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Abstract

Chain-of-thought (CoT) distillation allows a001
large language model (LLM) to guide a small002
language model (SLM) in reasoning tasks. Ex-003
isting methods train the SLM to learn the long004
rationale in one iteration, resulting in two is-005
sues: 1) Long rationales lead to a large token-006
level batch size during training, making gra-007
dients of core reasoning tokens (i.e., the to-008
ken will directly affect the correctness of sub-009
sequent reasoning) over-smoothed as they con-010
tribute a tiny fraction of the rationale. As a011
result, the SLM converges to sharp minima012
where it fails to grasp the reasoning logic. 2)013
The response is slow, as the SLM must gen-014
erate a long rationale before reaching the an-015
swer. Therefore, we propose chunk-wise train-016
ing (CWT), which uses a heuristic search to017
divide the rationale into internal semantically018
coherent chunks and focuses SLM on learning019
from only one chunk per iteration. In this way,020
CWT naturally isolates non-reasoning chunks021
that do not involve the core reasoning token022
(e.g., summary and transitional chunks) from023
the SLM learning for reasoning chunks, mak-024
ing the fraction of the core reasoning token in-025
crease in the corresponding iteration. Based on026
CWT, skip-thinking training (STT) is proposed.027
STT makes the SLM automatically skip non-028
reasoning medium chunks to reach the answer,029
improving reasoning speed while maintaining030
accuracy. We validate our approach on a variety031
of SLMs and multiple reasoning tasks.032

1 Introduction033

Chain of Thought (CoT) (Chu et al., 2023) dis-034

tillation enables small language models (SLMs)035

(Radford et al., 2019; Raffel et al., 2020) to repli-036

cate the reasoning patterns of large language mod-037

els (LLMs) (Ouyang et al., 2022; Touvron et al.,038

2023; Dubey et al., 2024), enhancing their reason-039

ing abilities for domain-specific tasks. The training040

procedure for mainstream CoT distillation methods041

(Ho et al., 2023; Magister et al., 2022; Ren and042

Zhu, 2022) is shown in the top box of Figure 1. 043

It requires the SLM to learn a long reasoning pro- 044

cess (rationale) from the LLM for a given task in a 045

single training iteration, leading to two problems. 046

1) Superficial understanding. The training loss 047

for the SLM is computed as the average value over 048

all target tokens. Consequently, the token-level 049

batch size corresponds to the number of training 050

tokens within a mini-batch. Since the rationale is 051

long, the token-level batch size remains large even 052

with a batch size of 1. Large batch size typically 053

causes gradient over-smoothing during backpropa- 054

gation (Jastrzębski et al., 2018; Keskar et al., 2017; 055

Gao and Zhong, 2020), thereby leading to a gen- 056

eralization gap. Specifically, the model updates 057

with the average gradient of the tokens in the batch. 058

As the batch size increases gradually—consider an 059

extreme case where a single batch encompasses 060

the entire training dataset—the gradients across 061

batches become more similar, causing the model 062

loss to decrease rapidly along the similar gradients 063

and converge to a sharp minimum. More critically, 064

in CoT distillation, the core reasoning tokens (such 065

as the yellow and green ball in the rationale of Fig- 066

ure 1) constitute a small proportion of rationales, 067

while the prevalence of similar non-reasoning to- 068

kens (e.g., those used for transition and summariza- 069

tion) across different rationales exacerbates gradi- 070

ent over-smoothing, causing the SLM to converge 071

rapidly towards learning the expressive patterns of 072

the LLM rather than core reasoning logic. 073

2) Time-consuming. The SLM trained with 074

these methods requires completing the full ratio- 075

nale to produce the final answer during testing, 076

resulting in a significantly slower response time. 077

To address the first problem, some naive ap- 078

proaches, such as weighting the loss of core reason- 079

ing tokens or prompt LLMs to remove redundant 080

expressions in rationale, do not perform well (see 081

Appendix C). In this work, we propose a chunk- 082

wise training (CWT) strategy. CWT utilizes a 083
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Figure 1: Illustration of CoT Distillation. The batch size is set to 1 as an illustrative example. The core reasoning
token (like the yellow and green ball in rationale R) means that its accuracy can determine the subsequent reasoning
process. 1) Superficial understanding: The large token-level batch size will cause the gradient of the core reasoning
token to be over-smoothed by plenty of other non-reasoning tokens (highlighted with a gray background in R) that
are similar across different rationales during backpropagation, leading to SLMs converging to a sharp minimum
where SLM often makes mistakes when generating the core reasoning token. 2) Time-consuming: Generating the
full R takes longer than outputting the answer A directly.

chunking data generator that introduces a heuristic084

search guided by model loss to segment the ratio-085

nale into a fixed number of internal semantically086

coherent chunks and focus SLMs on learning from087

one chunk per iteration. By doing so, the token-088

level batch size is smaller, which mitigates gradient089

over-smoothing. More importantly, since certain090

non-reasoning chunks function solely as preludes,091

summaries, or transitions (like the underlined text092

in rationale in Figure 1), and thus lack core reason-093

ing tokens, when the SLM learns reasoning chunks094

independently within a given iteration, CWT natu-095

rally isolates the influence of non-reasoning chunks096

on core reasoning token learning (see Appendix B),097

thereby directing the SLM’s attention toward learn-098

ing the core reasoning logic during that iteration.099

For the second question, several methods (Hsieh100

et al., 2023; Chen et al., 2024b; Deng et al., 2023,101

2024) have been proposed to enhance the response102

speed of the answer. Among them, internalizing the103

explicit reasoning process (Deng et al., 2023, 2024)104

into the latent space has emerged as a promising105

direction. However, these internalization-based106

methods may compromise answer accuracy due to107

the lack of an explicit reasoning process. Similar108

to these approaches, we hypothesize that language109

models can also encode explicit reasoning within110

the latent space.111

However, we argue that, akin to humans who112

externalize parts of their reasoning to maintain co- 113

herence and mitigate forgetting key information, 114

language models should externalize the reasoning 115

chunks that contain core reasoning tokens to facili- 116

tate subsequent reasoning. Therefore, we propose 117

a CWT-based skip-thinking training (STT) strategy. 118

Specifically, STT uses answer correctness as a cri- 119

terion to determine whether internalizing a specific 120

reasoning chunk is reasonable. If the answer re- 121

mains correct after removing the chunk, this chunk 122

is deemed non-essential and can be internalized 123

from the output. Otherwise, the chunk should be 124

externalized during reasoning. In this way, STT 125

constructs training data that makes the SLM auto- 126

matically skip unimportant non-reasoning chunks 127

to accelerate the response while still arriving at the 128

correct answer. 129

The key contributions are as follows: 130

1) To prevent a superficial understanding, we pro- 131

vide a theoretical analysis from the perspective of 132

gradient updates and propose the CWT to enhance 133

SLMs’ capability in comprehension of reasoning 134

logic. 135

2) The STT is proposed based on reasoning in- 136

ternalization, which not only preserves reasoning 137

accuracy but also accelerates SLM reasoning. 138

3) Plenty of experiments are conducted across 3 139

different SLMs and 7 reasoning tasks to verify our 140

proposed method. 141
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2 Related works142

CoT (Chu et al., 2023) is first introduced by Wei143

et al. (2022). Subsequently, CoT distillation and144

reasoning acceleration emerges as two critical re-145

search directions aimed at broadening the applica-146

tion scope of CoT.147

2.1 CoT distillation148

CoT distillation is first introduced in concurrent149

works by Ho et al. (2023), Magister et al. (2022),150

and Ren and Zhu (2022). They prompt the LLM to151

generate rationales for a given task, which is then152

applied as the supervised label to make the SLM153

mimic the reasoning logic of the LLM. Building154

upon these works, Scott (Wang et al., 2023) is in-155

troduced to enhance the alignment of the SLM’s156

rationale with the answer. Li et al. (2023) proposes157

integrating the LoRA (Hu et al., 2022) to enhance158

the utilization of negative samples generated by the159

LLM. PaD (Zhu et al., 2023) employs an external160

code compiler to enhance the performance of the161

SLM. In addition to the aforementioned work on162

improving the distillation mechanism, some works163

have integrated CoT distillation with information164

retrieval (Zhao et al., 2024), table reasoning (Yang165

et al., 2024), thereby broadening the application166

scope of CoT distillation.167

However, the aforementioned methods enable168

the SLM to learn the full rationale for the given169

task in a single iteration, which may cause the SLM170

to superficially understand the reasoning logic of171

LLMs.172

2.2 CoT acceleration173

The existing methods to accelerate the reasoning174

process can be roughly divided into three directions:175

multi-task learning, post-thinking mechanism, and176

latent space thought.177

Multi-task learning (Hsieh et al., 2023; Chen178

et al., 2024b; Liu et al., 2024) utilizes distinct pre-179

fixes to differentiate between tasks. For instance,180

when the input task prefix is [label], the SLM di-181

rectly outputs the answer, whereas when the input182

task prefix is [rationale], the SLM outputs the ra-183

tionale. Since multi-task learning allows for out-184

putting the answer directly, the answer response185

time can align with that of the standard fine-tuning186

that only applies the answer to train SLM. How-187

ever, because the rationale and the answer are not188

within the same output sequence, the conclusion189

of the SLM’s rationale often fails to align with the190

answer directly output by the SLM. 191

Post-thinking mechanism (Chen et al., 2024a) 192

trains the SLM to output the rationale after provid- 193

ing the answer, so that the answer can be generated 194

first during the test. However, the post-thinking 195

sacrifices the ability to decompose the task through 196

the rationale, making it more challenging to handle 197

tasks with higher complexity. 198

Training SLMs to reason in latent space has 199

emerged as a recent research direction (Deng et al., 200

2023; Goyal et al., 2024; Deng et al., 2024; Hao 201

et al., 2024). These methods propose internaliz- 202

ing explicit rationales into latent space, enabling 203

implicit reasoning during forward propagation to 204

directly generate answers. For instance, Deng et al. 205

(2024) gradually removes reasoning steps during 206

training to internalize rationales, while Hao et al. 207

(2024) introduces a special token, [thought], to fa- 208

cilitate latent reasoning. However, this approach 209

may reduce answer accuracy in some tasks com- 210

pared to explicit reasoning. We posit that this stems 211

from the model’s tendency to forget previous rea- 212

soning steps during extended reasoning in the la- 213

tent space. Explicit rationales serve as a scratchpad 214

that facilitates problem-solving (Wei et al., 2022). 215

When discarded, the model is more likely to forget 216

prior steps, leading to degraded reasoning capacity. 217

3 Preliminary 218

Let D = {(qi, ai)|i = 0, 1, ..., n} refer to the orig- 219

inal dataset consisting of n samples for training 220

SLM, where qi and ai represent the question and 221

answer, respectively. Based on D, CoT distillation 222

first utilizes a zero-shot or few-shot CoT prompt 223

to make LLM output rationale ri for qi. Then, the 224

SLM is trained to maximize the generation likeli- 225

hood of ri and ai. The training loss per training 226

iteration of CoT distillation can be formulated as: 227

L =
1

B

B∑
b=0

1

K − s

K∑
k=s

ℓ(fϑ(x
b
1,k, ), x

b
k+1) (1) 228

where x = q ⊕ r ⊕ a is the input sequence whose 229

length is K (⊕ refers to the string concatenation), 230

B refers to the training batch size, s is the start 231

index of r ⊕ a in x, fϑ(·) represents the forward 232

calculation of SLM with parameters ϑ, and ℓ(·) is 233

the cross-entropy loss. After training, SLM has the 234

ability to think before outputting answers. 235

Superficial understanding. Considering the 236

parameters of SLM as a whole, during backpropa- 237
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Figure 2: The illustration of the proposed methods. The flames indicate that the model is undergoing training, and
the [thought] is a specail token that represents the SLM is thinking in mind.

gation, the gradient of ϑ can be expressed as:238

∂L
∂ϑ

=
∂

∂ϑ

(
1

N

N∑
i=1

ℓi

)
=

1

N

N∑
i=1

∂ℓi
∂ϑ

(2)239

where N = B × (K − s) represents the token-240

level batch size and ℓi is the cross-entropy loss241

for ith training token. Assume that we divide the242

training tokens into two sets S1 and S2, where S1243

is the training token set involving the core logic in244

any single reasoning step and S2 is the remaining245

tokens, Equation 2 can be rewritten as:246

∂L
∂ϑ

=
1

N

|S1|∑
i=1

∂ℓi
∂ϑ

+
1

N

|S2|∑
j=1

∂ℓj
∂ϑ

(3)247

Since |S2| is usually much larger than |S1|, the248

gradient of the token in S1 will be smoothed by249

the gradient of the token in S2, which ultimately250

leads to a superficial understanding of SLM in this251

reasoning step.252

Slow answer response. The SLM trained ac-253

cording to Equation 1 must first generate a ratio-254

nale before providing an answer, which leads to a255

slower answer response compared to the SLM that256

directly outputs the answer.257

4 Method258

To address the two problems, we propose CWT259

and STT. Figure 2 illustrates the process. First,260

the LLM generates ri for qi. Details on obtaining261

ri are in Appendix A.2. The chunk and skip data262

generators then sequentially generate data for CWT263

and STT.264

4.1 Chunk data generator 265

The chunk data generator divides the complete ra- 266

tionale into smaller chunks and makes SLMs learn 267

from each chunk independently during a single 268

training iteration. After the division, |S2| in Equa- 269

tion 3 is significantly reduced in the iteration of 270

learning reasoning chunks, allowing SLMs to con- 271

centrate on comprehending the essential reasoning 272

logic within the given chunks. 273

Division methods vary in granularity: sentence- 274

level, reasoning step-level, and chunk-level. The 275

first two methods lead to duplicate generation due 276

to task-specific variations in sentence and reasoning 277

step numbers (see Appendix D). Chunk-level divi- 278

sion segments the rationale into M chunks. Train- 279

ing SLM with this data will make the SLM reach 280

the answer after M distinct stages, thereby avoid- 281

ing duplicate generation. Thus, the chunk-level 282

division is employed in the chunk data generator. 283

4.1.1 Average chunking 284

When performing chunking, the simplest way is 285

to divide the reasoning steps into M parts equally. 286

Specifically, we first split the rationale by "\n" to 287

obtain ri = {rji |j = 0, 1, ..L} that has L reasoning 288

steps. Then the reasoning steps contained in the 289

mth chunk can be formulated as: 290

cmi =

{
{rji | j ∈ [g ×m, g ×m+ g))} m < M

{rji | j ∈ [g ×m,L]} m = M
(4) 291

where g = ⌊L/M⌋ and j ∈ Z. After chunking, we 292

can convert a training sample xi into M+1 training 293

data. The first M training data can be formalized 294
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Algorithm 1 Search-based chunking

Input: Chunk list cij of ri and SLM ϑj before
(j + 1) training epoch, qi, ai, threshold η, M

1: for m in range(M − 1) do
2: Calculate the loss lc for cmij with Equation 1
3: Merge cmij and cm+1

ij to form the list ctemp

4: Initial: lmin← +∞, index← +∞
5: for idx in range(len(ctemp)) do
6: Calculate the loss lidx for ctemp[: idx]

with Equation 1
7: if lidx < lmin then
8: lmin← lidx, index← idx
9: end if

10: end for
11: if lc − lmin > η then
12: cmij ← ctemp[: index]

13: cm+1
ij ← ctemp[index :]

14: end if
15: end for
Output: Chunk list ci(j+1) of ri

as:295

{[m]⊕ qi⊕ c1i ⊕ c2i ...⊕ cmi |m = 0, 1, ...,M} (5)296

and the M + 1 training sample is:297

[answer]⊕ qi ⊕ c1i ⊕ c2i ...⊕ cMi ⊕ ai (6)298

The reason for adding the prefix [m] and [answer]299

is that it can tell the model what stage the current300

reasoning is at, thereby reducing the difficulty of301

reasoning. And the s in the Equation 1 is the start302

index of cmi and ai in these data at this time.303

4.1.2 Search-based chunking304

Since the average chunking (AC) may divide mul-305

tiple semantically coherent reasoning steps into306

different chunks, the reasoning fluency of the SLM307

may degrade after training. In addition, the combi-308

natorial space for allocating L reasoning steps to309

M chunks is vast. Therefore, we propose a search-310

based chunking (SBC) that applies the loss of SLM311

as heuristic information to efficiently identify a312

better chunking result.313

The detailed process of SBC is outlined in Al-314

gorithm 1. The initial chunking result c0i is ob-315

tained through AC. Algorithm 1 is executed be-316

fore each training epoch. In general, the loss of317

the language model on the target token sequence318

indicates the language model’s understanding of319

the content within the target token sequence (Wan320

et al., 2024). Based on this point, in Algorithm 1, 321

we progressively increase the number of reasoning 322

steps allocated to the current searching chunk and 323

compute the SLM loss for it. As the loss decreases, 324

we infer that the reasoning steps allocated to this 325

chunk are more comprehensible to the SLM, aiding 326

its understanding of the information in the current 327

reasoning stage. Thus, we utilize this loss compar- 328

ison as heuristic information to iteratively adjust 329

the chunk division with a greedy strategy, reduc- 330

ing suboptimal results from unreasonable division 331

during training. 332

4.2 Skip data generator 333

To accelerate reasoning, we employ a skip data 334

generator for STT. STT is essentially to internalize 335

the rationale. However, unlike Deng et al. (2024), 336

STT still requires the explicit output of the SLM to 337

provide a clear intermediate basis for subsequent 338

reasoning. 339

Specifically, the skip data generator sequentially 340

removes chunk and uses the SLM trained with 341

CWT to predict the answer. Taking cmi as a ex- 342

ample of the removed chunk, the answer prediction 343

process is initialized with the input [m+ 1]⊕ qi ⊕ 344

c0i ⊕ · · · ⊕ cm−1
i and proceeds until the model pro- 345

duces an answer. If the answer is incorrect, this 346

indicates that the removed chunk contains key rea- 347

soning information that should be externalized dur- 348

ing the reasoning process. Otherwise, it suggests 349

that the current chunk is non-essential—likely serv- 350

ing as a transitional or summary component—and 351

its contribution can be internalized by the model. 352

After this chunk-removal procedure, the skip data 353

generator produces training data illustrated in Fig- 354

ure 2 for STT to build an SLM capable of skipping 355

the non-reasoning chunk. It is important to note 356

that 1) before STT, the SLM is initialized using the 357

original pre-trained parameters, rather than those 358

fine-tuned by CWT, reducing the risk of overfit- 359

ting; and 2) CWT remains incorporated into STT 360

training, ensuring that the SLM is still exposed to 361

the full rationale during training. Furthermore, as 362

shown by the grey arrow in Figure 2, the above 363

process can be iterated until the reasoning accuracy 364

of the SLM no longer increases. 365

4.3 Testing 366

After training the SLM with the CWT and STT, 367

when prompting SLM with the input [skip]⊕ qtest, 368

the SLM can adaptively skip the unimportant rea- 369

soning chunk and only externalize the key reason- 370
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ing chunks, thereby accelerating reasoning while371

ensuring reasoning accuracy.372

5 Experiments373

We first introduce the detailed experimental set-374

tings, followed by a series of experiments to vali-375

date the following aspects. Q1: The effect of each376

proposed module on the model’s answer accuracy.377

Q2: Comparison between the proposed method378

and the state-of-the-art method. Q3: Can CWT in-379

deed mitigate the superficial understanding issue in380

SLM? Q4: The distinction between skip-thinking381

and full-thinking.382

5.1 Experimental setting383

Seven reasoning benchmarks, categorized into384

four distinct types: arithmetic, symbolic, common385

sense, and other logical reasoning, are employed to386

evaluate our method. Detailed information about387

the datasets can be found in Appendix A.1. For388

conciseness, we denote each dataset using abbrevi-389

ations derived from their concatenated initials.390

Unless otherwise stated, LLM in this section391

refers to text-davinci-002 175B, developed based392

on InstructGPT (Ouyang et al., 2022) and accessi-393

ble via the OpenAI API. As for the student SLM,394

we employ GPT-2 (ranging from the base to large395

model) (Radford et al., 2019) and T5 (ranging from396

the small to large model) (Raffel et al., 2020) to397

evaluate the effectiveness of the proposed methods.398

The detailed generation parameters for LLMs and399

SLMs are given in Appendix A.2. More training400

details are available in the Appendix A.4.401

5.2 Ablation experiments for Q1402

First, we conduct a series of comprehensive ex-403

periments to assess the effectiveness of each pro-404

posed strategy. The results are presented in Table 1.405

Further experiments involving SLMs with varied406

parameters as student models are detailed in the407

Appendix E. The baseline model adopts the full-408

thinking training approach proposed by Ho et al.409

(2023).410

It is evident that when chunks are partitioned us-411

ing the AC, the performance of the SLM improves412

relative to the baseline across most tasks. But in a413

few tasks, the model’s performance declines. We414

attribute this to the AC dividing coherent reasoning415

steps into separate chunks, thereby reducing SLM416

reasoning coherence. Thus, when a more optimal417

SBC is applied for chunking, the SLM exhibites418

improved performance across all tasks.419
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Building upon the SBC, we additionally apply 420

STT to train the SLM. To further clarify the effec- 421

tiveness of STT, we implement a variant referred to 422

as Base w. SkipALL. This variant does not consider 423

the answer as the judgment criterion during train- 424

ing data construction for STT, but instead trains the 425

SLM to directly bypass all intermediate reasoning 426

steps. Experimental results show that this variant 427

leads to a notable decline in SLM performance, 428

especially for the LLC dataset. We attribute the 429

significant performance decline of the variant on 430

the LLC dataset to the fact that the LLC dataset 431

requires parallel reasoning rather than sequential 432

reasoning, where each reasoning step is indepen- 433

dent with no context dependence between them. 434

Therefore, when using the variant, the SLM needs 435

to reason about multiple different subtasks in paral- 436

lel in the latent space, which is hard for SLMs and 437

leads to the decline in performance. 438

In contrast to this variant, Base w. STT achieves 439

a consistent performance improvement, highlight- 440

ing the benefit of externalizing parts of the rea- 441

soning process to preserve key information. We 442

also observe that, compared to Base w. SBC, Base 443

w. STT, which restricts output to key reasoning 444

chunks, also shows improved performance. We 445

attribute this to only retaining essential reasoning 446

chunks lowers the risk of SLM hallucinations—a 447

point we discuss in more detail in section 5.5. 448

Then, we verify the impact of different chunk 449

numbers M on SBC. In Figure 4, we can observe 450

that for tasks with relatively fixed reasoning meth- 451

ods and steps, such as common sense and symbolic 452

reasoning, the SLM works best when M is close 453

to the average number of reasoning steps L. For 454

mathematical reasoning, which has a large vari- 455

ation in reasoning methods and steps, setting M 456
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Methods
GPT2-base T5-small

SE AD MA Svamp TSO LLC SQA SE AD MA Svamp TSO LLC SQA

Base 8.55 10.08 14.44 10.66 56.88 21.33 58.22 3.94 8.40 8.88 9.00 60.00 45.33 56.04
Base w. AC 7.89 10.92 16.11 8.66 97.32 24.66 58.80 3.94 7.56 8.88 10.00 65.33 46.66 57.20

Base w. SBC 8.55 10.92 17.77 11.33 100.00 25.33 59.38 4.60 8.40 9.33 10.33 99.55 48.66 57.78
Base w. SkipALL 7.89 11.76 17.22 11.00 100.00 11.33 59.97 3.94 8.40 8.88 9.66 99.55 28.66 58.80

Base w. STT 10.52 12.60 22.77 12.33 100.00 28.00 60.55 5.92 10.08 11.66 11.33 99.55 48.66 59.97

Table 1: The accuracy of various methods across different datasets. Refer to the Appendix E for additional ablation
experiments using various student SLMs.

Methods SE AD MA Svamp TSO LLC SQA SE AD MA Svamp TSO LLC SQA

Text-davinci-002 (175B) 81.50 76.71 78.79 64.20 53.20 57.71 53.45 81.5 76.71 78.79 64.20 53.20 57.71 53.45

GPT2-base (124M) T5-small(60M)

Standard finetune 8.55 10.08 14.44 10.66 56.88 21.33 58.22 3.94 8.40 8.88 9.00 60.00 45.33 56.04

CoT-Finetuing 8.55 10.08 14.44 10.66 56.88 21.33 58.22 3.94 8.40 8.88 9.00 60.00 45.33 56.04
Scott * 9.21 9.24 22.22 11.33 56.44 22.00 55.74 5.26 7.56 10.00 10.33 70.22 46.00 58.36

Step-by-Step 7.89 12.60 17.22 10.00 94.66 4.00 59.67 2.63 8.40 10.55 8.33 99.11 25.33 58.36
MMI - - - - - - - 3.28 7.56 10.00 10.33 99.55 25.33 57.78

ICoT-SI 2.63 4.20 4.33 3.88 36.00 0.00 52.40 - - - - - - -

Ours 10.52 12.60 22.77 12.33 100.00 28.00 60.55 5.92 10.08 11.66 11.33 99.55 48.66 59.97

Table 2: A comparison of our methods with other approaches. A dash (-) indicates that the official code of the
method is not implemented on the corresponding SLM. An asterisk (*) indicates that Scott requires the complete
logits of each output token for implementation; thus, the rationales used in Scott are collected from the open-source
model LLama3.1-70b-instruction (Dubey et al., 2024).

Method Token type AD(%) TSO(%)

Base
core reasoning tokens 87.37 89.25

other tokens 89.64 95.18

Base w. SBC
core reasoning tokens 88.88 92.73

other tokens 89.80 95.17

Table 3: Confident score of GPT2-base for different
tokens.

greater than L helps the SLM learn more solutions,457

thereby improving the performance of SLMs.458

Third, the comparison of chunking result be-459

tween AC and SBC are shown in Appendix G.2,460

which intuitively proves that SBC can better make461

the reasoning steps within a chunk more coherent.462

5.3 Comparison with Other Methods for Q2463

The comparison methods include standard finetun-464

ing (using only answers as label), few-shot prompt-465

ing for LLMs (specific prompts can be found in466

the Ho et al. (2023)), full-thinking CoT distilla-467

tion (CoT-Finetuning (Ho et al., 2023), Scott(Wang468

et al., 2023)), and distillation methods that acceler-469

ate SLM inference via multi-task learning(step by470

step (Hsieh et al., 2023), MMI (Chen et al., 2024b))471

and internalized chains of thought (ICoT-SI (Deng472

et al., 2024).473

As shown in Table 2, our proposed method474

outperforms the other distillation approaches and475

achieves performance close to that of LLMs on cer-476

tain tasks. Although the inference speed remains 477

slower than that of multi-task learning and internal- 478

ized chains of thought, it strikes a balance between 479

performance and inference speed (see Figure 3). 480

Finally, we present a comparison of our method 481

against other baselines in terms of training time 482

and GPU memory consumption in Appendix F, 483

demonstrating that our method requires less GPU 484

memory and does not spend too much additional 485

training time. 486

5.4 Validate CWT for Q3 487

First, we show the performance of SLM as the 488

token-level batch size changes in Figure 5. It can 489

be seen that as the token-level batch size decreases, 490

the performance of SLM on various reasoning tasks 491

increases, which strongly verifies the motivation of 492

CWT, that is, a smaller token-level batch size helps 493

SLM converge to a flat minimum. 494

Subsequently, we further verify whether 495

CWT helps SLM learn the core reasoning logic. 496

Specifically, mathematical expressions (in AD) and 497

key exchange results (in TSO) are identified and ex- 498

tracted as core reasoning tokens. Then, we counted 499

the average confidence score of the core reason- 500

ing tokens and the non-reasoning tokens when the 501

trained SLM output rationale. One can observe that 502

compared with the base model, the gap between 503

7



2.89 4.493.40 3.91

Figure 4: SLM performance trend when the number of
chunks changes. The vertical dotted line refers to the
average number of reasoning steps.

Figure 5: GPT2-base’s performance trend when the
batch size changes. Batch size is proportional to token-
level batch size. Chunk means using CWT with SBC.

the confidence score of the core reasoning tokens504

and that of the common tokens is smaller after us-505

ing CWT, which means that the SLM with CWT is506

more confident when outputting the core reasoning507

tokens, i.e., it better understands the core reasoning508

logic of the current task.509

Then, we show the cases (Appendix G.1) where510

the correct answer is inferred after using CWT com-511

pared to base because the core reasoning token is512

predicted correctly. This also proves that CWT513

helps SLMs comprehend the core reasoning logic.514

Finally, the reasoning speed of the SLM515

trained with CWT based on SBC is faster than516

that of the baseline, which can be observed in Fig-517

ure 3. We argue that this improvement stems from518

the SLM trained with the former focusing more on519

the correctness of the reasoning logic and exhibit-520

ing greater conciseness in its reasoning expressions.521

This conciseness is reflected in the length of the522

generated rationale. The average number of words523

in the rationale generated by the former across all524

tasks is 50, while the latter generates 56 words.525

SE AD SVAMP MA TSO LLC SQA

SBC / STT 1.29 1.32 1.38 1.33 1.89 1.08 1.57

Table 4: Reasoning speedup ratio of STT compared to
SBC on GPT2-base.

5.5 Validate Skip-thinking for Q4 526

In addition to verifying the speed-accuracy trade- 527

off of skip-thinking shown in Figure 3, we conduct 528

two additional experiments. 529

Reasoning acceleration Skip-thinking can au- 530

tomatically skip unimportant chunks, leading to 531

faster inference compared to full-thinking. We also 532

present the acceleration ratio of skip-thinking rela- 533

tive to full-thinking across different datasets in the 534

Table 4. We observe the following: 1) skip-thinking 535

yields inference speedup across datasets; and 2) the 536

degree of acceleration varies across dataset types. 537

For more complex math problems, since more key 538

information needs to be output, skip-thinking skips 539

fewer chunks, resulting in less acceleration com- 540

pared to simpler tasks such as commonsense ques- 541

tion answering (SQA) or object-swap reasoning 542

(TSO). In the case of LLC, since it requires decom- 543

position into multiple subtasks with no inter-task 544

dependency and each task only involves one step 545

reasoning, skip-thinking retains almost the entire 546

reasoning process for each subtask, resulting in 547

inference latency comparable to full-thinking. 548

Case study. The Appendix G.3 presents some 549

case studies, demonstrating the advantage of skip- 550

thinking over full-thinking. By omitting intermedi- 551

ate reasoning steps, skip-thinking is less suscepti- 552

ble to model output hallucinations. 553

6 Conclusion 554

When using full rationale for CoT distillation, SLM 555

faces two challenges: superficial understanding and 556

slow response times. To address the two problems, 557

we first propose CWT to reduce the token-level 558

batch size, enhancing SLM’s reasoning by miti- 559

gating gradient over-smoothing. To maintain co- 560

herence, a chunking method based on heuristic 561

search to divide rationale into semantically coher- 562

ent blocks is introduced. Building on CWT, STT 563

trains SLM to adaptively skip the non-reasoning 564

chunks. Leveraging CWT and STT, the SLM 565

achieves faster and more accurate reasoning. 566

Limitations 567

SBA employs a greedy search strategy, which may 568

result in identifying only locally optimal chunk 569
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modes rather than globally optimal ones. For this570

point, strategies such as simulated annealing can571

be employed to avoid local optima (see Appendix572

H).573

Ethics Statement574

Given that toxicity is present in LLMs, the student575

SLM may inherit such toxicity during the learning576

of the LLM’s reasoning process. To address this577

issue, one can apply existing toxicity reduction578

techniques to mitigate toxicity in LLM reasoning.579
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AddSub (Hosseini et al., 2014), MultiArith (Roy791

and Roth, 2015), Svamp (Patel et al., 2021)), Sym-792

bolic (Last Letter Concatenation (Kojima et al.,793

2022)), Common Sense (StrategyQA (Geva et al.,794

2021)), and General Logical Reasoning (Track795

Shuffled Objects (Srivastava et al., 2023)). We im-796

plement the training-test data partitioning adhering797

to the methodology described by (Ho et al., 2023).798

A.2 Rationale generation of Text-davinci-002799

We utilize the prompts described in Ho et al. (2023)800

to generate rationales from Text-davinci-002. The801

key modification involves swapping the positions802

of the rationale and the answer in the few-shot ex-803

emplars, enabling the LLM to leverage the answer804

information during reasoning. In alignment with805

the methodology outlined by Ho et al. (2023), we806

constrain the teacher-generated rationales to a max-807

imum sequence length of 128. Additionally, we808

employ temperature sampling with T=0.7 to gener-809

ate diverse rationales for each sample.810

A.3 Rationale generation of SLM811

The student model predictions are limited to a se-812

quence length of 1024 and greedy decoding is ap-813

plied for SLM across all benchmarks.814

A.4 Training datails815

For SLM training, we configure a batch size of 2,816

an initial learning rate of 1e-5, and a total of 50817

epochs. We evaluate the SLM after each epoch.818

The learning rate follows a cosine annealing sched-819

ule with restarts, incorporating a warm-up phase820

of 1200 steps. We employ the Adam optimizer821

with hyperparameters β1 = 0.9, β2 = 0.95, and822

weight_decay = 0.1 to optimize the model param-823

eters. For search-based chunking, we set η = 0.1,824

as this value can empirically promote stable model825

training. As for the number of chunks M , We as-826

sign M = 4 for all arithmetic reasoning tasks and827

Last Letter Concatenation, and M = 2 for Track828

Shuffled Objects and StrategyQA. The effect of dif-829

ferent M on SLM performance is shown in Figure830

4.831

B Analysis for Non-reasoning Chunks832

We demonstrate the benefits of excluding non-833

reasoning chunks (e.g., transitional or summary834

chunks) from the learning of reasoning chunks af-835

ter chunking, from two perspectives.836

First, we conduct a qualitative analysis, where a837

case and its chunking result after SBC are shown838

[instruction] Please output strictly according to the
format of Example. [example] Question: Alice,
Bob, and Claire are playing a game. At the start
of the game, they are each holding a ball: Alice
has a orange ball, Bob has a purple ball, and Claire
has a pink ball. As the game progresses, pairs of
players trade balls. First, Alice and Claire swap
balls. Then, Bob and Alice swap balls. Finally,
Alice and Claire swap balls. At the end of the
game, Alice has the Which choice is true? Answer
choices: (A) purple ball. (B) orange ball. (C) pink
ball.Why the answer is B. Explanation: 1. Alice-
orange, Bob-purple, Claire-pink ball. 2. Alice-
pink, Bob-purple, Claire-orange. 3. Alice-purple,
Bob-pink, Claire-orange. 4. Alice-orange, Bob-
pink, and Claire-purple. Question:{# question}
Why the answer is {# Answer} Explanation:

Table 5: The prompt for concise rationale.

in the Table 6. The core reasoning tokens in chunk 839

1 and chunk 2 are "17 + 10 = 27" and "27 + 35 840

= 62", while chunk 3 contains no core reasoning 841

tokens, as it serves solely as a summary. There- 842

fore, when excluding non-reasoning chunks from 843

influencing the learning of core reasoning tokens 844

and training reasoning chunks independently, the 845

average share of core reasoning token in reasoning 846

chunks increases compared to their share in the 847

complete rationale. 848

Then, as shown in the Table 7, we randomly sam- 849

pled 50 chunking cases from the AddSub dataset 850

and computed the average proportion of core rea- 851

soning tokens in both the complete rationale and 852

the reasoning chunks. The result quantitatively 853

demonstrates the increase in the average propor- 854

tion of core reasoning tokens within the reasoning 855

chunks. 856

C Naive Method for Oversmoothing 857

There are two naive solutions to solve the over- 858

smoothing problem, namely weighted and refined 859

rationale. Specifically, the first solution involves in- 860

creasing the loss weight for core reasoning tokens 861

in the rationale, while the second solution focuses 862

on designing prompts to guide the LLM in generat- 863

ing refined rationales with minimal non-reasoning 864

content. 865

In this work, we evaluate the feasibility of these 866

two solutions using the Track Shuffled Objects 867

(TSO) dataset. For the weighted solution, we lever- 868
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Question: Alyssa picked 17 plums and Jason picked 10 plums . Melanie picked 35 pears . How many
plums were picked in all ?
Rationale: Alyssa picked 17 plums. Jason picked 10 plums. 17 + 10 = 27 plums. Melanie picked 35 pears.
27 + 35 = 62 There were 62 fruits picked in all.

chunk 1: Alyssa picked 17 plums. Jason picked 10 plums. 17 + 10 = 27 plums.

chunk 2: Melanie picked 35 pears. 27 + 35 = 62.

chunk 3: There were 62 fruits picked in all.

Table 6: Analysis of chunk result. Since chunk 3 is just a summary statement, the average proportion of core
reasoning tokens in reasoning chunks (chunk 1 and 2) is greater than that in the complete rationale.

Full Rationale Reasoning Chunks

Proportion 8.93 % 12.16 %

Table 7: Comparison between the proportion of core
reasoning tokens in the reasoning chunk and that in the
complete rationale.

GPT2-base (124M)

Base Base w. Weight Base w. Refine

TSO 37.33 36.88 43.11

GPT2-medium (355M)

TSO 41.77 42.22 36.88

Table 8: The accuracy of different methods on TSO.
Base refers to Ho et al. (2023) without diverse rationale.
Base w. Weight and Base w. Refine represent the two
naive solutions to address the oversmoothing problem.

age tokens from key exchanging results in every869

step as the most core reasoning tokens in the ra-870

tionale. Subsequently, the loss weight for these871

core tokens is doubled compared to the remain-872

ing tokens. For the refined rationale solution, we873

design prompts (shown in the Table 5) to guide874

the LLM GPT-3.5-Turbo in generating the most875

concise rationales.876

The results of both solutions are presented in877

the Table 8. The results indicate that the weighted878

solution performs similarly to the baseline, sug-879

gesting its effectiveness is limited. Moreover, even880

if this solution exhibits some effectiveness, its ap-881

plicability is limited, as not all tasks can identify882

core reasoning tokens through artificial rules, as in883

TSO. The refined rationale solution demonstrates884

effectiveness for smaller model sizes. However, for885

larger model sizes, the reduced information content886

compared to normal rationales leads to overfitting,887

resulting in performance inferior to the baseline.888

D Sentence-wise and step-wise training 889

In addition to partitioning into a fixed number of 890

chunks, we also segment the rationale by sentences 891

or reasoning steps, enabling the SLM to learn only 892

one sentence or reasoning step per training iteration. 893

For both approaches, we evaluate two schemes: one 894

incorporating prefixes like the CWT with AC and 895

one without prefixes. The detailed results of these 896

approaches on the TSO dataset are presented in 897

the Table 12. As shown, the performance of all 898

approaches exhibits a decline. The Table 13 also 899

highlights the most frequent failure cases for these 900

schemes. It can be observed that these schemes 901

often generate repetitive reasoning steps until the 902

maximum generation length is reached. This oc- 903

curs because the number of chunks resulting from 904

sentence- or step-based segmentation is typically 905

variable, making it challenging for the SLM to de- 906

termine the required number of reasoning steps for 907

different problems after chunk-wise training. 908

E Extension of Ablation study 909

We further conduct extensive ablation experiments 910

on SLMs with varying parameters. The results are 911

presented in the Table 9 and Table 10. The results 912

demonstrate that the proposed strategy performs 913

effectively across various conditions. 914

F Extension of Comparison with Other 915

Methods 916

The training time and GPU memory overhead of 917

different strategies is shown in the Table 11. 918

Since chunking reduces the context length pro- 919

cessed during each forward propagation, CWT and 920

STT offer a unique advantage during training, that 921

is, they require less GPU memory compared to 922

other methods. 923

The increase in training time primarily results 924

from the data chunking strategy. First, assuming 925
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Methods
GPT2-medium (355M) T5-base (220M)

SE AD MA SVAMP TSO LLC SQA SE AD MA Svamp TSO LLC SQA

Base 11.84 15.96 18.88 10.00 67.11 24.00 59.24 6.57 10.92 17.22 10.66 71.11 64.66 54.87
Base w. AC 11.18 17.64 17.22 10.00 76.00 26.66 60.64 8.55 11.76 16.11 12.66 77.33 74.00 60.11

Base w. SBC 12.50 19.32 19.44 10.66 87.11 28.66 61.13 9.21 13.44 17.77 13.33 93.33 79.33 60.98
Base w. SkipALL 11.84 19.32 18.88 10.33 100.00 14.66 61.42 8.55 12.60 17.77 11.66 99.55 39.33 62.01

Based w. STT 15.78 21.01 20.00 11.33 100.00 30.66 62.15 10.52 15.96 19.44 13.33 100.00 82.66 62.44
Methods GPT2-large (774M) T5-large(700M)

Base 13.15 15.96 20.00 11.00 68.88 25.33 60.84 9.21 14.28 17.77 12.33 92.44 76.66 57.64
Base w. AC 12.50 16.80 21.11 12.33 85.77 27.33 61.57 8.55 15.96 13.88 13.33 95.08 81.33 61.71

Base w. SBC 16.44 17.64 23.33 14.00 94.66 28.66 62.44 10.52 16.80 19.44 14.00 100.00 82.66 63.75
Base w. SkipAll 15.78 17.64 21.66 13.33 100.00 14.66 62.88 9.86 15.96 18.88 13.66 100.00 54.66 63.75

Based w.STT 17.10 19.32 24.44 15.00 100.00 30.66 63.31 12.50 17.64 21.11 14.66 100.00 85.33 64.04

Table 9: The performance of SLM under different models and different training strategies

Llama3.2-1B

Base Base w. AC Base w. SBC Base w. SkipALL Base w. STT

GSM8K 52.23 49.88 54.66 52.38 55.26

Llama3.2-3B

GSM8K 79.15 77.25 79.52 79.30 80.21

Table 10: The performance of more advanced SLM on
more complex dataset GSM8K Cobbe et al. (2021).

CoT-Finetuing Scott Step-by-Step ICoT-SI Ours

Training Time(Hour) 11 16 16 10 23

Training GPU Usage (G) 8 13 13 8 6

Table 11: Comparison of the average training costs
required for different distillation strategies across all
datasets we used. The student SLM here is GPT2-base.

a chunk contains k sentences, SBC involves M al-926

location steps, with each step generating sentence927

combinations at a complexity of O(k), resulting in928

a total complexity of O(kM) for SBC. In addition,929

STT involves the removing operater to M chunks930

when constructing training data, whose complexity931

is O(M). Although both chunking and remov-932

ing are linear complexity, they will bring a little933

additional training time compared to the baseline.934

Second, chunking increases the amount of training935

data. In theory, compared to other methods, CWT936

requires approximately M + 1 times the training937

time, while STT requires about numi × (M + 2)938

times the training time, where numi refers to the it-939

eration number for performing STT. In practice, the940

model does not require such an extensive amount of941

data to converge. Therefore, we apply an early stop-942

ping strategy, terminating training if accuracy does943

not improve for 10 consecutive epochs within itera-944

tions or STT achieves no improvement compared945

with the previous iteration. Under this setting, the946

proposed method requires approximately twice the 947

training time compared to other methods. 948

G Case study 949

G.1 Core reasoning tokens 950

Figure 6 presents six cases across different types 951

of benchmarks, demonstrating the improvement in 952

the SLM’s core reasoning logic following CWT 953

training. 954

G.2 Comparsion between AC and SBC 955

The Figure 7 illustrates the differences in chunk di- 956

vision results between AC and SBC. As shown, the 957

SBC division results in chunks with more coherent 958

internal semantics. 959

G.3 The case for skip-thinking. 960

Figure 8 demonstrates that skip-thinking reduces 961

the risk of SLM’s hallucinations in rationale gener- 962

ation compared to full-thinking. 963

H Avoiding local optima 964

As discussed in the section 6, SBC may sometimes 965

fall into local optima, which remains a limitation of 966

this approach. However, we emphasize that, lever- 967

aging the inherent capabilities of language mod- 968

els and the relative stability of sentence semantics, 969

the overall results of SBC-based chunking are at 970

least as effective as those obtained through average 971

chunking. This is indirectly reflected in Table 1 of 972

the original paper, where the accuracy of "Base w. 973

SBC" is consistently greater than or equal to that of 974

"Base w. AC." 975

Additionally, in the section 6, we discuss several 976

approaches to mitigate SBC’s local optima issue, 977

such as simulated annealing (SA). To intuitively 978
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Question: Henry had 11 dollars. For his birthday he got 18 more dollars but spent 10 on a new game. How much money does he have now? Answer: 19
Rationale of base: Henry had 11 dollars. For his birthday, he got 18 more dollars. That means he had 29 dollars in total. But he spent 10 on a new game. That means he has 18 less dollars.
That means he has 29 - 10 = 18 dollars left. Therefore, the answer is 18. Answer of base: 18
Rationale of SBC: First, Henry had 11 dollars. Then, he got 18 more dollars for his birthday, so he had 29 dollars in total. However, he spent 10 dollars on a new game, so he has 19 dollars
left. 19 Answer of SBA: 19

(a) case 1.

Question: There are some baskets of peaches. Each basket has 4 red peaches and 3 green peaches. If there are a total of 7 peaches in all baskets How many baskets of peaches are there?
Answer: 1.0

Rationale of base: There are a total of 7 peaches in all baskets. Each basket has 4 red peaches and 3 green peaches. If there are a total of 7 peaches in all baskets, then there are 7 groups of
4 red peaches and 3 green peaches. Therefore, there are 2 baskets of peaches in all baskets. Therefore, the answer is 2.0. Answer of base: 2.0
Rationale of SBC: There are 7 baskets. Each basket has 4 red peaches and 3 green peaches. Therefore, there are 1 basket of peaches. 1.0 Answer of SBA: 1.0

(b) case 2.

Question:Mary picked 122 oranges and Jason picked 105 oranges from the orange tree . How many oranges were picked in total ? Answer: 227
Rationale of base:Mary picked 122 oranges. Jason picked 105 oranges. How many oranges were picked in total? There were a total of 252 oranges picked. Therefore, the answer is 252

Answer of base: 252
Rationale of SBC: First, we need to find out how many oranges were picked in total. To do this, we add up the number of oranges that each person picked. So, we have 122 + 105 = 227
oranges. 227 Answer of SBA: 227

(c) case 3.

Question: Take the last letters of each words in "Garry Arielle Elba Rodney" and concatenate them. Answer: yeay
Rationale of base: The last letter of "Garry" is "y". The last letter of "Arielle" is "e". The last letter of "Elba" is "a". The last letter of "Rodney" is "y". So the final answer is "yeaa".
Therefore, the answer is yeaa. Answer of base: yeaa
Rationale of SBC: The last letter of "Garry" is "y". The last letter of "Arielle" is "e". The last letter of "Elba" is "a". The last letter of "Rodney" is "y". So the final answer is "yeay". yeay

Answer of SBA: yeay

(d) case 4.

Question: Alice, Bob, and Claire are dancers at a square dance. At the start of a song, they each have a partner: Alice is dancing with Rodrigo, Bob is dancing with Jamie, and Claire is
dancing with Izzi. Throughout the song, the dancers often trade partners. First, Bob and Alice switch partners. Then, Claire and Alice switch partners. Finally, Bob and Claire switch partners.
At the end of the dance, Claire is dancing with Which choice is true? Answer choices: (A) Rodrigo, (B) Jamie, (C) Izzi. Answer: A
Rationale of base: First, Bob and Alice switch partners. So, at the end of this step, Alice is dancing with Jamie and Bob is dancing with Rodrigo. Then, Claire and Alice switch partners. So,
at the end of this step, Alice is dancing with Izzi and Claire is dancing with Jamie. Finally, Bob and Claire switch partners. So, at the end of this step, Bob is dancing with Izzi and Claire is
dancing with Rodrigo. Therefore, the answer isC. Answer of base: C
Rationale of SBC: At the start of the song, Alice is dancing with Rodrigo, Bob is dancing with Jamie, and Claire is dancing with Izzi. First, Bob and Alice switch partners. This means that
now Alice is dancing with Jamie and Bob is dancing with Rodrigo. Then, Claire and Alice switch partners. This means that now Alice is dancing with Izzi and Claire is dancing with Jamie.
Finally, Bob and Claire switch partners. This means that now Claire is dancing with Rodrigo and Bob is dancing with Jamie. A Answer of SBA: A

(e) case 5.

Question: Is 3D printing able to make adenovirus? Answer: No
Rationale of base:Can 3D print anything? Yes. Can adenovirus be made? Yes. Therefore, 3D printing can make adenovirus. Therefore, the answer is Yes. Answer of base: Yes
Rationale of SBC: 3D printing can create things. Adenoviruses are small, virus-like organisms that can only replicate inside the cells of a living organism. So, it is unlikely that 3D printing
could create adenovirus. No Answer of SBA: No

(f) case 6.

Figure 6: The case for core reasoning tokens.

demonstrate its effectiveness in mitigating SBC’s979

local optima, we integrate simulated annealing into980

the SBC method by introducing a temperature pa-981

rameter T = 0.1, allowing a certain probability of982

accepting suboptimal partitions identified by SBC983

to prevent getting stuck in local optima. As shown984

in the Table 14, simulated annealing effectively985

mitigates SBC’s local optima issue, leading to im-986

proved model performance.987
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Question: Rachel had to complete 4 pages of reading homework, 7 pages of math homework and 19 more pages of biology homework. How many more pages of math homework than
reading homework did she have?
Rationale of LLM: First, we need to find out how many pages of homework she had in total. \n4 + 7 + 19 = \n30\nNext, we need to find out how many pages of reading homework she had.
\n4 \nThen, we need to find out how many pages of math homework she had. \n7 \nLast, we need to find out how many more pages of math homework she had than reading homework. \n7 -
4 = \n3
AC:
< First, we need to find out how many pages of homework she had in total. 4 + 7 + 19 = > < 30 Next, we need to find out how many pages of reading homework she had. > < 4 Then,
we need to find out how many pages of math homework she had. > < 7 Last, we need to find out how many more pages of math homework she had than reading homework. 7 - 4 = 3>
SBC:
< First, we need to find out how many pages of homework she had in total. 4 + 7 + 19 = 30 > < Next, we need to find out how many pages of reading homework she had. 4 > < Then,
we need to find out how many pages of math homework she had. 7> < Last, we need to find out how many more pages of math homework she had than reading homework. 7 - 4 = 3 >

(a) case 1.

Question: Alyssa picked 17 plums and Jason picked 10 plums . Melanie picked 35 pears . How many plums were picked in all ?
Rationale of LLM: Alyssa picked 17 plums. \nJason picked 10 plums. \n17 + 10 = 27 plums. \nMelanie picked 35 pears. \n27 + 35 = 62 \nThere were 62 fruits picked in all.
AC:<[Alyssa picked 17 plums. > <Jason picked 10 plums. > <17 + 10 = 27 plums. > < Melanie picked 35 pears. 27 + 35 = 62. There were 62 fruits picked in all.]
SBC:
< Alyssa picked 17 plums. Jason picked 10 plums. 17 + 10 = 27 plums. > < Melanie picked 35 pears. 27 + 35 = 62. > < There were 62 fruits picked in all. > < >

(b) case 2.

Question: Take the last letters of each words in "Martin Sage Tanisha Rick" and concatenate them.
Rationale of LLM: If we split the string into a list of words, we get:\n ['Martin', 'Sage', 'Tanisha', 'Rick']\nFrom there, we can take the last letter of each word using indexing:\n['n', 'e', 'a',
'k']\nLastly, we can concatenate these letters together into a string:\n'neak'
AC:
< If we split the string into a list of words, we get:> <['Martin', 'Sage', 'Tanisha', 'Rick’> < From there, we can take the last letter of each word using indexing:> <['n', 'e', 'a', 'k’] Lastly,
we can concatenate these letters together into a string: 'neak’>
SBC:
< If we split the string into a list of words, we get: ['Martin', 'Sage', 'Tanisha', 'Rick’]> < From there, we can take the last letter of each word using indexing: ['n', 'e', 'a', ‘k’]> < Lastly, we
can concatenate these letters together into a string: ['n', 'e', 'a', 'k’] > <>

(c) case 3.

Question: Alice, Bob, and Claire are holding a white elephant gift exchange. At the start of the event, they are each holding a present of a different color: Alice has a yellow present, Bob
has a brown present, and Claire has a blue present. As the event progresses, pairs of people swap gifts. First, Bob and Alice swap their gifts. Then, Claire and Alice swap their gifts. Finally,
Bob and Alice swap their gifts. At the end of the event, Claire has the Which choice is true? Answer choices: (A) yellow present, (B) brown present, (C) blue present.
Rationale of LLM: First, Bob and Alice swap gifts. This means that: \n-Alice now has the brown present \n-Bob now has the yellow present \nNext, Claire and Alice swap gifts. This means
that: \n-Alice now has the blue present \n-Claire now has the brown present \nFinally, Bob and Alice swap gifts again. This means that: \n-Alice now has the yellow present \n-Bob now has
the blue present \nTherefore, Claire has the brown present at the end of the event.
AC:
<First, Bob and Alice swap gifts. This means that:> <-Alice now has the brown present> <-Bob now has the yellow present> <Next, Claire and Alice swap gifts. This means that: -
Alice now has the blue present -Claire now has the brown present Finally, Bob and Alice swap gifts again. This means that: -Alice now has the yellow present -Bob now has the blue present
Therefore, Claire has the brown present at the end of the event.>
SBC:
< First, Bob and Alice swap gifts. This means that: -Alice now has the brown present -Bob now has the yellow present Next, Claire and Alice swap gifts.> < This means that: -Alice now
has the blue present> < -Claire now has the brown present Finally, Bob and Alice swap gifts again. > < This means that: -Alice now has the yellow present -Bob now has the blue present
Therefore, Claire has the brown present at the end of the event. >

(d) case 4.

Figure 7: The case for SBC. <·> represents a chunk.

Base Base w. sent Base w. sent prefix Base w. step Base w. step prefix

TSO 37.33 7.11 27.11 14.22 30.22

Table 12: The accuracy of training the SLM using rationale partitioning methods with varying granularities.

Question: Alice, Bob, and Claire are dancers at a square dance. At the start of a song, they each have a
partner: Alice is dancing with Ophelia, Bob is dancing with Rodrigo, and Claire is dancing with Patrick.
Throughout the song, the dancers often trade partners. First, Bob and Alice switch partners. Then, Claire
and Bob switch partners. Finally, Claire and Alice switch partners. At the end of the dance, Bob is dancing
with Which choice is true? Answer choices: (A) Rodrigo. (B) Ophelia. (C) Patrick.
Rationale: Sure, let’s break it down step by step. At the start of a song, Alice is dancing with Ophelia,
Bob is dancing with Rodrigo, and Claire is dancing with Patrick. After the first partner switch, Bob is now
dancing with Ophelia and Alice is dancing with Rodrigo. After the secend partner switch, ..., After the
third partner switch, ..., After the third partner switch, ..., After the third partner switch, ...

Table 13: The base case for sentence-wise and step-wise training.
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SE AD MA Svamp TSO LLC SQA

Base w. SBC 8.55 10.92 17.77 11.33 100.00 25.33 59.38

Base w. SBC &SA 10.52 11.76 18.88 12.33 100.00 26.00 59.53

Table 14: Effect of integrating simulated annealing into SBC. The student SLM is GPT2-base.

Question: Jenny ran 0.6 of a mile and walked 0.4 of a mile. How much farther did Jenny run than walk? Answer: 0.2
Rationale of SBC: We know that Jenny ran 0.6 of a mile and walked 0.4 of a mile. This means that she ran 4/10th of a mile and walked 3/10th of a mile. 3. 0

Answer of SBC: 3.0
Rationale of Skip: [thought] This means that Jenny ran 0.2 miles farther than she walked. 0.2

Answer of Skip: 0.2

(a) case 1.

Question: Is Sirius part of a constellation of an animal? Answer: Yes
Rationale of SBC: There are many different types of animals, so it is impossible to say which is the first or the last. However, there are many different types of companions, so it is
also impossible to say which is the first companion. There are many different types of pets, so it is also impossible to say which is the first pet. No Answer of SBC: No
Rationale of Skip: [thought] So, based on what we know, we can conclude that Sirius is part of a constellation of an animal. Yes Answer of Skip: Yes

(b) case 2.

Figure 8: The case for Skip-thinking.

16


	Introduction
	Related works
	CoT distillation
	CoT acceleration

	Preliminary
	Method
	Chunk data generator
	Average chunking
	Search-based chunking

	Skip data generator
	Testing

	Experiments
	Experimental setting
	Ablation experiments for Q1
	Comparison with Other Methods for Q2
	Validate CWT for Q3
	Validate Skip-thinking for Q4

	Conclusion
	Experimental Details
	Datsets
	Rationale generation of Text-davinci-002
	Rationale generation of SLM
	Training datails

	Analysis for Non-reasoning Chunks
	Naive Method for Oversmoothing
	Sentence-wise and step-wise training
	Extension of Ablation study
	Extension of Comparison with Other Methods
	Case study
	Core reasoning tokens
	Comparsion between AC and SBC
	The case for skip-thinking.

	Avoiding local optima

