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Abstract

In this work, we propose CrossModal Predictive Architecture(X-MoPA), a mul-1

timodal learning model that combines crystal structure graphs, X ray diffraction2

(XRD) patterns, and text based structural descriptions to improve materials prop-3

erty prediction. Unlike prior multimodal approaches that rely on heavy attention4

mechanisms or simple concatenation, X-MoPA leverages lightweight predictors5

to learn a joint latent space through cross-modal prediction. For each training6

instance, we select two modalities and predict the third one in latent space. This7

formulation captures complementary information across modalities while avoiding8

reconstruction inefficiencies and contrastive memory bottlenecks. We train and9

evaluate the model on Matbench for several key properties, Band Gap, Shear Mod-10

ulus, Bulk Modulus and formation energy for Perovskites. X-MoPA consistently11

outperforms state of the art(SOTA) models, with error reductions ranging from12

16% to 60% across four key properties, while matching the best baseline on Shear13

Modulus.Beyond Matbench, X-MoPA achieves SOTA performance on AFLOW14

band gap prediction, showing that the learned cross-modal representations transfer15

well across datasets with different sampling strategies and property distributions.16

1 Introduction17

The dominant strategy in multimodal learning has been to use pretrained language and vision models18

and then align them during the training process. This pretrain-then-transfer relies on modality19

specific encoders trained on large datasets, producing strong but often narrow representations. Such20

representations may struggle to generalize in domains like materials science where modalities such21

as text, crystal graphs, and diffraction patterns encode complementary but structurally distinct22

information.23

Self supervised learning(SSL) provides an alternative by constructing surrogate tasks that exploit data24

structure without requiring manual labels. Contrastive methods, such as InfoGraph, have demonstrated25

the ability to learn rich representations by maximizing agreement across augmented views[13].26

However, these approaches often demand large memory banks and rely on data perturbations, which27

are not suited to scientific modalities like crystal graphs where small structural changes can drastically28

alter meaning[7]. Generative methods, in turn, require reconstruction in input space, which can29

lead to inefficiencies and overfitting to low-level details. To overcome these challenges, LeCun et30

al. introduced the Joint Embedding Predictive Architecture (JEPA), which emphasizes prediction in31

latent space rather than raw reconstruction[5]. This perspective allows models to focus on schematic32

information while discarding extraneous detail. We draw inspiration from this principle to design33

a multimodal model that predicts one modality from the others in latent space, aiming to capture34

complementary structure across text, graphs, and diffraction data.35
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Recent work in multimodal learning combines text and graph embeddings via concatenation to predict36

material properties[2, 8]. However, this simple fusion does not effectively utilize complimentary37

information from different modalities and lacks interpretability. This challenge is addressed in models38

like UniMat[10] and CAST[6] which use cross attention mechanisms. However, these models are39

computationally expensive making them difficult to scale or deploy.40

In this work, we propose a Cross Modal Predictive Architecture (X-MoPA), a multimodal predictive41

architecture that integrates three complimentary modalities, crystal graph embeddings (CGCNN)[15],42

contextual text embeddings (MatSciBERT)[4], and spectral features from XRD patterns using43

lightweight MLPs instead of expensive transformer based predictors. We use two modalities to44

predict the third one in latent space. Material modalities have high redundancy because they describe45

the same underlying system. This is exploited in this framework to ensure that the trained model is46

able to learn this system which can be used for downstream tasks. We demonstrate state of the art47

performance on multiple properties in the Material Project dataset. Moreover, we provide information48

theoretic bounds in the Appendix.49

2 Proposed Model Architecture50

Crystallographic structures from CIF files are represented as graphs using the CGCNN framework.51

Atoms are nodes with features including group, periodic table position, electronegativity, first52

ionization energy, covalent radius, valence electron count, electron affinity, and atomic number.53

Bonds form edges, and atom features are updated through localized message passing. Textual54

descriptions are generated with RoboCrystallographer and encoded with MatSciBERT, a 12-layer55

transformer with 12 attention heads per layer and hidden size 768, pretrained on 3.17B words from56

materials science literature. Text input is processed by WordPiece tokenization, positional and57

segment encoding, multi-head attention, residual connections, layer normalization, and feedforward58

layers with ReLU. The [CLS] token embedding is projected to 150 dimensions. XRD spectra are59

encoded with a 1D CNN consisting of a convolutional layer, max-pooling, and two fully connected60

layers to obtain spectral embeddings. Each modality (text, graph, XRD) is encoded separately and61

projected into a shared joint embedding space. Cross-modal predictors map pairs of modalities to62

reconstruct the third. Prediction error is measured with L2 loss, summed over all three modalities.63

Lightweight MLPs are used for prediction. A variance-invariance-covariance regularization term64

is added to stabilize the latent space and prevent overfitting. The total loss is the sum of cross-65

modal prediction loss and regularization. The figure1 shows a schematic of the model. The model66

architecture has been described in detail in the Appendix section.67

3 Proposed Methodology68

We propose a self-supervised learning framework inspired by the Joint-Embedding Predictive Ar-69

chitecture (JEPA) paradigm [1], designed to learn semantically meaningful and modality-aligned70

representations from multimodal crystallographic data. The framework incorporates the graph en-71

coder, text encoder and the XRD encoder, the three complementary encoders discussed above. The72

objective of the proposed framework is to learn Cross Modality Prediction. For each training73

instance, we randomly select two modalities and predict the third one in latent space. Let m1,m2 be74

the input modalities and m3 the target modality. Then the predicted latent representation is obtained75

using a MLP based lightweight joint projection network. The advantages of prediction in the latent76

space are also clearly explained in the Appendix.77

ẑm3 = h([zm1 , zm2 ]) (1)

Mean squared error (MSE) between the predicted and actual latent representation is used as the78

prediction loss79

Lpred = || ˆzm3
− zm3

||22 (2)

Further, to prevent representational collapse which result in trivial or degenerate outputs, we employ80

a variance-invariance-covariance (VIC) regularizer[1]. This regularizer operates on the latent features.81

To encourage semantically aligned and disentangled representations across modalities, we use a82

contrastive loss in the latent space[11].83
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Figure 1: An overview of the proposed X-MoPA. Each modality is encoded separately and projected
into a shared joint embedding space. Cross-modal predictors map pairs of modalities to reconstruct
the third. Prediction error is measured with L2 loss, summed over all three modalities.

The full loss function combines all the above losses. The model is trained using AdamW optimizer84

with weight decay[9]. A cosine annealing scheduler is used for stable convergence.85

Ltotal = Lpred + αLV IC + βLcontrast (3)

4 Experimentation86

We use a Nvidia RTX 4090 graphics processing unit (GPU) to run our experiments. The framework87

is implemented using the Pytorch library version[12]. We have used the Matbench dataset consists88

of 13 benchmark tasks for evaluating predictive models in materials science, covering regression89

and classification with predefined 5 fold train test splits. In this work we have focused on 5 crystal90

property prediction tasks with CIF structures as input. We generate text descriptions and simulate91

XRD patterns using the CIF. The process is explained in detail in the Appendix.92

5 Results93

In this section, we evaluate how the knowledge from the pretraining using cross modal prediction94

in latent space compares to other SOTA material property predictors. We are using fine tuning of95

only the final prediction heads while keeping the weights of the model frozen. We choose three96

state of the art models with different architectures, CoGCNN, CGCNN and ALIGNN. The results97

of these models are taken from the official Matbench leaderboard. In table1 report mean absolute98

error(MAE) of the predicted and actual value of a particular property to compare the performance99

of different algorithms. For each property, we have used the same train and test splits as given in100

MatBench. We observe that the proposed algorithm outperforms the other algorithms across all the101

properties. In addition to Matbench, we evaluate X-MoPA on the prediction of Band Gap in the102

AFLOW database[3], which provides a large-scale set of DFT-computed material properties. This103

allows us to test whether the learned cross-modal representations generalize across datasets with104

different sampling and property distributions. The results are presented in the Appendix.105

Unlike cross-attention multimodal models such as LXMERT[14] with around 305 million trainable106

parameters or CAST[6] with 200 to 300 million, X-MoPA has a total of 111 million parameters. Of107

these, only 0.6% are updated during finetuning on downstream tasks. The MatSciBERT encoder,108

which makes up most of the parameters, is kept frozen during training. This design keeps the109
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Table 1: Benchmarking model performance. The lower the error the better the model performance.

Mean Absolute Error(MAE)

CGCNN CoGN ALIGNN X-MoPA

Dielectric 0.5988 0.3088 0.3449 0.1238
Shear Modulus 0.0895 0.0689 0.0715 0.069
Bulk Modulus 0.0712 0.0535 0.0568 0.0385
Bandgap(MBJ) 0.2972 0.1559 0.1861 0.0661

Perovskites 0.0452 0.0269 0.0288 0.0225

model lightweight and efficient, reducing the computational cost of both training and transfer to new110

properties.111

6 Discussion112

Crystal structures, despite being described in high-dimensional spaces of atomic coordinates or113

diffraction patterns, inherently lie on structured low-dimensional manifolds due to periodicity, space-114

group symmetries, and local coordination environments. Encoders map these structures into latent115

manifolds where nearby points correspond to structurally and chemically similar crystals.116

In this setting, property prediction becomes a mapping over a smooth manifold rather than raw high-117

dimensional noise. The key mathematical requirement is Lipschitz continuity: small perturbations in118

latent space such as slight bond length variations or symmetry preserving lattice distortion must lead119

to proportionally small changes in predicted properties. This ensures stable optimization, prevents120

variance amplification, and improves generalization across material classes. By grounding property121

prediction in latent manifolds shaped by crystallography and enforcing Lipschitz continuity X-MoPA122

achieves stable and physically consistent learning.123

7 Conclusion124

In this work, we introduced X-MoPA, a multimodal framework that predicts material properties by125

operating in a shared latent space. The model learns from three complementary inputs: crystal graphs126

for local bonding, XRD spectra for global structure, and text for literature-driven context. Instead127

of reconstructing raw inputs or relying on contrastive memory banks, X-MoPA uses lightweight128

MLP predictors to take any two modalities and predict the third in latent space. This design makes129

the model more efficient while still forcing it to capture the connections between different scientific130

representations.131

Our experiments on the Matbench benchmarks show that this approach not only improves accuracy132

over existing methods like CGCNN and ALIGNN, but also does so with lower computational cost.133

For example, we see significant reductions in MAE for properties such as band gap and bulk modulus.134

Because the model is trained to align modalities in latent space, the learned representations are more135

stable and interpretable. Overall, X-MoPA shows that lightweight cross-modal prediction in latent136

space is a scalable way to predict properties in materials science.137

Limitations and Future scope of work: Missing or corrupted data in one modality might not align138

with structural information in another modality. Moreover, prediction in the latent space might139

bias the model to focus on short range correlation than learning long-range dependencies. Incorpo-140

rating additional modalities, such as material characterization data, could provide complementary141

information.142
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A Proposed Model Architecture1

Let us describe the architecture of our multimodal framework. Given a dataset of inorganic crystals2

denoted by D = [(S, T,X), P ] where S, T , X and P denote the structure information in CIF format,3

the text description, the XRD spectra and the material property respectively. The model trains the4

parameters of the XRD Encoder (Xθ), Graph encoder (Gθ) and the BERT encoder (Bθ) to learn the5

function fθ → P .6

In our multimodal framework, the crystallographic structure, provided in Crystallographic Information7

File (CIF) format, is represented as a graph G(V,E) using the Crystal Graph Convolutional Neural8

Network (CGCNN) architecture, where atoms correspond to nodes V and interatomic bonds are9

represented as edges E. Node attributes encode physicochemical properties of each atom, including10

group, periodic table position, electronegativity, first ionization energy, covalent radius, valence11

electron count, electron affinity, and atomic number. The CGCNN convolution operation updates each12

atom’s feature vector based on its neighbors j ∈ N(i), enabling localized message passing over the13

crystal graph. Complementing this structural representation, natural language descriptions of crystal14

structures are generated using a template, which extracts and summarizes symmetry information15

and structural motifs from CIF files. These descriptions are processed using MatSciBERT [3], a16

BERT-base–style transformer with 12 encoder layers, 12 attention heads per layer, and a hidden size17

of 768, pretrained on 3.17 billion words from materials science literature. Input text is tokenized18

using the WordPiece algorithm, embedded with positional and segment encodings, and transformed19

through stacked self-attention layers, where multi-head attention is computed followed by residual20

connections, layer normalization, and position-wise feedforward networks with ReLU activation.21

The [CLS] token embedding from the final layer is linearly projected to a fixed 150-dimensional22

representation for compatibility with the multimodal fusion stage. Additionally, X-ray diffraction23

(XRD) spectra are encoded via a 1D convolutional neural network comprising a convolutional layer,24

max-pooling layer, and two fully connected layers, which progressively extract local diffraction25

patterns, reduce dimensionality, and produce a compact spectral embedding. These modality-specific26

embeddings are subsequently integrated in the fusion module for downstream predictive tasks. Each27

encoder is described in further detail in the supplementary information.28

A.1 Cross Modal Joint Embedding Predictive Architecture29

The three modalities are first processed by their own encoders as described in the previous section.30

For instance, the Text: xt → zt = ft(xt), Graph: xg → zg = fg(xg) and XRD: xr → zr = fr(xr).31

These embeddings are then projected into a shared latent space which is known as Joint Embedding32

Space.33

z̃t = Pt(zt), z̃g = Pg(zg), z̃r = Pr(zr) (1)

Each modality is predicted in this shared latent space by using the other two modalities. This makes34

the model focus on the underlying physical system and ignore the modality specific features. For35
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each modality m ∈ {t, g, r}, let {m1,m2} = M\ {m} denote the other two modalities. We define36

a predictor hm:37

ẑm = hm([z̃m1 , z̃m2 ]) (2)

The L2 norm is used to calculate the cross modality prediction loss L is:38

L(m)
X-MoPA = ∥ẑm − z̃m∥22 (3)

We use three lightweight MLP predictors, one for predicting each modality. The total Cross Modal39

JEPA loss is calculated as the sum of all three predictors. We40

LX-MoPA =
∑

m∈{t,g,r}

L(m)
X-MoPA (4)

Further, to prevent representational collapse which result in trivial or degenerate outputs, we employ41

a variance-invariance-covariance (VIC) regularizer[1]. This regularizer operates on the latent features.42

The Variance loss maintains a minimum variance along each latent dimension, the invariance loss43

encourages invariance between positive pairs. Finally, the Covariance loss minimizes redundancy44

between dimensions.45

LVIC = λv

D∑
d=1

max (0, γ − Var(Z:,d)) + λc

∑
i ̸=j

(Cov(Z:,i, Z:,j))
2 (5)

To encourage semantically aligned and disentangled representations across modalities, we use a46

contrastive loss ion the latent space. Positive pairs are constructed from different modalities of the47

same instance, and negative pairs from different instances. A temperature scaled InfoNCE loss is48

used for contrastive loss[8].49

Lcontrast = − log
exp

(
sim(zi,zj)

τ

)
∑2B

k=1 1[k ̸=i] exp
(

sim(zi,zk)
τ

) (6)

Ltotal = LX-MoPA + λ · LVIC, λ ≪ 1 (7)

B Information Theoretic Bounds50

Let X , Y and Z represent the text ,graph and XRD modalities respectively. Let the target property by51

P and the the latent representations be represented by hX , hY and hZ .52

Theorem B.1 The use of two input modalities to predict the third modality is possible if and only if53

I(Z;X,Y) >= H(Z)-ϵ54

Theorem B.1 It directly follows from the mathematical formulation that for perfect prediction55

H(Z|x, y) = 0. Assuming ϵ is an acceptable level of error then H(z|X,Y ) <= ϵ By information56

theory, we know that I(Z;X,Y ) = H(Z)−H(Z|X,Y ) Therefore, it must be true that I(Z;X,Y) >=57

H(Z)-ϵ58

Theorem B.2 All modalities describe the same inorganic crystal thus they have an underlying59

structure S therefore, I(X;Y ;Z) >= I(X;S) + I(Y ;S) + I(Z;S)− 2 ∗H(S)60

Theorem B.3 The pre train using a cross modal predictive architecture and then transfer to a61

downstream tasks has the following generalization bound for downstream tasks.62

E[Ldownstream] =< E[LJEPA] + λDKL(Ppretrain||Pdownstream) +O(
√

d/n)63

where, LJEPA denotes the cross modal prediction loss DKL is the KL divergence between the64

pretraining and downstream tasks. d denotes the dimension of the representation. n is the number of65

training examples. and λ denotes the transfer coefficient66

Corollary B.3.1 From the above theoretical bound, we have the corollary that if the cross modal67

LJEPA loss ≤ δ then the downstream loss satisfies.68

Ldownstream ≤ δ + C ∗
√
log(1/δ)/n69

where C depends on the Lipschitz constant of the downstream task.70
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B.1 Latent Space prediction71

The latent space is a lower dimensional representation learned from high dimensional data using72

encoders. If the encoder is trained well, the latent space captures abstract, disentangled and structured73

features. Thus, the prediction occurs over structured manifolds instead of high-dimensional noise. In74

high dimensional spaces, the learned mapping between the input and target might be ill-conditioned75

resulting in high variance. For well trained encoders, the mapping between the latent space and target76

is Lipschitz-continuous which leads to better learning and generalization.77

||g(z1)− g(z2)|| ≤ L||z1 − z2|| (8)

The manifold hypothesis states that real world data lies in a low-dimensional smooth manifold78

embedded in high dimensional space. The encoders learn to unwrap these manifolds and thus, the79

function defined over latent spaces follows geodesics. Thus, they tend to be Lipschitz-continuous.80

Let:81

• x ∈ Rn: input in raw space82

• z = fenc(x) ∈ Rd: latent representation, where d ≪ n83

• ŷ = g(z): prediction made in latent space84

• ŷ = g(fenc(x)): full composition in raw space85

Lipschitz Continuity86

A function f : Rn → Rm is said to be Lipschitz continuous if there exists a constant L > 0 such87

that:88

∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥, ∀x1,x2 ∈ Rn (9)

Jacobian-Based View89

For a differentiable function f , the Lipschitz constant is bounded by the operator norm (spectral90

norm) of the Jacobian:91

Lf ≤ sup
x

∥∇f(x)∥2 (10)

Let us now consider the composition:92

f(x) = g(fenc(x)) = g(z) (11)

By the chain rule:93

∇f(x) = ∇g(z) · ∇fenc(x) (12)

Hence, the Lipschitz constant of the full model is bounded by:94

Lf ≤ sup
x

∥∇g(z)∥2 · ∥∇fenc(x)∥2 (13)

This gives insight into how latent spaces help:95

• ∥∇fenc(x)∥2: well-trained encoders map high-dimensional, noisy inputs into a smooth,96

structured space, often with regularized Jacobians.97

• ∥∇g(z)∥2: predictors in latent space are often more stable and operate on disentangled98

features, reducing the gradient norm.99

C Dataset100

The Matbench dataset, introduced as part of the Matbench benchmark suite in the Materials Machine101

Learning (matminer) ecosystem, comprises 13 distinct tasks for evaluating predictive models in102

materials science. These tasks span regression and classification problems, each with predefined103
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train-test splits (5-fold) to ensure reproducibility.[4]. For our study, we focus on 13 properties with104

unique crystal structures in Crystallographic Information File (CIF)105

To construct the input modalities required by our X-MoPA model, we process each CIF file through106

three parallel pipelines. For the graph-based modality, each crystal structure is transformed into107

an undirected graph using the CGCNN architecture, where atoms serve as nodes and interatomic108

interactions define the edges. Node features encode essential atomic attributes such as atomic number,109

electronegativity, ionization energy, and group number[10]. These features are propagated through a110

message-passing neural network to produce a structure-aware embedding that captures local atomic111

environments.112

For the text-based modality, the CIF files are processed using a template for text generation, which113

generates structured textual descriptions that summarize structural motifs such as coordination114

geometries, symmetry operations, and lattice parameters. These descriptions are encoded using the115

pretrained MatSciBERT language model, which captures domain-specific contextual knowledge from116

scientific literature and converts the input text into a dense, fixed-length vector representation.117

For the spectral modality, we simulate X-ray diffraction (XRD) patterns from the CIF structures using118

the Pymatgen diffraction module[7]. Each diffraction pattern is computed over a 2θ range of 5◦ to119

90◦ and discretized into a fixed-length 1D intensity array. These spectra encode long-range order,120

phase symmetry, and crystallographic fingerprints, which are essential for distinguishing between121

polymorphs and identifying structural characteristics beyond the atomic neighborhood.122

D AFLOW Benchmarking123

For further validation, we also evaluate X-MoPA on the AFLOW database, which contains over124

60,000 materials. We first split the dataset into 80% training, 10% validation, and 10% test, and125

pre-trained X-MoPA on the training set using the proposed cross-modal prediction loss in a fully126

self-supervised manner, without using property labels. To assess downstream performance on the127

prediction of Band Gap, we then selected a subset of 5,000 samples, again splitting them into128

train/validation/test following the same 80/10/10 protocol. The model was fine-tuned on the labeled129

training data and evaluated on the corresponding test set to measure property prediction accuracy.130

The reference values for the SOTA models have been taken from literature[2].

Table 1: Benchmarking model performance. The lower the error the better the model performance.

Band Gap(Eg)(eV)

SchNet[9] ElemNet[5] MPNN[6] X-MoPA

MAE 0.235 0.515 0.180 0.161
RMSE 0.489 0.816 0.399 0.275

131
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