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Abstract

In this work, we propose CrossModal Predictive Architecture(X-MoPA), a mul-
timodal learning model that combines crystal structure graphs, X ray diffraction
(XRD) patterns, and text based structural descriptions to improve materials prop-
erty prediction. Unlike prior multimodal approaches that rely on heavy attention
mechanisms or simple concatenation, X-MoPA leverages lightweight predictors
to learn a joint latent space through cross-modal prediction. For each training
instance, we select two modalities and predict the third one in latent space. This
formulation captures complementary information across modalities while avoiding
reconstruction inefficiencies and contrastive memory bottlenecks. We train and
evaluate the model on Matbench for several key properties, Band Gap, Shear Mod-
ulus, Bulk Modulus and formation energy for Perovskites. X-MoPA consistently
outperforms state of the art(SOTA) models, with error reductions ranging from
16% to 60% across four key properties, while matching the best baseline on Shear
Modulus.Beyond Matbench, X-MoPA achieves SOTA performance on AFLOW
band gap prediction, showing that the learned cross-modal representations transfer
well across datasets with different sampling strategies and property distributions.

1 Introduction

The dominant strategy in multimodal learning has been to use pretrained language and vision models
and then align them during the training process. This pretrain-then-transfer relies on modality
specific encoders trained on large datasets, producing strong but often narrow representations. Such
representations may struggle to generalize in domains like materials science where modalities such
as text, crystal graphs, and diffraction patterns encode complementary but structurally distinct
information.

Self supervised learning(SSL) provides an alternative by constructing surrogate tasks that exploit data
structure without requiring manual labels. Contrastive methods, such as InfoGraph, have demonstrated
the ability to learn rich representations by maximizing agreement across augmented views[13]].
However, these approaches often demand large memory banks and rely on data perturbations, which
are not suited to scientific modalities like crystal graphs where small structural changes can drastically
alter meaning[7]. Generative methods, in turn, require reconstruction in input space, which can
lead to inefficiencies and overfitting to low-level details. To overcome these challenges, LeCun et
al. introduced the Joint Embedding Predictive Architecture (JEPA), which emphasizes prediction in
latent space rather than raw reconstruction[5]. This perspective allows models to focus on schematic
information while discarding extraneous detail. We draw inspiration from this principle to design
a multimodal model that predicts one modality from the others in latent space, aiming to capture
complementary structure across text, graphs, and diffraction data.
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Recent work in multimodal learning combines text and graph embeddings via concatenation to predict
material properties[2, |8]. However, this simple fusion does not effectively utilize complimentary
information from different modalities and lacks interpretability. This challenge is addressed in models
like UniMat[[10] and CAST][6] which use cross attention mechanisms. However, these models are
computationally expensive making them difficult to scale or deploy.

In this work, we propose a Cross Modal Predictive Architecture (X-MoPA), a multimodal predictive
architecture that integrates three complimentary modalities, crystal graph embeddings (CGCNN)[15],
contextual text embeddings (MatSciBERT)[4], and spectral features from XRD patterns using
lightweight MLPs instead of expensive transformer based predictors. We use two modalities to
predict the third one in latent space. Material modalities have high redundancy because they describe
the same underlying system. This is exploited in this framework to ensure that the trained model is
able to learn this system which can be used for downstream tasks. We demonstrate state of the art
performance on multiple properties in the Material Project dataset. Moreover, we provide information
theoretic bounds in the Appendix.

2 Proposed Model Architecture

Crystallographic structures from CIF files are represented as graphs using the CGCNN framework.
Atoms are nodes with features including group, periodic table position, electronegativity, first
ionization energy, covalent radius, valence electron count, electron affinity, and atomic number.
Bonds form edges, and atom features are updated through localized message passing. Textual
descriptions are generated with RoboCrystallographer and encoded with MatSciBERT, a 12-layer
transformer with 12 attention heads per layer and hidden size 768, pretrained on 3.17B words from
materials science literature. Text input is processed by WordPiece tokenization, positional and
segment encoding, multi-head attention, residual connections, layer normalization, and feedforward
layers with ReLU. The [CLS] token embedding is projected to 150 dimensions. XRD spectra are
encoded with a 1D CNN consisting of a convolutional layer, max-pooling, and two fully connected
layers to obtain spectral embeddings. Each modality (text, graph, XRD) is encoded separately and
projected into a shared joint embedding space. Cross-modal predictors map pairs of modalities to
reconstruct the third. Prediction error is measured with L2 loss, summed over all three modalities.
Lightweight MLPs are used for prediction. A variance-invariance-covariance regularization term
is added to stabilize the latent space and prevent overfitting. The total loss is the sum of cross-
modal prediction loss and regularization. The figurdI|shows a schematic of the model. The model
architecture has been described in detail in the Appendix section.

3 Proposed Methodology

We propose a self-supervised learning framework inspired by the Joint-Embedding Predictive Ar-
chitecture (JEPA) paradigm [1], designed to learn semantically meaningful and modality-aligned
representations from multimodal crystallographic data. The framework incorporates the graph en-
coder, text encoder and the XRD encoder, the three complementary encoders discussed above. The
objective of the proposed framework is to learn Cross Modality Prediction. For each training
instance, we randomly select two modalities and predict the third one in latent space. Let m1, mo be
the input modalities and m3 the target modality. Then the predicted latent representation is obtained
using a MLP based lightweight joint projection network. The advantages of prediction in the latent
space are also clearly explained in the Appendix.

Zms = M[Zmy s 2m,)) ey

Mean squared error (MSE) between the predicted and actual latent representation is used as the
prediction loss

LPT@d = HZ7;13 - Zm3”% (2)

Further, to prevent representational collapse which result in trivial or degenerate outputs, we employ

a variance-invariance-covariance (VIC) regularizer[1]]. This regularizer operates on the latent features.

To encourage semantically aligned and disentangled representations across modalities, we use a
contrastive loss in the latent spacel[/11]].
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Figure 1: An overview of the proposed X-MoPA. Each modality is encoded separately and projected
into a shared joint embedding space. Cross-modal predictors map pairs of modalities to reconstruct
the third. Prediction error is measured with L2 loss, summed over all three modalities.

The full loss function combines all the above losses. The model is trained using AdamW optimizer
with weight decay[9]]. A cosine annealing scheduler is used for stable convergence.

Ltotal = Lpred + aLVIC’ + BLcontrast (3)

4 Experimentation

We use a Nvidia RTX 4090 graphics processing unit (GPU) to run our experiments. The framework
is implemented using the Pytorch library version[12]. We have used the Matbench dataset consists
of 13 benchmark tasks for evaluating predictive models in materials science, covering regression
and classification with predefined 5 fold train test splits. In this work we have focused on 5 crystal
property prediction tasks with CIF structures as input. We generate text descriptions and simulate
XRD patterns using the CIF. The process is explained in detail in the Appendix.

5 Results

In this section, we evaluate how the knowledge from the pretraining using cross modal prediction
in latent space compares to other SOTA material property predictors. We are using fine tuning of
only the final prediction heads while keeping the weights of the model frozen. We choose three
state of the art models with different architectures, COGCNN, CGCNN and ALIGNN. The results
of these models are taken from the official Matbench leaderboard. In tabldI]report mean absolute
error(MAE) of the predicted and actual value of a particular property to compare the performance
of different algorithms. For each property, we have used the same train and test splits as given in
MatBench. We observe that the proposed algorithm outperforms the other algorithms across all the
properties. In addition to Matbench, we evaluate X-MoPA on the prediction of Band Gap in the
AFLOW database[3]], which provides a large-scale set of DFT-computed material properties. This
allows us to test whether the learned cross-modal representations generalize across datasets with
different sampling and property distributions. The results are presented in the Appendix.

Unlike cross-attention multimodal models such as LXMERT|[[14] with around 305 million trainable
parameters or CAST[6] with 200 to 300 million, X-MoPA has a total of 111 million parameters. Of
these, only 0.6% are updated during finetuning on downstream tasks. The MatSciBERT encoder,
which makes up most of the parameters, is kept frozen during training. This design keeps the
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Table 1: Benchmarking model performance. The lower the error the better the model performance.

Mean Absolute Error(M AFE)

CGCNN CoGN ALIGNN X-MoPA

Dielectric 0.5988  0.3088 0.3449 0.1238
Shear Modulus  0.0895  0.0689 0.0715 0.069
Bulk Modulus 0.0712  0.0535 0.0568 0.0385
Bandgap(MBJ)  0.2972  0.1559 0.1861 0.0661

Perovskites 0.0452  0.0269 0.0288 0.0225

model lightweight and efficient, reducing the computational cost of both training and transfer to new
properties.

6 Discussion

Crystal structures, despite being described in high-dimensional spaces of atomic coordinates or
diffraction patterns, inherently lie on structured low-dimensional manifolds due to periodicity, space-
group symmetries, and local coordination environments. Encoders map these structures into latent
manifolds where nearby points correspond to structurally and chemically similar crystals.

In this setting, property prediction becomes a mapping over a smooth manifold rather than raw high-
dimensional noise. The key mathematical requirement is Lipschitz continuity: small perturbations in
latent space such as slight bond length variations or symmetry preserving lattice distortion must lead
to proportionally small changes in predicted properties. This ensures stable optimization, prevents
variance amplification, and improves generalization across material classes. By grounding property
prediction in latent manifolds shaped by crystallography and enforcing Lipschitz continuity X-MoPA
achieves stable and physically consistent learning.

7 Conclusion

In this work, we introduced X-MoPA, a multimodal framework that predicts material properties by
operating in a shared latent space. The model learns from three complementary inputs: crystal graphs
for local bonding, XRD spectra for global structure, and text for literature-driven context. Instead
of reconstructing raw inputs or relying on contrastive memory banks, X-MoPA uses lightweight
MLP predictors to take any two modalities and predict the third in latent space. This design makes
the model more efficient while still forcing it to capture the connections between different scientific
representations.

Our experiments on the Matbench benchmarks show that this approach not only improves accuracy
over existing methods like CGCNN and ALIGNN, but also does so with lower computational cost.
For example, we see significant reductions in MAE for properties such as band gap and bulk modulus.
Because the model is trained to align modalities in latent space, the learned representations are more
stable and interpretable. Overall, X-MoPA shows that lightweight cross-modal prediction in latent
space is a scalable way to predict properties in materials science.

Limitations and Future scope of work: Missing or corrupted data in one modality might not align
with structural information in another modality. Moreover, prediction in the latent space might
bias the model to focus on short range correlation than learning long-range dependencies. Incorpo-
rating additional modalities, such as material characterization data, could provide complementary
information.
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A Proposed Model Architecture

Let us describe the architecture of our multimodal framework. Given a dataset of inorganic crystals
denoted by D = [(S,T, X ), P] where S, T', X and P denote the structure information in CIF format,
the text description, the XRD spectra and the material property respectively. The model trains the
parameters of the XRD Encoder (Xy), Graph encoder (Gy) and the BERT encoder (Bp) to learn the
function fy — P.

In our multimodal framework, the crystallographic structure, provided in Crystallographic Information
File (CIF) format, is represented as a graph G(V, F) using the Crystal Graph Convolutional Neural
Network (CGCNN) architecture, where atoms correspond to nodes V and interatomic bonds are
represented as edges E. Node attributes encode physicochemical properties of each atom, including
group, periodic table position, electronegativity, first ionization energy, covalent radius, valence
electron count, electron affinity, and atomic number. The CGCNN convolution operation updates each
atom’s feature vector based on its neighbors j € N (i), enabling localized message passing over the
crystal graph. Complementing this structural representation, natural language descriptions of crystal
structures are generated using a template, which extracts and summarizes symmetry information
and structural motifs from CIF files. These descriptions are processed using MatSciBERT [3], a
BERT-base—style transformer with 12 encoder layers, 12 attention heads per layer, and a hidden size
of 768, pretrained on 3.17 billion words from materials science literature. Input text is tokenized
using the WordPiece algorithm, embedded with positional and segment encodings, and transformed
through stacked self-attention layers, where multi-head attention is computed followed by residual
connections, layer normalization, and position-wise feedforward networks with ReLLU activation.
The [CLS] token embedding from the final layer is linearly projected to a fixed 150-dimensional
representation for compatibility with the multimodal fusion stage. Additionally, X-ray diffraction
(XRD) spectra are encoded via a 1D convolutional neural network comprising a convolutional layer,
max-pooling layer, and two fully connected layers, which progressively extract local diffraction
patterns, reduce dimensionality, and produce a compact spectral embedding. These modality-specific
embeddings are subsequently integrated in the fusion module for downstream predictive tasks. Each
encoder is described in further detail in the supplementary information.

A.1 Cross Modal Joint Embedding Predictive Architecture

The three modalities are first processed by their own encoders as described in the previous section.
For instance, the Text: z;, — z, = fi(x;), Graph: £, — z4 = f4(x,) and XRD: z, — 2, = fi.(z,).

These embeddings are then projected into a shared latent space which is known as Joint Embedding
Space.
ét:Pt(Zt), 2g:Pg(Zg)a ETZPT(ZT) (1)

Each modality is predicted in this shared latent space by using the other two modalities. This makes
the model focus on the underlying physical system and ignore the modality specific features. For
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each modality m € {t, g, 7}, let {m1,ma} = M\ {m} denote the other two modalities. We define
a predictor h,,:

The L2 norm is used to calculate the cross modality prediction loss L is:
m 2 ~ 2
Lg(-l\?loPA = [[2m — Zmll3 3)
We use three lightweight MLP predictors, one for predicting each modality. The total Cross Modal
JEPA loss is calculated as the sum of all three predictors. We

Lxaora = D L opa )

me{t,g,r}

Further, to prevent representational collapse which result in trivial or degenerate outputs, we employ
a variance-invariance-covariance (VIC) regularizer[1]. This regularizer operates on the latent features.
The Variance loss maintains a minimum variance along each latent dimension, the invariance loss
encourages invariance between positive pairs. Finally, the Covariance loss minimizes redundancy
between dimensions.

D

Lyic = Ay Y_max (0,7 — Var(Z.a)) + Ae Y _ (Cov(Z.4, Z. ;))° )
d=1 i#j

To encourage semantically aligned and disentangled representations across modalities, we use a
contrastive loss ion the latent space. Positive pairs are constructed from different modalities of the
same instance, and negative pairs from different instances. A temperature scaled InfoNCE loss is
used for contrastive loss[S]].

exp (Sim(?zj))

YR, Lkt €XP (7“"1(?’2’“))

6)

ﬁcomrast = - log

Lol = Lx-MopA + A - Lvic, A <K 1 @)

B Information Theoretic Bounds

Let X, Y and Z represent the text ,graph and XRD modalities respectively. Let the target property by
P and the the latent representations be represented by hx, hy and hz.

Theorem B.1 The use of two input modalities to predict the third modality is possible if and only if
I(Z;X,)Y) >= H(Z)-€

Theorem B.1 It directly follows from the mathematical formulation that for perfect prediction
H(Z|x,y) = 0. Assuming € is an acceptable level of error then H(z|X,Y) <= € By information
theory, we know that 1(Z; X,Y) = H(Z) — H(Z|X,Y) Therefore, it must be true that I(Z;X,Y) >=
H(Z)

Theorem B.2 All modalities describe the same inorganic crystal thus they have an underlying
structure S therefore, [(X;Y; Z) >=I(X;S)+ I(Y;S)+ I(Z;S) — 2+ H(S)

Theorem B.3 The pre train using a cross modal predictive architecture and then transfer to a
downstream tasks has the following generalization bound for downstream tasks.

E[Ldownstream] =< E[LJEPA] + ADKL(ijret?"ainl|[)downst7‘eam) + O( \V/ d/n)

where, L jppa denotes the cross modal prediction loss Dy, is the KL divergence between the
pretraining and downstream tasks. d denotes the dimension of the representation. n is the number of
training examples. and \ denotes the transfer coefficient

Corollary B.3.1 From the above theoretical bound, we have the corollary that if the cross modal
Ljgpa loss < § then the downstream loss satisfies.

Laownstream < 0+ C * log(l/é)/n
where C depends on the Lipschitz constant of the downstream task.
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B.1 Latent Space prediction

The latent space is a lower dimensional representation learned from high dimensional data using
encoders. If the encoder is trained well, the latent space captures abstract, disentangled and structured
features. Thus, the prediction occurs over structured manifolds instead of high-dimensional noise. In
high dimensional spaces, the learned mapping between the input and target might be ill-conditioned
resulting in high variance. For well trained encoders, the mapping between the latent space and target
is Lipschitz-continuous which leads to better learning and generalization.

[lg(z1) = g(z2)[| < Ll|z1 — 2] ®

The manifold hypothesis states that real world data lies in a low-dimensional smooth manifold
embedded in high dimensional space. The encoders learn to unwrap these manifolds and thus, the
function defined over latent spaces follows geodesics. Thus, they tend to be Lipschitz-continuous.

Let:

* x € R™: input in raw space
* 2 = fue(x) € R?: latent representation, where d < n

* ¥ = g(z): prediction made in latent space

¥ = 9(fenc(x)): full composition in raw space

Lipschitz Continuity

A function f : R™ — R™ is said to be Lipschitz continuous if there exists a constant L > 0 such
that:
[f(x1) = f(x)|l < Lllx1 — %2, Vx1,%x5 € R” (€

Jacobian-Based View

For a differentiable function f, the Lipschitz constant is bounded by the operator norm (spectral
norm) of the Jacobian:

Ly < sup |[Vf(x)ll2 (10)
Let us now consider the composition:
J(x) = g(fene(x)) = g(2) (11)
By the chain rule:
Vi(x)=Vg(z) -V fen(x) (12)
Hence, the Lipschitz constant of the full model is bounded by:
Ly < sup [Vg(@)ll2 - [IV fene (x)]l2 (13)

This gives insight into how latent spaces help:
* ||V fene(X)]|2: well-trained encoders map high-dimensional, noisy inputs into a smooth,
structured space, often with regularized Jacobians.

* |[Vg(2)]||2: predictors in latent space are often more stable and operate on disentangled
features, reducing the gradient norm.

C Dataset

The Matbench dataset, introduced as part of the Matbench benchmark suite in the Materials Machine
Learning (matminer) ecosystem, comprises 13 distinct tasks for evaluating predictive models in
materials science. These tasks span regression and classification problems, each with predefined
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train-test splits (5-fold) to ensure reproducibility.[4]. For our study, we focus on 13 properties with
unique crystal structures in Crystallographic Information File (CIF)

To construct the input modalities required by our X-MoPA model, we process each CIF file through
three parallel pipelines. For the graph-based modality, each crystal structure is transformed into
an undirected graph using the CGCNN architecture, where atoms serve as nodes and interatomic
interactions define the edges. Node features encode essential atomic attributes such as atomic number,
electronegativity, ionization energy, and group number[10]. These features are propagated through a
message-passing neural network to produce a structure-aware embedding that captures local atomic
environments.

For the text-based modality, the CIF files are processed using a template for text generation, which
generates structured textual descriptions that summarize structural motifs such as coordination
geometries, symmetry operations, and lattice parameters. These descriptions are encoded using the
pretrained MatSciBERT language model, which captures domain-specific contextual knowledge from
scientific literature and converts the input text into a dense, fixed-length vector representation.

For the spectral modality, we simulate X-ray diffraction (XRD) patterns from the CIF structures using
the Pymatgen diffraction module[[7]. Each diffraction pattern is computed over a 26 range of 5° to
90° and discretized into a fixed-length 1D intensity array. These spectra encode long-range order,
phase symmetry, and crystallographic fingerprints, which are essential for distinguishing between
polymorphs and identifying structural characteristics beyond the atomic neighborhood.

D AFLOW Benchmarking

For further validation, we also evaluate X-MoPA on the AFLOW database, which contains over
60,000 materials. We first split the dataset into 80% training, 10% validation, and 10% test, and
pre-trained X-MoPA on the training set using the proposed cross-modal prediction loss in a fully
self-supervised manner, without using property labels. To assess downstream performance on the
prediction of Band Gap, we then selected a subset of 5,000 samples, again splitting them into
train/validation/test following the same 80/10/10 protocol. The model was fine-tuned on the labeled
training data and evaluated on the corresponding test set to measure property prediction accuracy.
The reference values for the SOTA models have been taken from literature[2].

Table 1: Benchmarking model performance. The lower the error the better the model performance.

Band Gap(L,)(eV)
SchNet[9] ElemNet[5] MPNNJ[6] X-MoPA

MAE 0.235 0.515 0.180 0.161
RMSE 0.489 0.816 0.399 0.275
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