Skip-Thinking: Chunk-wise Chain-of-Thought Distillation Enable Smaller
Language Models to Reason Better and Faster

Anonymous ACL submission

Abstract

Chain-of-thought (CoT) distillation allows a
large language model (LLM) to guide a small
language model (SLM) in reasoning tasks. Ex-
isting methods train the SLM to learn the long
rationale in one iteration, resulting in two is-
sues: 1) Long rationales lead to a large token-
level batch size during training, making gra-
dients of core reasoning tokens (i.e., the to-
ken will directly affect the correctness of sub-
sequent reasoning) over-smoothed as they con-
tribute a tiny fraction of the rationale. As a
result, the SLM converges to sharp minima
where it fails to grasp the reasoning logic. 2)
The response is slow, as the SLM must gen-
erate a long rationale before reaching the an-
swer. Therefore, we propose chunk-wise train-
ing (CWT), which uses a heuristic search to
divide the rationale into internal semantically
coherent chunks and focuses SLM on learning
from only one chunk per iteration. In this way,
CWT naturally isolates non-reasoning chunks
that do not involve the core reasoning token
(e.g., summary and transitional chunks) from
the SLM learning for reasoning chunks, mak-
ing the fraction of the core reasoning token in-
crease in the corresponding iteration. Based on
CWT, skip-thinking training (STT) is proposed.
STT makes the SLM automatically skip non-
reasoning medium chunks to reach the answer,
improving reasoning speed while maintaining
accuracy. We validate our approach on a variety
of SLMs and multiple reasoning tasks.

1 Introduction

Chain of Thought (CoT) (Chu et al., 2023) dis-
tillation enables small language models (SLMs)
(Radford et al., 2019; Raffel et al., 2020) to repli-
cate the reasoning patterns of large language mod-
els (LLMs) (Ouyang et al., 2022; Touvron et al.,
2023; Dubey et al., 2024), enhancing their reason-
ing abilities for domain-specific tasks. The training
procedure for mainstream CoT distillation methods
(Ho et al., 2023; Magister et al., 2022; Ren and

Zhu, 2022) is shown in the top box of Figure 1.
It requires the SLM to learn a long reasoning pro-
cess (rationale) from the LLM for a given task in a
single training iteration, leading to two problems.

1) Superficial understanding. The training loss
for the SLM is computed as the average value over
all target tokens. Consequently, the token-level
batch size corresponds to the number of training
tokens within a mini-batch. Since the rationale is
long, the token-level batch size remains large even
with a batch size of 1. Large batch size typically
causes gradient over-smoothing during backpropa-
gation (Jastrzebski et al., 2018; Keskar et al., 2017;
Gao and Zhong, 2020), thereby leading to a gen-
eralization gap. Specifically, the model updates
with the average gradient of the tokens in the batch.
As the batch size increases gradually—consider an
extreme case where a single batch encompasses
the entire training dataset—the gradients across
batches become more similar, causing the model
loss to decrease rapidly along the similar gradients
and converge to a sharp minimum. More critically,
in CoT distillation, the core reasoning tokens (such
as the yellow and green ball in the rationale of Fig-
ure 1) constitute a small proportion of rationales,
while the prevalence of similar non-reasoning to-
kens (e.g., those used for transition and summariza-
tion) across different rationales exacerbates gradi-
ent over-smoothing, causing the SLM to converge
rapidly towards learning the expressive patterns of
the LLM rather than core reasoning logic.

2) Time-consuming. The SLM trained with
these methods requires completing the full ratio-
nale to produce the final answer during testing,
resulting in a significantly slower response time.

To address the first problem, some naive ap-
proaches, such as weighting the loss of core reason-
ing tokens or prompt LL.Ms to remove redundant
expressions in rationale, do not perform well (see
Appendix C). In this work, we propose a chunk-
wise training (CWT) strategy. CWT utilizes a

3

Ql:1- @ 2-© 3- @RI At the start of the game. 1 has Q2:1- @ 2- 3- @R2 Sure. let's break it down step by
1 2, swap balls & an@®, 2 has ... First, 1 2 1 2, swap balls & step. First, 1 2 swap balls, which finetune Q
2 3, swap balls Al:swap ... which means 1 has 2 3, swap balls A2:means that after the swap, 2 has O
2 has? ... Next, 2 3... answer is... 2 has? the® .Second,...the answer is ... SLM

The R is too Long ——— CoT Distillation]

The Long R over-smooths the gradient of core reasoning tok

loss of every token 8

ens The Long R leads to a slow answer response

(&)
e . o= chunk 4 chunk__ chunk | _jchunk A
loss gradient . R 1 2 3 m
| I »> » backpropagation
average —
R2&A2 loss oradient - VS. The implicit thought
1 backpropagation
average — /\‘
large token-level batch size VS. : Q A
The short chunk highlights the gradient of core reasoning tokens R
loss of every token &
> backpropagation
_ L > = VS. The skip-thinking
hunking a1 g - backpropagation —_
l}f— > L > backpropagation || Q—» chunk chunk_»v c— —>A
A2 hluh > - > back - ¥ R 2 3
smaller token-level batch sizej Iw, Testing Procedure

Figure 1: Ilustration of CoT Distillation. The batch size i
token (like the yellow and green ball in rationale R) means

s set to 1 as an illustrative example. The core reasoning
that its accuracy can determine the subsequent reasoning

process. 1) Superficial understanding: The large token-level batch size will cause the gradient of the core reasoning
token to be over-smoothed by plenty of other non-reasoning tokens (highlighted with a gray background in R) that
are similar across different rationales during backpropagation, leading to SLMs converging to a sharp minimum

where SLM often makes mistakes when generating the co
full R takes longer than outputting the answer A directly.

chunking data generator that introduces a heuristic
search guided by model loss to segment the ratio-
nale into a fixed number of internal semantically
coherent chunks and focus SLMs on learning from
one chunk per iteration. By doing so, the token-
level batch size is smaller, which mitigates gradient
over-smoothing. More importantly, since certain
non-reasoning chunks function solely as preludes,
summaries, or transitions (like the underlined text
in rationale in Figure 1), and thus lack core reason-
ing tokens, when the SLM learns reasoning chunks
independently within a given iteration, CWT natu-
rally isolates the influence of non-reasoning chunks
on core reasoning token learning (see Appendix B),
thereby directing the SLM’s attention toward learn-
ing the core reasoning logic during that iteration.

For the second question, several methods (Hsieh
et al., 2023; Chen et al., 2024b; Deng et al., 2023,
2024) have been proposed to enhance the response
speed of the answer. Among them, internalizing the
explicit reasoning process (Deng et al., 2023, 2024)
into the latent space has emerged as a promising
direction. However, these internalization-based
methods may compromise answer accuracy due to
the lack of an explicit reasoning process. Similar
to these approaches, we hypothesize that language
models can also encode explicit reasoning within
the latent space.

However, we argue that, akin to humans who

re reasoning token. 2) Time-consuming: Generating the

externalize parts of their reasoning to maintain co-
herence and mitigate forgetting key information,
language models should externalize the reasoning
chunks that contain core reasoning tokens to facili-
tate subsequent reasoning. Therefore, we propose
a CWT-based skip-thinking training (STT) strategy.
Specifically, STT uses answer correctness as a cri-
terion to determine whether internalizing a specific
reasoning chunk is reasonable. If the answer re-
mains correct after removing the chunk, this chunk
is deemed non-essential and can be internalized
from the output. Otherwise, the chunk should be
externalized during reasoning. In this way, STT
constructs training data that makes the SLM auto-
matically skip unimportant non-reasoning chunks
to accelerate the response while still arriving at the
correct answer.

The key contributions are as follows:

1) To prevent a superficial understanding, we pro-
vide a theoretical analysis from the perspective of
gradient updates and propose the CWT to enhance
SLMs’ capability in comprehension of reasoning
logic.

2) The STT is proposed based on reasoning in-
ternalization, which not only preserves reasoning
accuracy but also accelerates SLM reasoning.

3) Plenty of experiments are conducted across 3
different SLMs and 7 reasoning tasks to verify our
proposed method.

2 Related works

CoT (Chu et al., 2023) is first introduced by Wei
et al. (2022). Subsequently, CoT distillation and
reasoning acceleration emerges as two critical re-
search directions aimed at broadening the applica-
tion scope of CoT.

2.1 CoT distillation

CoT distillation is first introduced in concurrent
works by Ho et al. (2023), Magister et al. (2022),
and Ren and Zhu (2022). They prompt the LLM to
generate rationales for a given task, which is then
applied as the supervised label to make the SLM
mimic the reasoning logic of the LLM. Building
upon these works, Scott (Wang et al., 2023) is in-
troduced to enhance the alignment of the SLM’s
rationale with the answer. Li et al. (2023) proposes
integrating the LoRA (Hu et al., 2022) to enhance
the utilization of negative samples generated by the
LLM. PaD (Zhu et al., 2023) employs an external
code compiler to enhance the performance of the
SLM. In addition to the aforementioned work on
improving the distillation mechanism, some works
have integrated CoT distillation with information
retrieval (Zhao et al., 2024), table reasoning (Yang
et al., 2024), thereby broadening the application
scope of CoT distillation.

However, the aforementioned methods enable
the SLM to learn the full rationale for the given
task in a single iteration, which may cause the SLM
to superficially understand the reasoning logic of
LLMs.

2.2 CoT acceleration

The existing methods to accelerate the reasoning
process can be roughly divided into three directions:
multi-task learning, post-thinking mechanism, and
latent space thought.

Multi-task learning (Hsieh et al., 2023; Chen
et al., 2024b; Liu et al., 2024) utilizes distinct pre-
fixes to differentiate between tasks. For instance,
when the input task prefix is [label], the SLM di-
rectly outputs the answer, whereas when the input
task prefix is [rationale], the SLM outputs the ra-
tionale. Since multi-task learning allows for out-
putting the answer directly, the answer response
time can align with that of the standard fine-tuning
that only applies the answer to train SLM. How-
ever, because the rationale and the answer are not
within the same output sequence, the conclusion
of the SLM’s rationale often fails to align with the

answer directly output by the SLM.

Post-thinking mechanism (Chen et al., 2024a)
trains the SLM to output the rationale after provid-
ing the answer, so that the answer can be generated
first during the test. However, the post-thinking
sacrifices the ability to decompose the task through
the rationale, making it more challenging to handle
tasks with higher complexity.

Training SLMs to reason in latent space has
emerged as a recent research direction (Deng et al.,
2023; Goyal et al., 2024; Deng et al., 2024; Hao
et al., 2024). These methods propose internaliz-
ing explicit rationales into latent space, enabling
implicit reasoning during forward propagation to
directly generate answers. For instance, Deng et al.
(2024) gradually removes reasoning steps during
training to internalize rationales, while Hao et al.
(2024) introduces a special token, [thought], to fa-
cilitate latent reasoning. However, this approach
may reduce answer accuracy in some tasks com-
pared to explicit reasoning. We posit that this stems
from the model’s tendency to forget previous rea-
soning steps during extended reasoning in the la-
tent space. Explicit rationales serve as a scratchpad
that facilitates problem-solving (Wei et al., 2022).
When discarded, the model is more likely to forget
prior steps, leading to degraded reasoning capacity.

3 Preliminary

Let D = {(¢i,a;)|i = 0,1,...,n} refer to the orig-
inal dataset consisting of n samples for training
SLM, where ¢; and a; represent the question and
answer, respectively. Based on D, CoT distillation
first utilizes a zero-shot or few-shot CoT prompt
to make LLM output rationale r; for ¢;. Then, the
SLM is trained to maximize the generation likeli-
hood of 7; and a;. The training loss per training
iteration of CoT distillation can be formulated as:

B

=33 %

b=0

K
Z (fa(xlk:a xZH) (1
k:

where © = ¢ & r & a is the input sequence whose
length is K (& refers to the string concatenation),
B refers to the training batch size, s is the start
index of r @ a in x, fy(-) represents the forward
calculation of SLM with parameters ¥, and ¢(-) is
the cross-entropy loss. After training, SLM has the
ability to think before outputting answers.
Superficial understanding. Considering the
parameters of SLM as a whole, during backpropa-

' g
Trainin
~raining Testing
question q; —» rationale 7; answer a; rt
¥ chunk =) question
. 4 2
question q; ci1 Cl-2 Cl-3 e ciM answer a; s T ot G
¥ —— —
chunk 1
chunk data generator L Low<—Loss—»Hig
\ . .. chunk 2
chunk-wise training & .
SLM , SLM M SLM :
(g —>¢ 2la; ¢ > [answer] q; -~ ¢; g “ chunk M
4 remove —
. 1
question q; G2 G answer a; Bla ¢ === X answer
; [answerlq; ct-cM? Sy v
skip data generator |
1 1
. skip-thinking trainin i
chunk-wise g 2 zd \ generation of :
. 25l 2. eM=1 Fihought] g : . '
L training [skip] q; > [thought] cf; [thoug i i_ the trained SLM _!

Figure 2: The illustration of the proposed methods. The flames indicate that the model is undergoing training, and
the [thought] is a specail token that represents the SLM is thinking in mind.

gation, the gradient of ¥ can be expressed as:

(v%)

where N = B x (K — s) represents the token-
level batch size and /; is the cross-entropy loss
for iy, training token. Assume that we divide the
training tokens into two sets S7 and S5, where 5]
is the training token set involving the core logic in
any single reasoning step and S is the remaining
tokens, Equation 2 can be rewritten as:

IR X
CNZ o

on_ o
Y

1

N 2

511 | S|

L 1R | 1

oL
P — 4 —
9 N N

v 3)
« 0Y

j=
Since |S2| is usually much larger than |S;|, the
gradient of the token in .S; will be smoothed by
the gradient of the token in S, which ultimately
leads to a superficial understanding of SLM in this
reasoning step.

Slow answer response. The SLM trained ac-
cording to Equation 1 must first generate a ratio-
nale before providing an answer, which leads to a
slower answer response compared to the SLM that
directly outputs the answer.

4 Method

To address the two problems, we propose CWT
and STT. Figure 2 illustrates the process. First,
the LLLM generates r; for ¢;. Details on obtaining
r; are in Appendix A.2. The chunk and skip data
generators then sequentially generate data for CWT
and STT.

4.1 Chunk data generator

The chunk data generator divides the complete ra-
tionale into smaller chunks and makes SLMs learn
from each chunk independently during a single
training iteration. After the division, |S2| in Equa-
tion 3 is significantly reduced in the iteration of
learning reasoning chunks, allowing SLMs to con-
centrate on comprehending the essential reasoning
logic within the given chunks.

Division methods vary in granularity: sentence-
level, reasoning step-level, and chunk-level. The
first two methods lead to duplicate generation due
to task-specific variations in sentence and reasoning
step numbers (see Appendix D). Chunk-level divi-
sion segments the rationale into M chunks. Train-
ing SLM with this data will make the SLM reach
the answer after M distinct stages, thereby avoid-
ing duplicate generation. Thus, the chunk-level
division is employed in the chunk data generator.

4.1.1 Average chunking

When performing chunking, the simplest way is
to divide the reasoning steps into M parts equally.
Specifically, we first split the rationale by "\n" to
obtain r; = {r|j = 0,1,..L} that has L reasoning
steps. Then the reasoning steps contained in the
myy, chunk can be formulated as:

o Ui €laxmgxm+g)}t m<M
C U g el xm, L} m=M
“)

where g = |L/M | and j € Z. After chunking, we
can convert a training sample x; into M 41 training
data. The first M training data can be formalized

Algorithm 1 Search-based chunking
Input: Chunk list ¢;; of r; and SLM 1), before
(j + 1) training epoch, g;, a;, threshold n, M
1: for m in range(M — 1) do

2. Calculate the loss [, for ¢;; with Equation 1

3 Merge ¢} and c?}“ to form the list ctermp

4: Initial: 1,3, ¢ 400, index < +00

5: for idx in range(len(ciemp)) do

6: Calculate the 10ss l;gy for ciemp|: idz]
with Equation 1

7 if [;q, < lpin then

8 lmin < lide, index < idx

: end if
10: end for
11: ifl. — lyin > n then

12: < Ctempl: index]
13: cgﬁl 4 Ctemplindex]
14: end if

15: end for

Output: Chunk list ¢;(j41) of r;

as:

{Imegecac. . ocm=0,1,.,M} (5
and the M + 1 training sample is:

[answer| ® ¢; ®ct ® ..M da; (6)

The reason for adding the prefix [m] and [answer]
is that it can tell the model what stage the current
reasoning is at, thereby reducing the difficulty of
reasoning. And the s in the Equation 1 is the start
index of ¢}"* and a; in these data at this time.

4.1.2 Search-based chunking

Since the average chunking (AC) may divide mul-
tiple semantically coherent reasoning steps into
different chunks, the reasoning fluency of the SLM
may degrade after training. In addition, the combi-
natorial space for allocating L reasoning steps to
M chunks is vast. Therefore, we propose a search-
based chunking (SBC) that applies the loss of SLM
as heuristic information to efficiently identify a
better chunking result.

The detailed process of SBC is outlined in Al-
gorithm 1. The initial chunking result c? is ob-
tained through AC. Algorithm 1 is executed be-
fore each training epoch. In general, the loss of
the language model on the target token sequence
indicates the language model’s understanding of
the content within the target token sequence (Wan

et al., 2024). Based on this point, in Algorithm 1,
we progressively increase the number of reasoning
steps allocated to the current searching chunk and
compute the SLM loss for it. As the loss decreases,
we infer that the reasoning steps allocated to this
chunk are more comprehensible to the SLM, aiding
its understanding of the information in the current
reasoning stage. Thus, we utilize this loss compar-
ison as heuristic information to iteratively adjust
the chunk division with a greedy strategy, reduc-
ing suboptimal results from unreasonable division
during training.

4.2 Skip data generator

To accelerate reasoning, we employ a skip data
generator for STT. STT is essentially to internalize
the rationale. However, unlike Deng et al. (2024),
STT still requires the explicit output of the SLM to
provide a clear intermediate basis for subsequent
reasoning.

Specifically, the skip data generator sequentially
removes chunk and uses the SLM trained with
CWT to predict the answer. Taking c"* as a ex-
ample of the removed chunk, the answer prediction
process is initialized with the input [m + 1] & ¢; ®
c? oD c;n_l and proceeds until the model pro-
duces an answer. If the answer is incorrect, this
indicates that the removed chunk contains key rea-
soning information that should be externalized dur-
ing the reasoning process. Otherwise, it suggests
that the current chunk is non-essential—likely serv-
ing as a transitional or summary component—and
its contribution can be internalized by the model.
After this chunk-removal procedure, the skip data
generator produces training data illustrated in Fig-
ure 2 for STT to build an SLM capable of skipping
the non-reasoning chunk. It is important to note
that 1) before STT, the SLM is initialized using the
original pre-trained parameters, rather than those
fine-tuned by CWT, reducing the risk of overfit-
ting; and 2) CWT remains incorporated into STT
training, ensuring that the SLM is still exposed to
the full rationale during training. Furthermore, as
shown by the grey arrow in Figure 2, the above
process can be iterated until the reasoning accuracy
of the SLM no longer increases.

4.3 Testing

After training the SLM with the CWT and STT,
when prompting SLM with the input [skip] © gtest,
the SLM can adaptively skip the unimportant rea-
soning chunk and only externalize the key reason-

ing chunks, thereby accelerating reasoning while
ensuring reasoning accuracy.

5 Experiments

We first introduce the detailed experimental set-
tings, followed by a series of experiments to vali-
date the following aspects. Q1: The effect of each
proposed module on the model’s answer accuracy.
Q2: Comparison between the proposed method
and the state-of-the-art method. Q3: Can CWT in-
deed mitigate the superficial understanding issue in
SLM? Q4: The distinction between skip-thinking
and full-thinking.

5.1 Experimental setting

Seven reasoning benchmarks, categorized into
four distinct types: arithmetic, symbolic, common
sense, and other logical reasoning, are employed to
evaluate our method. Detailed information about
the datasets can be found in Appendix A.1. For
conciseness, we denote each dataset using abbrevi-
ations derived from their concatenated initials.

Unless otherwise stated, LLM in this section
refers to text-davinci-002 175B, developed based
on InstructGPT (Ouyang et al., 2022) and accessi-
ble via the OpenAl API. As for the student SLM,
we employ GPT-2 (ranging from the base to large
model) (Radford et al., 2019) and TS5 (ranging from
the small to large model) (Raffel et al., 2020) to
evaluate the effectiveness of the proposed methods.
The detailed generation parameters for LLMs and
SLMs are given in Appendix A.2. More training
details are available in the Appendix A.4.

5.2 Ablation experiments for Q1

First, we conduct a series of comprehensive ex-
periments to assess the effectiveness of each pro-
posed strategy. The results are presented in Table 1.
Further experiments involving SLMs with varied
parameters as student models are detailed in the
Appendix E. The baseline model adopts the full-
thinking training approach proposed by Ho et al.
(2023).

It is evident that when chunks are partitioned us-
ing the AC, the performance of the SLM improves
relative to the baseline across most tasks. Butin a
few tasks, the model’s performance declines. We
attribute this to the AC dividing coherent reasoning
steps into separate chunks, thereby reducing SLM
reasoning coherence. Thus, when a more optimal
SBC is applied for chunking, the SLM exhibites
improved performance across all tasks.

Methods
CoT-Finetuning (Base)
Scott
Step-byStep
ICoT-SI
Base w. SBC
& Base w. SkipALL
Base w. STT

AVERAGE ACCURACY of GPT2-BASE (%)

<érme

151 @

0 50 100 150 200 250 300 350
Time of Inferring (ms)

Figure 3: A comprehensive comparison of the average
inference speed and performance across different meth-
ods on all datasets using GPT2-base.

Building upon the SBC, we additionally apply
STT to train the SLM. To further clarify the effec-
tiveness of STT, we implement a variant referred to
as Base w. SkipALL. This variant does not consider
the answer as the judgment criterion during train-
ing data construction for STT, but instead trains the
SLM to directly bypass all intermediate reasoning
steps. Experimental results show that this variant
leads to a notable decline in SLM performance,
especially for the LLC dataset. We attribute the
significant performance decline of the variant on
the LLC dataset to the fact that the LLC dataset
requires parallel reasoning rather than sequential
reasoning, where each reasoning step is indepen-
dent with no context dependence between them.
Therefore, when using the variant, the SLM needs
to reason about multiple different subtasks in paral-
lel in the latent space, which is hard for SLMs and
leads to the decline in performance.

In contrast to this variant, Base w. STT achieves
a consistent performance improvement, highlight-
ing the benefit of externalizing parts of the rea-
soning process to preserve key information. We
also observe that, compared to Base w. SBC, Base
w. STT, which restricts output to key reasoning
chunks, also shows improved performance. We
attribute this to only retaining essential reasoning
chunks lowers the risk of SLM hallucinations—a
point we discuss in more detail in section 5.5.

Then, we verify the impact of different chunk
numbers M on SBC. In Figure 4, we can observe
that for tasks with relatively fixed reasoning meth-
ods and steps, such as common sense and symbolic
reasoning, the SLM works best when M is close
to the average number of reasoning steps L. For
mathematical reasoning, which has a large vari-
ation in reasoning methods and steps, setting M

Methods GPT2-base TS-small
SE AD MA Svamp TSO LLC SQA SE AD MA Svamp TSO LLC SQA
Base 8.55 10.08 1444 1066 56.88 21.33 5822 394 840 8.88 9.00 60.00 4533 56.04
Base w. AC 7.89 1092 16.11 8.66 9732 2466 58.80 394 756 8.88 10.00 6533 46.66 57.20
Base w. SBC 855 1092 17.77 11.33 100.00 2533 5938 4.60 840 933 1033 99.55 48.66 57.78
Base w. SkipALL 7.89 11.76 17.22 11.00 100.00 11.33 59.97 394 840 8.88 9.66 99.55 28.66 58.80
Base w. STT 10.52 12.60 22.77 1233 100.00 28.00 60.55 592 10.08 11.66 11.33 99.55 48.66 59.97

Table 1: The accuracy of various methods across different datasets.

experiments using various student SLMs.

Refer to the Appendix E for additional ablation

Methods SE AD MA Svamp TSO LLC SQA SE AD MA Svamp TSO LLC SQA
Text-davinci-002 (175B) 81.50 76.71 78.79 6420 5320 57.71 5345 815 7671 7879 6420 5320 57.71 5345
GPT2-base (124M) T5-small(60M)

Standard finetune 8.55 10.08 1444 1066 56.88 21.33 5822 394 840 888 9.00 60.00 4533 56.04
CoT-Finetuing 8.55 10.08 1444 1066 56.88 2133 5822 394 840 888 9.00 60.00 4533 56.04
Scott * 921 924 2222 1133 5644 2200 5574 526 7.56 10.00 1033 70.22 46.00 58.36
Step-by-Step 789 12.60 1722 10.00 9466 4.00 59.67 2.63 840 10.55 833 99.11 2533 58.36
MMI - - - - - - 328 756 10.00 1033 99.55 2533 57.78

ICoT-SI 263 420 433 3.88 36.00 0.00 5240 - - - - - - -
Ours 10.52 12.60 2277 12.33 100.00 28.00 60.55 5.92 10.08 11.66 11.33 99.55 48.66 59.97

Table 2: A comparison of our methods with other approaches. A dash (-) indicates that the official code of the
method is not implemented on the corresponding SLM. An asterisk (*) indicates that Scott requires the complete
logits of each output token for implementation; thus, the rationales used in Scott are collected from the open-source

model LLama3.1-70b-instruction (Dubey et al., 2024).

Method Token type AD(%) TSO(%)
B core reasoning tokens ~ 87.37 89.25
ase other tokens 89.64 95.18
core reasoning tokens ~ 88.88 92.73
Base w. SBC other tokens 89.80 95.17

Table 3: Confident score of GPT2-base for different
tokens.
greater than L helps the SLM learn more solutions,
thereby improving the performance of SLMs.
Third, the comparison of chunking result be-
tween AC and SBC are shown in Appendix G.2,
which intuitively proves that SBC can better make
the reasoning steps within a chunk more coherent.

5.3 Comparison with Other Methods for Q2

The comparison methods include standard finetun-
ing (using only answers as label), few-shot prompt-
ing for LLMs (specific prompts can be found in
the Ho et al. (2023)), full-thinking CoT distilla-
tion (CoT-Finetuning (Ho et al., 2023), Scott(Wang
et al., 2023)), and distillation methods that acceler-
ate SLM inference via multi-task learning(step by
step (Hsieh et al., 2023), MMI (Chen et al., 2024b))
and internalized chains of thought (ICoT-SI (Deng
etal., 2024).

As shown in Table 2, our proposed method
outperforms the other distillation approaches and
achieves performance close to that of LLMs on cer-

tain tasks. Although the inference speed remains
slower than that of multi-task learning and internal-
ized chains of thought, it strikes a balance between
performance and inference speed (see Figure 3).
Finally, we present a comparison of our method
against other baselines in terms of training time
and GPU memory consumption in Appendix F,
demonstrating that our method requires less GPU
memory and does not spend too much additional
training time.

5.4 Validate CWT for Q3

First, we show the performance of SLM as the
token-level batch size changes in Figure 5. It can
be seen that as the token-level batch size decreases,
the performance of SLM on various reasoning tasks
increases, which strongly verifies the motivation of
CWT, that is, a smaller token-level batch size helps
SLM converge to a flat minimum.

Subsequently, we further verify whether
CWT helps SLM learn the core reasoning logic.
Specifically, mathematical expressions (in AD) and
key exchange results (in TSO) are identified and ex-
tracted as core reasoning tokens. Then, we counted
the average confidence score of the core reason-
ing tokens and the non-reasoning tokens when the
trained SLM output rationale. One can observe that
compared with the base model, the gap between

2.89 340 391 449

F59.4

F59.2

N
N

N
o

F59.0

I 58.8

ACCURACY OF GPT2-BASE
= =
o ®

-
=

I 58.6

o
N

T t T T + T
2 4 8
NUMBER OF CHUNK

Figure 4: SLM performance trend when the number of
chunks changes. The vertical dotted line refers to the
average number of reasoning steps.

25.0{ @ SE —+— TSO | 100

—=— AD —#— SQA
225 A MA 20
—0— SVAMP
LLc
20.0 80
> 175 5
Q 70 Q
g :
3 15.0 3
2 - - 60 &

-
N
5

R

9

r 50

40

|

5.0 30

T
8 4 2 chunk
BATCH SIZE

Figure 5: GPT2-base’s performance trend when the
batch size changes. Batch size is proportional to token-
level batch size. Chunk means using CWT with SBC.

the confidence score of the core reasoning tokens
and that of the common tokens is smaller after us-
ing CWT, which means that the SLM with CWT is
more confident when outputting the core reasoning
tokens, i.e., it better understands the core reasoning
logic of the current task.

Then, we show the cases (Appendix G.1) where
the correct answer is inferred after using CWT com-
pared to base because the core reasoning token is
predicted correctly. This also proves that CWT
helps SLMs comprehend the core reasoning logic.

Finally, the reasoning speed of the SLM
trained with CWT based on SBC is faster than
that of the baseline, which can be observed in Fig-
ure 3. We argue that this improvement stems from
the SLM trained with the former focusing more on
the correctness of the reasoning logic and exhibit-
ing greater conciseness in its reasoning expressions.
This conciseness is reflected in the length of the
generated rationale. The average number of words
in the rationale generated by the former across all
tasks is 50, while the latter generates 56 words.

SE AD SVAMP MA TSO LLC SQA
SBC/STT 129 1.32 1.38 133 1.89 108 157

Table 4: Reasoning speedup ratio of STT compared to
SBC on GPT2-base.

5.5 Validate Skip-thinking for Q4

In addition to verifying the speed-accuracy trade-
off of skip-thinking shown in Figure 3, we conduct
two additional experiments.

Reasoning acceleration Skip-thinking can au-
tomatically skip unimportant chunks, leading to
faster inference compared to full-thinking. We also
present the acceleration ratio of skip-thinking rela-
tive to full-thinking across different datasets in the
Table 4. We observe the following: 1) skip-thinking
yields inference speedup across datasets; and 2) the
degree of acceleration varies across dataset types.
For more complex math problems, since more key
information needs to be output, skip-thinking skips
fewer chunks, resulting in less acceleration com-
pared to simpler tasks such as commonsense ques-
tion answering (SQA) or object-swap reasoning
(TSO). In the case of LLC, since it requires decom-
position into multiple subtasks with no inter-task
dependency and each task only involves one step
reasoning, skip-thinking retains almost the entire
reasoning process for each subtask, resulting in
inference latency comparable to full-thinking.

Case study. The Appendix G.3 presents some
case studies, demonstrating the advantage of skip-
thinking over full-thinking. By omitting intermedi-
ate reasoning steps, skip-thinking is less suscepti-
ble to model output hallucinations.

6 Conclusion

When using full rationale for CoT distillation, SLM
faces two challenges: superficial understanding and
slow response times. To address the two problems,
we first propose CWT to reduce the token-level
batch size, enhancing SLM’s reasoning by miti-
gating gradient over-smoothing. To maintain co-
herence, a chunking method based on heuristic
search to divide rationale into semantically coher-
ent blocks is introduced. Building on CWT, STT
trains SLM to adaptively skip the non-reasoning
chunks. Leveraging CWT and STT, the SLM
achieves faster and more accurate reasoning.

Limitations

SBA employs a greedy search strategy, which may
result in identifying only locally optimal chunk

modes rather than globally optimal ones. For this
point, strategies such as simulated annealing can
be employed to avoid local optima (see Appendix
H).

Ethics Statement

Given that toxicity is present in LLMs, the student
SLM may inherit such toxicity during the learning
of the LLM’s reasoning process. To address this
issue, one can apply existing toxicity reduction
techniques to mitigate toxicity in LLM reasoning.

References

Xiaoshu Chen, Sihang Zhou, Ke Liang, and Xinwang
Liu. 2024a. Distilling reasoning ability from large
language models with adaptive thinking. Preprint,
arXiv:2404.09170.

Xin Chen, Hanxian Huang, Yanjun Gao, Yi Wang,
Jishen Zhao, and Ke Ding. 2024b. Learning to max-
imize mutual information for chain-of-thought dis-
tillation. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 6857-6868,
Bangkok, Thailand. Association for Computational
Linguistics.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang
Yu, Tao He, Haotian Wang, Weihua Peng, Ming Liu,
Bing Qin, and Ting Liu. 2023. A survey of chain of
thought reasoning: Advances, frontiers and future.
arXiv preprint arXiv:2309.15402.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Yuntian Deng, Yejin Choi, and Stuart Shieber. 2024.
From explicit cot to implicit cot: Learning to
internalize cot step by step. arXiv preprint
arXiv:2405.14838.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul
Smolensky, Vishrav Chaudhary, and Stuart Shieber.
2023. Implicit chain of thought reasoning via knowl-
edge distillation. Preprint, arXiv:2311.01460.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Let-
man, Akhil Mathur, Alan Schelten, Amy Yang, An-
gela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo
Yang, Archi Mitra, and Archie Sravankumar et.al.

2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.
Fengli Gao and Huicai Zhong. 2020. Study on

the large batch size training of neural networks
based on the second order gradient. arXiv preprint
arXiv:2012.08795.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did Aristo-
tle Use a Laptop? A Question Answering Bench-
mark with Implicit Reasoning Strategies. Transac-
tions of the Association for Computational Linguis-
tics (TACL).

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Kr-
ishna Menon, Sanjiv Kumar, and Vaishnavh Na-
garajan. 2024. Think before you speak: Train-
ing language models with pause tokens. Preprint,
arXiv:2310.02226.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.
Training large language models to reason in a contin-
uous latent space. arXiv preprint arXiv:2412.06769.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large language models are reasoning teachers. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14852—14882, Toronto, Canada.
Association for Computational Linguistics.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523-533, Doha, Qatar. Association for Com-
putational Linguistics.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alex Ratner, Ranjay
Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. Dis-
tilling step-by-step! outperforming larger language
models with less training data and smaller model
sizes. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 8003-8017,
Toronto, Canada. Association for Computational Lin-
guistics.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Stanistaw Jastrzgbski, Zachary Kenton, Devansh Arpit,
Nicolas Ballas, Asja Fischer, Yoshua Bengio, and
Amos Storkey. 2018. Finding flatter minima with
sgd.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter
Tang, Dheevatsa Mudigere, and Mikhail Smelyanskiy.
2017. On large-batch training for deep learning: Gen-
eralization gap and sharp minima. 5th International
Conference on Learning Representations, ICLR 2017
; Conference date: 24-04-2017 Through 26-04-2017.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199-22213. Curran Associates, Inc.

https://arxiv.org/abs/2404.09170
https://arxiv.org/abs/2404.09170
https://arxiv.org/abs/2404.09170
https://doi.org/10.18653/v1/2024.findings-acl.409
https://doi.org/10.18653/v1/2024.findings-acl.409
https://doi.org/10.18653/v1/2024.findings-acl.409
https://doi.org/10.18653/v1/2024.findings-acl.409
https://doi.org/10.18653/v1/2024.findings-acl.409
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2311.01460
https://arxiv.org/abs/2311.01460
https://arxiv.org/abs/2311.01460
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/2310.02226
https://doi.org/10.18653/v1/2023.acl-long.830
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=r1VF9dCUG
https://openreview.net/forum?id=r1VF9dCUG
https://openreview.net/forum?id=r1VF9dCUG
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585-597.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan,
Bin Sun, Xinglin Wang, Heda Wang, and Kan Li.
2023. Turning dust into gold: Distilling complex rea-
soning capabilities from llms by leveraging negative
data. arXiv preprint arXiv:2312.12832.

Weize Liu, Guocong Li, Kai Zhang, Bang Du, Qiyuan
Chen, Xuming Hu, Hongxia Xu, Jintai Chen, and Jian
Wau. 2024. Mind‘s mirror: Distilling self-evaluation
capability and comprehensive thinking from large
language models. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
6748-6763, Mexico City, Mexico. Association for
Computational Linguistics.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub
Adamek, Eric Malmi, and Aliaksei Severyn. 2022.
Teaching small language models to reason. arXiv
preprint arXiv:2212.08410.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Siyu Ren and Kenny Zhu. 2022. Specializing pre-
trained language models for better relational reason-
ing via network pruning. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
pages 2195-2207, Seattle, United States. Association
for Computational Linguistics.

10

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743—-1752, Lisbon, Portu-
gal. Association for Computational Linguistics.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, and et al.
Aditya Gupta. 2023. Beyond the imitation game:
Quantifying and extrapolating the capabilities of lan-
guage models. Preprint, arXiv:2206.04615.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan,
Wei Bi, and Shuming Shi. 2024. Knowledge fusion
of large language models. In The Twelfth Interna-
tional Conference on Learning Representations.

Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao,
Bing Yin, and Xiang Ren. 2023. SCOTT: Self-
consistent chain-of-thought distillation. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5546-5558, Toronto, Canada. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Bohao Yang, Chen Tang, Kun Zhao, Chenghao Xiao,
and Chenghua Lin. 2024. Effective distillation of
table-based reasoning ability from LLMs. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 5538—
5550, Torino, Italia. ELRA and ICCL.

Yichun Zhao, Shuheng Zhou, and Huijia Zhu. 2024.
Probe then retrieve and reason: Distilling probing
and reasoning capabilities into smaller language mod-
els. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 13026-13032, Torino, Italia. ELRA and ICCL.

Xuekai Zhu, Biqing Qi, Kaiyan Zhang, Xingwei Long,
and Bowen Zhou. 2023. Pad: Program-aided distil-
lation specializes large models in reasoning. arXiv
preprint arXiv:2305.13888.

A Experimental Details

A.1 Datsets

To evaluate our model, we employ seven estab-
lished benchmarks spanning four categories: Arith-
metic (SingleEq (Koncel-Kedziorski et al., 2015),

https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.18653/v1/2024.naacl-long.376
https://doi.org/10.18653/v1/2024.naacl-long.376
https://doi.org/10.18653/v1/2024.naacl-long.376
https://doi.org/10.18653/v1/2024.naacl-long.376
https://doi.org/10.18653/v1/2024.naacl-long.376
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2022.findings-naacl.169
https://doi.org/10.18653/v1/2022.findings-naacl.169
https://doi.org/10.18653/v1/2022.findings-naacl.169
https://doi.org/10.18653/v1/2022.findings-naacl.169
https://doi.org/10.18653/v1/2022.findings-naacl.169
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://openreview.net/pdf?id=jiDsk12qcz
https://openreview.net/pdf?id=jiDsk12qcz
https://openreview.net/pdf?id=jiDsk12qcz
https://doi.org/10.18653/v1/2023.acl-long.304
https://doi.org/10.18653/v1/2023.acl-long.304
https://doi.org/10.18653/v1/2023.acl-long.304
https://aclanthology.org/2024.lrec-main.492/
https://aclanthology.org/2024.lrec-main.492/
https://aclanthology.org/2024.lrec-main.492/
https://aclanthology.org/2024.lrec-main.1140/
https://aclanthology.org/2024.lrec-main.1140/
https://aclanthology.org/2024.lrec-main.1140/
https://aclanthology.org/2024.lrec-main.1140/
https://aclanthology.org/2024.lrec-main.1140/

AddSub (Hosseini et al., 2014), MultiArith (Roy
and Roth, 2015), Svamp (Patel et al., 2021)), Sym-
bolic (Last Letter Concatenation (Kojima et al.,
2022)), Common Sense (StrategyQA (Geva et al.,
2021)), and General Logical Reasoning (Track
Shuffled Objects (Srivastava et al., 2023)). We im-
plement the training-test data partitioning adhering
to the methodology described by (Ho et al., 2023).

A.2 Rationale generation of Text-davinci-002

We utilize the prompts described in Ho et al. (2023)
to generate rationales from Text-davinci-002. The
key modification involves swapping the positions
of the rationale and the answer in the few-shot ex-
emplars, enabling the LLM to leverage the answer
information during reasoning. In alignment with
the methodology outlined by Ho et al. (2023), we
constrain the teacher-generated rationales to a max-
imum sequence length of 128. Additionally, we
employ temperature sampling with T=0.7 to gener-
ate diverse rationales for each sample.

A.3 Rationale generation of SLM

The student model predictions are limited to a se-
quence length of 1024 and greedy decoding is ap-
plied for SLM across all benchmarks.

A.4 Training datails

For SLM training, we configure a batch size of 2,
an initial learning rate of le-5, and a total of 50
epochs. We evaluate the SLM after each epoch.
The learning rate follows a cosine annealing sched-
ule with restarts, incorporating a warm-up phase
of 1200 steps. We employ the Adam optimizer
with hyperparameters 81 = 0.9, S = 0.95, and
wetght_decay = 0.1 to optimize the model param-
eters. For search-based chunking, we set n = 0.1,
as this value can empirically promote stable model
training. As for the number of chunks M, We as-
sign M = 4 for all arithmetic reasoning tasks and
Last Letter Concatenation, and M = 2 for Track
Shuffled Objects and StrategyQA. The effect of dif-
ferent M on SLM performance is shown in Figure
4.

B Analysis for Non-reasoning Chunks

We demonstrate the benefits of excluding non-
reasoning chunks (e.g., transitional or summary
chunks) from the learning of reasoning chunks af-
ter chunking, from two perspectives.

First, we conduct a qualitative analysis, where a
case and its chunking result after SBC are shown

11

[instruction] Please output strictly according to the
format of Example. [example] Question: Alice,
Bob, and Claire are playing a game. At the start
of the game, they are each holding a ball: Alice
has a orange ball, Bob has a purple ball, and Claire
has a pink ball. As the game progresses, pairs of
players trade balls. First, Alice and Claire swap
balls. Then, Bob and Alice swap balls. Finally,
Alice and Claire swap balls. At the end of the
game, Alice has the Which choice is true? Answer
choices: (A) purple ball. (B) orange ball. (C) pink
ball. Why the answer is B. Explanation: 1. Alice-
orange, Bob-purple, Claire-pink ball. 2. Alice-
pink, Bob-purple, Claire-orange. 3. Alice-purple,
Bob-pink, Claire-orange. 4. Alice-orange, Bob-
pink, and Claire-purple. Question:{# question}
Why the answer is {# Answer} Explanation:

Table 5: The prompt for concise rationale.

in the Table 6. The core reasoning tokens in chunk
1 and chunk 2 are "17 + 10 = 27" and "27 + 35
= 62", while chunk 3 contains no core reasoning
tokens, as it serves solely as a summary. There-
fore, when excluding non-reasoning chunks from
influencing the learning of core reasoning tokens
and training reasoning chunks independently, the
average share of core reasoning token in reasoning
chunks increases compared to their share in the
complete rationale.

Then, as shown in the Table 7, we randomly sam-
pled 50 chunking cases from the AddSub dataset
and computed the average proportion of core rea-
soning tokens in both the complete rationale and
the reasoning chunks. The result quantitatively
demonstrates the increase in the average propor-
tion of core reasoning tokens within the reasoning
chunks.

C Naive Method for Oversmoothing

There are two naive solutions to solve the over-
smoothing problem, namely weighted and refined
rationale. Specifically, the first solution involves in-
creasing the loss weight for core reasoning tokens
in the rationale, while the second solution focuses
on designing prompts to guide the LLM in generat-
ing refined rationales with minimal non-reasoning
content.

In this work, we evaluate the feasibility of these
two solutions using the Track Shuffled Objects
(TSO) dataset. For the weighted solution, we lever-

Question: Alyssa picked 17 plums and Jason picked 10 plums . Melanie picked 35 pears . How many

plums were picked in all ?

Rationale: Alyssa picked 17 plums. Jason picked 10 plums. 17 + 10 = 27 plums. Melanie picked 35 pears.

27 + 35 = 62 There were 62 fruits picked in all.

chunk 1: Alyssa picked 17 plums. Jason picked 10 plums. 17 + 10 = 27 plums.

chunk 2: Melanie picked 35 pears. 27 + 35 = 62.

chunk 3: There were 62 fruits picked in all.

Table 6: Analysis of chunk result. Since chunk 3 is just a summary statement, the average proportion of core
reasoning tokens in reasoning chunks (chunk 1 and 2) is greater than that in the complete rationale.

Full Rationale Reasoning Chunks

Proportion 8.93 % 12.16 %

Table 7: Comparison between the proportion of core
reasoning tokens in the reasoning chunk and that in the
complete rationale.

GPT2-base (124M)

Base Base w. Weight Base w. Refine
TSO 37.33 36.88 43.11
GPT2-medium (355M)
TSO 41.77 42.22 36.88

Table 8: The accuracy of different methods on TSO.
Base refers to Ho et al. (2023) without diverse rationale.
Base w. Weight and Base w. Refine represent the two
naive solutions to address the oversmoothing problem.

age tokens from key exchanging results in every
step as the most core reasoning tokens in the ra-
tionale. Subsequently, the loss weight for these
core tokens is doubled compared to the remain-
ing tokens. For the refined rationale solution, we
design prompts (shown in the Table 5) to guide
the LLM GPT-3.5-Turbo in generating the most
concise rationales.

The results of both solutions are presented in
the Table 8. The results indicate that the weighted
solution performs similarly to the baseline, sug-
gesting its effectiveness is limited. Moreover, even
if this solution exhibits some effectiveness, its ap-
plicability is limited, as not all tasks can identify
core reasoning tokens through artificial rules, as in
TSO. The refined rationale solution demonstrates
effectiveness for smaller model sizes. However, for
larger model sizes, the reduced information content
compared to normal rationales leads to overfitting,
resulting in performance inferior to the baseline.

12

D Sentence-wise and step-wise training

In addition to partitioning into a fixed number of
chunks, we also segment the rationale by sentences
or reasoning steps, enabling the SLM to learn only
one sentence or reasoning step per training iteration.
For both approaches, we evaluate two schemes: one
incorporating prefixes like the CWT with AC and
one without prefixes. The detailed results of these
approaches on the TSO dataset are presented in
the Table 12. As shown, the performance of all
approaches exhibits a decline. The Table 13 also
highlights the most frequent failure cases for these
schemes. It can be observed that these schemes
often generate repetitive reasoning steps until the
maximum generation length is reached. This oc-
curs because the number of chunks resulting from
sentence- or step-based segmentation is typically
variable, making it challenging for the SLM to de-
termine the required number of reasoning steps for
different problems after chunk-wise training.

E Extension of Ablation study

We further conduct extensive ablation experiments
on SLMs with varying parameters. The results are
presented in the Table 9 and Table 10. The results
demonstrate that the proposed strategy performs
effectively across various conditions.

F Extension of Comparison with Other
Methods

The training time and GPU memory overhead of
different strategies is shown in the Table 11.

Since chunking reduces the context length pro-
cessed during each forward propagation, CWT and
STT offer a unique advantage during training, that
is, they require less GPU memory compared to
other methods.

The increase in training time primarily results
from the data chunking strategy. First, assuming

GPT2-medium (355M)

T5-base (220M)

Methods SE AD MA SVAMP TSO LLC SQA SE AD MA Svamp TSO LLC SQA
Base 11.84 1596 1888 10.00 67.11 2400 5924 6.57 1092 1722 10.66 71.11 64.66 54.87
Base w. AC 11.18 17.64 1722 10.00 76.00 26.66 60.64 855 11.76 16.11 12.66 77.33 74.00 60.11
Base w. SBC 1250 19.32 1944 1066 87.11 28.66 61.13 921 1344 17.77 1333 9333 7933 60.98
Base w. SkipALL 11.84 19.32 18.88 10.33 100.00 14.66 6142 855 12.60 17.77 11.66 99.55 3933 62.01
Basedw. STT 15.78 21.01 20.00 11.33 100.00 30.66 62.15 10.52 1596 19.44 1333 100.00 82.66 62.44
Methods GPT2-large (774M) T5-large(700M)
Base 13.15 1596 20.00 11.00 68.88 2533 60.84 921 1428 17.77 1233 9244 76.66 57.64
Base w. AC 12.50 16.80 21.11 12.33 85.77 2733 6157 855 1596 1388 1333 95.08 81.33 61.71
Base w. SBC 1644 17.64 2333 1400 94.66 28.66 6244 1052 16.80 19.44 1400 100.00 82.66 63.75
Base w. SkipAll 15.78 17.64 21.66 1333 100.00 14.66 6288 9.86 1596 18.88 13.66 100.00 54.66 63.75
Based w.STT 17.10 19.32 2444 15.00 100.00 30.66 63.31 12.50 17.64 21.11 14.66 100.00 85.33 64.04

Table 9: The performance of SLM under different models and different training strategies

Llama3.2-1B

Base Basew. AC Base w. SBC Base w. SkipALL Base w. STT

GSMBK 52.23 49.88 54.66 5238 55.26

Llama3.2-3B

GSMBK 79.15 71.25 79.52 79.30 80.21

Table 10: The performance of more advanced SLM on
more complex dataset GSM8K Cobbe et al. (2021).

CoT-Finetuing Scott ~ Step-by-Step ICoT-SI Ours

Training Time(Hour) 11 23

Training GPU Usage (G) 8

Table 11: Comparison of the average training costs
required for different distillation strategies across all
datasets we used. The student SLM here is GPT2-base.

a chunk contains k sentences, SBC involves M al-
location steps, with each step generating sentence
combinations at a complexity of O(k), resulting in
a total complexity of O (kM) for SBC. In addition,
STT involves the removing operater to M chunks
when constructing training data, whose complexity
is O(M). Although both chunking and remov-
ing are linear complexity, they will bring a little
additional training time compared to the baseline.
Second, chunking increases the amount of training
data. In theory, compared to other methods, CWT
requires approximately M + 1 times the training
time, while STT requires about num; x (M + 2)
times the training time, where num, refers to the it-
eration number for performing STT. In practice, the
model does not require such an extensive amount of
data to converge. Therefore, we apply an early stop-
ping strategy, terminating training if accuracy does
not improve for 10 consecutive epochs within itera-
tions or STT achieves no improvement compared
with the previous iteration. Under this setting, the

13

proposed method requires approximately twice the
training time compared to other methods.

G Case study

G.1 Core reasoning tokens

Figure 6 presents six cases across different types
of benchmarks, demonstrating the improvement in
the SLM’s core reasoning logic following CWT
training.

G.2 Comparsion between AC and SBC

The Figure 7 illustrates the differences in chunk di-
vision results between AC and SBC. As shown, the
SBC division results in chunks with more coherent
internal semantics.

G.3 The case for skip-thinking.

Figure 8 demonstrates that skip-thinking reduces
the risk of SLM’s hallucinations in rationale gener-
ation compared to full-thinking.

H Avoiding local optima

As discussed in the section 6, SBC may sometimes
fall into local optima, which remains a limitation of
this approach. However, we emphasize that, lever-
aging the inherent capabilities of language mod-
els and the relative stability of sentence semantics,
the overall results of SBC-based chunking are at
least as effective as those obtained through average
chunking. This is indirectly reflected in Table 1 of
the original paper, where the accuracy of "Base w.
SBC" is consistently greater than or equal to that of
"Base w. AC."

Additionally, in the section 6, we discuss several
approaches to mitigate SBC’s local optima issue,
such as simulated annealing (SA). To intuitively

Question: Henry had 11 dollars. For his birthday he got 18 more dollars but spent 10 on a new game. How much money does he have now? Answer: 19
Rationale of base: Henry had 11 dollars. For his birthday, he got 18 more dollars. That means he had 29 dollars in total. But he spent 10 on a new game. That means he has 18 less dollars.

That means he has 29 - 10 = 18 dollars left. Therefore, the answer is 18. Answer of base: 18

Rationale of SBC: First, Henry had 11 dollars. Then, he got 18 more dollars for his birthday, so he had 29 dollars in total. However, he spent 10 dollars on a new game, so he has 19 dollars

left. 19 Answer of SBA: 19
(a) case 1.

Question: There are some baskets of peaches. Each basket has 4 red peaches and 3 green peaches. If there are a total of 7 peaches in all baskets How many baskets of peaches are there?
Answer: 1.0
Rationale of base: There are a total of 7 peaches in all baskets. Each basket has 4 red peaches and 3 green peaches. If there are a total of 7 peaches in all baskets, then there are 7 groups of

4 red peaches and 3 green peaches. Therefore, there are 2 baskets of peaches in all baskets. Therefore, the answer is 2.0. Answer of base: 2.0
Rationale of SBC: There are 7 baskets. Each basket has 4 red peaches and 3 green peaches. Therefore, there are 1 basket of peaches. 1.0 Answer of SBA: 1.0
(b) case 2.

Question: Mary picked 122 oranges and Jason picked 105 oranges from the orange tree . How many oranges were picked in total ? Answer: 227

Rationale of base: Mary picked 122 oranges. Jason picked 105 oranges. How many oranges were picked in total? There were a total of 252 oranges picked. Therefore, the answer is 252
Answer of base: 252

Rationale of SBC: First, we need to find out how many oranges were picked in total. To do this, we add up the number of oranges that each person picked. So, we have 122 + 105 = 227

oranges. 227 Answer of SBA: 227

(c) case 3.

Question: Take the last letters of each words in "Garry Arielle Elba Rodney" and concatenate them. Answer: yeay

Rationale of base: The last letter of "Garry" is "y". The last letter of "Arielle" is "e". The last letter of "Elba" is "a". The last letter of "Rodney" is "y". So the final answer is ”yeaa".

Therefore, the answer is yeaa. Answer of base: yeaa

Rationale of SBC: The last letter of "Garry" is "y". The last letter of "Arielle" is "e". The last letter of "Elba" is "a". The last letter of "Rodney" is "y". So the final answer is "yeay". yeay
Answer of SBA: yeay

(d) case 4.

Question: Alice, Bob, and Claire are dancers at a square dance. At the start of a song, they each have a partner: Alice is dancing with Rodrigo, Bob is dancing with Jamie, and Claire is
dancing with Izzi. Throughout the song, the dancers often trade partners. First, Bob and Alice switch partners. Then, Claire and Alice switch partners. Finally, Bob and Claire switch partners.
At the end of the dance, Claire is dancing with Which choice is true? Answer choices: (A) Rodrigo, (B) Jamie, (C) Izzi. Answer: A

Rationale of base: First, Bob and Alice switch partners. So, at the end of this step, Alice is dancing with Jamie and Bob is dancing with Rodrigo. Then, Claire and Alice switch partners. So,

at the end of this step, Alice is dancing with Izzi and Claire is dancing with Jamie. Finally, Bob and Claire switch partners. So, at the end of this step, Bob is dancing with 1ZZi and Claire is

dancing with Rodrigo. Therefore, the answer is C. Answer of base: C
Rationale of SBC: At the start of the song, Alice is dancing with Rodrigo, Bob is dancing with Jamie, and Claire is dancing with Izzi. First, Bob and Alice switch partners. This means that
now Alice is dancing with Jamie and Bob is dancing with Rodrigo. Then, Claire and Alice switch partners. This means that now Alice is dancing with Izzi and Claire is dancing with Jamie.
Finally, Bob and Claire switch partners. This means that now Claire is dancing with Rodrigo and Bob is dancing with Jamie. A Answer of SBA: A

(e) case 5.

Question: Is 3D printing able to make adenovirus? Answer: No
Rationale of base: Can 3D print anything? Yes. Can adenovirus be made? Yes. Therefore, 3D printing can make adenovirus. Therefore, the answer is Yes. Answer of base: Yes

Rationale of SBC: 3D printing can create things. Adenoviruses are small, virus-like organisms that can only replicate inside the cells of a living organism. So, it is unlikely that 3D printing
could create adenovirus. No Answer of SBA: No

(f) case 6.

Figure 6: The case for core reasoning tokens.

demonstrate its effectiveness in mitigating SBC’s
local optima, we integrate simulated annealing into
the SBC method by introducing a temperature pa-
rameter 7' = 0.1, allowing a certain probability of
accepting suboptimal partitions identified by SBC
to prevent getting stuck in local optima. As shown
in the Table 14, simulated annealing effectively
mitigates SBC’s local optima issue, leading to im-
proved model performance.

14

Question: Rachel had to complete 4 pages of reading homework, 7 pages of math homework and 19 more pages of biology homework. How many more pages of math homework than
reading homework did she have?

Rationale of LLM: First, we need to find out how many pages of homework she had in total. \n4 + 7 + 19 = \n30\nNext, we need to find out how many pages of reading homework she had.
\n4 \nThen, we need to find out how many pages of math homework she had. \n7 \nLast, we need to find out how many more pages of math homework she had than reading homework. \n7 -
4=\n3

AC:

< First, we need to find out how many pages of homework she had in total. 4 + 7 + 19 => < 30 Next. we need to find out how many pages of reading homework she had. > <4 Then
we need to find out how many pages of math homework she had. > <7 Last. we need to find out how many more pages of math homework she had than reading homework. 7 - 4 = 3>
SBC:

< First, we need to find out how many pages of homework she had in total. 4+ 7+ 19 =30> < Next, we need to find out how many pages of reading homework she had. 4> < Then.
we need to find out how many pages of math homework she had. 7> < Last, we need to find out how many more pages of math homework she had than reading homework. 7-4=3 >

(a) case 1.

Question: Alyssa picked 17 plums and Jason picked 10 plums . Melanie picked 35 pears . How many plums were picked in all ?

Rationale of LLM: Alyssa picked 17 plums. \nJason picked 10 plums. \n17 + 10 = 27 plums. \nMelanie picked 35 pears. \n27 + 35 = 62 \nThere were 62 fruits picked in all.
AC:<[Alyssa picked 17 plums. > <Jason picked 10 plums.> <17+ 10 =27 plums. > < Melanie picked 35 pears. 27 + 35 = 62. There were 62 fruits picked in all.

SBC:

< Alyssa picked 17 plums. Jason picked 10 plums. 17 + 10 = 27 plums. > < Melanie picked 35 pears. 27 + 35 =62.> < There were 62 fruits picked inall. > <>

(b) case 2.

Question: Take the last letters of each words in "Martin Sage Tanisha Rick" and concatenate them.

Rationale of LLM: If we split the string into a list of words, we get:\n ['Martin', 'Sage', 'Tanisha', 'Rick']\nFrom there, we can take the last letter of each word using indexing:\n['n', '¢', 'a',
'k"I\nLastly, we can concatenate these letters together into a string:\n'neak’

AC:

< If we split the string into a list of words, we get:> <['Martin', 'Sage', 'Tanisha', 'Rick> < From there. we can take the last letter of each word using indexing:> <['n",'e'.'a', 'k’] Lastly,
we can concatenate these letters together into a string: 'neak’>

SBC:

< If we split the string into a list of words. we get: ['Martin', 'Sage', 'Tanisha', 'Rick’]> < From there, we can take the last letter of each word using indexing: ['n', 'e', 'a', ‘k’]> < Lastly, we

can concatenate these letters together into a string: ['n', '¢', 'a', 'k’] > <>

(c) case 3.

Question: Alice, Bob, and Claire are holding a white elephant gift exchange. At the start of the event, they are each holding a present of a different color: Alice has a yellow present, Bob
has a brown present, and Claire has a blue present. As the event progresses, pairs of people swap gifts. First, Bob and Alice swap their gifts. Then, Claire and Alice swap their gifts. Finally,
Bob and Alice swap their gifts. At the end of the event, Claire has the Which choice is true? Answer choices: (A) yellow present, (B) brown present, (C) blue present.

Rationale of LLM: First, Bob and Alice swap gifts. This means that: \n-Alice now has the brown present \n-Bob now has the yellow present \nNext, Claire and Alice swap gifts. This means
that: \n-Alice now has the blue present \n-Claire now has the brown present \nFinally, Bob and Alice swap gifts again. This means that: \n-Alice now has the yellow present \n-Bob now has
the blue present \nTherefore, Claire has the brown present at the end of the event.

AC:

<First, Bob and Alice swap gifts. This means that:> <-Alice now has the brown present> <-Bob now has the yellow present> <Next, Claire and Alice swap gifts. This means that: -
Alice now has the blue present -Claire now has the brown present Finally, Bob and Alice swap gifts again. This means that: -Alice now has the yellow present -Bob now has the blue present
Therefore. Claire has the brown present at the end of the event.>

SBC:

< First, Bob and Alice swap gifts. This means that: -Alice now has the brown present -Bob now has the yellow present Next, Claire and Alice swap gifts.> < This means that: -Alice now
has the blue present> < -Claire now has the brown present Finally. Bob and Alice swap gifts again. > < This means that: -Alice now has the yellow present -Bob now has the blue present
Therefore, Claire has the brown present at the end of the event. >

(d) case 4.

Figure 7: The case for SBC. <-> represents a chunk.

Base Base w. sent Base w. sent prefix Base w. step Base w. step prefix
TSO 37.33 7.11 27.11 14.22 30.22

Table 12: The accuracy of training the SLM using rationale partitioning methods with varying granularities.

Question: Alice, Bob, and Claire are dancers at a square dance. At the start of a song, they each have a
partner: Alice is dancing with Ophelia, Bob is dancing with Rodrigo, and Claire is dancing with Patrick.
Throughout the song, the dancers often trade partners. First, Bob and Alice switch partners. Then, Claire
and Bob switch partners. Finally, Claire and Alice switch partners. At the end of the dance, Bob is dancing
with Which choice is true? Answer choices: (A) Rodrigo. (B) Ophelia. (C) Patrick.

Rationale: Sure, let’s break it down step by step. At the start of a song, Alice is dancing with Ophelia,
Bob is dancing with Rodrigo, and Claire is dancing with Patrick. After the first partner switch, Bob is now
dancing with Ophelia and Alice is dancing with Rodrigo. After the secend partner switch, ..., After the
third partner switch, ..., After the third partner switch, ..., After the third partner switch, ...

Table 13: The base case for sentence-wise and step-wise training.

15

SE AD MA Svamp TSO LLC SQA
Base w. SBC 855 1092 17.77 11.33 100.00 25.33 59.38
Base w. SBC &SA 1052 11.76 18.88 1233 100.00 26.00 59.53

Table 14: Effect of integrating simulated annealing into SBC. The student SLM is GPT2-base.

Question: Jenny ran 0.6 of a mile and walked 0.4 of a mile. How much farther did Jenny run than walk? Answer: 0.2
Rationale of SBC: We know that Jenny ran 0.6 of a mile and walked 0.4 of a mile. This means that she ran 4/10th of a mile and walked 3/10th of a mile. 3.0

Answer of SBC: 3.0
Rationale of Skip: [thought] This means that Jenny ran 0.2 miles farther than she walked. 0.2

Answer of Skip: 0.2

(a) case 1.
Question: Is Sirius part of a constellation of an animal? Answer: Yes
Rationale of SBC: There are many different types of animals, so it is impossible to say which is the first or the last. However, there are many different types of companions, so it is
also impossible to say which is the first companion. There are many different types of pets, so it is also impossible to say which is the first pet. No Answer of SBC: No
Rationale of Skip: [thought] So, based on what we know, we can conclude that Sirius is part of a constellation of an animal. Yes Answer of Skip: Yes
(b) case 2.

Figure 8: The case for Skip-thinking.

16

	Introduction
	Related works
	CoT distillation
	CoT acceleration

	Preliminary
	Method
	Chunk data generator
	Average chunking
	Search-based chunking

	Skip data generator
	Testing

	Experiments
	Experimental setting
	Ablation experiments for Q1
	Comparison with Other Methods for Q2
	Validate CWT for Q3
	Validate Skip-thinking for Q4

	Conclusion
	Experimental Details
	Datsets
	Rationale generation of Text-davinci-002
	Rationale generation of SLM
	Training datails

	Analysis for Non-reasoning Chunks
	Naive Method for Oversmoothing
	Sentence-wise and step-wise training
	Extension of Ablation study
	Extension of Comparison with Other Methods
	Case study
	Core reasoning tokens
	Comparsion between AC and SBC
	The case for skip-thinking.

	Avoiding local optima

