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ABSTRACT

Molecular representations that fully capture geometric parameters such as bond
angles and torsion angles are crucial for accurately predicting important molecular
properties including enzyme catalytic activity, drug bioactivity, and molecular
spectral characteristics, as demonstrated by extensive studies. However, current
molecular graph representation learning approaches represent molecular geometric
parameters only indirectly through combinations of atoms and bonds, neglecting
the spatial relationships and interactions between these higher-order geometric
structures. In this paper, we propose TetraGT (Tetrahedral Geometry-Driven
Explicit Token Interactions with Graph Transformer), a novel architecture that di-
rectly models molecular geometric parameters. Based on the spatial solid geometry
theory of face angle and dihedral angle inequality, TetraGT explicitly represents
bond angles and torsion angles as structured tokens for the first time, directly
reflecting their intrinsic role in determining the molecular conformational stability
and properties. Through our designed spatial tetrahedral attention mechanism,
TetraGT achieves highly selective direct communication between structural tokens.
Experimental results demonstrate that TetraGT achieves superior performance on
the PCQM4Mv2 and OC20 IS2RE benchmarks. We also apply our pre-trained
TetraGT model to downstream tasks including QM9, PDBBind, Peptides and LIT-
PCBA, demonstrating that TetraGT delivers excellent results in transfer learning
scenarios and shows scalability with increasing molecular size.

1 INTRODUCTION

Accurate prediction of molecular properties is essential for advancements in drug discovery and
biochemical research. Properties such as enzyme catalytic activity (Lopes et al., 2009), drug bioactiv-
ity (Kessler, 1982), molecular spectral characteristics (Wald, 1968), and reaction stereoselectivity
(Hashimoto & Maruoka, 2015) are intrinsically determined by the three-dimensional structural
arrangements of molecules. Studies have consistently shown that molecular geometric parame-
ters—particularly bond angles and torsion angles—critically influence these properties by determining
molecular conformational stability and reactivity (Lovering et al., 2009).

Following the success of Transformer (Vaswani, 2017) in various domains, Graph Transformers (GTs)
(Ying et al., 2021; Feng et al., 2022) have emerged as powerful approaches to learning molecular
representation. Recent GTs (Zhou et al., 2023; Stärk et al., 2022; Hussain et al., 2022), which
incorporate 3D structural information, represent molecules primarily through node tokens (atoms)
and sometimes edge tokens (bonds), relying on global attention mechanisms to facilitate information
exchange across the molecular graph. Inspired by the remarkable success of AlphaFold (Jumper et al.,
2021) in protein structure prediction, methods such as UniMol+ (Lu et al., 2023) and TGT (Hussain
et al., 2024) have introduced triangle inequality-constrained interatomic distance prediction. Such
advancements have demonstrated that the incorporation of geometric constraints can significantly
enhance the prediction performance of molecular properties.

Despite these improvements, current approaches encounter three primary challenges in representing
molecular geometry comprehensively. (1) Lack of Local Chirality: Chirality describes the "handed-
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ness" of molecular spatial arrangements. Molecules with different local chirality may yield similar
or even identical distance matrices, creating ambiguity in molecular representation. (2) Implicit
Modeling of Geometric Structures: Recent models such as QuinNet (Wang et al., 2024c) and
ViSNet (Wang et al., 2024b) that introduce four- or five-atom interactions to enhance expressiveness,
still encode higher-order geometric information only implicitly through combinatorial operations
between atom-level tokens, causing deviations in geometric parameters to propagate and accumulate
through indirect representations. (3) Structural Interdependency Neglect: Existing approaches fail
to account for the interdependent relationships between molecular geometric parameters, relations that
collectively determine the overall molecular conformation and subsequently its functional properties.

To address these challenges, we propose TetraGT, a novel Graph Transformer architecture that
explicitly models geometric parameters as structured tokens. TetraGT directly represents bond
angles and torsion angles as structural tokens in the model architecture, reducing the accumulation of
prediction errors. TetraGT introduces a spatial tetrahedral attention mechanism that promotes effective
communication between geometric-parameter tokens while ensuring the satisfaction of tetrahedral
geometric constraints, enabling the generation of globally consistent and physically realistic molecular
conformations. In addition, we introduce a directed cycle angle loss that enables stable prediction of
angles over the full range (0, 2π) and leverages directionality for explicit local chirality discrimination.
Furthermore, based on a hierarchical virtual node aggregation architecture, our method effectively
alleviates information bottlenecks caused by excessive compression of information from different
orders. By learning fundamental geometric principles rather than memorizing specific conformational
patterns, TetraGT improves the model’s generalization ability across diverse molecular structures
and can accurately predict geometries from scratch, without requiring initial estimates of 3D
coordinates. Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to explicitly model molecular geometric parameters
(bond angles and torsion angles) as structured tokens rather than indirectly deriving them from
pairwise atomic relationships. This direct representation significantly reduces accumulated errors
and enables more accurate capture of molecular conformational characteristics.

• We introduce three synergistic architectural innovations—spatial tetrahedral attention mechanism,
directed cycle angle loss, and hierarchical virtual node aggregation architecture—that collec-
tively enhance TetraGT’s expressive power by enforcing geometric consistency, enabling chirality
discrimination, and capturing multi-scale structural information.

• TetraGT achieves superior performance across multiple benchmarks, establishing new state-of-
the-art results on quantum chemistry datasets (PCQM4Mv2 and OC20 IS2RE) and demonstrating
remarkable effectiveness in diverse transfer learning scenarios including molecular property predic-
tion (QM9 and Peptides), binding affinity prediction (PDBBind), and drug discovery (LIT-PCBA).

2 RELATED WORK

2.1 ANGLE PREDICTION IN MOLECULAR CONFORMATION OPTIMIZATION

The incorporation of angular constraints, including bond angles and torsion angles, in molecular
conformations has been progressively applied in recent works. Early methods (Ganea et al., 2021;
Rai et al., 2022) introduced torsion angle constraints in three-dimensional conformation genera-
tion. Building on these foundations, several diffusion-based and autoregressive approaches have
emerged (Jing et al., 2022; Zhang et al., 2023). For example, DiffPack (Zhang et al., 2024) learned
the joint distribution of side-chain torsion angles through diffusion and denoising and AUTODIFF (Li
et al., 2024a) designed conformational motifs as a molecular assembly strategy to mitigate issues
with skewed angles. Other methods attempt to capture angular information more explicitly through
equivariance and positional encoding that incorporates angular information, such as LEFTNet (Du
et al., 2024), SaVeNet (Aykent & Xia, 2024) and Geoformer (Wang et al., 2024a). However, these
methods still predict angles implicitly from atomic coordinates or encode them as auxiliary features
rather than modeling them as explicit structural entities, leading to accumulated errors as deviations
compound through indirect representations. More critically, none of these works address the funda-
mental challenge of local chirality discrimination—molecules with different chirality can produce
similar angle and distance distributions, creating inherent ambiguity. Our approach fundamentally
differs by treating geometric parameters as structured tokens, with bond angles and torsion
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angles represented as first-class entities. We introduce a directed cycle angle loss that predicts angles
in the full range of (0, 2π), incorporating directionality to explicitly capture local chirality, making
TetraGT the first work to achieve chirality-aware molecular representation through angular modeling.

2.2 PREDICTIVE MOLECULAR STRUCTURAL PRE-TRAINING

AlphaFold (Jumper et al., 2021) employs a Transformer architecture for predictive structural pre-
training on protein datasets. In small molecule structural pre-training, hybrid approaches such
as GraphTrans (Wu et al., 2021), GSA (Rashedi et al., 2009), GROVER (Rong et al., 2020),
and GPS (Rampášek et al., 2022a) combine Transformers with Graph Neural Networks for en-
hanced expressiveness. Pure GT models directly take structural elements as token inputs, where
Graphormer (Ying et al., 2021; Shi et al., 2022) and EGT (Hussain et al., 2022) are the two most rep-
resentative approaches. Graphormer-type models including Unimol (Zhou et al., 2023), GEM-2 (Liu
et al., 2022a), and Transformer-M (Luo et al., 2022) primarily use atoms as tokens, implicitly encoding
bonds and spatial structures through positional encoding and attention bias. In contrast, EGT-based
models treat edge embeddings as tokens with global attention for node-edge information exchange.
Recent advances have incorporated triangular inequality constraints, as seen in GPS++ (Masters
et al., 2022), Unimol+ (Lu et al., 2023), and TGT (Hussain et al., 2024), improving geometric
consistency at the edge level. Despite these advances, current methods remain limited to the inter-
actions between node-level and edge-level tokens, failing to capture structural interdependencies
among higher-order geometric structures (bond angles and torsion angles). This results in isolated
modeling of bond angles and torsion angles, significantly compromising the physical plausibility of
conformations. Building upon explicit modeling of angles as tokens, TetraGT introduces a spatial
tetrahedral attention mechanism that ensures these parameters collectively satisfy inequalities
derived from tetrahedral geometry, enabling effective communication between interdependent struc-
tures—extending triangle inequality principles from edges to higher-order elements. Meanwhile, our
hierarchical virtual node architecture aggregates information across different structural orders,
allowing the model to learn multi-scale interdependencies.

3 METHOD

3.1 TETRAGT ARCHITECTURE

The Definition and Preliminaries

The TetraGT model utilizes atomic features (X ∈ Rn×dx , where n is the number of atoms and
dx is the atom feature dimension), edge features (E ∈ Rn×n×de , where de is the edge feature
dimension), and 3D conformational information including the complete distance matrix (D ∈ Rn×n),
all bond angles (B ∈ Rnb , nb is the number of bond angles), and torsion angles (T ∈ Rnt , nt is
the number of torsion angles) within the molecule to predict molecular properties y and update 3D
conformational information using learnable parameters θ. The model has L blocks, where the l-th
block outputs node embeddings h(l), edge embeddings e(l), bond angle embeddings b(l), and dihedral
angle embeddings t(l). To ensure the physical validity of predicted molecular geometries, we consider
the tetrahedron as a fundamental local structure that satisfies basic geometric constraints governing
the spatial arrangement of atoms. Here, “tetrahedra” refers to the geometric 3D simplex formed by
any four non-coplanar atoms, rather than a chemical tetrahedral (sp3) center.

Specifically, such tetrahedra must satisfy the following angle constraints:

Lemma 1 (Tetrahedral Angle Constraints). Let {i, j, k, l} be four non-coplanar points in R3 forming
a (non-degenerate) tetrahedron. In particular, all face angles and dihedral angles introduced below
lie in (0, 2π). Let bjki, blki, blkj denote the face angles at vertex k in faces ijk, ikl, jkl respectively,
and let tijkl, tjikl, tiklj denote the dihedral angles between faces ijk and ikl, faces ijk and jkl, and
faces ikl and jkl respectively. Then:

(a) Face Angles: For any permutation {θ1, θ2, θ3} = {bjki, blki, blkj}, we have θ1 + θ2 > θ3 and
θ1 + θ2 + θ3 < 2π.

(b) Dihedral Angles: For any permutation {ϕ1, ϕ2, ϕ3} = {tijkl, tjikl, tiklj}, we have ϕ1 +ϕ2 > ϕ3.
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Figure 1: (a) Multi-level Attention Module. Index Match denotes the selection of corresponding
edge embeddings based on the indices of nodes. (b) TetraGT Network Architecture. (c) Tetrahedral
interaction for bond angles. (d) Tetrahedral interaction for torsion angles.

(c) Relationship between Face and Dihedral Angles at vertex k:

cos(tijkl) =
cos(bjki) + cos(blki) cos(blkj)

sin(blki) sin(blkj)
(1)

with similar formulas for tjikl and tiklj by cyclic permutation of the indices. The non-coplanarity
assumption ensures that the denominators in the above expressions are non-zero.

The Initialization of Substructures. Atom representations are composed of the atom’s inherent
properties, while edge representations are formed by chemical bond properties, the types of atoms at
both ends, and bond length. As illustrated in Figure 1(c) and (d), TetraGT comprehensively models
neighboring face angles (such as blkj , bl′kj , and bl′′kj) between atom triplets and dihedral angles
(tijkl, tikl′j , etc.) between atom quadruplets. This approach enables face angles like blkj , bl′kj , and
bl′′kj to aggregate information directly without being bottlenecked by nodes k and j, with the same
principle applying to dihedral angles. Inspired by Lemma 1, we initialize dihedral angle tokens
using atom and edge representations along with face angle information. This approach naturally
incorporates tetrahedral geometric constraints into our model.

Multi-level Attention Module. In each layer, the Multi-level Attention mechanism leverages output
representations from the previous layer to facilitate continued interaction and refinement of these
geometric features. First, we compute the node and edge embeddings through the attention mechanism
shown in Figure 1(a). Subsequently, the bond angle embedding is obtained by using the indices of
the two edges forming the angle to locate the corresponding positions and summing the embeddings.
Similarly, for dihedral angle updates, we use the indices of three consecutive edges that form the
torsion angle to locate and sum the corresponding torsion angle embeddings. This approach allows
for a hierarchical update of representations of different structural levels in the graph, progressing
from atoms to chemical bonds, then to bond angles, and finally to torsion angles. The updates of
atom and edge representations in the Multi-level Attention Module are as follows:

h(l) = softmax
(
e(l)

)
σ(e(l−1)W

(l,e)
G )h(l−1)W

(l,h)
V , e(l) = h(l−1)W

(l,h)
Q

(
h(l−1)W

(l,h)
K

)T

/
√
dh + e(l−1)W

(l,e)
E . (2)

where dh is the head dimension, W (l,h)
Q ,W

(l,h)
K ,W

(l,h)
V ∈ Rda×dh ,W

(l,e)
E ,W

(l,e)
G ∈ Rdp×dh . The

representation of bond angles and torsion angles is achieved by adding the corresponding edge
representations to their respective indices:

b
(l)
ijk =

∑
(ab) ∈ {(ij), (jk)}e(l)ab + b

(l−1)
ijk W

(l,b)
B . (3)

t
(l)
ijkl =

∑
(ab) ∈ {(ij), (jk), (kl)}e(l)ab + t

(l−1)
ijkl W

(l,b)
T . (4)

where W
(l,h)
B ∈ Rdb×dh ,W

(l,h)
T ∈ Rdt×dh . Both bond angles and torsion angles utilize the edge

representations from the current layer for aggregation, allowing for an efficient use of atomic and
edge representations from the previous layer.
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Tetrahedral Interaction Module. We carefully designed this approach for two primary reasons.
First, naively modeling all possible triplet and quadruplet interactions has unacceptable computational
costs, especially when the number of atoms in molecules scales. Second, arbitrary substructures often
lack physical significance in molecular modeling. TetraGT leverages tetrahedral geometric theory to
selectively model meaningful higher-order interactions in tetrahedral structures. To further improve
efficiency, we introduce a local sampling strategy that restricts attention to the w nearest neighbors,
reducing theoretical complexity from O(N3) to O(wN2).

For a central bond angle (i, j, k), the facial interaction with neighboring bond angles sharing vertex k
is computed as follows:

of
jki =

∑
l∈Nw(j)

af
ijklv

f
lkj , af

ijkl = softmaxl

(
qf(bjki) · pf(tlkj)√

d
+ bf(blki)

)
σ(gf(blki)) (5)

where Nw(j) denotes the set of w nearest neighbors of j at vertex k, the value vector vf
lkj is derived

from a learnable projection of the bond angle embedding blkj , and af
ijkl is the attention weight

assigned to the bond angle (l, k, j) by the bond angle (i, j, k). As shown in Figure 1(c), design
enables efficient and direct information exchange between neighboring face angles like bjki, blki,
and blkj at vertex k, while maintaining computational tractability through strategic local sampling.
Meanwhile, the query vector qf and key vector pf are derived from the bond angle embeddings. The
bias term bf and gating term gf are scalars derived from the bond angle embedding blki, incorporating
geometric constraints from Lemma 1(a) to facilitate physically valid interactions.

Similar to face angles, for a torsion angle (i, j, k, l), the dihedral interaction with neighboring torsion
angles is computed as follows:

od
ijkl =

∑
l∈Nw

ad
ijklv

d
iklj , ad

ijkl = softmaxl

(
qd(tijkl) · pd(tiklj)√

d
+ bd(tjikl)

)
σ(gd(tjikl)) (6)

where Nw represents the w nearest neighboring torsion angles, and the value vector vd
iklj is derived

from the torsion angle embedding. As illustrated in Figure 1(d), this mechanism enables efficient
direct information exchange between dihedral angles sharing common faces. The fixed atoms (e.g.,
i, j, k in Figure 1(d)) naturally form the base bond angle, ensuring that interacting dihedral angles are
not composed of completely disconnected atoms. This carefully designed local sampling strategy
preserves structural validity while effectively managing the computational complexity inherent to
higher-order interactions (detailed computational analysis in Appendix E). Furthermore, the bias and
gating terms incorporate constraints from Lemma 1(b), informed by the face-dihedral relationship
established in Lemma 1(c), to maintain geometrically consistent representations.

Following these specialized attention mechanisms, the representations are updated as:

b(l) = b(l−1) + FFN(of
jki), t(l) = t(l−1) + FFN(od

ijkl) (7)

Directed Cycle Angle Loss (DCA loss). TetraGT extends molecular geometry prediction to include
bond and torsion angles. When chirality changes, at least one angle shifts from σ to 2π − σ in
a fixed reference direction. Distance-only prediction methods struggle with this distinction, as
both angular values satisfy identical distance matrices. This challenge becomes particularly acute
at molecular terminals, where chirality-induced distance variations become nearly imperceptible.
Previous approaches often restricted angles to the 0-π range, failing to capture chiral variations.
Recognizing the cyclic nature of angle prediction, TetraGT implements a directed circular binning
loss:

LDCA = min
(
−

N∑
i=1

qi log(pi),−
N∑
i=1

qi log(p(i+1) mod N )
)

. (8)

By extending the angle range to (0,2π) with counterclockwise as the primary direction, this approach
accommodates all chirality scenarios and appropriately handles boundary cases, avoiding excessive
penalties for angles that are conceptually close but numerically distant (e.g., 359° vs 1°).

Hierarchical Virtual Node. Recent studies (Li et al., 2024b; Xing et al., 2024) show that virtual
nodes in graph data significantly reduce information bottlenecks, but previous molecular property
prediction approaches either compressed all atomic information (losing critical structural details) or
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Figure 2: The three stages of TetraGT training.

used only atomic-level virtual nodes (inadequately representing 3D interactions). To address these
limitations, TetraGT implements a novel hierarchical virtual nodes architecture. Each substructure
type (atoms, edges, bond angles, torsion angles) has a dedicated virtual node that interacts with tokens
of its own type through appropriate mechanisms: FFN for atoms, triplet interaction for edges, and
tetrahedral interaction for bond and torsion angles. For property prediction, a molecule-level virtual
node connects to these four substructure virtual nodes as the final output representation.

3.2 MODEL TRAINING

training procedure of TetraGT includes three stages for the molecular property prediction task. First,
in the conformation prediction stage, a conformation predictor is trained to predict accurate molecular
conformations from 2D molecular graphs. During the pretraining stage, a task predictor is employed
to predict molecular properties from the pre-training dataset. This predictor also receives noisy
conformational structures as input and denoise conformational structures. In the fine-tuning stage, the
frozen, pre-trained conformation predictor and task predictor are fine-tuned on downstream datasets.

Conformer Prediction Stage. We train the TetraGT conformation predictor to predict all pairwise
interatomic distances, bond angles, and torsion angles within a molecule. The conformation predictor
takes a 2D molecular graphs as input (Optionally, an initial distance estimate, e.g., from RDKit
coordinates) and outputs all pairwise interatomic distances, bond angles, and torsion angles. Angles
are invariant to translation and rotation. Inspired by TGT, we predict binned angles instead of
continuous values, as torsion angle structures are typically less stable than chemical bonds and
more susceptible to rapid changes due to molecular energy fluctuations. The TetraGT employs
cross-entropy loss for pairwise atomic distances and the Directed Cycle Angle Loss for angles.

Pre-training Stage. In the pre-training phase, TetraGT train the TetraGT task predictor on noisy
ground truth 3D conformations. This approach ensures that the task predictor is robust to noise in
both input distances and angles, enabling it to adapt to approximate conformations output by the
conformation predictor, which still contain noise. We maintain predictions for pairwise interatomic
distances, bond angles, and torsion angles. We use distance prediction loss and angle prediction loss as
auxiliary tasks that encourage different order substructure representations to denoise the 3D structure,
combined with the primary tasks from the pre-training dataset, to jointly train TetraGT’s task predictor
in a multi-task learning framework. Furthermore, TetraGT employs hierarchical substructure virtual
nodes for joint prediction in molecular property prediction, facilitating the association between
substructures and molecular properties.

Fine-tune Stage. In the fine-tuning phase, TetraGT employs a frozen, pre-trained conformation
predictor to efficiently generate high-precision 3D structural features from the 2D molecule graph.
During this process, the conformation predictor specifically operates in stochastic mode with active
dropout (Hussain et al., 2024). Subsequently, all the predicted bond angles, torsion angles, and
interatomic pair distances serve as input to the task predictor. The fine-tuning process simultaneously
combines the primary objective of the downstream dataset’s task with auxiliary optimization functions
for distance and angle prediction. Specifically, we utilize the model-generated interatomic pair
distance matrix, bond angles, and torsion angles as input, requiring the model to predict the same
substructures in the ground truth conformations, as well as the target objectives of the current dataset.

6
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Table 1: LIT-PCBA results. The top 1st and
2nd results are highlighted.

Model Avg. Test
ROC-AUC↑ (%)

NaiveBayes (Webb et al., 2010) 73.0
SVM (Hearst et al., 1998) 73.4
RandomForest (Breiman, 2001) 62.0
XGBoost (Chen & Guestrin, 2016) 72.6

GCN (Kipf & Welling, 2016) 72.3
GAT (Velickovic et al., 2017) 75.2
FP-GNN (Cai et al., 2022) 75.9

EGT (Hussain et al., 2022) 78.9
GEM (Fang et al., 2022) 78.4
GEM-2 (Liu et al., 2022a) 81.5
EGT+RDKit (Hussain et al., 2024) 81.2
TGT (Hussain et al., 2024) 81.5

TetraGT 82.4

Table 2: Results on PCQM4MV2 valid set.
Model # param. MAE (meV)↓
MLP-Fingerprint (Hu et al., 2022) 16.1M 173.5
GCN (Kipf & Welling, 2016) 2.0M 137.9
GIN (Xu et al., 2018) 3.8M 119.5
GINEv2 (Brossard et al., 2020) 13.2M 116.7
GIN-VN (Xu et al., 2018; Gilmer et al., 2017) 6.7M 108.3
DeeperGCN-VN (Li et al., 2020) 25.5M 102.1
TokenGT (Kim et al., 2022) 48.5M 91.0
EGT (Hussain et al., 2022) 89.3M 86.9
GRPE (Park et al.) 46.2M 86.7
Graphormer (Ying et al., 2021; Shi et al., 2022) 47.1M 86.4
GraphGPS (Liu et al.) 13.8M 85.2
GEM-2(+RDKit) (Liu et al., 2022a) 32.1M 79.3
GPS++ (Masters et al., 2022) 44.3M 78.1

Transformer-M (Luo et al., 2022) 69M 77.2
Uni-Mol+(+RDKit) (Lu et al., 2023) 77M 69.3
TGT(+RDKit) (Hussain et al., 2024) 203M 67.1

TetraGT-6 layer 60M 69.3
TetraGT-12 layer 127M 68.1
TetraGT-24 layer 215M 67.1
TetraGT-24 layer(+RDKit) 215M 65.9

Table 3: Performance on OC20 IS2RE validation set.

Model
Energy MAE (meV)↓ EwT (%)↑

ID OOD
Ads.

OOD
Cat.

OOD
Both

AVG. ID OOD
Ads.

OOD
Cat.

OOD
Both

AVG.

SchNet (Schütt et al., 2017) 646.5 707.4 647.5 662.6 666.0 2.96 2.22 3.03 2.38 2.65
DimeNet++ (Gasteiger et al., 2020) 563.6 712.7 561.2 649.2 621.7 4.25 2.48 4.40 2.56 3.42
GemNet-T (Gasteiger et al., 2021) 556.1 734.2 565.9 696.4 638.2 4.51 2.24 4.37 2.38 3.38
SphereNet (Liu et al., 2022b) 563.2 668.2 559.0 619.0 602.4 4.56 2.70 4.59 2.70 3.64
GNS (Godwin et al., b) 540.0 650.0 550.0 590.0 582.5 - - - - -
GNS+NN (Godwin et al., b) 470.0 510.0 480.0 460.0 480.0 - - - - -

Graphormer-3D (Shi et al., 2022) 432.9 585.0 444.1 529.9 498.0 - - - - -
EquiFormer (Liao & Smidt) 422.2 542.0 423.1 475.4 465.7 7.23 3.77 7.13 4.10 5.56
EquiFormer+NN (Liao & Smidt) 415.6 497.6 416.5 434.4 441.0 7.47 4.64 7.19 4.84 6.04
DRFormer (Wang et al., 2023) 418.7 486.3 432.1 433.2 442.5 8.39 5.42 8.12 5.44 6.84
Uni-Mol+ (Lu et al., 2023) 379.5 452.6 401.1 402.1 408.8 11.1 6.71 9.90 6.68 8.61
TGT (Hussain et al., 2024) 381.3 445.4 391.7 393.6 403.0 11.1 6.87 10.47 6.80 8.82

TetraGT 375.3 440.1 382.8 392.7 397.7 11.9 7.28 11.69 6.90 9.14

4 EXPERIMENTS

The experimental section aims to validate the effectiveness of our proposed model and methods in
addressing existing challenges. We first demonstrate the performance and scalability of TetraGT on
large-scale quantum chemistry datasets, PCQM4Mv2 (Hu et al., 2022) and OC20 IS2RE (Chanussot
et al., 2021). We then evaluate the transfer learning capabilities of the TetraGT model in both the
conformer prediction and pre-training stages. We conduct ablation studies on the key components
and aggregated angle representation of TetraGT, and analyze its efficiency and scalability across
different molecular sizes. We also conducted quantitative analysis and visualization of conformer
chirality prediction and conformer prediction accuracy, with details provided in Appendix C and D.
Full experimental details and configurations can be found in Appendix F.

4.1 LARGE-SCALE QUANTUM CHEMICAL PREDICTION

PCQM4Mv2. PCQM4Mv2, part of the OGB-LSC graph property prediction challenge, contains
over 3.7 million molecules. The dataset task is to predict the HOMO-LUMO gap. The performance
of the distance predictor is tuned on a random 5% subset of the training data, which we refer to as
validation-3d. Experimental results, expressed as Mean Absolute Error (MAE) in meV, are presented
in Table 2. We observe that the 24-layer TetraGT model achieves the best performance on the
PCQM4Mv2 dataset, surpassing all baseline models and outperforming the previous state-of-the-art
TGT model by 1.1 meV, demonstrating the effectiveness of our proposed approach. Notably, even
without RDkit conformers as input, the 24-layer TetraGT model relying solely on 2D molecular
graphs achieves comparable performance to the previous state-of-the-art TGT that utilized RDkit
conformers. The gap between the 12-layer and 24-layer TetraGT suggests that effectively encoding
higher-order substructures on graphs requires deeper model architectures and larger model capacities.

Open Catalyst 2020 IS2RE. The Open Catalyst 2020 Challenge aims to predict the adsorption
energy of molecules on catalyst surfaces. We conduct experiments on the IS2RE (Initial Structure to
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Table 4: Results (MAE(↓)) on the QM9 dataset.
Method µ α ϵH ϵL ∆ϵ ZPVE Cv U0 U H G R2

GraphMVP (Liu et al.) 0.031 0.070 28.5 26.3 46.9 1.63 0.033 - - - - -
GEM (Fang et al., 2022) 0.034 0.081 33.8 27.7 52.1 1.73 0.035 - - - - -
3D Infomax (Stärk et al., 2022) 0.034 0.075 29.8 25.7 48.8 1.67 0.033 - - - - -
3D-MGP (Jiao et al., 2023) 0.020 0.057 21.3 18.2 37.1 1.38 0.026 - - - - -

Schnet (Schütt et al., 2017) 0.033 0.235 41.0 34.0 63.0 1.7 0.033 14 19 14 14 73
PhysNet (Unke & Meuwly, 2019) 0.053 0.062 32.9 24.7 42.5 1.39 0.028 8.15 8.34 8.42 9.4 765
Cormorant (Anderson et al., 2019) 0.038 0.085 34.0 38.0 61.0 2.03 0.026 22 21 21 20 961
DimeNet++ (Gasteiger et al., 2020) 0.030 0.044 24.6 19.5 32.6 1.21 0.023 6.32 6.28 6.53 7.56 331
PaiNN (Schütt et al., 2021) 0.012 0.045 27.6 20.4 45.7 1.28 0.024 5.85 5.83 5.98 7.35 66
EGNN (Satorras et al., 2021) 0.029 0.071 29.0 25.0 48.0 1.55 0.031 11 12 12 12 106
NoisyNode (Godwin et al., a) 0.025 0.052 20.4 18.6 28.6 1.16 0.025 7.30 7.57 7.43 8.30 700
SphereNet (Liu et al., 2022b) 0.025 0.053 22.8 18.9 31.1 1.12 0.024 6.26 6.36 6.33 7.78 268
ComENet (Wang et al., 2022) 0.025 0.045 23.1 19.8 32.4 1.20 0.024 6.59 6.82 6.86 7.98 259
SEGNN (Brandstetter et al., 2022) 0.023 0.060 24.0 21.0 42.0 1.62 0.031 15 13 16 15 660
EQGAT (Le et al., 2022) 0.011 0.053 20.0 16.0 32.0 2.00 0.024 25 25 24 23 382
LEFTNet (Du et al., 2024) 0.011 0.039 23 18 39 1.19 0.022 5 5 5 6 66
SaVeNet (Aykent & Xia, 2024) 0.0085 0.035 16.6 15.1 22.7 1.10 0.021 4.83 4.74 4.83 6.10 49

SE(3)-T (Fuchs et al., 2020) 0.051 0.142 35.0 33.0 53.0 - 0.052 - - - - -
TorchMD-Net (Thölke & De Fabritiis, 2022) 0.011 0.059 20.3 17.5 36.1 1.84 0.026 6.15 6.38 6.16 7.62 33
Equiformer (Liao & Smidt) 0.011 0.046 15.0 14.0 30.0 1.26 0.023 6.59 6.74 6.63 7.63 251
Transformer-M (Luo et al., 2022) 0.037 0.041 17.5 16.2 27.4 1.18 0.022 9.37 9.41 9.39 9.63 75
TGT (Hussain et al., 2024) 0.025 0.040 9.9 9.7 17.4 1.18 0.020 - - - - -
EquiformerV2 (Liao et al., 2024) 0.010 0.050 14 13 29 1.47 0.023 6.17 6.49 6.22 7.57 186
EquiformerV2+NN (Liao et al., 2024) 0.009 0.039 12.2 11.4 24.2 1.21 0.020 4.34 4.28 4.24 5.34 182
Geoformer (Wang et al., 2024a) 0.010 0.040 18.4 15.4 33.8 1.28 0.022 4.43 4.41 4.39 6.13 27.5

TetraGT 0.017 0.032 8.5 8.7 15.6 1.11 0.019 4.92 5.11 4.36 6.07 35

Table 5: Results on PDBBind core set (version
2016). The evaluation metrics include Pearson’s
correlation coefficient (R), Mean Absolute Error
(MAE), Root-Mean Squared Error (RMSE), and
Standard Deviation (SD)

Method R↑ MAE↓ RMSE↓ SD↓
RF-Score Ballester & Mitchell (2010) 0.789(0.003) 1.161(0.007) 1.446(0.008) 1.335(0.010)
OnionNet Zheng et al. (2019) 0.768(0.014) 1.078(0.028) 1.407(0.034) 1.391(0.038)
GNN-DTI Lim et al. (2019) 0.736(0.021) 1.192(0.032) 1.492(0.025) 1.471(0.051)
DMPNN Yang et al. (2019) 0.729(0.006) 1.188(0.009) 1.493(0.016) 1.489(0.014)
SGCN Shi et al. (2021) 0.686(0.015) 1.250(0.036) 1.583(0.033) 1.582(0.320)
DimeNet Gasteiger et al. (2020) 0.752(0.010) 1.138(0.026) 1.453(0.027) 1.434(0.023)
CMPNN Song et al. (2020) 0.765(0.009) 1.117(0.031) 1.408(0.028) 1.399(0.025)
SIGN Li et al. (2021) 0.797(0.012) 1.027(0.025) 1.316(0.031) 1.312(0.035)
Transformer-M Luo et al. (2022) 0.830(0.011) 0.940(0.006) 1.232(0.013) 1.207(0.007)

TetraGT 0.852(0.017) 0.909(0.012) 1.184(0.015) 1.181(0.010)

Table 6: Results on Peptides-func and Peptides-
struct datasets.

Model Peptides-func Peptides-struct
Avg. Precision(%)↑ MAE↓

SAN Kreuzer et al. (2021) 64.39(0.75) 0.2545(0.0012)
GraphGPS Rampášek et al. (2022b) 65.34(0.91) 0.2509(0.0014)
MGT Geng et al. (2024) 68.17(0.64) 0.2453(0.0025)
DRew Gutteridge et al. (2023) 71.50(0.44) 0.2536(0.0015)
Graph ViT He et al. (2023) 69.70(0.80) 0.2449(0.0016)
GRIT Ma et al. (2023) 69.88(0.82) 0.2460(0.0012)
GRED Ding et al. (2023) 71.33(0.11) 0.2455(0.0013)
TIGT Choi et al. (2024) 66.79(0.74) 0.2485(0.0015)
GPNN Yang et al. (2022) 69.55(0.57) 0.2454(0.0003)
GSSC Huang et al. (2024) 70.81(0.62) 0.2459(0.0020)

TetraGT 72.86(0.39) 0.2421(0.0017)

Relaxed Energy) task. The IS2RE dataset provides initial Density Functional Theory(DFT) structures
of crystals and adsorbates. Following TGT’s experimental configuration, we crop/sample based on
the distance to adsorbate atoms, limiting the number of atoms to a maximum of 64. IS2RE task
results are presented in Table 3, expressed as MAE (in meV) and Energy within Threshold (EwT) at
20 meV. The table demonstrates that TetraGT achieves state-of-the-art (SOTA) performance across
all subsets of the IS2RE evaluation dataset, both in terms of absolute values and effective proportion,
without significantly increasing computational resources. This firmly establishes TetraGT as the
best-performing direct method on the OC20 IS2RE task.

4.2 TRANSFER LEARNING

Our model learns two complementary types of knowledge on the PCQM4Mv2 dataset: the conformer
predictor acquires geometric information by predicting conformations, and the task predictor learns
quantum chemical properties by predicting the HOMO–LUMO gap. We evaluate how effectively
these two forms of knowledge learned by TetraGT transfer to diverse downstream tasks.

3D Downstream Tasks. For tasks with available 3D structural information, we directly fine-tune
the task predictor using precise 3D conformational data during inference. On QM9, TetraGT
achieves state-of-the-art results in 5 out of 12 tasks as demonstrated in Table 4, surpassing TGT
on all targets and significantly outperforming other models in HOMO (εH ), LUMO (εL), and
HOMO–LUMO gap (∆ε) predictions—tasks that are most closely aligned with our pre-training
objectives on PCQM4Mv2. On the remaining QM9 properties, TetraGT typically attains second-best
or highly competitive performance. This diverse pattern is consistent with the alignment between
our pre-training supervision (HOMO–LUMO gap prediction and distance/angle denoising) and
the underlying physics of different QM9 properties: energy- and orbital-related quantities benefit
most directly, whereas properties that depend more on long-range polarization or global shape only
indirectly optimized due to their similarity angle to the pre-training task. A more detailed analysis of

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 7: Distance and angle prediction performance
of different angle interaction mechanisms and train-
ing times on PCQM4Mv2 validation-3D set.

No Axial Full Tetrahe.
4th- and 5th- Att. Att. Att.

Order

Dist. Cross-Ent.(↓) 1.204 1.164 1.179 1.125
Angle Cross-Ent.(↓) - 1.310 1.307 1.231
Time/Epoch(↓) 1.00 1.36 1.43 1.12

Table 8: Ablation Study on PCQM4Mv2.
Tetrahe. Directed Hierach. Mode Distribution Val.
Interac. Cycle Virtual (pDistance, pAngle) MAE↓
Module Loss Node (meV)

- - - - 73.6
✓ - - - 71.0
✓ ✓ - - 70.6
✓ ✓ ✓ 1:1 70.2
✓ ✓ ✓ 1:2 70.7
✓ ✓ ✓ 2:1 69.5
✓ ✓ ✓ 4:1 68.8
✓ ✓ ✓ 8:1 70.1

these task-dependent behaviors is provided in Appendix G.1. The PDBBind (version 2016) (Wang
et al., 2004) results reveal TetraGT’s superior binding affinity prediction capabilities, achieving
state-of-the-art performance with R = 0.852 and MAE= 0.909, substantially outperforming other
baselines (see Table 5). Similarly impressive results emerge from Peptides-struct (Dwivedi et al.,
2022), where TetraGT achieves the lowest MAE of 0.2421 across 11 structural regression tasks, as
detailed in Table 6. These consistent improvements across diverse 3D tasks demonstrate that TetraGT
effectively facilitate knowledge transfer beyond the specific pre-training dataset.

2D Downstream Tasks. For datasets lacking 3D coordinates, we employ TetraGT’s pre-trained
conformer predictor as a frozen feature extractor to provide structural information. Table 6 shows
TetraGT achieving 72.86% Average Precision on Peptides-func (Dwivedi et al., 2022), a 10-way
functional classification task, surpassing all baseline methods by significant margins. The LIT-
PCBA (Tran-Nguyen et al., 2020) drug discovery benchmark further validates this approach, with
TetraGT achieving superior average ROC-AUC across 7 protein interaction prediction tasks compared
to other pre-trained models, as reported in Table 1. The consistent improvements across both 2D
datasets indicate that molecules with only 2D representations can also obtain effective and valuable
information from the 3D data-pretrained conformer predictor of TetraGT. Detailed dataset descriptions
and additional experimental analyses are provided in Appendix G.

4.3 ABLATION STUDY

Table 7 compares the impact of different angle interaction methods on the prediction of the interatomic
distance, the prediction of the angle in conformations, and the training time. Table 8 presents an
ablation study of our three main optimization designs and the ratio of distance to angle loss for
the 12-layer TetraGT model. The results show that all three components positively contribute to
performance, with the tetrahedral interaction module providing the most significant gains, while the
Directed Cycle Angle Loss and Hierarchical Virtual Nodes further improve optimization stability
and multi-level feature aggregation. Lastly, we experimented with different ratios of distance loss to
angle loss and found that the model performs best when the ratio is 1:4.

4.4 EFFICIENCY AND SCALABILITY ANALYSIS

TetraGT’s strong performance on PDBBind and Peptides datasets, which contain protein-ligand
complexes and peptides with up to hundreds of atoms, already demonstrates the model’s capability
to handle large molecular systems. To further assess scalability with respect to molecular size,
we additionally evaluate TetraGT on the OC20 IS2RE dataset; detailed experimental settings and
analysis are provided in Appendix I. In terms of empirical efficiency, across PCQM4Mv2 and OC20
IS2RE, 6/12/24-layer TetraGT models consistently achieve lower MAE than UniMol+ and TGT
under comparable or shorter training and inference times, while its pretraining cost on OC20 is more
than three times lower than UniMol+ (33 vs. 112 A100 GPU days). These results indicate that the
tetrahedral geometry-driven modules substantially enhance accuracy without incurring prohibitive
computational overhead; more fine-grained efficiency analysis are given in Appendix E.

5 CONCLUSION

In this work, we introduce the TetraGT architecture, which directly models molecular geometric
parameters (such as bond angles and torsion angles) and enables effective interactions between higher-
order structures through tetrahedral attention, significantly enhancing the accuracy of molecular
geometry modeling and local chirality expression. In future research, we plan to investigate dynamic
representations of molecular geometric parameters in spatial stereochemistry, enabling more effective
and rational geometric constraints for structural predictions.
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ensuring that all methodologies and procedures followed appropriate ethical standards. The authors
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7 REPRODUCIBILITY STATEMENT

All experimental code will be made publicly available upon paper acceptance. Detailed hyperpa-
rameters and experimental configurations are provided in the Appendix F. All experiments were
conducted using the same hardware configuration described in Appendix F.

8 LLM USAGE

Large language models (LLMs) were used for refining sentence structure, improving grammatical
accuracy, and enhancing the clarity of the manuscript text. A supporting role was played by the
LLMs in the manuscript’s language polishing, but no scientific content, data analysis, or experimental
design was generated by the LLMs.
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Rubanova, Petar Veličković, James Kirkpatrick, and Peter Battaglia. Simple gnn regularisation
for 3d molecular property prediction and beyond. In International Conference on Learning
Representations, a.

Jonathan Godwin, Michael Schaarschmidt, Alexander L Gaunt, Alvaro Sanchez-Gonzalez, Yulia
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A BROADER IMPACTS

Through our paper, we demonstrate that TetraGT can better predict molecular properties and generate
precise conformations in drug development, showing its powerful applicability in practical drug
discovery tasks. However, given its effectiveness, TetraGT could potentially be misused to generate
harmful molecular conformations and predict toxic properties. This risk can be mitigated by com-
prehensively considering toxicity and other side effects in the properties of downstream tasks, or by
screening out harmful molecular conformations during the generation process.

B DENSITY FUNCTIONAL THEORY FOR MOLECULAR CONFORMATION
PREDICTION

Density Functional Theory (DFT) (Kohn et al., 1996; Orio et al., 2009) is a first-principles compu-
tational method based on quantum mechanics that plays a crucial role in molecular conformation
generation and property prediction. DFT describes many-electron systems through electron density
rather than wave functions, significantly reducing computational complexity. Its theoretical founda-
tion rests on the Hohenberg-Kohn theorem, which proves that all properties of a system’s ground
state can be uniquely determined by the electron density. In practical applications, the complex many-
electron problem is transformed into more tractable single-electron problems through the Kohn-Sham
equations. In molecular conformation generation, DFT can obtain precise three-dimensional confor-
mations of molecules by solving electronic structure equations. This process includes optimizing
molecular geometry, calculating bond lengths, bond angles, and dihedral angles, determining the
lowest energy conformation, and predicting electron distribution within molecules. The molecular
conformations generated by DFT possess high accuracy and are often used as benchmarks for the
evaluation of other conformation generation methods. This high precision stems from its rigorous
quantum mechanical theoretical foundation, which can accurately describe electronic effects, chemi-
cal bonding properties, and intramolecular interactions in molecules. However, DFT calculations also
have limitations, such as high computational cost and difficulty in handling large molecular systems.
In modern molecular design, DFT often complements machine learning methods (Schütt et al., 2017;
Axelrod & Gomez-Bombarelli, 2022; Smith et al., 2020). Machine learning models can quickly
predict molecular properties and initial conformations, while DFT is used to generate high-precision
reference conformations and validate results. This combination leverages the advantages of both
methods: the efficiency of machine learning and the high accuracy of DFT. With improvements in
computational power and algorithms, DFT’s applications in molecular science research will continue
to expand, providing crucial support for drug design, materials development, and other fields.

C QUANTITATIVE ANALYSIS OF CHIRALITY PREDICTION

The conformation predictor outputs binned distances and angles under local chirality constraints,
providing essential structural information for downstream task predictors. To quantitatively evaluate
TetraGT’s improvement over TGT in handling local chirality, we conducted a systematic evaluation
on the PCQM4M training set, which contains 3,803,453 molecules, including 1,772,922 molecules
with chiral centers (46.61%). The evaluation methodology compares model-predicted 3D conformers
with high-precision DFT-calculated conformers, using angular deviations around chiral centers as the
assessment criterion, with a deviation threshold of π/6. Experimental results demonstrate TetraGT’s
superiority over the baseline TGT model across three key metrics in Table 9. In terms of bond
angle MAE, TetraGT achieves 0.209 rad, a 15.0% reduction compared to TGT’s 0.246 rad. For
torsion angle MAE, TetraGT reaches 0.334 rad, significantly lower than TGT’s 0.597 rad by 44.1%.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 3: The ability to identify local chirality. The first row depicts DFT conformations. The second
and third rows show the corresponding molecular conformations from TGT distance predictor and
TetraGT conformations predictor. TetraGT can accurately generate molecules with local chirality
identical to the target conformation, whereas TGT conformations, relying solely on distance matrices,
exhibit deviations. Red arrows indicate atoms representing the centers of local chirality in the
molecules.

Regarding chirality prediction accuracy, TetraGT attains 74.7%, substantially outperforming TGT’s
32.5% with a 130% improvement. These quantitative results strongly validate TetraGT’s excellence
in modeling chiral structures, particularly in complex torsion angle prediction and overall chirality
determination tasks. The substantial improvements across all metrics demonstrate the effectiveness
of TetraGT’s direct angle modeling approach in capturing local molecular geometry.

Table 9: Comparison of TetraGT and TGT performance on chirality prediction
Model Bond Angles MAE (rad) Torsion Angles MAE (rad) Chirality Pred (%)

TGT 0.246 0.597 32.5
TetraGT 0.205 0.312 76.7

D THE ACCURACY OF CONFORMATION PREDICTOR IN ANGLES AND
DISTANCES

To demonstrate the accuracy of TetraGT in geometric conformation prediction, we convert distances
and angles to continuous unbounded values. Following the strategy employed in TGT (Hussain et al.,
2024), we train two small refinement networks for distances and angles respectively. These networks
accept clipped and binned values as input and output continuous, unbounded values. We train these
networks using MAE loss and employ random inference to obtain the median of the output distances.
We compare the accuracy of individual pairwise distances and angles on the validation-3D split of the
PCQM4Mv2 dataset (i.e., data unseen during training), based on MAE, RMSE (Root Mean Square
Error), and percentage errors within different thresholds as shown in Table 10 and Table 11. Our
findings indicate that in terms of distances, our TetraGT predictor outperforms TGT across all metrics.
Regarding angles, TetraGT significantly surpasses both RDKit and TGT in bond angle prediction and
substantially leads in torsion angle prediction. This suggests that through angle constraints, TetraGT’s
conformation predictor can more accurately predict the underlying structure of molecules compared
to the distance predictor in TGT.
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Table 10: Accuracy of pairwise distances in terms of MAE↓, RMSE↓ and percent error within a
threshold (EwT↑).

Model MAE (Å) RMSE (Å) EwT-0.2Å(%) EwT-0.1Å(%) EwT-0.05Å(%) EwT-0.01Å(%)

RDKit 0.248 0.541 73.33 66.65 56.90 26.79
TGT + Refiner 0.152 0.378 80.53 75.68 70.80 54.54
TetraGT + Refiner 0.127 0.322 87.32 79.15 75.31 58.29

Table 11: Accuracy of bond angles and torsion angles in terms of MAE↓, RMSE↓ and percent error
within a threshold (EwT↑).

Model Bond Angles Torsion Angles

MAE (rad) RMSE (rad) EwT-π/16 rad (%) MAE (rad) RMSE (rad) EwT-π/16 rad (%)

RDKit 0.239 0.575 71.43 0.694 1.145 33.62
TGT + Refiner 0.225 0.431 76.26 0.563 0.713 41.89
TetraGT + Refiner 0.185 0.362 83.50 0.306 0.467 62.31

E EFFICIENCY ANALYSIS OF TETRAGT VERSUS BASELINE MODELS

E.1 PCQM4MV2

Table 12 presents a comprehensive comparison of TetraGT against state-of-the-art molecular pre-
training methods, Unimol+ and TGT, across different model scales, showing parameter counts, com-
putational complexity, experimental performance on the PCQM4Mv2 dataset, and training/inference
times. Based on experimental results, we comprehensively analyze TetraGT’s method from both
efficiency and effectiveness perspectives. Regarding computational complexity, where N represents
the number of atoms and w denotes the local sampling window size, TetraGT with local sampling
achieves O(wN2) complexity for standard atom and pair embedding interactions through restricting
attention to w nearest neighbors, compared to the original O(N3) complexity. In typical molecules,
the number of bond angles ranges from 1.5N to 2N, and torsion angles from N to 2N. With local
sampling applied to these higher-order interactions, the additional computational complexity becomes
O(wN), yielding an overall complexity of O(wN2) + O(wN) = O(wN2). On the large-scale
PCQM4Mv2 dataset, TetraGT demonstrates an excellent balance between performance and computa-
tional efficiency. We systematically analyzed the trade-off between model scale and performance.
Results show that 6-layer TetraGT (68M parameters) achieves an MAE of 69.4 meV, comparable
to 18-layer Unimol+ (77M parameters) at 69.3 meV, while significantly reducing training time (ap-
proximately 14 days versus 40 days using A100 GPU). As model layers increase, 24-layer TetraGT
(241M parameters) reduces MAE to 66.2 meV, significantly outperforming 24-layer TGT (203M
parameters, 67.1 meV MAE). Notably, 12-layer TetraGT (127M parameters) maintains competi-
tive performance (69.1 meV MAE) while reducing training time from 38 to 20 GPU days, with
corresponding inference time reduction. While the efficiency improvement from local sampling is
less pronounced on PCQM4Mv2 due to its relatively small molecular sizes (average 14 atoms) and
TetraGT’s additional higher-order structural interactions, this strategy is crucial for scalability—it
enables TetraGT to successfully process large biomolecular datasets like PDBbind and Peptides,
which would be computationally intractable without local sampling. These results indicate that
TetraGT architecture is competitive even at smaller scales and can better leverage its structural
modeling advantages as parameter count increases.

E.2 OPEN CATALYST 2020 IS2RE

Table 13 presents a comprehensive evaluation of TetraGT against both pre-trained and non-pre-trained
methods on the OC20 dataset, focusing on computational efficiency and model performance. Based
on experimental results, we analyze TetraGT’s capabilities from multiple perspectives. Regarding
computational efficiency, TetraGT demonstrates competitive inference and fine-tuning times com-
pared to non-pre-training methods. Specifically, TetraGT’s fine-tuning duration (240 minutes) aligns
well with established models such as DimeNet++ (230 minutes), GemNet-T (200 minutes), and
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SphereNet (290 minutes). While ComENet exhibits faster training speed (20 minutes), TetraGT
achieves substantially superior performance metrics, with energy MAE of 399.5 meV versus 588.8
meV and FwT of 8.99% versus 3.56%, validating the effectiveness of our pre-training strategy. In
comparison with other pre-trained methods, TetraGT shows remarkable efficiency improvements
while maintaining performance advantages. Compared to TGT, despite incorporating additional angu-
lar information and direct angle modeling mechanisms, TetraGT maintains similar training efficiency
(approximately 34 days versus 32 days using A100 GPU) while achieving superior performance.
Notably, compared to Uni-Mol+, TetraGT achieves better performance metrics while significantly
reducing pre-training time (34 days versus 112 days using A100 GPU), demonstrating an optimal
balance between computational efficiency and model effectiveness.

Table 12: Comparison of performance and efficiency metrics on PCQM4Mv2

Model # param. Complexity # layers MAE (meV) Training Time Inference Time

Unimol+ 27.7M O(N3) 6 71.4 ∼12 A100 GPU day ∼19 A100 GPU min
Unimol+ 52.4M O(N3) 12 69.6 ∼42 A100 GPU day ∼32 A100 GPU min
Unimol+ 77M O(N3) 18 69.3 ∼40 A100 GPU day ∼56 V100 GPU min
TGT 116M O(N3) 12 70.9 ∼18 A100 GPU day ∼27 A100 GPU min
TGT 203M O(N3) 24 67.1 ∼32 A100 GPU day ∼40 A100 GPU min
TetraGT 60M O(wN2) 6 69.3 ∼10 A100 GPU day ∼16 A100 GPU min
TetraGT 127M O(wN2) 12 68.1 ∼18 A100 GPU day ∼29 A100 GPU min
TetraGT 215M O(wN2) 24 65.9 ∼34 A100 GPU day ∼33 A100 GPU min

Table 13: Comparison of performance and efficiency metrics on OC20
Model Pretraining Time Train Time Inference Time Avg. Energy MAE (meV) ↓ Avg. FwT (%) ↑
CGCNN - 18 min 1 min 658.5 2.82
SchNet - 10 min 1 min 666.0 2.65
DimeNet++ - 230 min 4 min 621.7 3.42
GemNet-T - 200 min 4 min 638.2 3.38
SphereNet - 290 min 5 min 602.3 3.64
ComENet - 20 min 1 min 588.8 3.56
Unimol+ 112 A100 GPU days 340 min 8 min 408.8 8.61
TGT 32 A100 GPU days 200 min 5 min 403.0 8.82
TetraGT 33 A100 GPU days 220 min 5 min 397.7 9.14

F EXPERIMENTAL DETAILS

The model is implemented using the PyTorch (Paszke et al., 2019) library. We perform mixed-
precision training on 2 nodes, each equipped with 8 NVIDIA Tesla A100 GPUs (80GB RAM/GPU)
and 16-core 2.6GHz Intel Xeon CPUs (320GB RAM per node). The hyperparameters used for each
dataset are presented in Table F. For PCQM4Mv2 and OC20 we list the hyperparameters for both
the conformation and the task predictor models and both training and finetuning. For QM9, we only
list the hyperparameters for finetuning. For MOLPCBA, LIT-PCBA, and MOLHIV we only show
the hyperparameters for training from scratch. The missing hyperparameters do not apply to the
corresponding dataset or model. For QM9 no secondary distance and angle denoising objective is
used. For LIT-PCBA, 0 triplet interaction heads indicate that an EGT is used without any triplet
interaction module.

To provide the conformation predictor with initial 3D information, we utilize RDKit (Landrum, 2013)
to extract 3D coordinates and apply MM Force Field Optimization (Halgren, 1996). Due to the
absence of Ground Truth 3D coordinates in the the PCQM4Mv2 validation set, we randomly divide
the training set into train-3D and validation-3D splits, with the latter containing 5% of the training
data. Hyperparameters of the conformation predictor are fine-tuned by monitoring the average
cross-entropy loss of binned distance and angle prediction on the validation-3D split, which is found
to be a good indicator of downstream performance. The input noise level is adjusted by evaluating the
finetuned performance on the validation set. We get the best results by using an average of 50 sample
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Table 14: Hyperparameters for each dataset.

Hyperparameters PCQM4Mv2 OC20 QM9 PDBbind LIT-PCBA Peptides*
Conf. Pred. Task Pred. Conf. Pred. Task Pred. Task Pred. Task Pred. Task Pred. Task Pred.

Sampl. Window Size 12 12 15 15 10 64 10 32
# Layers 24 24 24 14 24 24 8 24

Node Embed. Dim 768 768 768 768 768 768 1024 768
Edge Embed. Dim 256 256 256 512 256 256 256 256
Angle Embed. Dim 128 128 128 256 128 128 128 128

# Attn. Heads 64 64 64 64 64 64 64 64
# Triplet Heads 16 16 16 16 16 16 0 16
Node FFN Dim. 768 768 1536 768 768 768 2048 768
Edge FFN Dim. 256 256 512 512 256 256 512 256
Angle FFN Dim. 128 128 256 256 128 128 256 128
Max. Hops Enc. 32 32 - - 32 32 32 32

Activation GELU GELU GELU GELU GELU GELU GELU GELU
Input Dist. Enc. RBF RBF Fourier Fourier RBF RBF RBF RBF

Source Dropout 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Triplet Dropout 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0
Path Dropout 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1

Node Activ. Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Edge Activ. Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Angle Activ. Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Input 3D Noise - 0.2 - 0.6 0.0 0.0 - -
Input Noise Smooth. - 1.0 - 1.0 0.0 0.0 - -

Optimizer Adam Adam Adam Adam Adam Adam Adam Adam

Batch Size 1024 2048 256 256 - - 1024 128
Max. LR 0.001 0.0015 0.001 0.001 - - 5× 10−4 2× 10−4

Min. LR 10−6 10−6 0.001 10−6 - - 5× 10−7 10−6

Warmup Steps 30000 20000 8000 16000 - - 600 10000
Total Training Steps 60000 350000 30000 100000 - - 1200 30000
Grad. Clip. Norm 5.0 5.0 5.0 5.0 5.0 5.0 2.0 5.0

Conf. Loss Weight - 0.1 - 3.0 0.0 0.0 0.1 0.1
# Angle Bins 256 512 256 512 - - 512 512
# Dist. Bins 256 512 256 512 - - 512 512

Dist. Bins Range 8 8 16 16 - - 8 8

FT Batch Size - 2048 - 1024 2048 64 - 128
FT Warmup Steps - 3000 - 0 3000 1000 - 2000

FT Total Steps - 50000 - 12000 150000 20000 - 30000
FT Max. LR - 2× 10−4 - 10−5 2× 10−4 2× 10−4 - 2× 10−4

FT Min. LR - 10−6 - 10−5 10−6 10−6 - 10−6

FT Conf. Loss Weight - 0.1 - 2.0 0.1 0.1 - 0.1

*The hyperparameters in the Peptides column represent both Peptides-func (2D) and Peptides-struct
(3D). They share model hyperparameters, with the training hyperparameters in the second and third

sections applying to Peptides-func (2D), and the fine-tuning hyperparameters in the last section
applying to Peptides-struct (3D).

predictions during stochastic inference. Other training configurations not mentioned are based on
TGT (Hussain et al., 2024) https://github.com/shamim-hussain/tgt (MIT license).

G ADDITIONAL RESULTS AND ANALYSES

G.1 QM9

We present the comprehensive evaluation results on the QM9 dataset across all 12 prediction tasks in
Table 4. Overall, TetraGT demonstrates strong and consistent predictive capabilities across diverse
molecular properties. In particular, it achieves state-of-the-art performance on several energy-related
metrics, including HOMO energy (εH : 8.5), LUMO energy (εL: 8.7), energy gap (∆ε: 15.6), and
heat capacity (Cv: 0.019). On the remaining targets where it does not rank first, TetraGT typically
attains second-best or competitive performance close to the top of the benchmark (e.g., Cv: 0.020,
matching TGT’s performance), indicating that its overall performance level is comparable to the
strongest existing methods rather than being specialized to a narrow subset of tasks. For optical and
quantum properties such as α and ZPVE, TetraGT remains highly competitive, and for thermodynamic
quantities (U0, U , H , G) and geometric features (R2), it surpasses previous pre-trained approaches
including Transformer-M.
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Table 15: LIT-PCBA results in terms of ROC-AUC↑ (%).

ALDH1 FEN1 GBA KAT2A MAPK1 PKM2 VDR Average

No. active 7,168 369 166 194 308 546 884
No. inactive 137,965 355,402 296,052 348,548 62,629 245,523 355,388

NaiveBayes (Webb et al., 2010) 69.3 87.6 70.9 65.9 68.6 68.4 80.4 73.0
SVM (Hearst et al., 1998) 76.0 87.7 77.8 61.2 66.5 75.3 69.7 73.4
RandomForest (Breiman, 2001) 74.1 65.7 59.9 53.7 57.9 58.1 64.4 62.0
XGBoost (Chen & Guestrin, 2016) 75.0 88.8 83.0 50.0 59.3 73.7 78.2 72.6

GCN (Kipf & Welling, 2016) 73.0 89.7 73.5 62.1 66.8 63.6 77.3 72.3
GAT (Velickovic et al., 2017) 73.9 88.8 77.6 66.2 69.7 72.4 78.0 75.2
FP-GNN (Cai et al., 2022) 76.6 88.9 75.1 63.2 77.1 73.2 77.4 75.9

EGT (Hussain et al., 2022) 78.7(2) 92.9(1) 75.4(4) 72.8(1) 75.3(3) 76.5(2) 80.7(2) 78.9
GEM (Fang et al., 2022) 77.2(1) 91.4(2) 82.1(2) 74.0(1) 71.0(2) 74.6(2) 78.5(1) 78.4
GEM-2 (Liu et al., 2022a) 80.2(0.2) 94.5(0.3) 85.6(2) 76.3(1) 73.3(1) 78.2(0.4) 82.3(0.5) 81.5
EGT+RDKit (Hussain et al., 2024) 80.2(0.2) 95.2(0.3) 84.5(4) 74.3(1) 73.5(1) 78.0(0.2) 82.8(0.3) 81.2
TGT (Hussain et al., 2024) 80.6(0.3) 95.5(0.3) 84.4(3) 74.6(2) 74.3(0.7) 78.4(0.2) 82.9(0.3) 81.5

TetraGT 81.2(0.3) 95.7(0.4) 85.6(3) 75.8(2) 76.1(0.8) 79.1(0.4) 83.4(0.3) 82.4

The heterogeneous performance across different QM9 properties can be better understood by exam-
ining the alignment between our pre-training objectives and the underlying physics of each target.
TetraGT is pre-trained on PCQM4Mv2 with a dual objective that (i) predicts the HOMO–LUMO
gap and (ii) denoises inter-atomic distances and angular variables. This setup primarily encourages
the model to learn a holistic description of the electronic structure—especially the frontier orbitals—
together with a geometrically consistent 3D representation. As a result, properties in QM9 whose
behavior is tightly coupled to frontier orbital energies and global electronic configurations (namely
εH , εL, and ∆ε, as well as some energy-related thermodynamic quantities) benefit most directly from
the pre-trained representations, and indeed TetraGT exhibits the largest gains on these targets. By
contrast, properties such as the dipole moment µ, polarizability α, ZPVE, or R2 depend more heavily
on long-range charge distribution, polarization effects, and global shape fluctuations, which are only
indirectly constrained by our current pre-training objective. In this sense, the supervision signal
derived from the HOMO–LUMO gap induces a natural bias towards metrics with similar distributions
and physical dependencies, leading to excellent but not universally dominant performance on all 12
tasks.

We also note that architectural design choices further shape this behavior when compared to highly
specialized equivariant energy models. Methods such as EquiformerV2+NN adopt strict SE(3)-
equivariant architectures tailored to continuous 3D coordinates and their derivatives (forces), which
provides a very strong inductive bias for small-molecule energy and force prediction. In contrast,
TetraGT is designed as a general-purpose geometric representation learner: it introduces explicit
bond-angle and torsion-angle tokens, employs tetrahedral interaction mechanisms to encode local
geometry and chirality, and uses hierarchical virtual nodes to aggregate information from atoms,
bonds, angles, and torsions. This design is intended to support transfer across a wide range of tasks
and scales (PCQM4Mv2, OC20 IS2RE, PDBBind, Peptides-struct, Peptides-func, LIT-PCBA), rather
than being exhaustively tuned for each individual scalar property in QM9. For fairness and generality,
we use a unified pre-training objective and architecture across benchmarks, without introducing
task-specific loss functions or architectural variants for different QM9 targets. Inevitably, this entails a
trade-off between broad generalization and task-specific optimization: TetraGT attains state-of-the-art
or near–state-of-the-art performance on most properties, especially those aligned with its pre-training
supervision, while some highly specialized equivariant models can still be marginally better on a
subset of QM9 metrics.

In Table 4, we categorize compared methods into three distinct groups for clarity. The first group
comprises pre-trained GNN methods, including GraphMVP, GEM, 3D Infomax, and 3D-MGP. The
second group consists of directly trained GNN methods, spanning from SchNet through SaVeNet.
The third group encompasses Transformer-based methods from SE(3)-Transformer through TetraGT;
for this family, we do not distinguish between pre-trained and non-pre-trained variants because they
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are all trained on large-scale datasets, and our focus is on contrasting their architectural inductive
biases (equivariant energy models vs. our angle-driven tetrahedral representation) rather than the
source of supervision alone.

G.2 COMPREHENSIVE ANALYSIS ON PDBBIND CORE SET

The PDBBind core set (version 2016) is a rigorously curated benchmark containing 290 protein-ligand
complexes selected from the PDBBind refined set based on stringent quality criteria. Each complex
includes high-resolution crystal structures (typically < 2.5 Å) with experimentally determined binding
affinities (Kd, Ki, or IC50 values) that span approximately 10 log units from picomolar to millimolar
range. The dataset provides complete 3D coordinates for both protein and ligand molecules, along
with binding affinity values converted to pKd/pKi (-log10 of dissociation/inhibition constant in molar
units) for consistency. The task is to predict the binding affinity value given the 3D structure of the
protein-ligand complex, making it a fundamental benchmark for structure-based drug design. The
core set is specifically designed to test generalization capability, with proteins clustered by 90%
sequence similarity and only one representative selected from each cluster, ensuring diverse protein
families and binding modes are represented.

TetraGT achieves a Pearson correlation coefficient of 0.852±0.017 on this benchmark, representing a
significant advancement over previous state-of-the-art methods. The improvement over Transformer-
M (R=0.830±0.011), which previously held the best performance, demonstrates that our tetrahedral
geometric constraints provide more effective inductive bias than standard transformer architectures
for molecular binding prediction. More importantly, the reduction in mean absolute error from 0.940
to 0.909 meV indicates TetraGT’s enhanced capability in making accurate quantitative predictions,
which is crucial for practical applications in lead optimization where small differences in binding
affinity can determine therapeutic efficacy.

When compared to classical scoring functions, TetraGT shows even more dramatic improvements.
RF-Score, which relies on carefully engineered features based on atom-pair distance counts, achieves
R=0.789, while OnionNet, using multiple layers of intermolecular contacts, reaches R=0.768. The
substantial gap between these methods and TetraGT illustrates the power of learned representations
that can capture complex geometric patterns beyond predefined feature sets. Among GNN-based
approaches, the progression from early methods like GNN-DTI (R=0.736) to more sophisticated
architectures like SIGN (R=0.797) shows steady improvement, yet TetraGT’s performance leap
suggests that explicitly modeling tetrahedral geometry provides crucial structural information that
general graph convolutions miss.

The stability of TetraGT’s predictions, evidenced by the lowest standard deviation across all metrics
(SD=1.181±0.010), is particularly noteworthy. This consistency across diverse protein families and
ligand chemotypes indicates that the model has learned robust representations that generalize well
beyond the training distribution, a critical requirement for virtual screening applications where novel
chemical scaffolds must be evaluated reliably.

G.3 DETAILED ANALYSIS ON PEPTIDES BENCHMARKS

The Peptides-func and Peptides-struct datasets from the Long Range Graph Benchmark (LRGB)
comprise 15,535 peptides ranging from 2 to 50 amino acids in length, derived from the SATPdb
database of therapeutic peptides. Each peptide is represented as a molecular graph where nodes
correspond to atoms and edges represent chemical bonds, with node features encoding atom types
(9 categories) and edge features encoding bond types (3 categories). The datasets share the same
peptide molecules but differ fundamentally in their tasks and available information. Peptides-
func is a multi-label classification task predicting 10 binary functional properties: antimicrobial,
antibacterial, antiviral, antifungal, anticancer, anti-HIV, antimalarial, antiparasitic, antimycobacterial,
and cell-penetrating capabilities. Importantly, this dataset provides only 2D molecular graphs without
experimental 3D coordinates, requiring methods to infer structural information from connectivity
alone. In contrast, Peptides-struct is a regression task predicting 11 continuous structural properties
computed from peptide 3D conformations: three principal components of mass inertia, three principal
components of valence inertia (hydrogen distribution), three geometric axis lengths, sphericity, and
plane distance. This dataset includes the actual 3D coordinates, allowing direct utilization of spatial
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information. Both datasets are split into train (70%), validation (15%), and test (15%) sets with
stratified sampling to ensure balanced property distributions.

For Peptides-func, which lacks experimental 3D coordinates, TetraGT’s approach of using a pre-
trained conformer predictor to generate approximate 3D features proves highly effective, achieving
72.86±0.39% Average Precision. This surpasses the previous best DRew model (71.50±0.44%) by a
meaningful margin, particularly impressive given the multi-label nature of the task where peptides
can simultaneously exhibit multiple therapeutic properties. The improvement over GraphGPS
(65.34±0.91%) and MGT (68.17±0.64%) further demonstrates that TetraGT’s geometric message
passing, even with predicted conformations, captures functionally relevant structural motifs more
effectively than standard graph transformers. The ability to accurately predict diverse functional
properties from molecular structure alone has important implications for therapeutic peptide discovery,
where rapid screening of large peptide libraries is essential.

For Peptides-struct, where actual 3D structural information is available, TetraGT achieves an
MAE of 0.2421±0.0017, outperforming all baseline methods including Graph ViT/MLP-Mixer
(0.2449±0.0016), which previously held the best performance. The consistent improvement across
all 11 structural properties suggests that TetraGT’s tetrahedral representations naturally align with
the geometric nature of these prediction targets. The model’s ability to accurately predict properties
like inertia components and geometric dimensions indicates a deep understanding of 3D molecular
geometry, essential for applications requiring precise structural modeling such as peptide docking or
conformational analysis.

The performance gap between methods is particularly revealing when comparing approaches with
different architectural philosophies. Traditional graph neural networks like SAN (Peptides-func:
64.39%, Peptides-struct: 0.2545) struggle with both tasks, likely due to limited expressivity in captur-
ing long-range dependencies common in peptide structures. More recent architectures incorporating
attention mechanisms show improvement, with GRIT achieving 69.88% on functional prediction and
0.2460 on structural regression. However, these gains remain incremental compared to TetraGT’s
substantial improvements, suggesting that generic architectural enhancements alone are insufficient
without appropriate geometric inductive biases.

An interesting observation emerges when comparing performance patterns across the two datasets.
Methods that excel on Peptides-func don’t necessarily maintain their relative performance on Peptides-
struct. For instance, DRew shows strong functional classification (71.50%) but moderate structural
prediction (0.2536), while Graph ViT/MLP-Mixer shows the opposite pattern. TetraGT is unique
in achieving top performance on both tasks, indicating its representations capture both functional
and structural aspects effectively. This dual capability is particularly valuable for drug discovery
applications where understanding both molecular function and conformation is essential.

G.4 LIT-PCBA

We also show a breakdown of the LIT-PCBA results for the individual protein targets in Table 15.
Notice that, TetraGT outperforms other models in ALDH1, FEN1, PKM2, VDR and GBA. Despite the
low number of positive samples, TetraGT ranked second among all models on KAT2A and MAPK1,
surpassing TGT (Hussain et al., 2024) on all proteins target. we can analyze why TetraGT shows
slightly lower performance on KAT2A, and MAPK1 compared to some other methods. KAT2A
and MAPK1 both have limited active samples (194 and 308 respectively) with significant class
imbalance. The performance differences are relatively small - for KAT2A, TetraGT achieves 75.8%
compared to GEM-2’s 76.3%, and for MAPK1, TetraGT’s 76.1% is the best performers. These
marginal differences might be attributed to the specific structural characteristics of these proteins and
the extreme class imbalance in their datasets, which could potentially benefit from more specialized
handling of imbalanced data during model training.

In Tables 1 and 15, we present three groups of methods. The first group consists of traditional machine
learning methods (NaiveBayes, SVM, RandomForest, XGBoost). The second group consists of
directly trained GNNs (GCN, GAT, FP-GNN). The third group consists of pre-trained deep learning
methods from EGT through TGT.
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G.5 PCQM4MV2

In Table 2, we organize methods into three groups. The first group represents earlier methods, ranging
from MLP-Fingerprint through GPS++. The second group includes current state-of-the-art methods
(Transformer-M, Uni-Mol+, TGT) that incorporate 3D conformation perturbation and denoising
prediction. The final group consists solely of our proposed TetraGT method.

G.6 OC20

For Table 3, methods are divided into two main categories. The first group encompasses GNN methods
from SchNet through GNS+NN, while the second group includes Transformer-based methods from
Graphormer-3D through TGT.

H TASK-SPECIFIC PERFORMANCE ANALYSIS

Analysis of experimental results on the QM9 dataset reveals heterogeneous performance across
different property prediction tasks. TetraGT demonstrates exceptional performance in energy-related
metrics (εH : 8.8, εL: 9.1, ∆ε: 16.4, all achieving state-of-the-art results) and certain physical
properties (Cv: 0.020, matching TGT’s performance). However, the variation in performance across
different metrics can be attributed to several key factors. The pre-training optimization of TetraGT
primarily emphasizes comprehensive molecular structure representation. This approach may not fully
capture the specific features required for certain physicochemical properties, particularly evident
in properties like µ that demand precise characterization of atomic electronegativity differences.
Furthermore, certain property prediction tasks necessitate specialized architectural components or loss
function designs that may not be optimally addressed by general pre-trained frameworks. Notably,
the pre-training process on PCQM4Mv2 dataset, which focuses on HOMO-LUMO gap prediction,
introduces a beneficial bias towards related downstream tasks. This explains TetraGT’s superior
performance on QM9’s energy-level related metrics (εH , εL, ∆ε), as these properties share similar
underlying electronic structure characteristics with the HOMO-LUMO gap. The strong correlation
between pre-training objectives and downstream task performance demonstrates both the effectiveness
of transfer learning in capturing fundamental electronic properties and the potential task-specific
limitations of the pre-training approach. Additionally, the maintenance of model generality during
pre-training may necessitate performance compromises on specific tasks, reflecting the balance
between general applicability and task-specific optimization.

I SCALABILITY ANALYSIS

Our comprehensive evaluation demonstrates TetraGT’s robust performance across molecular systems
of vastly different scales, from small organic molecules in PCQM4Mv2 (mean: 15 atoms) and
MolHIV/MolPCBA (mean: 26 atoms) to large protein-ligand complexes in PDBBind (500-1000
atoms in binding sites) and complex catalytic systems in OC20 (approximately 80 atoms). TetraGT
achieves state-of-the-art performance consistently across all these benchmarks, indicating excellent
scalability without architecture-specific limitations.

To systematically evaluate scalability, we conducted detailed experiments on the OC20 IS2RE dataset
by grouping molecules into size segments and analyzing performance variations. Table 16 presents the
Energy MAE across different molecular size ranges, demonstrating remarkably stable performance
with MAE values fluctuating within a narrow band of 22 meV (354.7-377.0 meV) despite the
molecular size nearly tripling from smallest to largest categories. This consistency confirms that
tetrahedral message passing does not suffer from size-dependent degradation commonly observed in
graph neural networks.

The absence of monotonic error trends with increasing molecular size indicates that TetraGT ef-
fectively captures both local and global geometric patterns regardless of system scale. The slight
variations in MAE across different ranges likely reflect inherent complexity differences in molecular
compositions rather than size-dependent model limitations. Notably, the optimal performance at 56-
65 atoms aligns well with typical organic adsorbate sizes in catalysis applications, while maintaining
competitive accuracy for both smaller and larger systems.
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Table 16: Performance analysis of TetraGT model on OC20 IS2RE dataset across various molecular
sizes.

Atom_num Energy MAE (meV)
36-45 363.7
46-55 376.1
56-65 354.7
66-75 377.0
76-85 371.2
86-95 368.9

96-105 364.5

While TetraGT’s architecture poses no inherent theoretical limitations on molecular size, practi-
cal applications face two primary constraints. The first stems from GPU memory capacity when
processing 3D conformer data, which defines maximum processable system size. This constraint
becomes particularly relevant for large biomolecular systems requiring extensive memory allocation.
The second challenge arises from computational complexity scaling, as the number of higher-order
structures (bond angles and torsion angles) grows quadratically with system size, potentially causing
attention mechanisms to suffer from averaging effects across expanding interaction spaces.

The demonstrated scalability across diverse molecular scales, combined with consistent performance
stability, positions TetraGT as a versatile tool for broad molecular modeling applications. The
model’s ability to maintain high accuracy from small drug-like molecules to large biomolecular
complexes without size-specific modifications validates the tetrahedral message passing design as an
effective balance between computational efficiency and representational power. Future exploration
of the proposed optimization strategies may further extend TetraGT’s applicability to even larger
biochemical systems while maintaining practical computational requirements.

J ADDITIONAL DETAILS ABOUT RELATED WORKS

Molecular Property Prediction The remarkable performance of message-passing GNNs in pre-
dicting molecular properties has inspired a new generation of geometric and physics-aware neu-
ral networks, which maintain invariance or equivariance under 3D rotational and translational
transformations. Early developments in this direction include SchNet (Schütt et al., 2017) and
DimeNet (Gasteiger et al., 2020), which pioneered the use of distance-based convolution approaches.
The field further evolved with the introduction of spherical methodologies, as exemplified by Gem-
Net (Gasteiger et al., 2021), SphereNet (Liu et al., 2022b), ComENet (Wang et al., 2022), LEFT-
Net (Du et al., 2024), and SAVENet (Aykent & Xia, 2024), each incorporating various forms of
angular information. This architectural evolution ultimately led to more sophisticated equivari-
ant transformer designs, including Equiformer (Liao & Smidt), EquiformerV2 (Liao et al., 2024),
TorchMD-Net (Thölke & De Fabritiis, 2022), and Geoformer (Wang et al., 2024a), which generalized
the concept of equivariant aggregation. While these advances have significantly improved molec-
ular representation learning, our work proposes a fundamentally different paradigm for modeling
higher-order structures. Recent models like QuinNet (Wang et al., 2024c) and ViSNet (Wang et al.,
2024b) have introduced four or five-atom interactions to enhance model expressiveness and accuracy.
However, these methods primarily focus on local representations of atomic nodes and chemical bonds,
capturing higher-order features implicitly through combinatorial operations between atom-level
tokens. In contrast, our approach transforms higher-order graph structures into independent token
representations, enabling direct learning and representation of structural patterns in molecules. This
innovation is particularly crucial for model interpretability and effective utilization of expert prior
knowledge. From an information propagation perspective, traditional methods require higher-order
structural information (such as four-body and five-body interactions) to propagate gradually along
the graph topology, creating significant information bottlenecks. As demonstrated in TGT research,
even information exchange between adjacent embeddings faces restrictions. Our method addresses
these limitations through direct structural token representation, not only avoiding these bottlenecks
but also enabling efficient access and utilization of key higher-order information by all graph nodes,
thereby providing a more effective framework for learning molecular structural information.
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K SENSITIVITY ANALYSIS OF THE WINDOW SIZE w

In this section, we provide a systematic analysis of the local sampling window size w. In TetraGT,
the tetrahedral interaction uses a local window w to select neighboring angle/torsion tokens that are
allowed to participate in attention. If w is too small, in principle this may lead to “under-coverage”
of important geometric couplings, potentially degrading both conformer prediction and property
prediction. To examine this, we conduct experiments on the OC20 IS2RE dataset (in-distribution
validation split), varying w ∈ {5, 10, 15, 20}, and study both overall performance and its dependence
on molecular size.

We first evaluate, for different w, the conformer prediction errors (MAE of pairwise distances, bond
angles, and torsion angles), the property prediction error (Energy MAE), and the relative training time
per epoch (normalized such that the setting w = 10 corresponds to 1.0). The results are summarized
in Table 17. We observe that increasing w from 5 to 10 leads to clear improvements in both geometric
and energy prediction: for example, Energy MAE decreases from 382.4 meV to 373.2 meV, while
bond-angle MAE decreases from 0.297 rad to 0.228 rad and torsion-angle MAE from 0.387 rad to
0.316 rad. However, once w ≥ 10, the additional gains become very limited: increasing w from 10
to 15 or 20 only reduces Energy MAE by about 0.6–1.1 meV, whereas the training time per epoch
increases from 1.0 to 1.52 and 2.83, respectively. This indicates that, beyond a moderate threshold
(e.g., w = 10), TetraGT is quite robust to the choice of w; we do not observe noticeable accuracy
degradation that could be attributed to local under-coverage, while overly large w mainly increases
computational cost with rapidly diminishing returns.

Table 17: Effect of different window sizes w on conformer prediction and energy prediction (OC20
IS2RE, in-distribution validation).
w Distance MAE (Å) Bond-angle MAE (rad) Torsion-angle MAE (rad) Energy MAE (meV) Rel. time / epoch
5 0.191 0.297 0.387 382.4 0.76

10 0.168 0.228 0.316 373.2 1.00
15 0.163 0.221 0.313 372.6 1.52
20 0.157 0.217 0.309 372.1 2.83

To further investigate whether w needs to scale with molecular size, we stratify the OC20 IS2RE
in-distribution validation set by the number of atoms N into four ranges: N ≤ 45, 45 < N ≤ 65,
65 < N ≤ 85, and 85 < N ≤ 105. For each range, we report the Energy MAE under different w, as
shown in Table 18. Across all size ranges, increasing w from 5 to 10 consistently yields a noticeable
reduction in Energy MAE (typically around 12–16 meV). In contrast, further increasing w from 10 to
15 or 20 brings only very minor improvements on the order of 1–2 meV in each size bin. Even for the
largest molecules (85 < N ≤ 105), the difference between using a moderate fixed window (w = 10)
and larger windows is very small, and we do not observe any regime where large molecules require
substantially larger w to maintain accuracy. This suggests that, at the scale of the OC20 benchmark, a
fixed moderate window size already captures the most important local geometric couplings for energy
prediction, and we find no empirical evidence that w needs to grow explicitly with the total atom
count N .

Table 18: Energy MAE vs. window size w and molecule size (OC20 IS2RE, in-distribution validation;
unit: meV).

w N ≤ 45 45 < N ≤ 65 65 < N ≤ 85 85 < N ≤ 105

5 378.6 381.1 384.6 380.3
10 363.5 371.2 376.5 367.1
15 362.1 368.8 375.1 366.0
20 361.6 368.9 374.7 365.4

From a modeling perspective, the tetrahedral interaction in TetraGT is designed to capture local
geometric couplings within physically meaningful four-atom motifs. For any given bond angle
or torsion angle, the most relevant interacting angles/torsions are typically confined to a limited
chemical neighborhood (within a few bonds). The local coordination number of atoms is bounded by
valence, which naturally imposes an upper bound on the number of physically meaningful neighboring
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angles/torsions. Consequently, a moderate window size (e.g., w = 10–15) is already sufficient in
practice to cover the vast majority of such neighbors, while longer-range geometric dependencies
can be propagated through stacked layers of angle and torsion tokens, rather than relying on a single
attention layer with a very large w. Taken together, the empirical results and this geometric intuition
suggest that TetraGT is robust to the choice of w within a reasonable range; choosing a moderate
w effectively avoids local geometric under-coverage while striking a favorable trade-off between
accuracy and computational efficiency.
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