where given an98

anchor word wanchor that we initialize v⃗ to, and a threshold δ, we constrain solutions for v⃗ to an l2-ball99

of radius δ using projected gradient descent. Transfer and evaluation remain the same as discussed in100

Section I. We conduct a large-scale experiment, optimizing 4,800 prompts for 40 visual concepts101
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Figure 4: Example generations from Stable Diffusion 2.1 [37] for various concepts (row labels) using solutions
found in the immediate neighborhood of unrelated words (column labels). We consistently find new words for
generating arbitrary concepts near unrelated anchor words across DreamBooth (first three rows), ImageNet,
COCO, and PASCAL VOC (examples in Appendix N). In several cases, near-identical images are generated by
the diffusion model from two distinct prompts constrained to unrelated words in the embedding space.

across four standard datasets, three models, and four constraint thresholds δ ∈ {0.1, 0.2, 0.5, 1.0}.102

v⃗y = argmin
v⃗

EI,ay∼Dtrain Ly(v⃗, I, ay) s.t.
∥v⃗ − y(wanchor)∥2

minw ̸=wanchor ∥y(w)− y(wanchor)∥2
≤ δ (3)

This experiment controls where solutions are located in the embedding space, to help us understand103

the relationship between their location, and what gets transferred. Equipped with this tool, we can104

ask where performant solutions are located, and why some solutions transfer better than others.105

4.1 Performant Solutions Are Everywhere106

Near the representation for any word in embedding space, there is a perturbation ϵ that causes models107

to generate, detect, and classify an arbitrary unrelated visual concept. For example, the representation108

in the top-left of Figure 4 is closest to the cat vector, but Stable Diffusion generates a red vase.109

This behavior is consistent across three tested models, four standard datasets, and 40 diverse visual110

concepts, suggesting it may be a general phenomenon in Large Multimodal Models. We name this111

phenomenon fracturing of the vector embedding space, as the set of word vectors that encode (i.e.112

generate) an arbitrary visual concept is disconnected, and parts of the set are close to every anchor113

word tested. Examples of these solutions are shown in Figure 4, where each row corresponds to a114

visual concept from a standard dataset, and each column represents an anchor word. In several cases,115

an identical image is generated by perturbations near two unrelated anchor words, such as generations116

for the duck concept (second row) for the vase (column two) and candle anchors (column four).117

5 Discussion118

This work contributes a large-scale study of word embeddings that encode specific visual concepts119

across generation, detection, and classification tasks. We provide a benchmark for training soft120

prompts on a diverse set of visual concepts, and evaluating their transferability across three models.121

We show that certain embeddings are transferable between certain models, such as common concepts122

on the PASCAL task that transfer from classification → detection. In the majority of cases, soft123

prompts for visual concepts are model-specific, and to understand why, we conduct a large-scale124

ablation, training soft prompts constrained to the immediate neighborhood of different anchor words.125

We show that initialization does not matter as performant solutions are located everywhere in the126

embedding space, and non-transferable solutions resemble perturbations akin to adversarial examples.127

Our work aims to galvanize the interoperability of large multimodal models following Figure 1,128

allowing prompts trained for generating black Labradors to be re-used for detection, and other tasks.129

Transferring prompts can significantly improve the adaptability and cost of machine learning systems130

by eliminating the need to re-train prompts when new models are released. We highlight the difficulty131

of transferring soft prompts for current multimodal models, and study why transfer often fails.132
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A Limitations & Safeguards317

We employ pretrained diffusion models, object detectors, and classifiers in this work, and these318

models are known to have biases, obtained from their training data. Diffusion models in-particular319

can generate harmful or dangerous content, including graphic imagery of violence, and pornography.320

We employ the Stable Diffusion safety checker to flag generations after transferring soft prompts321

for unsafe content as a mitigation strategy for this potential limitation. Transferring soft prompts322

currently does not perform very well outside of certain common concepts, and one limitation of323

this paper is its scope: we do not propose new methodology for transferring soft prompts with high324

fidelity. Rather, we benchmark popular methods for soft prompt-tuning on three recent models, and325

show that most prompts are not transferable. Our experiments suggest that non-transferable prompts326

have certain properties that can be used to identify them, but turning this identification strategy into a327

mitigation method is outside the scope of this paper, and a challenge that we leave for future research.328

B Ethical Considerations329

Diffusion models currently require pristine data showing a subject in clear view in order to generate330

new photos of that subject. Transferring soft prompts from an object detector has the potential to331

allow for training on less pristine data that shows the subject amidst many distracting objects. One332

potentially harmful consequence of transfer between object detection models and generative models333

is related to privacy. Individuals that don’t upload photos of themselves online are currently protected334

from their likeness being generated by diffusion models. However, transfer from object detectors335

to generative models would allow for their likeness to be generated, even when photos only show336

them in crowded spaces with many other people. Likewise, transferring prompts from generation to337

detection allows for the rapid creation of detectors for specific individuals. This technology could be338

used by malicious actors to track the activity of specific individuals, invading their privacy.339

C Broader Impacts340

Transferring prompts for specialized tasks significantly improves the adaptability and cost of machine341

learning systems by removing the need to re-train when new models are released. The cadence of342

multimodal machine learning is such that new models are released every month, and the state-of-the-343

art is in constant flux. Currently, soft prompts trained for older models are discarded when newer344

models are released, or when the task changes (i.e. classification becomes detection). Enabling the345

re-use of soft prompts would allow users to download prompts trained by someone else, like plugins,346

even when the original use-case for that soft prompt was for a different task (such as generation).347

One negative broader impact that results from improved transferability is that soft prompts encoding348

negative and harmful behaviours become easier to use and maintain. Currently, harmful prompts349

become obsolete quickly as newer models are released, but once they can be transferred, they become350

permanent. Mitigation strategies for this risk could involve moderating online databases containing351

soft prompts to remove ones that perpetuate harmful behaviors, and filtering the outputs of models352

using the soft prompts to directly remove the harmful content (in the same vein as a safety checker).353

D Related Works354

Text-To-Image Generation. With the advent of diffusion-based architectures, large-scale gen-355

erative models have developed impressive photo-realism. Approaches like Stable Diffusion [37],356

DALL-E 2 [35], and Imagen [39] employ diffusion-based approaches [11, 42] that start from an initial357

Gaussian noise map, and iteratively denoise the image over several denoising diffusion steps. These358

approaches incorporate pretrained text-encoders, such as CLIP [34] in Stable Diffusion [37], to guide359

generation in the diffusion process. Guidance is typically applied through Classifier-free Guidance360

[12], which allows the influence of the text-encoder to be increased, at the expense of generation361

quality. Diffusion models have remarkable flexibility, and can generate new subjects from a handful362

of examples by learning embeddings for pseudo tokens representing the subject in the prompt [9, 43].363

Fine-tuning both the model and the prompt, as in Dreambooth [38], leads to improved generation364

of subjects, while retaining the controllability of pseudo tokens. These pseudo tokens for diffusion365

models are an instance of prompts encoding visual concepts, and our analysis applies to them.366
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Open-Vocabulary Object Detection. Parallel to work in generation, large-scale object detection367

models have developed a comparable strong versatility, and can detect new objects from short368

descriptions of their appearance (i.e. detect black dog) [50, 26, 30]. Models like Grounding DINO369

[26], SEEM [50], and OWLv2 [30] employ a pretrained text encoder to produce representations for370

classifying bounding boxes. In OWLv2 [30], representations from a pretrained CLIP [34] text encoder371

are contrasted with region-based representations from a vision transformer backbone. Grounding372

DINO [26], and SEEM [50] employ representations from a pretrained text encoder (BERT [6], and373

UniCL [47], respectively) to directly guide bounding box proposal. We show open-vocabulary374

object detectors can detect new objects from a handful of examples by optimizing a single new word375

embedding for the object in their prompt. Furthermore, our analysis shows many of the properties of376

these new words in open-vocabulary object detection are the same as for text-to-image generation.377

Zero-Shot Classification. We use CLIP [34] for zero-shot classification. We insert new word378

embeddings optimized for classifying new visual concepts in the prompt of the CLIP text encoder,379

and contrast text representations with image representations from the CLIP vision encoder on test380

images. Prior work shows CLIP is an effective zero-shot classifier on open-vocabulary tasks [34, 31].381

We use checkpoints from OpenAI CLIP [34], OpenCLIP [3], and Data Filtering Networks [8], trained382

on LAION-5B [40]. Diffusion models can also be used as zero-shot classifiers [21, 4], but we383

focus on CLIP for better task coverage. Our analysis shows that soft prompts learned for zero-shot384

classification share properties with open-vocabulary object detectors and text-to-image models.385

Prompt-Tuning. The word embeddings we optimize for visual concept learning tasks are closely386

related to prompt-tuning [20, 23]. Prompt tuning aims to find a prefix or an entire prompt that causes387

a pretrained language model to perform a specialized task, such as reading tables [20, 23]. These388

methods treat the prompt as a trainable parameter, and optimize the embeddings of the prompt to389

minimize a task loss function. Prior work has shown the resulting soft prompts in language modelling390

tasks are hard to interpret [16], as their closest discrete prompts are often unrelated to the desired task.391

Transferring learned prompts is an important task in jail-breaking LLMs [49, 36], and researchers are392

searching over discrete prompts [45, 41, 49, 36]. In pure language modelling tasks, researchers have393

shown that certain soft prompts can transfer between models with the same architecture and task, but394

different weights [32, 14, 46]. We extend this investigation to visual tasks, and models with different395

architectures, trained on different label modalities (images, bounding boxes, and class labels).396

Adversarial Examples. The perturbative structure of word embeddings that encode visual concepts397

are akin to an adversarial attack on the embeddings of text encoders. Adversarial robustness is398

an extensively studied field in computer vision [10], with a variety of attack methods, including399

[10, 1, 28, 19, 2], and defense methods, including [28, 33, 44, 15]. Adversarial attacks in computer400

vision traditionally focus on modifying the pixels in an image, whereas we modify word embeddings.401

Adversarial attacks on language are in their infancy, including jail-breaking approaches [49, 36], and402

typically involve searching over discrete prompts [48, 22], rather than continuous embeddings.403

E Finding A Linear Transfer Function404

Solving the optimization problem given by Equation 1 is hard in general, and to simplify the405

investigation, we restrict our focus to the class of linear Transfer Functions. This restriction transforms406

the hard problem in Equation 1 into a Linear Least Squares estimator, which has a closed-form407

solution. Consider a pair of matrices X ∈ Rn×dx and Y ∈ Rn×dy , where each pair of rows in X and408

Y is a pair of word vector embeddings x⃗(w) and y⃗(w) for a word w contained in the support of the409

distribution pw. The Linear Least Squares estimator we employ for T y→x is given below.410

T y→x = argmin
T

Ew∼pw∥x⃗(w)− T y⃗(w)∥22 = (Y TY )−1Y TX (4)

One can interpret the map T y→x as lining up the directions in the vector spaces X and Y that411

correspond to the same visual concepts. Word embeddings often have algebraic relationships [29],412

and a linear Transfer Function preserves these relationships by distributing over addition.413

10



Task Loss Function Performance Metric

Generation EI∼Dtrain ∥ϵ− ϵθ(
√
αtI +

√
1− αtϵ, t, v⃗)∥2 EI∼pθ(·|v⃗) 1[ I has the concept ]

Detection EI,b,w∼Dtrain [w · (e⃗object(I, b)
T e⃗text(v⃗))] Mean Average Precision

Classification EI,w∼Dtrain [w · (e⃗image(I)
T e⃗text(v⃗))] Classifier Accuracy

Table 1: Loss Functions and Performance Metrics. We benchmark transfer of word embeddings for visual
concepts across generation, detection, and classification. In each row, I corresponds to an image, b to an object
bounding box, and w ∈ {−1, 1} to a weight multiplied onto the loss function. This weight controls whether
the objective is maximized or minimized, where w = −1 when the image and bounding box contain the target
concept, and w = 1 otherwise. The functions e⃗ are image and text encoders that return vector representations:
e⃗image is the CLIP vision encoder, e⃗text is the CLIP text encoder, and e⃗object is the OWL-v2 region feature proposer.

F Evaluation Metrics414

For tuning prompts with Stable Diffusion 2.1 [37], we use the denoising loss function originally415

proposed in Ho et al. 2020 [11], where the goal is to predict a noise map ϵ added to an image I at416

a particular timestep in the diffusion process t. We optimize the word vector embedding v⃗ so that417

Stable Diffusion generates images of a particular class (such as black Labrador). This optimization418

uses a training dataset Dtrain, and a separate dataset Dtest that contains different images of the same419

visual concept (such as black Labrador) is used for evaluation. For evaluating generation, we measure420

the probability that generations contain the target visual concept, measured by OpenAI’s pretrained421

CLIP L-14 model given the prompt "a photo of {visual_concept_name}". We build on Textual422

Inversion [9] with a transfer step, shown in Figure 5. Losses and metrics are listed in table 1.423

G Dataset Preparation424

We employ the 2014 ImageNet detection dataset [5], the DreamBooth dataset [38], COCO [24],425

and PASCAL VOC [7]. For each dataset, we select 10 concepts uniformly at random from the426

available classes to use for benchmarking, and select 8 images per concept from the training set. See427

Appendix L These cover a wide range of concepts likely to be encountered in the wild. For ImageNet,428

each image is annotated with an integer class label, and a set of bounding boxes that contain the target429

concept. For the DreamBooth dataset, bounding box labels are missing. To obtain bounding box430

labels, we ran a pretrained OWL-v2 on every image using the name of the subject as the prompt, and431

manually verified the labels as correct. For COCO and PASCAL VOC, class labels are not present,432

so we assign each image a class label equal to the class of the largest bounding box.433

H Model Details434

We analyze three state-of-the-art models in text-to-image generation, open-set object detection, and435

zero-shot classification. Each model accepts a text-based prompt as input, containing the new word436

to be optimized (such as <dog> for the dog concept). For generation, we choose Stable Diffusion437

2.1 [37], a latent diffusion-based generative model. For detection, we select OWL-v2 [30], a two-438

stage object detection model with a region proposal stage, and a classification stage that contrasts439

region features with text encodings of class names. For classification, we employ Data Filtering440

Networks [8], which use CLIP-based [34] contrastive training on a filtered dataset. These models441

have different input requirements. We resize images to 768x768 pixels when optimizing for Stable442

Diffusion [37], 960x960 for OWL-v2 [30], and 224x224 for Data Filtering Networks [8].443

I Experiment Details444

Training We take all combinations of models, datasets, and concepts, and perform 10 randomized445

trials, where we vary the initialization word used to seed the optimization algorithm. Initialization446

words are selected as the closest single token in the model’s tokenizer to the name of a concept in the447

dataset. For example, ’sombrero’ tokenizes to multiple subwords, so we use ’hat’ for its initialization448

word. This choice ensures that our experiment accounts for both good and poor initializations. We449

11



Exemplar Images

Predict
Noise

Text
Encoder A

Minimize

Test Image

Text
Encoder B

Transferring
Generation → Detection

Detect
Instances

Zero-Shot Detections

“ a photo of <orange-cat> ” “ <orange-cat> ”

Noisy Image

Loss Function Prediction

Figure 5: Transferring words optimized for generation to detection tasks. We fine-tune the vector embeddings
for new words (such as <orange-cat> for the orange cat in the figure) to minimize a noise prediction loss for
generation. Vector embeddings are transferred from generation to detection using the Transfer Function T (v⃗),
and used to produce zero-shot instance detections for the target visual concept (in this case, orange cats).

optimize the embeddings for new word tokens using the Adam [17] optimizer with a learning rate of450

0.0001, and a batch size of 8 (these hyperparameters are shared across all models). We train for 1000451

gradient descent steps, and report final performance metrics using the optimized word embedding.452

Loss Functions For generation, we employ the standard reparameterized denoising objective,453

introduced by Ho et al. in DDPM [11]. For detection, we maximize the cosine similarity between the454

text and region feature containing the target object, and minimize cosine similarity to all other region455

features proposed by OWL-v2 [30] in the image. For classification, we maximize cosine similarity456

between text and images of the target concept, and minimize cosine similarity to images that don’t457

contain the target concept. Table 1 shows the exact loss definitions.458

Metrics For generation, we report the rate at which an OpenAI CLIP L-14 [34] classifier predicts459

that generations are the target class (the set of class labels is the set of concepts names for that dataset460

from Appendix L), which we call Generation Accuracy in Table 1. For detection, we report the461

Mean Average Precision of bounding box predictions from OWL-v2 [30] on images from held-out462

validation sets, annotated with bounding boxes. For classification, we report DFN CLIP-based [8, 34]463

classifier accuracy given images of the target concept, and unrelated concepts, from validation sets.464

All metrics are reported as 95% confidence intervals over 100 randomized trials.465

J Performance Of Constrained Soft Prompts466

Performance Quickly Saturates We measure performance of solutions in the fractured embedding467

space for different constraint levels δ ∈ {0.1, 0.2, 0.5, 1.0}, and find their performance is indistin-468

guishable from unconstrained solutions. Figure 6 shows that performance saturates at a constraint469

level of δ = 0.5, when the nearest neighbor is still the anchor word wanchor. We observe that for all470

constraint levels δ > 1, in-domain performance does not improve, despite the larger set of possible471

solutions. These results suggest that initialization is not very important, as performant solutions are472

likely close to any initialization. Instead, the data provided to the optimizer is likely more important.473

K Perturbations Target The Final Layers474

Results in Section 4.1 show that performant solutions are located everywhere in the embedding space,475

and most of these solutions are non-transferable. How can we tell these solutions apart from the476

cases in Section 3 that are transferable? One characteristic that identifies non-transferable solutions is477

their effect on the activations of the text encoder. Perturbative solutions like in Figure 6 generally478
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Figure 6: Performance (y-axis) of word vectors optimized to cause generation, detection, and classification of
new visual concepts, for different constraint levels (x-axis). In-domain performance saturates at a constraint
level of δ = 0.5, which corresponds to solutions where the nearest existing word vector is the anchor wanchor.
Constrained solutions perform well in-domain, but typically don’t perform well on transferred tasks for δ < 1.
Each line in the figure corresponds to the 95% confidence interval of 100 randomized trials for 10 concepts, and
10 anchor words per dataset. Refer to Appendix L for the concepts and anchor words used for each dataset.

target the final layers of the text encoder, and lead to a disagreement between early and later layers.479

Figure 7 shows generations from Stable Diffusion [37] when truncating the text encoder to just the480

first N transformer blocks (block = Norm → Attention → Residual → Norm → MLP → Residual).481

The bottom row shows TSNE visualizations of the pooling token activations at four evenly spaced482

layers in the text encoder of Stable Diffusion when generating concepts from the ImageNet [5] task.483

Activations initially cluster around the anchor concept, i.e. strawberry, and generations from early484

layers yield the anchor concept, strawberry, instead of the target concept we optimized for, sombrero.485

When transferred (visualizations in Appendix O), clusters and generations stay mismatched.486

L Selected Concepts & Anchor Words487

In this section, we discuss the concepts that were selected from ImageNet [5], COCO [24], PASCAL488

[7], and the DreamBooth dataset [38]. These concepts were selected uniformly at random without489

replacement from the available classes in each dataset. Ten classes were sampled per dataset in490

order to reduce the computational complexity of the experiments in the paper (results take 3 days to491

produce on just 40 visual concepts). These classes cover a diverse set of visual concepts.492

On the ImageNet dataset [5], we select [’strawberry’, ’harp’, ’sturgeon’, ’gorilla’,493

’throne’, ’pelican’, ’honeycomb’, ’barrel’, ’sombrero’, ’scuba diver’] as tar-494

get concepts.495

On the DreamBooth Dataset [38], we select [’cat2’, ’vase’, ’duck_toy’, ’candle’,496

’colorful_sneaker’, ’backpack_dog’, ’grey_sloth_plushie’, ’fancy_boot’,497

’clock’, ’pink_sunglasses’] as target concepts.498

On the COCO dataset [24], we select [’laptop’, ’scissors’, ’donut’, ’bear’, ’cup’,499

’dog’, ’bottle’, ’umbrella’, ’cat’, ’remote’] as target concepts.500

On the PASCAL VOC dataset [7], we select [’airplane’, ’bicycle’, ’bird’, ’boat’,501

’person’, ’train’, ’car’, ’cat’, ’horse’, ’cow’] as target concepts.502
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Figure 7: Prompts optimized for visual concepts target the final layers in text encoders. We show images gener-
ated by Stable Diffusion when truncating the text encoder to the first N layers, and create TSNE visualizations of
the text encoder activations for the pooling token at four evenly spaced layers. Each color represents a different
visual concept. Clusters in plots 1-16 represent anchor words from Section 4.1, which the activations cluster
around instead of the target concept. When truncating the text encoder to just these layers, the anchor word
(i.e. strawberry) is generated instead of the target concept (sombrero). Only by the final layers are clusters and
generations correct. When transferred (visualizations in Appendix O) clusters and generations stay mismatched.

In addition to selecting concepts, we select anchor words that tokenize to a single token across all of503

the tested models. These are derived from the above target concepts.504

On the ImageNet dataset [5], we select [’strawberry’, ’harp’, ’sturgeon’, ’gorilla’,505

’throne’, ’pelican’, ’honeycomb’, ’barrel’, ’hat’, ’scuba’] as anchor words.506

On the DreamBooth Dataset [38], we select [’cat’, ’vase’, ’duck’, ’candle’,507

’sneaker’, ’backpack’, ’plush’, ’boot’, ’clock’, ’sunglasses’] as anchor words.508

On the COCO dataset [24], we select [’laptop’, ’scissors’, ’donut’, ’bear’, ’cup’,509

’dog’, ’bottle’, ’umbrella’, ’cat’, ’remote’] as anchor words.510

On the PASCAL VOC dataset [7], we select [’airplane’, ’bicycle’, ’bird’, ’boat’,511

’person’, ’train’, ’car’, ’cat’, ’horse’, ’cow’] as anchor words.512

M Hyperparameters513

In this section, we enumerate the hyperarameters used in the experiments in the paper. We choose514

hyperparameters agnostic to the model and task, so that results in the experiments are general, and515

not specific to the model. In Table 2 we note the HuggingFace model ID used, model configuration516

details, and hyperparameters from training, and evaluation.517

N More Examples518

In this section, we show more examples of generations from Stable Diffusion for perturbations519

to various unrelated anchor words in the embedding space. We show results for all combinations520

of 10 target concepts (row labels) and 10 anchor words (column labels) on ImageNet [5], COCO521

[24], PASCAL [7], and the DreamBooth dataset [38]. In several cases, nearly identical images are522

generated by Stable Diffusion for perturbations near to different unrelated anchor words.523
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Hyperparameter Name Hyperparameter Value
Generation Model Name Stable Diffusion 2.1 [37]
Generation Model HuggingFace ID stabilityai/stable-diffusion-2-1
Generation Image Size 768 x 768
Detection Model Name OWL-v2 [30]
Detection Model HuggingFace ID google/owlv2-base-patch16-ensemble
Detection Image Size 960 x 960
Classification Model Name Data Filtering Networks [8]
Classification Model HuggingFace ID apple/DFN2B-CLIP-ViT-L-14
Classification Image Size 224 x 224
Examples Per Concept 8
Embedding Vectors Per Concept 4
Denoising Steps 50
Batch Size 8
Learning Rate 1e-04
Gradient Descent Steps 1000
Optimizer Adam
Adam Beta1 0.9
Adam Beta2 0.999
Adam Epsilon 1e-08
Weight Precision float16

Table 2: Hyperparameters used in the experiments of the paper. These parameters are held constant
across all datasets and models. These choices are adapted from relevant prior work.

O More Visualizations524

We provide more TSNE visualizations of the text encoder activations for different models and datasets525

in this section. Trends discussed in Section K hold across all models and datasets. Perturbative soft526

prompts like those found in Section 4.1 target the final layers in text encoders, and early activations527

in text encoders disagree with later activations. Generating images when truncating the text encoder528

to the first N layers leads to generations of the anchor work, instead of the target concept we are529

optimizing for (see Figure 7). When perturbative solutions are transferred, this transition stops.530

Fine-tuning that targets the final layers of text encoders does not transfer, and Figure 18 shows that531

activations stop clustering by concept (color) when soft prompts are transferred.532
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Figure 8: Visualizations of detections from OWL-v2 [30] using new embeddings optimized for
detecting visual concepts on COCO [24]. Performant solutions for detecting arbitrary target concepts
(row labels) are found with a constraint threshold δ = 0.5 of unrelated anchor words (column labels).
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Figure 9: Visualizations of detections from OWL-v2 [30] using new embeddings optimized for
detecting visual concepts on PASCAL [7]. Performant solutions for detecting arbitrary target concepts
(row labels) are found with a constraint threshold δ = 0.5 of unrelated anchor words (column labels).
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Figure 10: Visualizations of generations from Stable Diffusion 2.1 [37] using new embeddings
optimized for generating visual concepts on ImageNet [5]. Performant solutions for generating
arbitrary target concepts (row labels) are found with a constraint threshold δ = 0.5 of unrelated
anchor words (column labels). In several cases, different solutions far apart generate the same image.
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Figure 11: Visualizations of generations from Stable Diffusion 2.1 [37] using new embeddings
optimized for generating visual concepts on DreamBooth [38]. Performant solutions for generating
arbitrary target concepts (row labels) are found with a constraint threshold δ = 0.5 of unrelated
anchor words (column labels). In several cases, different solutions far apart generate the same image.
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Figure 12: Visualizations of text encoder activations for OWL-v2 [30] on COCO [24] at four evenly
spaced layers when optimizing soft prompts for detecting visual concepts (colored points), constrained
to the neighborhood of various anchor tokens (clusters in plots 1-8).
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Figure 13: Visualizations of text encoder activations for OWL-v2 [30] on PASCAL [7] at four
evenly spaced layers when optimizing soft prompts for detecting visual concepts (colored points),
constrained to the neighborhood of various anchor tokens (clusters in plots 1-8).

40 20 0 20 40

20

0

20

40
Text Encoder Layer 1

40 20 0 20 40
40

20

0

20

40
Text Encoder Layer 4

40 20 0 20 40

20

0

20

Text Encoder Layer 8

40 20 0 20 40
40

20

0

20

40

Text Encoder Layer 12

strawberry harp sturgeon gorilla throne pelican honeycomb barrel sombrero scuba diver

Figure 14: Visualizations of text encoder activations for DFN CLIP [8, 34] on ImageNet [5] at four
evenly spaced layers when optimizing soft prompts for classifying visual concepts (colored points),
constrained to the neighborhood of various anchor tokens (clusters in plots 1-8).
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Figure 15: Visualizations of text encoder activations for DFN CLIP [8, 34] on DreamBooth [38]
at four evenly spaced layers when optimizing soft prompts for classifying visual concepts (colored
points), constrained to the neighborhood of various anchor tokens (clusters in plots 1-8).
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Figure 16: Visualizations of text encoder activations for Stable Diffusion 2.1 [37] on DreamBooth
[38] at four evenly spaced layers when optimizing soft prompts for generating visual concepts
(colored points), constrained to the neighborhood of various anchor tokens (clusters in plots 1-16).
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Figure 17: Visualizations of text encoder activations for Stable Diffusion 2.1 [37] on ImageNet [5]
at four evenly spaced layers when optimizing soft prompts for generating visual concepts (colored
points), constrained to the neighborhood of various anchor tokens (clusters in plots 1-16).
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Figure 18: Visualizations of text encoder activations for Stable Diffusion 2.1 [37] on ImageNet [5]
at four evenly spaced layers when optimizing soft prompts for classifying visual concepts (colored
points) and transferring to generation, constrained to the neighborhood of various anchor tokens
(clusters in plots 1-24). The evolution of clusters towards clean separation for in-domain evaluation
stops when soft prompts are transferred. Fine-tuning that targets the original model is lost.
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