
Learning Division with Neural Arithmetic Logic
Modules

Anonymous Author(s)
Affiliation
Address
email

Abstract

To achieve systematic generalisation, it first makes sense to master simple tasks1

such as arithmetic. Of the four fundamental arithmetic operations (+,-,×,÷),2

division is considered the most difficult for both humans and computers. In this3

paper we show that robustly learning division in a systematic manner remains a4

challenge even at the simplest level of dividing two numbers. We propose two5

novel approaches for division which we call the Neural Reciprocal Unit (NRU) and6

the Neural Multiplicative Reciprocal Unit (NMRU), and present improvements for7

an existing division module, the Real Neural Power Unit (Real NPU). Experiments8

in learning division with input redundancy on 225 different training sets, find that9

our proposed modifications to the Real NPU obtains an average success of 85.3%10

improving over the original by 15.1%. In light of the suggestion above, our NMRU11

approach can further improve the success to 91.6%.12

1 Introduction13

Imagine you must learn to divide 2 numbers, but are only given 10 numbers and the target value. This14

task requires finding the 2 relevant operands, the order to divide the operands, and learning to divide.15

In machine learning, this is equivalent to a supervised regression task where the aim is to learn the16

underlying function between the inputs and output such that the solution is generalisable to any input.17

The ability to select relevant features is a desirable property of neural networks, useful for improved18

intepretability, reduced pre-processing costs and greater generalisation [Chandrashekar and Sahin,19

2014]. The ability to model division, one of the four fundamental arithmetic operations, is necessary20

for expressing dynamical systems [Sahoo et al., 2018], and physics-based formulas [Udrescu and21

Tegmark, 2020]. However, even recent models still struggle to learn division when there is input22

redundancy [Schlör et al., 2020].23

The main challenge of the above task comes from learning the selection and operation at the same24

time, which can lead to conflicting priorities when learning network weights. Furthermore, the natural25

properties of division of values around zero leads to undesirable gradients. Models which deal with26

this naively (e.g. MLPs) are unable to deal with the fluctuant gradients caused by the asymptotic27

nature and discontinuities in division [Trask et al., 2018].28

Can we build models which can learn division in the presence of its undesirable, yet valid, properties?29

We aim to address this question in this paper. Specifically, we contribute the following:130

• Improvements to the Real NPU [Heim et al., 2020] including: clipping, discretisation and31

constrained initialisation to improve performance in learning division on different training ranges.32

1Code (MIT license) available at: https://anonymous.4open.science/r/nalu-stable-exp-neur
ips-review-2E4C/.

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

https://anonymous.4open.science/r/nalu-stable-exp-neurips-review-2E4C/
https://anonymous.4open.science/r/nalu-stable-exp-neurips-review-2E4C/

• Two novel division modules, the NRU and the NMRU. The NRU explores extending the NMU33

weight ranges from [0,1] to [-1,1] to include division, where we find a weakness in learning from34

negative ranges. Learning from the weaknesses of the NRU, the NMRU extends the NMU to learn35

division while keeping weights values between [0,1]. We further boost performance by using a36

Real NPU inspired sign retrieval mechanism, enabling the NMRU to gain the best performance37

when using a mean squared error (MSE) loss.38

• New understanding into the hindrances in learning division including: training on mixed-sign39

inputs, training on negative ranges, and division on extremely small values. We find these difficulties40

can be sufficiently identified using synthetic division tasks.41

The broader impact of our work relates to interpretable Artificial Intelligence where our modules42

can be included in larger networks for applications such as image classification or analogy creation,43

whilst retaining the ability to produce transparent generalisable solutions. However, there are possible44

negative societal impacts. Such modules can be viewed as specialised feature selectors/aggregators45

which do not require integrating domain knowledge. Therefore, if a non-domain-expert tries inter-46

preting relations in the input data, they may incorrectly interpret causality, which can be especially47

harmful if such a case occurs on medical or financial data. Mitigating against such downstream issues48

requires to first focus efforts on producing robust modules to different distributions and understand49

their affect on learning other networks architectures (e.g. CNN). Understanding this will enable50

recognising situations where these modules can aid and where they should avoid being used.51

2 Related Work52

One approach to learn division would be symbolic regression networks [Sahoo et al., 2018]. However,53

a symbolic approach pre-defines the operations, which is not a limitation of using Neural Arithmetic54

Logic Modules (NALMs).55

NALMs are neural networks which learn arithmetic operations and input selection [Mistry et al.,56

2021]. The weights of these networks are intepretable such that a discrete value represents a specific57

operation. For example, ‘-1’ to represent division and ‘0’ for no selection. From this research field,58

we focus on the Real NPU and the NMU. Until now, the Real NPU only has learned division on59

training ranges of either U[0.1,2] or Sobol(0,0.5) [Heim et al., 2020]. It remains unclear if this60

module is robust to other training ranges even as a stand-alone unit. Robustness to training ranges is61

important as these module’s applicational use comes from being part of larger end-to-end networks,62

where the input range into the module cannot be controlled. The NMU is a multiplication module63

which we extend to also do division. The authors of the NMU believe such an extension incurs too64

many limitations for learning [Madsen and Johansen, 2020]. We use this paper as an opportunity to65

explore this belief.66

Trask et al. [2018] developed the Neural Arithmetic Logic Unit (NALU) which can model all four67

arithmetic operations. However, studies show this module to be unstable in learning division [Schlör68

et al., 2020, Heim et al., 2020]. In particular, their gating method responsible for selecting an operation69

cannot learn consistently [Madsen and Johansen, 2020]. Schlör et al. [2020] developed iNALU70

additionally applying weight and gradient clipping, sign retrieval, regularisation, reinitialisation and71

separating shared parameters to the NALU. Even with these modifications, they still find consistently72

learning division to a high precision to remain unattainable. Furthermore, Heim et al. [2020]’s results73

imply iNALU is outperformed by the Real NPU for division.74

3 Architectures75

This section introduces the architectures for the (Real) NPU, NRU, and the NMRU. The (Real) NPU76

is an existing module, which we improve in Section 5. The NRU and NMRU are novel contributions.77

Appendix A summarises the important properties of these division modules.78

3.1 Real Neural Power Unit79

Heim et al. [2020] develop a module to learn to multiply and divide, using the intuition from Trask80

et al. [2018] that multiplicative operations are additive operations in log space. Their work extends81

this idea into complex space. The NPU can be used with its complex form (Equation 1) requiring both82

2

a complex and real weight matrix (W (i),W (r)), or only its real form the Real NPU (Equation 2).83

For improved gradients, a relevance gate r (Equation 3) is used which converts inputs close to 0 (i.e.84

irrelevant features) to 1 to avoid the resulting output evaluating to 0. A gating vector g, learns to85

select relevant input elements, where gate values are clipped between [0,1] during training.86

NPU := exp(W (r) log(r)−W (i)k) � cos(W (i) log(r) +W (r)k), (1)

87

RealNPU := exp(W (r) log(r)) � cos(W (r)k) (2)
88

where r = g � (|x|+ ε) + (1− g) and ki =

{
0 xi ≥ 0

πgi xi < 0
. (3)

A weighted L1 penalty is used when training. The weight value β grows between predefined values89

βstart to βend and is increased every βstep = 10, 000 iterations by a growth factor βgrowth = 10.90

We focus on the Real NPU over the NPU as the solution of the tasks in this paper can be captured91

using only real values meaning that the complex form is not required.92

3.2 Neural Reciprocal Unit93

We propose the NRU, which can model multiplication and division. We extend the NMU, motivated94

by division being multiplication of reciprocals. The range which weight values can be is extended95

from [0,1] to [-1,1], where -1 represents applying the reciprocal on the corresponding input element.96

A NRU output element zo is defined as97

NRU : zo =

I∏
i=1

(
sign(xi) · |xi|Wi,o · |Wi,o|+ 1− |Wi,o|

)
, (4)

where I is the number of inputs. Assuming weights are either 1 (multiply) or -1 (reciprocal), |xi|Wi,o98

will apply the operation on an input element. The absolute value is used so that the module only99

operates in the space of real numbers, as xWi,o

i for a negative input (xi) when −1 < Wi,o < 1 results100

in a complex number. The use of absolute means the sign of the input must be reapplied. For the101

no-selection case Wi,o = 0, we want the input element to convert to 1 (the identity value), resulting102

in applying ·|Wi,o|+1−|Wi,o|. The derivative of the absolute function at 0 is undefined meaning the103

gradients of Equation 4 can contain points of discontinuity. To alleviate this issue, we approximate104

the absolute function using a scaled tanh (inspired by Faber and Wattenhofer [2020]). More formally,105

|Wi,o| =
{
tanh(1000 ·Wi,o)

2 if training
|Wi,o| otherwise

.

The scale factor (1000) controls how close to the absolute function the approximation is, where larger106

values give a more accurate approximation. For clipping and regularisation, the same scheme as the107

Neural Addition Unit (NAU) (see Appendix B) is used.108

3.3 Neural Multiplicative Reciprocal Unit109

An alternate extension of the NMU, also motivated by division being multiplication of reciprocals110

is the NMRU (Equation 5). We concatenate the reciprocal of the input (plus a small ε) to the input111

resulting in a module which only needs to learn selection. Hence, weights can be in the range [0,1].112

NMRU : zo =

2I∏
i=1

(Wi,o · |xi|+ 1−Wi,o) ·
2I∑
i=1

(cos(Wi,o · ki)) ,where ki =

{
0 xi ≥ 0

π xi < 0
.

(5)

The iteration over 2I represents the going through all inputs and their reciprocals. We calculate the113

magnitude and sign separately, joining the result at the end. The magnitude is calculated passing114

absolute of the concatenated input through an NMU architecture and the sign by using a cosine115

mechanism similar to the Real NPU. However, unlike the Real NPU only the weight matrix is116

required. The norm of the weight’s gradients are clipped to 1 prior to being updated by the optimiser.117

This is done to alleviate the issue of exploding gradients caused by including the reciprocal to the118

inputs. For clipping and regularisation, the same scheme as the NMU (see Appendix B) is used.119

3

Table 1: Interpolation (train/validation) and extrapolation (test) ranges used. Data (as floats) is drawn
from a Uniform distribution with the range values as the lower and upper bounds.

Interpolation [-20, -10) [-2, -1) [-1.2, -1.1) [-0.2, -0.1) [-2, 2)
Extrapolation [-40, -20) [-6, -2) [-6.1, -1.2) [-2, -0.2) [[-6, -2), [2, 6)]

Interpolation [0.1, 0.2) [1, 2) [1.1, 1.2) [10, 20)
Extrapolation [0.2, 2) [2, 6) [1.2, 6) [20, 40)

4 Experiment Setup120

We introduce the two main experiments used to evaluate modules, including: default parameters,121

train and test ranges, and evaluation metrics. The tasks evaluate the ability of a single module to122

divide two numbers from an input vector in two settings: no redundancy and with redundancy.123

Default parameters: All experiments use a mean squared error (MSE) loss with an Adam optimiser124

[Kingma and Ba, 2015], with 10,000 samples for the validation and test sets. The best model for125

evaluation is taken using early stopping on the validation set. All runs are over 25 different seeds. All126

inputs are required in the no redundancy setting, i.e., input size of 2. Training takes 50,000 iterations127

where each iteration consists of a different batch of size 128. The Real NPU uses a learning rate of128

5e-3 with sparsity regularisation scaling during iterations 40,000 to 50,000. The NRU and NMRU129

use sparsity regularisation scaling during iterations 20,000 to 35,000 and a learning rate of 1 and 1e-2130

respectively. In contrast, the redundancy setting uses an input size of 10, where 8 input values are not131

required for the final output. The total training iterations are extended to 100,000 with batch sizes132

of 128. The learning rates for the Real NPU, NRU and NMRU are 5e-3, 1e-3 and 1e-2 respectively.133

Sparsity regularisation scaling occurs during iteration 50,000 to 75,000 for all modules. A summary134

of all relevant parameters is found in Appendix C.135

Ranges: The interpolation (train/validation) and extrapolation (test) ranges, are found in Table 1.136

The chosen ranges are influenced by Madsen and Johansen [2020].137

Evaluation metrics: We use the Madsen and Johansen [2019]’s evaluation scheme, consisting of138

three evaluation metrics: the success on the extrapolation dataset against a near optimal solution139

(success rate), the first iteration which the task is considered solved (speed of convergence), and140

the extent of discretisation towards the weights’ inductive biases (sparsity error). Sparsity error141

calculated by max
i,o

(min(|Wi,o|, 1− |Wi,o|)), measures the weight element which is the furthest away142

from the acceptable discrete weights for the module. A success means the MSE of the trained model143

is lower than a threshold value (i.e. the MSE of a near optimal solution). We differ from Madsen144

and Johansen [2019] by using a fixed threshold value 1e-5 rather than a simulated MSE, as there145

are no intermediate layers to accumulate numerical errors. We choose this precision as it can be146

guaranteed when working with 32-bit PyTorch Tensors. 95% confidence intervals (over the 25 seeds)147

are calculated from a specific family of distributions dependant on the metric. The success rate uses148

Binomial distribution because trials (i.e. run on a single seed) are either pass/ fail situations. The149

convergence metric uses a Gamma distribution and sparsity error uses a Beta distribution. Both Beta150

and Gamma can easily approximate the normal distribution and support its corresponding metric.151

5 Improving the Real NPU’s Robustness152

We first improve the robustness of the Real NPU on different training ranges. We use the Single153

Module Task with no redundancy (see Section 4) to investigate the following questions:154

1. Is L1 regularisation required, and if so, do the regularisation parameters require tuning?155

2. Does clipping the weight matrix aid learning?156

3. Does enforcing discretisation on parameters improve convergence?157

4. Can the weight matrix initialisation be improved?158

4

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

Success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ●L1 off L1 on

(a) L1 regularisation

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

● ● ● ●
●

● ● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

Success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●

● ● ●

(1e−11,1e−9) (1e−9,1e−7) (1e−8,1e−6) (1e−7,1e−5)

(1e−5,1e−3) (1e−3,1e−1) (1e−1,10)

(b) Sweep over L1 (start,end) beta parameters

Figure 1: Exploring the effect and sensitivity of L1 regularisation on the Real NPU

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

Success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●None G W GW

(a) Clipping

●

● ●

●

●

● ● ●

●
●

● ●

●

●

● ● ●

●

●

●

●

●
●

● ● ● ●

Success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ●None G GW

(b) Discretisation regularisation

●
● ●

●

●

● ● ●
●

● ● ●

●

● ● ● ● ●

Success rate

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.25

0.50

0.75

1.00

Interpolation range

●

●

Xavier−Uniform

Xavier−Uniform Constrained

(c) W (re) initialisation schemes

Figure 2: Effect of clipping, discretisation, and the NAU initialisation scheme on the Real NPU.

To address each question in order, we propose applying incremental modifications to the Real NPU.159

These modifications include: ablation study on the L1 regularisation (including a sweep over the160

scaling range hyperparameters), clipping, enforcing discretisation, and a more restrictive initialisation161

scheme. We assume that we are optimising the Real NPU to perform multiplication or division.162

Therefore, we trade-off the flexibility of having non-discretised weights, which enables the success of163

modelling the SIR data in Heim et al. [2020, Section 4.1] , in favour of sparse models with discrete164

weight values. All the modifications suggested can also be generalised for the NPU architecture.165

Is L1 regularisation required? (Yes) L1 encourages sparsity (i.e., zero weights) in solutions.166

Zero-valued weights means not to select an input and return the identity value 1. For the task, the167

optimal weight values require selecting all inputs and therefore non-zero values, suggesting the168

application of L1 could be damaging. Therefore, we compare against a model which does not use169

L1 regularisation, shown in Figure 1a. Removing L1 proves to be detrimental in five of the nine170

cases shown and only shows minor improvements in two of the nine ranges (i.e., U[-1.2,-1.1) and171

U[1.1,1.2)). Hence, we keep L1 regularisation. The L1 regularisation scaling (see Section 3.1),172

requires setting the hyperparameters for the start (βstart) and end (βend) scaling values. We run a173

sweep over six different start and end values, denoted (<start>, <end>), displaying results in Figure 1b.174

We find the configuration (1e-9, 1e-7) is the most successful when considering performance on all175

the ranges, and larger scaling values perform worse.176

Does clipping the learnable parameters help? (Yes) Division and multiplication operations are177

represented by weight values of -1 and 1 respectively. The current architecture does not constrain the178

weights which can result in large weight values. The gate weights do get clipped and saved to another179

5

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ● ● ●

●
●

● ● ● ● ● ● ●
● ●

● ●
● ●

● ●
●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

● ●
●

●

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ●
●

● ● ●

●

● ● ● ● ● ● ● ● ●

Success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.02

0.04

0.06

0

10000

20000

30000

40000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●Real NPU (baseline) Real NPU (modified) NRU NMRU

Figure 3: Division without redundancy (input size 2).

variable during the forward pass, meaning after an update step the gate values can also be out of the180

range [-1,1]. Hence, we investigate the effect of applying clipping directly to the weight and gate181

values after every optimisation step. Results, shown in Figure 2a, show clipping is beneficial, with182

clipping on both weight and gate (or just on the weights) to improve over the baseline on all ranges183

(excluding U[1,2) where the baseline has already achieved full success).184

Does enforcing discretisation help? (Yes) Modelling division in a generalisable manner requires185

all learnable parameters to be discrete i.e., a value from {-1, 0, 1}. Using Madsen and Johansen186

[2020]’s regularisation scaling scheme, we penalise weights for not being discrete. We modify the187

scaling factor to be λ̂ = 1 and the regularisation to go from ‘off’ to ‘on’ between iterations 40,000 to188

50,000. Results, shown in Figure 2b, show discretising the gate improves over the baseline but also189

discretising the weights is additionally beneficial (especially for range U [-0.2,-0.1)). U [10,20) is the190

only range where the baseline outperforms using discretisation, succeeding on two additional seeds.191

Does using a more constrained initialisation help? (Yes) W (r) uses a Xavier-Uniform initial-192

isation [Glorot and Bengio, 2010]. This can result in weights initialised out of the range [-1,1].193

Therefore, we use the initialisation for the Neural Addition Unit which is a constrained form of194

the Xavier-Uniform that does not allow the fan values of the uniform distribution to go beyond 0.5,195

meaning that no weight value will be out of the range [-1,1] [Madsen and Johansen, 2020]. Figure 2c196

shows using the constrained initialisation provides improvements over multiple ranges.197

6 Results: Single Module Task198

We analyse the results for the: Real NPU without using the modifications of Section 5, Real NPU199

with modifications, NRU, and NMRU.200

6.1 No Redundancy201

Figure 3 shows the baseline Real NPU without modifications struggles with all ranges except U [1,2),202

struggling with sparsity on the larger ranges. Applying the modifications deals with the sparsity issue203

and improves the robustness such that only range U [-2,2) struggles (with a success rate of 0.64). The204

NRU and NMRU achieve full success over all ranges while solving the problem consistently fast and205

with low sparsity error. The success of the NRU is correlated with the learning rate (see Appendix E).206

6.1.1 Mixed-signed Inputs207

The remaining failure range of the Real NPU is U[-2,2) where inputs can consist of arbitrary signed208

values (e.g. all positives, all negatives, or a mixture of positive and negative values). We question209

if the failure is due to the input samples in a batch having different signs from each other, or if the210

problem is due to the fact data samples can be close to 0 (leading to singularity issues). To investigate211

6

● ●

●

●
●

●

●

●
●

●

● ●

●

● ●

Success rate Solved at iteration step Sparsity error

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

U
[−

2,
−0

.1
) &

 U
[0

.1
,2

)
U

[−
2,

−1
) &

 U
[1

,2
)

U
[−

2,
2)

U
[0

.1
,2

) &
 U

[−
2,

−0
.1

)
U

[1
,2

) &
 U

[−
2,

−1
)

0.00000

0.00025

0.00050

0.00075

0

2500

5000

7500

0.0

0.2

0.4

0.6

0.8

Interpolation range

● Real NPU

Figure 4: Extrapolation results on training the Real NPU using mixed-sign datasets that control the
sign of the input elements. The ranges are in order of the datasets (i.e. dataset 1 to 5).

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ●

● ●
●

●
●

●

●
●

●

Input: [a]; Output: 1/a Input: [a,b]; Output: 1/a Input: [a,b]; Output: a/b

U[0
,1

e−
8)

U[0
,1

e−
7)

U[0
,1

e−
6)

U[0
,1

e−
5)

U[0
,1

e−
4)

U[0
,1

e−
3)

U[0
,1

e−
2)

U[0
,1

e−
1)

U[0
,1

e+
0)

U[0
,1

e−
8)

U[0
,1

e−
7)

U[0
,1

e−
6)

U[0
,1

e−
5)

U[0
,1

e−
4)

U[0
,1

e−
3)

U[0
,1

e−
2)

U[0
,1

e−
1)

U[0
,1

e+
0)

U[0
,1

e−
8)

U[0
,1

e−
7)

U[0
,1

e−
6)

U[0
,1

e−
5)

U[0
,1

e−
4)

U[0
,1

e−
3)

U[0
,1

e−
2)

U[0
,1

e−
1)

U[0
,1

e+
0)

1e−07

1e+01

1e+09

1e+17

1e−07

1e+01

1e+09

1e+17

1e−07

1e+01

1e+09

1e+17

Data sample range

lo
g(

Te
st

 e
rr

or
)

● ● ● ●RealNPU RealNPU (eps=0) NRU NMRU

Figure 5: Effect of the singularity issue on the Real NPU, NRU and NMRU over increasing input
ranges. Left: Reciprocal for an input size of 1 (no redundancy). Middle: Reciprocal for an input size
of 2 (with redundancy). Right: Division for an input size of 2 (no redundancy).

this, we create additional mixed-sign datasets, controlling the range for each element in the input. The212

interpolation and extrapolation ranges for the different datasets can be found in Appendix C. Datasets213

1, 2, 4 and 5 sample a positive value for one input element and a negative value for the other element.214

Dataset 3 samples the signs randomly. Datasets 2 and 5 avoid sampling close to 0 values to mitigate215

the singularity issue. As shown by Figure 4, the Real NPU struggles on all these ranges, implying that216

the core issue is not from different input samples having different signs or due to the input samples217

being able to contain small values close to 0. The underlying issue is therefore most likely correlated218

to the each element in an input having different signs. When the denominator of the output is positive219

(dataset 1 or 2), the solution is found faster than when the denominator is a negative value (dataset 4220

or 5). When the signs for an input element are controlled, discretisation/sparsity is no problem, in221

contrast when the signs are arbitrary the sparsity error are slightly (though not significantly) higher.222

6.2 Division by Small Numbers223

Division by zero remains a challenge to model due to the inability to provide an computational value224

for the output and gradient. Furthermore, the discontinuous nature at zero causes its neighbouring225

values to have large gradients. To understand the extent of this issue when learning, we explore226

learning to divide by values close to zero using three tasks with increasing difficulty: 1) learning to227

take the reciprocal of a single input, 2) taking the reciprocal of the first input given two inputs, and 3)228

diving the first input by the second given two inputs. Figure 5 plots the test error for different modules229

7

●

●

●
●

●

● ● ● ●

● ● ● ● ●

● ● ● ●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

● ● ● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

● ● ● ● ● ● ● ● ●● ● ● ●

●

●

●

●

●

●

●

●

● ●
● ●

● ● ●

●

Success rate Solved at iteration step Sparsity error

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

U[−
0.

2,
−0

.1
)

U[−
1.

2,
−1

.1
)

U[−
2,

−1
)

U[−
2,

2)

U[−
20

,−
10

)

U[0
.1

,0
.2

)

U[1
,2

)

U[1
.1

,1
.2

)

U[1
0,

20
)

0.00

0.05

0.10

0.15

0

10000

20000

30000

40000

50000

0.00

0.25

0.50

0.75

1.00

Interpolation range

● ● ● ●Real NPU (baseline) Real NPU (modified) NRU NMRU

Figure 6: Division with redundancy (input size 10).

assuming the module weights are set to the ‘gold’ solution for the three tasks. As the range values230

become closer to zero, the test error thresholds become increasingly large. Therefore, even with the231

correct weights, relying on the test errors alone as an indicator become increasingly deceptive with232

values close to zero. The Real NPU has larger test errors for all tasks and ranges, caused by adding ε233

to the input (see Equation 3). Setting ε = 0 reduces the test error at the cost of the ability to deal with234

zero-valued inputs. Appendix F provides the corresponding experimental results for these tasks.235

6.3 With Redundancy236

Introducing redundancy (Figure 6) causes failure modes to arise. Failures on range U[-2,2) become237

more prevalent. The baseline Real NPU produces high sparsity errors relative to the other modules238

suggesting struggle with discretisation. Using the modified Real NPU improves over all ranges of the239

baseline (which were not already at full success) in terms of success, speed and sparsity.2 To ensure240

that complex weights do not fix the issue, we test the NPU module with all the modifications used on241

the real weight matrix (see Appendix G). Complex weights hinders success and convergence speeds242

of negative ranges. Assuming the global solution only uses the real weights, we enforce the complex243

weights to be clipped between [-1,1] and to go to 0 during the regularisation stage using a L1 penalty.244

This did not result in any significant improvements against the Real NPU results. Input redundancy245

effects the NRU the most, resulting in full failures on all the negative ranges. The NMRU is the246

only module with success for the range U[-2,2), which is a result of using the sign mechanism (see247

Appendix H). It performs well over all ranges though can be outperformed by the modified Real NPU248

for negative ranges. Multiple ranges for the NMRU are solved around 50,000 iterations correlating to249

the sparsity regularisation being turned on.250

6.3.1 Gradient Difficulties with the NRU251

The partial derivative for the NRU weights, Equation 6, can give insight to the struggles of the NRU.252

∂ŷ

∂wi
= tanh(1000wi)(sign(xi)|xi|(tanh(1000wi) log(|x|)+

2000 sech(1000wi)
2)− 2000 sech(1000wi)

2)× NRUx̃∈x\{xi}(x̃).

(6)

NRUx̃∈x\{xi}(x̃) applies the NRU to all inputs excluding xi influencing the gradient values between253

subsequent update steps. Factoring out this term, the following observations are made. If xi ≈ 0 and254

wi ≈ 0 then gradients become increasingly large. If xi ≈ 0 and −1 ≤ wi < 0 then as wi → −1 all255

gradients for xi where |xi| >> 1 become increasingly small. The gradients for xi = −1 and xi = 1256

are 0 regardless the value of wi. If wi = 0 then the gradient is 0 for all xi, a result of using the tanh257

approximation. Even if the sign and magnitude are calculated separately and then combined (see258

Appendix I) to try to control the gradient better, the problem remains. Therefore, we conclude that259

extending the NMU to divide using a weight of -1 is a poor choice when there are redundant inputs.260

2Except for the sparsity error for range U[10,20).

8

(a) Real NPU (b) NRU (c) NMRU

Figure 7: Root Mean Squared loss curvature for the NAU stacked with either a RealNPU, NRU,
or NMRU. "The weight matrices are constrained to W1 =

[
w1 w1 0 0
w1 w1 w1 w1

]
, W2 = [w2 w2]. The

problem is (x1 + x2) · (x1 + x2 + x3 + x4) for x = (1, 1.2, 1.8, 2)" [Madsen and Johansen, 2020].
The ideal solution is w1 = w2 = 1, though other valid solutions do exist e.g., w1 = −1, w2 = 1.
(The NMRU’s weight matrix would be W2 = [w2 w2 0 0], and the Real NPU’s g = [1 1].)

6.3.2 The Real NPU’s and NMRU’s Exploitation of Multiplicative Rules261

The NMRU solutions exploit the inverse rule of division in that ai · 1
ai

= 1. Since the input also262

contains the reciprocals, numerous extrapolative solutions exist. However this comes at the cost of263

finding a ‘simple’ solution which contains ones only for relevant inputs. The Real NPU exploits the264

rules ai · 0 = 0 and 1ai = 1 enabling non-zero weight values if the corresponding gate value is 0.265

However, we can avoid this by allowing 0 to also not be penalised during sparsity regularisation stage266

(see Appendix G). We find this alleviates the exploitation issue with no cost to performance.267

7 Discussion268

In this paper, we demonstrate the limitations of intepretable neural networks in learning to divide.269

Using the no redundancy setting (size 2), we find that the Real NPU is challenged when training data270

consists of mixed-signed inputs even with our applied improvements. Increasing the difficulty to271

have an input redundancy (with 8 redundant and 2 relevant input values) magnifies this issue, but272

also introduces failure modes for the NRU and NMRU for negative ranges. The NRU is unable to273

handle any negative ranges, in which we conclude it is not wise to use with MSE. Alternate losses274

can improve certain failure cases though sometimes at the cost of performance on other ranges. For275

further details see Appendix J which displays results on a correlation and scale-invariant based loss.276

Our NMRU is the only module with reasonable success over all tested ranges, requiring only 2I ×O277

learnable parameters. However, this comes at the cost of the simplicity of the solution due to its278

exploitation of the identity rule; an issue the Real NPU does not have.279

Once robust modules are attainable in a single layer setting, the next step would be to question280

performance when learning stacked modules, e.g. learning a stacked additive and multiplicative281

module. Previously, Madsen and Johansen [2020, Figure 2] illustrates the troubles for multiplicative282

models with the capacity for division. They show how a stacked summative-multiplicative module can283

lead to an exploding loss when the output of the summative module is close to 0 and the multiplicative284

model tries to divide. In Figure 7, we recreate their setup to produce the loss surfaces for the NAU-285

Real NPU3, NAU-NRU and NAU-NMRU respectively.4 We find a similar issue with the Real-NPU286

and NRU, as both these units use a weight range of [-1,1]. In contrast, the NMRU, whose weight’s287

range is limited to [0,1] does not have exploding losses.288

In conclusion, division remains a challenge to learn using intepretable neural networks, even for the289

simplest tasks. Nevertheless, by identifying the specific areas causing difficulty (e.g., training ranges),290

and useful architecture properties (e.g., using a sign retrieval mechanism), we hope the community291

has better intuition for dealing with division and develop more robust modules to learn division.292

3The NAU is a summative module [Madsen and Johansen, 2020].
4Appendix K displays larger versions of these plots.

9

References293

Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods. Computers &294

Electrical Engineering, 40(1):16–28, 2014. ISSN 0045-7906. doi: https://doi.org/10.1016/j.comp295

eleceng.2013.11.024. URL https://www.sciencedirect.com/science/article/pii/S0296

045790613003066. 40th-year commemorative issue.297

Lukas Faber and Roger Wattenhofer. Neural status registers. CoRR, abs/2004.07085, 2020. URL298

https://arxiv.org/abs/2004.07085.299

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural300

networks. In Proceedings of the thirteenth international conference on artificial intelligence and301

statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010. URL http:302

//proceedings.mlr.press/v9/glorot10a/glorot10a.pdf.303

Niklas Heim, Tomáš Pevnỳ, and Václav Šmídl. Neural power units. Advances in Neural Information304

Processing Systems, 33, 2020. URL https://papers.nips.cc/paper/2020/file/48e5900305

0d7dfcf6c1d96ce4a603ed738-Paper.pdf.306

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,307

abs/1412.6980, 2015. URL https://arxiv.org/pdf/1412.6980.pdf.308

Andreas Madsen and Alexander Rosenberg Johansen. Measuring arithmetic extrapolation perfor-309

mance. In Science meets Engineering of Deep Learning at 33rd Conference on Neural Information310

Processing Systems (NeurIPS 2019), volume abs/1910.01888, Vancouver, Canada, October 2019.311

URL https://arxiv.org/pdf/1910.01888.pdf.312

Andreas Madsen and Alexander Rosenberg Johansen. Neural arithmetic units. In International313

Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=314

H1gNOeHKPS.315

Bhumika Mistry, Katayoun Farrahi, and Jonathon Hare. A primer for neural arithmetic logic modules,316

2021. URL https://arxiv.org/pdf/2101.09530.pdf.317

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and318

control. In International Conference on Machine Learning, pages 4442–4450. PMLR, 2018.319

Daniel Schlör, Markus Ring, and Andreas Hotho. inalu: Improved neural arithmetic logic unit.320

Frontiers in Artificial Intelligence, 3:71, 2020. ISSN 2624-8212. doi: 10.3389/frai.2020.00071.321

URL https://www.frontiersin.org/article/10.3389/frai.2020.00071.322

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural arithmetic323

logic units. In Advances in Neural Information Processing Systems, pages 8035–8044, 2018. URL324

https://openreview.net/pdf?id=H1gNOeHKPS.325

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic326

regression. Science Advances, 6(16), 2020. doi: 10.1126/sciadv.aay2631. URL https:327

//advances.sciencemag.org/content/6/16/eaay2631.328

Checklist329

1. For all authors...330

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s331

contributions and scope? [Yes] See contributions in the introduction. For Real NPU332

improvements see Section 5. For two novel modules see Section 3.2 and 3.3 and results333

in Section 6. For hindrances in learning division, see Section 6.334

(b) Did you describe the limitations of your work? [Yes] See Section 7.335

(c) Did you discuss any potential negative societal impacts of your work? [Yes] This336

paper focuses on the ML techniques and the foundational research required to learn337

division in a systematic manner. Once robust modules for the arithmetic operations (i.e.338

NALMs) are achievable the community will possess trainable modules with significant339

advantages regarding model transparency and generalisability. That being said, we340

discuss how this leads to a negative societal impact in the end of Section 1.341

10

https://www.sciencedirect.com/science/article/pii/S0045790613003066
https://www.sciencedirect.com/science/article/pii/S0045790613003066
https://www.sciencedirect.com/science/article/pii/S0045790613003066
https://arxiv.org/abs/2004.07085
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://papers.nips.cc/paper/2020/file/48e59000d7dfcf6c1d96ce4a603ed738-Paper.pdf
https://papers.nips.cc/paper/2020/file/48e59000d7dfcf6c1d96ce4a603ed738-Paper.pdf
https://papers.nips.cc/paper/2020/file/48e59000d7dfcf6c1d96ce4a603ed738-Paper.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1910.01888.pdf
https://openreview.net/forum?id=H1gNOeHKPS
https://openreview.net/forum?id=H1gNOeHKPS
https://openreview.net/forum?id=H1gNOeHKPS
https://arxiv.org/pdf/2101.09530.pdf
https://www.frontiersin.org/article/10.3389/frai.2020.00071
https://openreview.net/pdf?id=H1gNOeHKPS
https://advances.sciencemag.org/content/6/16/eaay2631
https://advances.sciencemag.org/content/6/16/eaay2631
https://advances.sciencemag.org/content/6/16/eaay2631

(d) Have you read the ethics review guidelines and ensured that your paper conforms to342

them? [Yes] We have read the guidelines and our work does not use human-derived343

data.344

2. If you are including theoretical results...345

(a) Did you state the full set of assumptions of all theoretical results? [N/A]346

(b) Did you include complete proofs of all theoretical results? [N/A]347

3. If you ran experiments...348

(a) Did you include the code, data, and instructions needed to reproduce the main ex-349

perimental results (either in the supplemental material or as a URL)? [Yes] See link350

provided to the code base. Data is generated in real time and the code to generate it is351

available in the linked repository.352

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they353

were chosen)? [Yes] See Section 4 and Appendix C.354

(c) Did you report error bars (e.g., with respect to the random seed after running experi-355

ments multiple times)? [Yes] See plots and experiment details in Section 4 for further356

details.357

(d) Did you include the total amount of compute and the type of resources used (e.g., type358

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D.359

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...360

(a) If your work uses existing assets, did you cite the creators? [Yes] See footnote link361

provided to the code base and Section 4.362

(b) Did you mention the license of the assets? [Yes] We state the MIT licence when giving363

the link to the codebase.364

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]365

All code for model, data and experiments are available through the link to the codebase.366

(d) Did you discuss whether and how consent was obtained from people whose data you’re367

using/curating? [N/A]368

(e) Did you discuss whether the data you are using/curating contains personally identifiable369

information or offensive content? [No] All data is synthetic, containing no such370

information.371

5. If you used crowdsourcing or conducted research with human subjects...372

(a) Did you include the full text of instructions given to participants and screenshots, if373

applicable? [N/A]374

(b) Did you describe any potential participant risks, with links to Institutional Review375

Board (IRB) approvals, if applicable? [N/A]376

(c) Did you include the estimated hourly wage paid to participants and the total amount377

spent on participant compensation? [N/A]378

11

	Introduction
	Related Work
	Architectures
	Real Neural Power Unit
	Neural Reciprocal Unit
	Neural Multiplicative Reciprocal Unit

	Experiment Setup
	Improving the Real NPU's Robustness
	Results: Single Module Task
	No Redundancy
	Mixed-signed Inputs

	Division by Small Numbers
	With Redundancy
	Gradient Difficulties with the NRU
	The Real NPU's and NMRU's Exploitation of Multiplicative Rules

	Discussion

