
Generalized Additive Models via Direct Optimization
of Regularized Decision Stump Forests

Magzhan Gabidolla 1 Miguel Á. Carreira-Perpiñán 1

Abstract
We explore ensembles of axis-aligned decision
stumps, which can be viewed as a generalized ad-
ditive model (GAM). In this model, stumps utiliz-
ing the same feature are grouped to form a shape
function for that feature. Instead of relying on
boosting or bagging, we employ alternating opti-
mization to learn a fixed-size stump forest. We
optimize the parameters of each stump exactly
through enumeration, given the other stumps are
fixed. For fixed stump splits, the leaf values
are optimized jointly by solving a convex prob-
lem. To address the overfitting issue inherent
in naive optimization of stump forests, we pro-
pose effective regularization techniques. Our reg-
ularized stump forests achieve accuracy compara-
ble to state-of-the-art GAM methods while using
fewer parameters. This work is the first to suc-
cessfully learn stump forests without employing
traditional ensembling techniques like bagging or
boosting.

1. Introduction

Machine learning has become increasingly prevalent, with
many widely used, accurate methods being black box in na-
ture such as tree ensembles and neural networks. Simpler
models such as decision trees and rules, are usually less
accurate, but have the advantage of being intelligible and
interpretable. They are especially important for mission-
critical systems such as in healthcare where models must
be trusted. The focus of our paper is on one particularly
important class of interpretable methods, a generalized ad-
ditive model (GAM), which learns (nonlinear) functions
over each individual feature, and additively combines them:
F (x) = f1(x1)+· · ·+f(xD). Because these do not model

1Dept. of Computer Science and Engineering, University
of California, Merced, USA. Correspondence to: Miguel Á.
Carreira-Perpiñán <mcarreira-perpinan@ucmerced.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

feature interactions, they can be visualized by plotting each
shape function fd(xd), making them highly interpretable.

Recently, GAMs have seen renewed interest in the machine
learning community. One effective approach to construct-
ing GAMs is through a forest of decision stumps. Because
a stump (depth-one, axis-aligned decision tree) uses only
a single feature, those using the same feature xd can be
grouped, and this forms a shape function fd(xd) for that
one feature xd. As building blocks for GAMs, stumps have
the advantage of being flexible in choosing the feature, and
during learning they can adapt to the data distribution by
using more of themselves for more complex shapes while
choosing less the simpler ones.

Boosting and bagging are by far the most widely used meth-
ods for learning tree ensembles, including stump forests.
A recent, state-of-the-art implementation of GAMs, Ex-
plainable Boosting Machine (EBM), is based on these tech-
niques of boosting and bagging. However, unlike the major-
ity of established methods in machine learning, these tech-
niques do not optimize a desired objective function over
a parametric model of fixed size. Because no explicit ob-
jective function nor a learning problem is defined, they
are more difficult to be analyzed theoretically, and have
no guarantees of optimality. The way tree ensembles are
learned using boosting and bagging is in stark contrast to
the vast majority of established models in machine learn-
ing such as SVMs and neural networks. These are learned
by defining an optimization problem over parameters of a
fixed-sized model, and using an algorithm (e.g. gradient de-
scent) to optimize it. In this paper, we propose, for the first
time, to learn stump forests using this established machine
learning paradigm: we define an objective function over a
fixed number of stumps and optimize all parameters itera-
tively from an initial point (random, or an existing forest,
which makes it possible to retrain the forest at any time in
the future, e.g. with updated data). Since these models are
non-differentiable, gradient-based methods are not applica-
ble; instead, we effectively employ alternating optimiza-
tion. Despite their simplicity, optimized stump forests are
highly susceptible to overfitting. We analyze this behavior,
and propose effective regularization based on the complex-
ity of resulting GAM shape functions. Our optimized, reg-

1

Generalized additive models via direct optimization of regularized decision stump forests

ularized stump forests achieve state-of-the-art performance
on multiple regression and classification benchmarks.

After discussing related work in section 2, we explain the
alternating optimization algorithm for stump forests in sec-
tion 3. We then analyze the overfitting problem and pro-
pose regularization methods in section 4. Our experiments,
detailed in section 5, validate the proposed methods on re-
gression and classification benchmarks, demonstrating im-
proved results over existing state-of-the-art methods. Ad-
ditionally, we highlight the inherent interpretability of a
GAM model through a case study on car price prediction.

2. Related Work

Generalized additive models have a rich history in statis-
tics (Hastie & Tibshirani, 1986). As shape functions,
splines are used almost exclusively, and with many dif-
ferent variations, including cubic splines, penalized B-
splines (Eilers & Marx, 1996), and thin plate regression
splines (Wood, 2003). Backfitting (Breiman & Friedman,
1983; Hastie & Tibshirani, 1986), a form of alternating
optimization, and penalized (iteratively reweighted) least
squares are commonly used to learn these GAMs. Select-
ing the placement and number of knots (a point where two
spline segments meet) has been an open problem, with
many different methods proposed to handle this (Breiman,
1993; Ruppert, 2002; Eilers & Marx, 2010). In our ap-
proach, the placement of knots is determined on the fly
as a subproduct of the optimization, where stumps choose
an optimal feature/threshold pair. Apart from splines,
non-parametric methods based on trend filtering have
been explored as shape functions (Petersen et al., 2016;
Sadhanala & Tibshirani, 2019). We refer the reader to the
books (Hastie & Tibshirani, 1990; Wood, 2017) for a more
comprehensive treatment of GAMs in statistics literature.

More recently, other models for GAMs have been ex-
plored in the machine learning community. Lou et al.
(2012) performed experimental comparison of different
algorithms and shape functions for GAMs, and found
out that ensembles of trees based on boosting and bag-
ging produce most accurate results. Follow-up work
(Lou et al., 2013) extended this to model pairwise interac-
tions. Agarwal et al. (2021) used neural networks with spe-
cial activation functions to model each of the 1D shapes in
GAMs. Radenovic et al. (2022) proposed to use a single
shared basis neural network to model all the shape func-
tions and further extended them to pairwise interactions.
Ibrahim et al. (2023) used soft decision trees to model both
univariate and bivariate shapes, and imposed structural
sparsity constraints on the number of terms. Given the
differentiability of neural networks and soft decision trees,
end-to-end SGD-based optimization methods were used to
learn all these GAMs. Liu et al. (2022) used the idea of bi-

narizing features based on all possible thresholds, and train-
ing a linear model with ℓ0-penalty on these transformed
features to obtain piecewise constant GAMs. Their feature
binarization can be viewed as creating all possible stumps,
and selecting them with ℓ0-penalty. In our approach we
control the number of stumps explicitly using an ℓ0-like
constraint.

Bagging and boosting are by far the most widely used
methods to learn tree ensembles. Bagging is based on the
idea of variance reduction by aggregating multiple diverse
models trained on different bootstrap samples (Breiman,
1996). Boosting adds base learners sequentially with each
added tree trying to improve the overall ensemble accuracy
(Freund & Schapire, 1997). This can be done more
effectively using an approximate form of gradient descent
in function space, gradient boosting (Friedman, 2001).
Traditionally, bagged or boosted tree ensembles have used
a suboptimal, greedy recursive partitioning algorithm to
learn the individual trees, such as CART (Breiman et al.,
1984), and used axis-aligned trees. More recently, tree en-
sembles have been constructed by using more powerful tree
models (such as oblique trees) that are properly optimized,
which can be done using the Tree Alternating Optimization
(TAO) algorithm (Carreira-Perpiñán & Tavallali, 2018).
This results in a forest of significantly improved accuracy
but using fewer and smaller trees, for both classification
and regression (Carreira-Perpiñán & Zharmagambetov,
2020; Zharmagambetov & Carreira-Perpiñán, 2020;
Gabidolla & Carreira-Perpiñán, 2022; Gabidolla et al.,
2022). AdaBoost, the first practical boosting algorithm,
has been especially successful with decision stumps
(Freund & Schapire, 1996; Viola & Jones, 2004). How-
ever, bagging and boosting, considered as learning
methods for decision forests, operate very differently
from what the majority of methods in machine learning
do, namely to define a parametric model of fixed size
and structure and to train it by optimizing a well-defined
objective function over all its parameters.

Very few works exist that follow this common learning
paradigm with tree ensembles. Sorokina et al. (2007) pro-
posed a Grove, an additive model of a fixed small num-
ber of regression trees, where each tree is axis-aligned and
is trained suboptimally using greedy recursive partitioning
on the residuals of the other trees. Carreira-Perpiñán et al.
(2023) consider fixed-size forests of general types of trees,
such as axis-aligned or oblique, where a well-defined ob-
jective function is optimized over all the forest parameters.
This is done via alternating optimization over each indi-
vidual tree (Forest Alternating Optimization (FAO)), where
each tree is itself trained using TAO. In addition, a step is
applied to optimize all the leaves jointly (given that all the
decision nodes’ parameters are fixed), a technique first used
by Friedman & Popescu (2008). However, both of these ap-

2

Generalized additive models via direct optimization of regularized decision stump forests

proaches suffer from overfitting, and they both ultimately
resort to an ensembling mechanism of either bagging or
averaging. In our approach we use simpler forests, based
on stumps. We control the overfitting behavior with ap-
propriate regularization terms without any ensembling tech-
niques. The way we optimize the stump forest can be seen
as a particular case of FAO, but we can train each stump
directly, without the need for TAO.

3. Direct Optimization of Stump Forests

To keep notation simple we use regression to introduce
the problem. Assume we have a training set of N (in-
stance, target) pairs: {(xn, yn)}

N
n=1 ⊂ R

D × R. Let
s(x; θ): R

D → R be a decision stump with 4 learnable
parameters: θ = {φ, τ, µl, µr}. φ ∈ {1, . . . , D} is a fea-
ture index to split, τ ∈ R is a threshold value, µl, µr ∈ R

are the left and right leaf prediction values. The predictive
function of a stump s(x; θ) works by comparing xφ with τ ,
and outputting either µl if xφ < τ , or µr otherwise:

s(x; θ) =

{

µl, if xφ < τ

µr, if xφ ≥ τ.
(1)

A stump forest F (x;Θ) is defined as a sum of T stumps:
F (x;Θ) = µ+

∑T

t=1
s(x; θt), with µ ∈ R being a bias

term. Since each stump uses only one feature, we can re-
group the stumps by feature indices, and obtain an additive
model:

F (x;Θ) = µ+

T
∑

t=1

s(x; θt) = µ+

D
∑

d=1

∑

t: φt=d

s(x; θt)

= µ+
D
∑

d=1

fd(xd) (2)

where a shape function fd(xd) of d’s feature is a sum of
stumps that use feature d: fd(xd) =

∑

t: φt=d s(x; θt).
Since we are dealing with constant leaf predictor stumps,
the shape function fd(xd) is also a piecewise constant func-
tion with piece intervals corresponding to the stump thresh-
olds. Viewing F (x;Θ) as both a stump forest and an addi-
tive model will be important for our final learning method.
Let us now first consider the learning problem of stumps
forests without any regularization. For regression, we min-
imize a squared error:

min
Θ

1

2

N
∑

n=1

[yn − F (xn;Θ)]2. (3)

Unlike in forward stagewise additive modeling of boosting,
where stumps are added greedily to the forest, we want
to directly optimize problem (3). Because stumps define
a non-differentiable function, gradient-based methods are

not applicable. However, we can effectively apply alter-
nating optimization: the parameters of one stump, while
keeping the others fixed, can be optimized exactly; the pa-
rameters of all the leaf values {µl

t, µ
r
t}

T
t=1, while keeping

the splits {φt, τt}
T
t=1 fixed, can also be optimized exactly.

More specifically, alternating optimization consists of the
following steps:

Individual stumps. The optimization problem (3) over
a given stump s(·; θt) when others are fixed is
minθt

1

2

∑N

n=1
[yn −

∑

u6=t s(xn; θu)− s(xn; θt)]
2.

This is a standard regression problem over a stump
but with targets corresponding to the residuals. It can
be solved exactly through enumeration over each (fea-
ture, threshold) pair as in traditional decision tree algo-
rithms.

All leaf parameters. Once the splits {φt, τt}
T
t=1 are fixed,

the problem (3) simplifies to a linear regression on
features corresponding to stump partitions. To see
this, we can rewrite the predictive function of a stump
using an indicator function: s(x; θ) = µl I(xφ <

τ) + µr I(xφ ≥ τ). With this notation, the objective
function over all leaves is:

min
µ,{µl

t
,µr

t
}T

t=1

1

2

N
∑

n=1

[

yn −
T
∑

t=1

µl
t I(xnφt

< τt)

+ µr
t I(xnφt

≥ τt)

]2

.

Since in this step all the splits {φt, τt}
T
t=1 are fixed,

the indicator functions I(·) are just constants multiply-
ing the unknowns {µl

t, µ
r
t}

T
t=1 that appear linearly in-

side the squared error. And so, eq. 4 is a simple linear
regression problem on features induced by the stump
splits, and can also be solved exactly and efficiently.

Starting with initial stump forest parameters (e.g. random),
we can repeatedly optimize each stump individually, and
all the leaves jointly. Because each such optimization step
exactly solves the problem over its subset of parameters,
this guarantees a monotonic decrease of the error. And
since the total number of possible stump splits are finite,
and since the algorithm either decreases the error or leaves
it unchanged, this guarantees a convergence in a finite num-
ber of steps (assuming there are no cycles between states).
While there are potentially many ways to order these al-
ternating optimization steps, such as performing the step
over all leaves after each individual stump step, or even do-
ing everything in random order, in our experiments we use
the following simple approach: first optimizing all leaves
jointly, then optimizing the individual stumps in a fixed or-
der (from 1 to T), and repeating this until convergence.

3

Generalized additive models via direct optimization of regularized decision stump forests

0 200 400 600 800 1000
0.51

0.52

0.53

0.54

0.55

0.56

0.57
0 200 400 600 800 1000 1200

E
rm

se

Initializing from
200 GB stumps

GB iterations

Optimization steps

GB

optimization

0 100 200 300 400 500

1.5

2

2.5

3

3.5

4

opt-stumps test

opt-stumps train

GB test

GB train

number of stumps
0 20 40 60 80 100

1.5

2

2.5

3

3.5

4

opt-stumps test

opt-stumps train

ℓ1-roughness penalty λ

Figure 1. Left: Comparison of stump forest optimization against the greedy approach of gradient boosting (GB) in train error for the
California Housing dataset. GB uses a learning rate of 1, i.e., no shrinkage. Optimization step corresponds to either the step over all
leaves or over the individual stumps. Middle: Overfitting problem of optimized stump forests on the cpuact dataset. Here GB avoids
overfitting by using a learning rate 0.3. Right: By penalizing the ℓ1-discontinuity we obtain stump forests with better generalization
(cpuact dataset).

Opt-stumps Regularized opt-stumps GB-stumps η = 1.0 GB-stumps η = 0.1

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

x

y

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

x
0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

x
0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

x

Figure 2. Illustration on a simple 1D regression problem. The learned shape functions are in blue. GB uses 1000 stumps with learning
rates η = 0.1 and η = 1.0. Our optimization method uses 100 stumps. Ground truth targets are from a sine function plotted in light red.

4. Overfitting and Regularization

The alternating optimization method just described for
stump forests is very effective at minimizing the objective
function. The left plot of fig. 1 shows how it is possible
to take 200 greedily added decision stumps (in a gradient
boosting (GB) way with a learning rate of 1), and opti-
mize it significantly with the proposed algorithm so that
it matches the performance of more than 1000 GB stumps
(the red vs the blue curves in the plot). Because GB works
by greedily adding stumps, without revisiting the previous
parameters, it produces much suboptimal results. In the left
plot of fig. 1, we can also observe the importance of jointly
optimizing all the leaves: the sharp decreases in the red
curve correspond to the optimization steps over all the leaf
parameters. Since leaves account for half of the number of
parameters, these significant drops in error should not be
surprising (it would also be desirable to optimize multiple
stump splits jointly, but since their search space grows ex-
ponentially with the number of stumps, this would make it
computationally infeasible).

Despite being a simple model with relatively few parame-
ters, an optimized stump forest tends to overfit the training
data and exhibit poor generalization performance. The mid-

dle plot of fig. 1 illustrates that as the number of stumps
increases, the test error also rises. Initially, this is not sur-
prising, as a higher number of stumps results in a more flex-
ible model, which can naturally lead to overfitting. How-
ever, gradient boosting with a small learning rate (i.e., a
shrinkage parameter) can produce stump forests that are
much larger, yet generalize much better. In the middle plot
of fig. 1, for example, the GB with 500 stumps have con-
siderably better test error than any of the optimized stump
forests, whose best test error is at around 200 stumps.

To understand better the overfitting problem, we use a sim-
ple 1D regression task where the resulting models can be
easily visualized. The ground truth function is a sin(2πx).
We generate 100 training points with added Gaussian noise
to the targets. An optimized 100 stump forest achieves
nearly 0 train error, and is visualized in the leftmost plot
in fig. 2. Clearly, the learned model exhibits poor gener-
alization, as it overfits the training data by interpolating
all the noise, resulting in a very wiggly and discontinuous
function. This can be partly attributed to the model’s high
flexibility: with a sufficiently large number of stumps, the
training set can be perfectly fit. Additionally, the model can
operate very locally, where a few stumps can significantly

4

Generalized additive models via direct optimization of regularized decision stump forests

alter the output in a localized region of the input while leav-
ing the rest unchanged. Given the model’s high flexibility
and locality, such overfitting could be expected. (GB with-
out shrinkage also suffers from overfitting, but with a small
learning rate it does not. See the right two plots in fig. 2.
This simple shrinkage method is very fundamental for the
success of GB, and the theoretical understanding of it still
remains unclear.)

Regularization is a fundamental technique to control over-
fitting. Since we know that stump forests define an ad-
ditive model whose underlying geometry is a shape func-
tion per each feature, we can include regularization terms
based on these shape functions. Such regularization will
involve more global view of the model, thus can help in ad-
dressing the high flexibility and locality of stump forests.
We define a roughness or discontinuity penalty function
r({τt, µ

l
t, µ

r
t}t: φt=d): PT (R

3) → R≥0 that takes stumps
grouped on the same feature d (specifically, their 3 parame-
ters: threshold τ , left and right leaf predictions µl and µr),
and outputs some measure of discontinuity of the shape
function f(d) resulting from the stumps. Its domain is
the set of triplets of size at most T , as there are at most
T stumps: PT (R

3) = {S ⊆ R
3 | |S| ≤ T }. As a rough-

ness penalty r(·) we use an ℓ1 sum of discontinuities. To
express it, let us first derive the explicit form of the shape
function fd(xd) from the set of stumps. Assume, without
loss of generality, that the parameters {τt, µl

t, µ
r
t}

Td

t=1 are of
the stumps that use feature d, and that their threshold values
are sorted τ1 < · · · < τTd

. Then the leftmost constant piece
of the resulting shape function fd(xd) is β0 =

∑Td

t=1
µl
t,

which corresponds to the left leaf predictions of all stumps
(because for xd ∈ (−∞, τ), all stumps will route xd to
their left child). The next leftmost piece is then β1 =
µr
1 +

∑Td

t=2
µl
t. More generally, the value of the i’s piece

from the left is defined as βi =
∑i

t=1
µr
t +

∑Td

t=i+1
µl
t.

The shape function fd(xd) overall consists of the Td + 1
constant pieces with values β0, . . . , βTd+1 from left to right,
and with their starting intervals being −∞, τ1, · · · , τTd

(as-
suming all the stumps use a different threshold τ). With the
shape function explicitly defined, we can now express the
following roughness penalty:

r({τt, µ
l
t, µ

r
t}

Td

t=1) =

Td−1
∑

t=0

|βt+1 − βt|. (4)

This penalizes the ℓ1 difference between the two consec-
utive constant pieces of the shape function fd(xd). It is
exactly zero when the shape function fd(xd) is constant,
and is a large value if fd(xd) is very wiggly and discon-
tinuous. It can be viewed as a first order discrete deriva-
tive of the shape function fd(xd). Another possibility is
to penalize the ℓ2 measure of discontinuity, but we ex-
perimentally observe the ℓ1 difference producing better re-
sults. A similar type of smoothness penalty occurs in fused

lasso (Tibshirani et al., 2005) where the difference between
neighboring coefficients is penalized, and in ℓ1 trend filter-
ing for nonparametric regression (Kim et al., 2009).

Another regularization term that we propose is to penal-
ize the deviation from the mean (or bias) for each of the
leaf predictions:

∑T

t=1
(µl

t − µ)2 + (µr
t − µ)2. This en-

courages all stumps to be equally important, and can pre-
vent stumps from being very dominant locally. This is con-
ceptually similar to the idea of regularizing the leaf values
proposed in (Johnson & Zhang, 2013), and currently imple-
mented in popular gradient boosting decision tree libraries
such as XGBoost and LightGBM. But instead of penalizing
the actual leaf values we want to penalize their deviation
from the bias. GB usually fits trees to the zero mean targets
(by setting the initial constant prediction to the mean of the
target), and so this type of similar regularization could al-
ready be happening in XGBoost.

With these two types of regularization, our final objective
function is:

min
Θ

1

2

N
∑

n=1

[yn − F (xn;Θ)]2 + λ

D
∑

d=1

r({τt, µ
l
t, µ

r
t}t: φt=d)

+ α

T
∑

t=1

(

(µl
t − µ)2 + (µr

t − µ)2
)

(5)

The hyperparameter λ controls the strength of the rough-
ness/discontinuity penalty, and we experimentally find that
it is the more important one. The hyperparameter α con-
trols the deviation from the bias, and plays less important
role than λ. We do not tune it, and use a fixed value of
α = 0.1.

Now, for this regularized, more involved objective function,
the alternating optimization steps from section 3 are still
applicable, but with some changes:

Individual stumps. This is still solved exactly through
enumeration over each (feature, threshold) pair but
now the optimal values of the two leaves changes. The
split finding algorithm will take into account the reg-
ularization terms when evaluating each possible split.
For each potential split, the optimization problem over
µl and µr is (for simplicity we show when α = 0):
minµl,µr

1

2

∑

n∈l(yn − µl)
2 + 1

2

∑

n∈r(yn − µr)
2 +

λ |µl − µr|. Let ȳl and ȳr denote the sample means
of the left and right partitions, δ = ȳl − ȳr, and let nl

and nr be the number of points in each. The optimal
values of µl, µr are:










µl = ȳl −
λ
nl

, µr = ȳr +
λ
nr

if δ > λ(1

nl

+ 1

nl

)

µl = ȳl +
λ
nl

, µr = ȳr −
λ
nr

if δ < −λ(1

nl

+ 1

nl

)

µl = µr = nlȳl+nr ȳr

nl+nr
otherwise.

(6)

5

Generalized additive models via direct optimization of regularized decision stump forests

All leaf parameters. Now two regularization terms will
be added to the problem (4):

min
µ,{µl

t
,µr

t
}T

t=1

1

2

N
∑

n=1

[

yn −

T
∑

t=1

µl
t I(xnφt

< τt)

+ µr
t I(xnφt

≥ τt)

]2

+ λ

D
∑

d=1

r({τt, µ
l
t, µ

r
t}t: φt=d)

+ α

T
∑

t=1

(

(µl
t − µ)2 + (µr

t − µ)2
)

(7)

The optimization variables µ, {µl
t, µ

r
t}

T
t=1 appear ei-

ther linearly or quadratically in the regularization, and
the whole problem still remains convex. Instead of de-
veloping a specialized algorithm for this problem, we
use a generic convex solver. In our experiments, we
model the problem using this high-level formulation,
and rely on CVXPY (Diamond & Boyd, 2016) to trans-
late it into a form acceptable to a solver. In our ex-
periments we use the MOSEK solver inside CVXPY.
To accelerate training, instead of performing the opti-
mization over the stump leaves, we can do it over the
actual constant pieces of GAMs. That is, we switch
from the stump forest representation to its equivalent
GAM form. This change reduces the number of opti-
mization variables by a factor of two. After solving for
the constant pieces of the GAM, we convert the result
back to the stump forest representation. The leftmost
stump has leaf values µl

0 = β0 and µr
0 = β1. For sub-

sequent stumps with index i > 0 we set the left leaf to
µl
i = 0 and the right leaf to µr

i = βi − βi−1. In other
words, the left leaf is always 0, and the right leaf cap-
tures the difference between adjacent constant values.
It is straightforward to verify that this reconstruction
yields a function equivalent to the original GAM.

The proposed regularization terms control effectively the
overfitting problem. In the right plot of fig. 1 we can ob-
serve how penalizing the ℓ1-discontinuity helps in reducing
the gap between training and test errors, and the resulting
models are more accurate than the GB on the test set. In the
second (from the left) plot in fig. 2 we see how these regu-
larizations help to produce smoother stumps forests in the
1D example. We refer to our Optimized Regularized Stump
Forests as ORSF. We provide its pseudocode in fig. 3.

5. Experiments

5.1. Comparison on Benchmarks

Our experimental results consistently show the improved
accuracy of optimized stump forests across multiple bench-
marks in both classification and regression tasks. More of-
ten than not, our optimized forests require fewer number of
stumps, and thus fewer number of parameters overall.

input training set, initial forest F (·;Θ) of T stumps,
roughness penalty λ, deviation from bias penalty α

repeat
Optimize all leaves jointly by solving
the convex problem (7)
for t = 1 to T

Optimize the individual stump s(·; θt)
through enumeration

until convergence
return optimized forest F (·;Θ)

Figure 3. Pseudocode for Optimized Regularized Stump Forests.

We compare with the following established baselines
for GAMs: explainable boosting machines (EBM)
(Lou et al., 2013), gradient boosting (GB) with stumps,
traditional cubic splines (implementation in Python
(Servén & Brummitt, 2018)), neural additive models
(NAM) (Agarwal et al., 2021), fused lasso additive models
(FLAM) (Petersen et al., 2016), and FastSparse that learns
piecewise constants GAMs with ℓ0-penalty on specially bi-
narized features. We tune the important hyperparameters of
all the baselines on a holdout set, and with the best found
hyperparameters we repeat the experiment 5 times on dif-
ferent training/test splits to report mean and standard devia-
tion. In our method, ORSF, for regression problems we use
the squared error, and for binary classification we use the
cross entropy loss with the logistic link function. The spe-
cific details of the implementation, code, hyperparameter
values and the datasets are provided in appendix C.

Table 1 shows the results on regression datasets. Across
all the problems, regularized stump forests achieve com-
petitive accuracy as some of the established state-of-the-art
baselines for GAMs. Importantly, among the tree/stump
based methods, our approach uses far fewer number of
parameters than the GB, and especially, EBM. Boosting
methods work by greedily adding trees/stumps with a small
learning rate, typically requiring many boosting iterations
to converge. This results in a large number of trees/stumps
and corresponding GAM shape functions with many con-
stant pieces. In contrast, our approach properly optimizes
a stump forest and controls its complexity with regulariza-
tion. As a result, hundreds of well-optimized stumps in our
method match the performance of the thousands of stumps
in GB and the tens of thousands of trees in EBM.

Table 2 presents results on classification problems. The
general trend is qualitatively similar to the regression case.
Interestingly, traditional cubic splines show much better
results here, often outperforming GB and EBM results.
Splines have a rich history in statistics and possess many
good theoretical properties. They also use much fewer
number of parameters (degrees of freedom) while still be-
ing accurate. In the literature of GAMs, the importance of
splines cannot be neglected.

6

Generalized additive models via direct optimization of regularized decision stump forests

Table 1. Train and test RMSE, model size (number of parameters) and training time (average ± standard deviation over 5 runs) for
different GAMs. N refers to the dataset size, D is the feature dimension. Green color is the best test error, and blue is the second best.

Dataset ORSF GB EBM Splines NAM FLAM FastSparse

Cpuact train 2.12±0.01 2.20±0.04 2.19±0.02 2.53±0.02 3.38±0.26 2.88±0.01 2.76±0.03
N=8.2k test 2.37±0.03 2.43±0.06 2.50±0.05 2.69±0.06 3.41±0.28 2.99±0.05 2.91±0.17
D=21 size 642±0 3.4k±133 16.6k±36 271±3 134k±0 77.9k±123 119±4

time (s) 9.4±0.3 46±17 39±2 37±0.03 99±1 85±2 3.8±0.5

Wine train ×10
−2 65.70±0.15 68.13±0.27 66.73±0.27 67.99±0.29 74.40±0.16 67.39±0.21 68.01±0.25

N=6.5k test ×10
−2 70.02±0.66 70.92±0.51 70.12±0.39 71.79±1.40 76.07±2.11 70.19±0.84 71.77±0.63

D=11 size 724±12 770±32 3.9k±11 197±7 70.1k±0 5041±11 182±4
time (s) 6.0±0.3 2.87±0.58 4.44±1.33 56±16 64±0 53±3 0.57±0.07

Housing train ×10
−2 51.84±0.16 54.24±0.27 52.70±0.04 53.37±0.21 71.56±0.30 55.08±0.20 54.62±0.20

N=21k test ×10
−2 54.80±0.65 56.15±0.58 55.23±0.68 55.49±0.61 72.23±0.88 56.24±0.74 56.29±0.65

D=8 size 1.4k±20 2.4k±31 7.2k±8 528±2 51.0k±0 118k±101 579±9
time (s) 13.6±0.4 42±8 36±2 37±2 175±2 73±2 3.94±0.73

Diamond train ×10
2 9.95±0.02 10.07±0.05 10.11±0.03 10.02±0.02 13.53±0.22 11.75±0.03 10.01±0.02

N=54k test ×10
2 10.15±0.08 10.19±0.08 10.23±0.06 10.96±1.45 13.59±0.25 11.70±0.12 10.17±0.09

D=26 size 934±16 1182±81 3.4k±7 273±24 86k±0 4139±12 516±11
time (s) 25.1±0.9 140±58 20±2 42±0.4 708±2 805±11 45±10

Year train 9.12±0.03 9.30±0.03 7.53±0.02 9.14±0.03 10.22±0.05 9.14±0.03
N=423k test 9.30±0.01 9.35±0.00 9.82±0.02 9.38±0.03 10.22±0.08 out of time 9.29±0.01
D=90 size 1379±0.8 1490±25 368k±0 2158±55 573k±0 > 2 days 2601±63

time (s) 1402±43 4368±256 4262±437 3618±45 8858±88 973±65

FPS train 55.40±0.09 55.48±0.09 55.42±0.09 55.41±0.09 56.23±0.10 55.41±0.09
N=401k test 55.41±0.34 55.45±0.34 55.42±0.34 55.42±0.34 55.62±0.24 out of time 55.42±0.34
D=100 size 983±37 824±57 2372±12 411±1 288k±0 > 2 days 1250±17

time (s) 798±21 1803±466 655±84 2043±2 4397±10 625±10

cpuact, training set cpuact, validation set FICO, training set FICO, validation set

200 400 600 800 1000
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

ours, λ = 0

ours, λ = 10

ours, λ = 20

fs, γ = 10
−3

fs, γ = 10
−5

fs, γ = 0

model size

T
ra

in
in

g
R

M
S

E

200 400 600 800 1000
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

ours, λ = 0

ours, λ = 10

ours, λ = 20

fs, γ = 10
−3

fs, γ = 10
−5

fs, γ = 0

model size

V
al

id
at

io
n

R
M

S
E

50 100 150 200
70

71

72

73

74

75

ours, λ = 0

ours, λ = 10

ours, λ = 20

fs, γ = 10
−3

fs, γ = 10
−5

fs, Exp-L0

model size

T
ra

in
in

g
0/

1
ac

cu
ra

cy
(%

)

50 100 150 200
69

70

71

72

73

74

75

ours, λ = 0

ours, λ = 10

ours, λ = 20

fs, γ = 10
−3

fs, γ = 10
−5

fs, Exp-L0

model size

V
al

id
at

io
n

0/
1

ac
cu

ra
cy

(%
)

Figure 4. Comparison on the CPU Activity regression and FICO classification datasets of the regularization paths generated by our
method versus FastSparse (fs).

5.2. Regularization Paths over Number of Stumps

In our approach, we construct a “regularization” path by
starting with a small number of stumps and incrementally
adding more, re-optimizing the entire model at each step.
In fig. 4, we compare the regularization paths of our method
with those of FastSparse, which generates its path by vary-
ing a sequence of ℓ0-penalty parameters. On the cpuact re-
gression task, our method achieves superior generalization
performance, benefiting from the ℓ1-roughness regulariza-
tion penalty. For the FICO dataset, the performance of both
methods is comparable. It is worth noting that although
both methods generate 100 models along the regularization
path, FastSparse typically produces fewer unique models,

as multiple ℓ0-penalty values often result in the same solu-
tion. In contrast, our method provides more direct control
over model size through the number of stumps T , effec-
tively enforcing an ℓ0 constraint. Our regularization path
includes 100 distinct models, though only 50 are displayed
in the figure to maintain clarity. More detailed results of
this comparison is available in Appendix fig. 7 and fig. 8.

5.3. Effect of Different Regularizations

In fig. 5, we examine the individual effects of three dif-
ferent types of regularizations on stump forests using the
CPU activity dataset. As expected, all regularization meth-
ods exhibit typical behavior: increasing the regularization

7

Generalized additive models via direct optimization of regularized decision stump forests

Table 2. As in Table 1 but for classification datasets. The error is a 0/1 misclassification (%).
Dataset ORSF GB EBM Splines NAM FLAM FastSparse

Letter train 15.94±0.14 16.38±0.17 16.12±0.20 15.87±0.14 21.54±1.1 17.94±0.18 15.88±0.14
N=20k test 16.40±0.52 16.88±0.41 16.63±0.42 16.55±0.70 22.53±1.88 17.95±0.51 16.57±0.67
D=16 size 403±13 420±15 502±2 224±1 68k±0 510±2 399±5

time (s) 14.9±0.2 32±3 31±1 58±2 153±0 71±1 18±2

Churn train 18.88±0.19 19.00±0.23 18.84±0.08 18.78±0.15 22.59±2.13 19.85±0.18 18.88±0.11
N=7.0k test 19.28±0.29 19.32±0.37 19.47±0.51 19.32±0.48 21.69±2.02 20.30±0.88 19.87±0.36
D=45 size 129±5 644±48 7292±11 40±0.04 120k±0 13.7k±15 105±8

time (s) 6.8±0.4 3±1 15±1 0.5±0.03 120±2 113±2 0.59±0.07

FICO train 24.86±0.13 26.54±0.15 26.37±0.10 26.79±0.15 28.23±0.41 27.15±0.21 25.87±0.16
N=10k test 27.33±0.04 27.62±0.30 27.43±0.31 27.35±0.17 28.08±0.61 27.64±0.52 27.80±0.33
D=23 size 550±28 1002±66 3680±9 83±1 130k±0 3791±11 196±10

time (s) 7.8±0.1 1.6±0.6 7±0.2 1.96±0.10 180±1 61±1 1.74±0.12

IJCNN train 4.42±0.05 4.56±0.07 4.51±0.03 4.44±0.04 7.51±0.44 6.86±0.08 4.84±0.16
N=50k test 4.95±0.14 5.10±0.15 5.00±0.14 4.92±0.20 7.48±0.55 7.14±0.15 5.52±0.21
D=22 size 414±23 918±21 12.3k±0 266±0.5 101k±0 828k±242 883±18

time (s) 46±1 148±24 19±0 153±40 501±1 249±6 47±1

Covtype train 22.50±0.03 22.56±0.02 22.46±0.02 22.48±0.02 26.16±0.50 22.49±0.02
N=581k test 22.71±0.11 22.77±0.10 22.68±0.12 22.72±0.10 26.08±0.54 out of time 22.68±0.10
D=54 size 504±4 1090±32 6402±4 403±1 170k±0 > 2 days 841±15

time (s) 1091±16 1202±49 325±5 15624±84 5373±16 2763±177

Bank train 9.81±0.04 10.00±0.03 9.75±0.05 9.79±0.04 10.09±0.08 11.27±0.04 9.79±0.04
N=41k test 9.83±0.17 9.99±0.13 9.91±0.17 9.88±0.12 9.87±0.26 11.23±0.15 9.86±0.14
D=62 size 231±4 530±15 1103±7 95±2 174k±0 1182±1 64±4

time (s) 47±2 34±7 40±3 22±2 662±10 916±3 19.6±3.3

0 20 40 60 80 100

2

2.2

2.4

2.6

2.8

Test
Train

E
rm

se

ℓ1-discontinuity regularization, λ
0 10 20 30

2

2.2

2.4

2.6

2.8

Test
Train

ℓ2-discontinuity regularization, λ
0 20 40 60

2

2.2

2.4

2.6

2.8

Test
Train

deviation from bias regularization, α

Figure 5. The effect of different regularization types in stump forests for the cpuact dataset. The number of stumps T = 200. For our
final method we use the combination of ℓ1-discontinuity and the deviation from the bias regularizations.

penalty initially results in high test error due to overfitting,
followed by a decrease to the lowest test error indicating
the best generalizable models, and finally, an increase in
test error due to underfitting as the penalty becomes too
strong. We can also observe the good ranges of the hyper-
parameter values, for example, the deviation from the bias
penalty typically favors small values of the penalty parame-
ter α. When comparing the importance of these 3 methods
on the test error, the ℓ1-roughness penalty usually produces
models with the lowest test error than the other two. In our
main experiments we use the combination ℓ1-discontinuity
and the deviation from the bias regularizations.

5.4. Case Study: Car Price Prediction

To showcase the interpretability of stump forest additive
models, we use the problem of predicting the price of a
used car. From the Kaggle platform we obtain 100,000 UK

Used Car Data set, which features used car listings in UK,
grouped by different car manufactures. To avoid the large
number of car make/model categories when visualizing, we
focus on the following 6 popular models: BMW 3 series,
Mercedes C Class, Volkswagen Golf, Ford Focus, Hyundai
Tucson and Toyota Yaris. The total number of training
points is 15,200 with additional 3,800 instances used for
testing. The following 8 features describe a given car: the
year of manufacture, mileage (a total number of miles trav-
eled), amount of yearly tax, miles per gallon (MPG), en-
gine size, a make/model, a transmission type and a fuel
type. The first 5 features are numerical, and the last 3 are
categorical.

We train our forest with 700 stumps and a roughness
penalty of λ = 60. The model achieves a mean absolute
error (MAE) of £1,600 on the test set. Considering the av-

8

Generalized additive models via direct optimization of regularized decision stump forests

2002 2006 2010 2014 2018
-1.5

-1

-0.5

0

0.5

1
10

4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Year

P
ri

ce
,(

£)

0 0.5 1 1.5 2

10
5

-1

-0.5

0

0.5

1
10

4

0

500

1000

1500

Mileage
0 200 400 600

-1.5

-1

-0.5

0

10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Tax
50 100 150 200

-1

-0.5

0

0.5

1

1.5

2
10

4

0

500

1000

1500

2000

2500

MPG

F
re

qu
en

cy

0 2 4 6
-0.5

0

0.5

1

1.5

2
10

4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Engine size

P
ri

ce
,(

£)

F
re

qu
en

cy

1 2 3 4 5 6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Model

B
M

W
3

M
er

ce
de

s
C

Fo
rd

Fo
cu

s

H
yu

nd
ai

T
uc

so
n

To
yo

ta
Y

ar
is

V
W

G
ol

fP
ri

ce
,(

£)

1 2 3

0

500

1000

1500

2000

2500

3000

Transmission type

A
ut

om
at

ic

M
an

ua
l

S
em

i-
A

ut
o

1 2 3

0

1000

2000

3000

4000

5000

6000

7000

Fuel type

D
ie

se
l

H
yb

ri
d

P
et

ro
l

Figure 6. Visualization of the resulting additive model shape functions from our optimized stump forests for the UK used car dataset. For
the numerical features, the light red bars show the histogram of the training points with the frequency values given on the right y-axis.

erage price is £16,900 with a standard deviation of £7,600
on the whole dataset, this error margin is relatively accept-
able. And the model is much more accurate than a linear
regression which has a test MAE of £2,200. Most impor-
tantly, we can visualize the entire model as 8 plots for the
8 used features in fig. 6, and interpret it. There was also
a constant bias term, but we eliminate it by distributing its
value to the 3 categorical features.

We expect newer cars to be more expensive, and the shape
function of the year feature generally confirms this expec-
tation. There is an unexpected negative correlation with
prices for the years 1999-2001, but this anomaly is due to
having only six car listings from those years. Another cru-
cial feature in predicting car prices is mileage; typically,
cars with higher mileage are cheaper. The shape function
for mileage supports this relationship. However, there is an
unusual slight drop in price around 50,000 miles. A closer
examination of the dataset reveals an outlier: a Mercedes
C-Class with 52,700 miles listed at £2,140, whereas the
normal price for this model is about £10,000. Miles per
gallon (MPG), which characterizes fuel consumption, is an-
other significant predictor variable. Its shape function gen-
erally shows a negative relationship with price. In the train-
ing set, we find newer Mercedes C-Class cars with engine
sizes of 4.0 and 6.3 that have low MPG but are very expen-
sive. Additionally, there are noisy points with mislabeled
MPGs, such as eight newer BMW 3 Series cars with an
MPG of 8.8, which should have been 30.0. Regarding cate-
gorical features, the distribution of prices within each cate-
gory appears to be reasonable: luxury brands like Mercedes
and BMW are more expensive, cars with manual transmis-
sions tend to be cheaper, and hybrid fuel types are usually
more expensive. Overall, by visualizing and analyzing the

model, we can understand it, and possibly even debug and
correct the parameters and/or the dataset. This example on
car price prediction clearly demonstrates the inherent in-
terpretability of additive models. Appendix figs. 9 and 10
show the shape functions for the other GAMs, EBM and
PyGAM. Overall, the general trend in EBM shapes is quite
similar to the ones obtained by our method and also be-
ing similar in accuracy (around 2,200 test RMSE), although
it generated an overly noisy curve for the mileage feature.
PyGAM, on the other hand, generates very smooth curves,
and behaves quite unpredictably in regions with less or no
data.

6. Conclusion
We have presented a novel approach to learning forests of
axis-aligned decision stumps, with its equivalent view of a
generalized additive model. Instead of bagging and boost-
ing, we use alternating optimization to learn a fixed-size
stump forest. This makes it possible to optimize exactly at
each step the stump parameters by enumeration and jointly
optimize the leaf values by solving a convex problem. To
mitigate overfitting, we introduce effective regularization
techniques that take into account the global smoothness
of the model when viewed as a piecewise-constant func-
tion. These regularized stump forests exceed the accuracy
of state-of-the-art GAM methods, yet with fewer parame-
ters. Our approach is pioneering in that it learns stump
forests without the need for traditional ensembling tech-
niques such as bagging or boosting, and in that it can be
initialized from an existing forest, thus making retraining
possible. A possible future research direction is to define
global smoothness-based regularization methods to learn a
more general, parametric decision forest of a fixed size.

9

Generalized additive models via direct optimization of regularized decision stump forests

Acknowledgements

Work partially supported by NSF award IIS–2007147.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich,
B., Caruana, R., and Hinton, G. E. Neural additive mod-
els: Interpretable machine learning with neural nets. In
Ranzato, M., Beygelzimer, A., Liang, P., Vaughan, J. W.,
and Dauphin, Y. (eds.), Advances in Neural Information

Processing Systems (NeurIPS), volume 34. MIT Press,
Cambridge, MA, 2021.

Breiman, L. Fitting additive models to regression data: Di-
agnostics and alternative views. Computational Statis-

tics and Data Analysis, 15(1):13–46, January 1993.

Breiman, L. and Friedman, J. H. Estimating optimal trans-
formations for multiple regression and correlation. J.

Amer. Stat. Assoc., 80(391):580–598 (with comments,
pp. 598–619), September 1983.

Breiman, L. J. Bagging predictors. Machine Learning, 24
(2):123–140, August 1996.

Breiman, L. J., Friedman, J. H., Olshen, R. A., and Stone,
C. J. Classification and Regression Trees. Wadsworth,
Belmont, Calif., 1984.

Carreira-Perpiñán, M. Á. and Tavallali, P. Alternating op-
timization of decision trees, with application to learn-
ing sparse oblique trees. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-

ing Systems (NeurIPS), volume 31, pp. 1211–1221. MIT
Press, Cambridge, MA, 2018.

Carreira-Perpiñán, M. Á. and Zharmagambetov, A. Ensem-
bles of bagged TAO trees consistently improve over ran-
dom forests, AdaBoost and gradient boosting. In Proc. of

the 2020 ACM-IMS Foundations of Data Science Confer-

ence (FODS 2020), pp. 35–46, Seattle, WA, October 19–
20 2020.

Carreira-Perpiñán, M. Á., Gabidolla, M., and Zharmagam-
betov, A. Towards better decision forests: Forest Alter-
nating Optimization. In Proc. of the 2023 IEEE Com-

puter Society Conf. Computer Vision and Pattern Recog-

nition (CVPR’23), pp. 7589–7598, Vancouver, Canada,
June 18–22 2023.

Diamond, S. and Boyd, S. CVXPY: A Python-embedded
modeling language for convex optimization. J. Machine

Learning Research, 17(83):1–5, 2016.

Eilers, P. H. C. and Marx, B. D. Flexible smoothing with B-
splines and penalties. Statistical Science, 11(2):89–121,
May 1996.

Eilers, P. H. C. and Marx, B. D. Splines, knots, and
penalties. WIREs Computational Statistics, 2(6):637–
653, September 2010.

Freund, Y. and Schapire, R. A decision-theoretic general-
ization of on-line learning and an application to boosting.
J. Computer and System Sciences, 55(1):119–139, 1997.

Freund, Y. and Schapire, R. E. Experiments with a new
boosting algorithm. In Saitta, L. (ed.), Proc. of the 13th

Int. Conf. Machine Learning (ICML’96), pp. 148–156,
Bari, Italy, July 3–6 1996.

Friedman, J. H. Greedy function approximation: A gradi-
ent boosting machine. Annals of Statistics, 29(5):1189–
1232, 2001.

Friedman, J. H. and Popescu, B. E. Predictive learning via
rule ensembles. Annals of Applied Statistics, 2(3):916–
954, September 2008.

Gabidolla, M. and Carreira-Perpiñán, M. Á. Pushing
the envelope of gradient boosting forests via globally-
optimized oblique trees. In Proc. of the 2022 IEEE

Computer Society Conf. Computer Vision and Pattern

Recognition (CVPR’22), pp. 285–294, New Orleans, LA,
June 19–24 2022.

Gabidolla, M., Zharmagambetov, A., and Carreira-
Perpiñán, M. Á. Improved multiclass AdaBoost using
sparse oblique decision trees. In Int. J. Conf. Neural Net-

works (IJCNN’22), Padua, Italy, July 18–22 2022.

Hastie, T. J. and Tibshirani, R. J. Generalized additive mod-
els. Statistical Science, 1(3):297–318 (with comments),
August 1986.

Hastie, T. J. and Tibshirani, R. J. Generalized Additive

Models. Number 43 in Monographs on Statistics and Ap-
plied Probability. Chapman & Hall, London, New York,
1990.

Ibrahim, S., Afriat, G., Behdin, K., and Mazumder,
R. GRAND-SLAMIN’ interpretable additive modeling
with structural constraints. In Oh, A., Naumann, T.,
Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-

tems (NeurIPS), volume 36. MIT Press, Cambridge, MA,
2023.

10

Generalized additive models via direct optimization of regularized decision stump forests

Johnson, R. and Zhang, T. Learning nonlinear functions
using regularized greedy forest. IEEE Trans. Pattern

Analysis and Machine Intelligence, 36(5):942–954, May
2013.

Kim, S.-J., Koh, K., Boyd, S., and Gorinevsky, D. ℓ1 trend
filtering. SIAM Review, 51(2):339–360, 2009.

Lichman, M. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2013.

Liu, J., Zhong, C., Seltzer, M., and Rudin, C. Fast sparse
classification for generalized linear and additive mod-
els. In Camps-Valls, G., Ruiz, F. J. R., and Valera, I.
(eds.), Proc. of the 25th Int. Conf. Artificial Intelligence

and Statistics (AISTATS 2022), pp. 9304–9333, Online,
March 28–30 2022.

Lou, Y., Caruana, R., and Gehrke, J. Intelligible models for
classification and regression. In Proc. of the 18th ACM

SIGKDD Int. Conf. Knowledge Discovery and Data Min-

ing (SIGKDD 2012), pp. 150–158, August 21–24 2012.

Lou, Y., Caruana, R., Gehrke, J., and Hooker, G. Accu-
rate intelligible models with pairwise interactions. In
Proc. of the 19th ACM SIGKDD Int. Conf. Knowledge

Discovery and Data Mining (SIGKDD 2013), pp. 623–
631, Chicago, IL, August 11–14 2013.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, É.
Scikit-learn: Machine learning in Python. J. Machine

Learning Research, 12:2825–2830, October 2011. Avail-
able online at https://scikit-learn.org.

Petersen, A., Witten, D., and Simon, N. Fused lasso ad-
ditive model. Journal of Computational and Graphical

Statistics, 25(4):1005–1025, 2016.

Radenovic, F., Dubey, A., and Mahajan, D. Neural basis
models for interpretability. In Koyejo, S., Mohamed,
S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A.
(eds.), Advances in Neural Information Processing Sys-

tems (NeurIPS), volume 35, pp. 8414–8426. MIT Press,
Cambridge, MA, 2022.

Ruppert, D. Selecting the number of knots for penalized
splines. Journal of Computational and Graphical Statis-

tics, 11(4):735–757, January 2002.

Sadhanala, V. and Tibshirani, R. J. Additive models with
trend filtering. Annals of Statistics, 47(6):3032–3068,
2019.

Servén, D. and Brummitt, C. pyGAM: Generalized addi-
tive models in Python, 2018.

Sorokina, D., Caruana, R., and Riedewald, M. Additive
groves of regression trees. In Kok, J. N., Koronacki, J.,
López de Mántaras, R., Matwin, S., Mladenic, D., and
Skowron, A. (eds.), Proc. of the 18th European Conf.

Machine Learning (ECML–07), pp. 323–334, Warsaw,
Poland, September 17–21 2007.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and
Knight, K. Sparsity and smoothness via the fused lasso.
J. Statistical Society B, 67(1):91–108, February 2005.

Viola, P. and Jones, M. J. Robust real-time face detection.
Int. J. Computer Vision, 57(2):137–154, May 2004.

Wood, S. N. Thin plate regression splines. J. Statistical

Society B, 65(1):95–114, February 2003.

Wood, S. N. Generalized Additive Models: An Introduc-

tion with R. Texts in Statistical Science. Chapman &
Hall/CRC, second edition, 2017.

Zharmagambetov, A. and Carreira-Perpiñán, M. Á.
Smaller, more accurate regression forests using tree al-
ternating optimization. In Daumé III, H. and Singh,
A. (eds.), Proc. of the 37th Int. Conf. Machine Learn-

ing (ICML 2020), pp. 11398–11408, Online, July 13–18
2020.

11

http://archive.ics.uci.edu/ml
https://scikit-learn.org

Generalized additive models via direct optimization of regularized decision stump forests

A. Limitations
In this paper we focus only on univariate shape functions fd(xd), but using bivariate interactions fij(xi, xj) could provide
more accurate results. However, such pairwise terms are somewhat less interpretable, and the total number of such terms
grows quadratically with the feature dimension. Perhaps extending this work to include depth-2 trees that model bivariate
interactions can be one possible future direction. One possible limitation is in comparison with traditional splines that
typically use fewer number of parameters. However, tree/stump-based methods tend to be more accurate as demonstrated
here, and in the previous literature (Lou et al., 2012). And compared with models of the same family of stumps/trees (GB
and EBM), our models are much smaller.

B. Additional Experiment Results

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

200 400 600 800 1000
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

ours, λ = 0
ours, λ = 10
ours, λ = 20
fs, γ = 10

−3

fs, γ = 10
−5

fs, γ = 0

model size

V
al

id
at

io
n

R
M

S
E

200 400 600 800 1000
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

model size
200 400 600 800 1000

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

model size
200 400 600 800 1000

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

model size
200 400 600 800 1000

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

model size

200 400 600 800 1000
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

ours, λ = 0
ours, λ = 10
ours, λ = 20
fs, γ = 10

−3

fs, γ = 10
−5

fs, γ = 0

model size

T
ra

in
in

g
R

M
S

E

200 400 600 800 1000
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

model size
200 400 600 800 1000

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

model size
200 400 600 800 1000

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

model size
200 400 600 800 1000

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

model size

Figure 7. Five-fold cross-validation comparison on the CPU Activity regression dataset of the regularization paths generated by our
method versus FastSparse (fs). In our approach, the regularization path is constructed by starting with an empty forest and incrementally
adding 5 stumps at a time, re-optimizing the entire forest at each step using our algorithm. We present three curves corresponding to
different values of the roughness penalty parameter λ ∈ {0, 10, 20}. For FastSparse, we show results for three different values of the
parameter γ ∈ {0, 10−5, 10−3}. We set the num_lambda parameter to 100 and max_support_size to 1000, which generates a
regularization path across 100 different lambda_0 values. However, the actual number of unique models produced by FastSparse is
typically lower, as multiple values of lambda_0 often lead to the same model. In contrast, our method allows for more direct control
over model size via the number of stumps T , effectively imposing an ℓ0 constraint.Our regularization path consists of 100 distinct
models, although only 50 are shown in the figure to avoid visual clutter. The model size here is defined as the number of thresholds
times 2 (a constant piece value and a threshold) plus 1 for the bias.

C. Experiment Details

For all algorithms, including ours, we tune the important hyperparameters on a holdout set, and with the best found
hyperparameters perform 5 experiments on different train/test splits to report mean and standard deviation.

Implementation of our algorithm We implement our algorithm in the combination of Python and C++. The optimiza-
tion step over each stump is implemented in C++. The convex problem of joint leaf fitting is implemented in Python. We
use the CVXPY open source Python package (Diamond & Boyd, 2016) to model the leaf fitting problem using high-level
formulation, and rely on the library to convert/compile it into a specific solver form. As a convex solver inside CVXPY,
we use MOSEK, a large scale optimization software. We use CVXPY version 1.4.3, and MOSEK version 10.1. We per-

12

Generalized additive models via direct optimization of regularized decision stump forests

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

50 100 150 200
69

70

71

72

73

74

75

ours, λ = 0
ours, λ = 1
ours, λ = 2
fs, γ=10−3

fs, γ=10−5

fs, Exp-L0

model size

V
al

id
at

io
n

0/
1

ac
cu

ra
cy

(%
)

50 100 150 200
69

70

71

72

73

74

75

model size
50 100 150 200

69

70

71

72

73

74

75

model size
50 100 150 200

69

70

71

72

73

74

75

model size
50 100 150 200

69

70

71

72

73

74

75

model size

50 100 150 200
70

71

72

73

74

75

ours, λ = 0
ours, λ = 1
ours, λ = 2
fs, γ=10−3

fs, γ=10−5

fs, Exp-L0

model size

T
ra

in
in

g
0/

1
ac

cu
ra

cy
(%

)

50 100 150 200
70

71

72

73

74

75

model size
50 100 150 200

70

71

72

73

74

75

model size
50 100 150 200

70

71

72

73

74

75

model size
50 100 150 200

70

71

72

73

74

75

model size

Figure 8. Same setup as Fig. 7, but applied to the FICO classification dataset. For our method, we generate the regularization path by
incrementally adding one stump at a time and re-optimizing the current forest using our algorithm, continuing until the forest contains
100 stumps. To reduce visual clutter, we display only 50 points from our regularization path. For FastSparse (fs), following Fig.8
from their paper, we report results for logistic loss with two different values of γ ∈ {10−5, 10−3}, and for exponential loss with
penalty=L0. We run the regularization path with num_lambda=100, and similarly as with fig. 7, we obtain a fewer number of
unique models because multiple values lambda_0 produce the same result.

2002 2006 2010 2014 2018
-2

-1.5

-1

-0.5

0

0.5

1
10

4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Year

P
ri

ce
,(

£)

0 0.5 1 1.5 2

10
5

-1

-0.5

0

0.5

1
10

4

0

500

1000

1500

Mileage
0 200 400 600

-1.5

-1

-0.5

0

0.5
10

4

0

1000

2000

3000

4000

5000

6000

7000

8000

Tax
0 50 100 150 200

-1

-0.5

0

0.5

1

1.5

2

2.5
10

4

0

500

1000

1500

2000

2500

MPG

F
re

qu
en

cy

0 2 4 6
-1

-0.5

0

0.5

1

1.5

2
10

4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Engine size

P
ri

ce
,(

£)

F
re

qu
en

cy

1 2 3 4 5 6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Model

B
M

W
3

M
er

ce
de

s
C

Fo
rd

Fo
cu

s

H
yu

nd
ai

T
uc

so
n

To
yo

ta
Y

ar
is

V
W

G
ol

fP
ri

ce
,(

£)

1 2 3

0

500

1000

1500

2000

2500

3000

Transmission type

A
ut

om
at

ic

M
an

ua
l

S
em

i-
A

ut
o

1 2 3

0

1000

2000

3000

4000

5000

6000

7000

Fuel type

D
ie

se
l

H
yb

ri
d

P
et

ro
l

Figure 9. As fig. 6, but for EBM shape functions.

form grid search on the following hyperparameter values: number of stumps = {200, 400, 600, 800}, roughness penalty
λ = {2.0, 4.0, 6.0} for classification datasets, λ = {20.0, 40.0, 60.0} for regression datasets. We do not tune the deviation
from bias hyperparameter α, and use the fixed value α = 0.1. As an initial stump forest we use stumps with random
parameters.

13

Generalized additive models via direct optimization of regularized decision stump forests

2002 2006 2010 2014 2018
-2

-1.5

-1

-0.5

0

0.5

1

1.5
10

4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Year

P
ri

ce
,(

£)

0 0.5 1 1.5 2

10
5

-5000

0

5000

10000

0

500

1000

1500

Mileage
0 200 400 600

-2

-1

0

1

2

3
10

4

0

1000

2000

3000

4000

5000

6000

7000

8000

Tax
0 50 100 150 200

-2

-1

0

1

2

3
10

4

0

500

1000

1500

2000

2500

MPG

F
re

qu
en

cy

0 2 4 6
-2

-1

0

1

2

3
10

4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Engine size

P
ri

ce
,(

£)

F
re

qu
en

cy

1 2 3 4 5 6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Model

B
M

W
3

M
er

ce
de

s
C

Fo
rd

Fo
cu

s

H
yu

nd
ai

T
uc

so
n

To
yo

ta
Y

ar
is

V
W

G
ol

fP
ri

ce
,(

£)

1 2 3

0

500

1000

1500

2000

2500

3000

Transmission type

A
ut

om
at

ic

M
an

ua
l

S
em

i-
A

ut
o

1 2 3

0

1000

2000

3000

4000

5000

6000

Fuel type

D
ie

se
l

H
yb

ri
d

P
et

ro
l

Figure 10. As fig. 6, but PyGAM shape functions.

Hardware Except for the Neural Additive Model (which is trained on a GPU), all experiments are performed on a CPU
Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz, 128 GB RAM.

The specific details of the baselines and tuned hyperparameters:

Gradient Boosting (GB): we use the scikit-learn’s implementation: GradientBoostingRegressor and GradientBoosting-
Classifier (Pedregosa et al., 2011). We set the maximum depth to 1 and perform grid search on the learning rate {0.01,
0.05, 0.1, 0.3}. We set the number of boosting iterations (n_estimators) to a very high number (106), and use
early stopping based on a validation set with n_iter_no_change equal to 100. The version of the scikit-learn is
1.4.2.

Explainable Boosting Machine (EBM): we use the official implementation from the interpret Python library1. We
perform grid search on the following hyperparameter values: learning_rate: {0.005, 0.01, 0.05}, max_bins:
{512, 1024, 2048}, min_samples_leaf: {2, 4, 8}. We set the interactions parameter to 0 to use only univari-
ate terms. max_rounds is set to 25 000 with early_stopping_rounds 50. The version of the interpret
package is 0.6.1.

Splines: we use the PyGam package2 in Python. We perform grid search on the following hyperparameters: strength of
the smoothing penalty λ = {0.001, 0.01, 0.1, 1, 10, 100, 1000, }, and the number of knots = {10, 20, 50, 100}. The
version of the PyGam package is 0.9.1.

Neural Additive Model (NAM): we use the paper’s (Agarwal et al., 2021) official implementation3. As in their paper,
we try two types of architectures: MLP with 64-64-32 ReLU layers and 1024 Exu layer. We perform grid search on
the following hyperparameters: dropout = {0.0, 0.1, 0.3, 0.5}, weight decay = {10−6, 10−5, 10−4}, learning rate =
{0.001, 0.01, 0.1}. We use a batch size of 1024 and train for 100 epochs. Only for this baseline we train it on an
NVIDIA TITAN V GPU.

Fused Lasso Additive Model (FLAM): is a nonparametric model that uses a discrete first derivative matrix to penalize
the roughness of the piecewise constant predictions. We use the official implementation4 in R. We set the α parameter
to 1 as feature selection is not the goal here, and only tune the roughness penalty λ from their default range of 50
values.

1
https://github.com/interpretml/interpret

2
https://github.com/dswah/pyGAM

3https://github.com/google-research/google-research/tree/master/neural_additive_models
4
https://cran.r-project.org/web/packages/flam/index.html

14

https://github.com/interpretml/interpret
https://github.com/dswah/pyGAM
https://github.com/google-research/google-research/tree/master/neural_additive_models
https://cran.r-project.org/web/packages/flam/index.html

Generalized additive models via direct optimization of regularized decision stump forests

FastSparse: We use the Python package fastsparsegams. We use the method
convert_continuous_df_to_binary_df to binarize the features. We perform grid-search on the fol-
lowing values of hyperparameters: algorithm = [CD, CDPISI], max_support_size = [10, 100, 1000, 10000],
and the 100 λ values in regularization path (we set num_lambda = 100, and scan through the model.lambda_0
values after training). For the penalty parameter, we use L0. For classification, we use Logistic as the loss,

Estimation of the number of parameters. For piecewise-constant models (ours, GB and EBM), we estimated the
number of parameters as the number of constant pieces times 2 summed over each shape function. This is because we must
store the piece value, and where the piece ends. For the neural networks (NAM), we just report the number of parameters
in the network architecture. And for the FLAM, because it is non-parametric, we report the size of the training set, more
specifically, the number of unique feature values summed over per each dimension.

Regression dataset description:

Cpuact The goal is to estimate the percentage of time a CPU operates in user mode. The fea-
tures are various statistics related to memory and other activities. Source is the Delve project:
http://www.cs.toronto.edu/~delve/data/comp-activ/desc.html.

Wine The task is to predict the wine quality from 0 (very bad) to 10 (very excellent) based on the attributes as acidity,
sugar, chlorides, etc. Obtained from the UCI ML repository (Lichman, 2013).

Housing California Housing dataset, a standard regression benchmark. Obtained through the scikit-learn’s
fetch_california_housing function.

Diamond The task is to predict the price of a diamond based on the characteristics of
clarity, carat weight, etc. We download it from the OpenML dataset repository:
https://www.openml.org/search?type=data&sort=runs&id=42225&status=active.

Year predicting the release year of a song from audio features. Obtained from the UCI ML Repository (Lichman, 2013).

FPS the goal is to predict the frames-per-second in video games based on characteris-
tics of a CPU, GPU and the game itself. Sourced from the OpenML repository:
https://www.openml.org/search?type=data&status=active&id=42737. We only use the
“userbenchmark” source, and discard the “fpsbenchmark” source. We also drop the columns with missing values. We
perform one-hot-encoding for the categorical variables.

Classification dataset description:

Letter English letter recognition task, available in the UCI ML Repository (Lichman, 2013). We convert it into binary
classification by combining the letters A-M into one class and the rest to the other class.

Churn The binary classification task to predict which customer will churn. The features are various characteristics of the
customer. Obtained from Kaggle:
https://www.kaggle.com/datasets/blastchar/telco-customer-churn.

FICO Dataset from the Explainable Machine Learning Challenge. The task is to predict whether a consumer pays the
credit on time or is overdue. The features come from an anonymized credit bureau data. Obtained from the official
website: https://community.fico.com/s/explainable-machine-learning-challenge.

IJCNN The dataset comes from an IJCNN 2001 competition. We obtain it from the LIBSVM binary dataset collection:
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Covtype Classification task of pixels into 7 forest cover types based on attributes such as elevation, aspect, soil-type, slope,
etc. We turn it into binary classification by as the majority class vs the rest. Sourced from the UCI ML Repository
(Lichman, 2013).

Bank the task to predict whether a marketing campaign of a banking institution is successful or not. The features are
various characteristics of a customer. Obtained from the UCI ML Repository (Lichman, 2013).

15

http://www.cs.toronto.edu/~delve/data/comp-activ/desc.html
https://www.openml.org/search?type=data&sort=runs&id=42225&status=active
https://www.openml.org/search?type=data&status=active&id=42737
https://www.kaggle.com/datasets/blastchar/telco-customer-churn
https://community.fico.com/s/explainable-machine-learning-challenge
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

