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Abstract

Scientists are often interested in estimating an association between a covariate1

and a binary- or count-valued response. For instance, public health officials are2

interested in how much disease presence (a binary response per individual) varies3

as temperature or pollution (covariates) increases. Many existing methods can be4

used to estimate associations, and corresponding uncertainty intervals, but make5

unrealistic assumptions in the spatial domain. For instance, they incorrectly assume6

models are well-specified. Or they assume the training and target locations are i.i.d.7

— whereas in practice, these locations are often not even randomly sampled. Some8

recent work avoids these assumptions but works only for continuous responses9

with spatially constant noise. In the present work, we provide the first confidence10

intervals with guaranteed asymptotic nominal coverage for spatial associations11

given discrete responses, even under simultaneous model misspecification and12

nonrandom sampling of spatial locations. To do so, we demonstrate how to handle13

spatially varying noise, provide a novel proof of consistency for our proposed14

estimator, and use a delta method argument with a Lyapunov central limit theorem.15

We show empirically that standard approaches can produce unreliable confidence16

intervals and can even get the sign of an association wrong, while our method17

reliably provides correct coverage.18

1 Introduction19

Estimating associations between spatial variables and a binary- or count-valued response is fun-20

damental across scientific disciplines. For instance, researchers are interested in (a) how much21

cardiovascular disease (a binary response per individual) increases with air pollution in Chinese22

cities (Zhao et al., 2015), (b) how the number of hospital admissions (a count-valued response per23

hospital) increases with temperature in European cities (Michelozzi et al., 2009), and (c) the extent to24

which ozone exceeding health guidance (a binary outcome) increases with meteorological variables25

in major cities in Texas (Vizuete et al., 2022). Moreover, quantifying uncertainty in these associations26

is fundamental for scientific and public health decision-making.27

There are two natural approaches. (A) We might fit a highly flexible classifier — e.g., a transformer28

(Vaswani et al., 2017), or gradient-boosted tree (Chen and Guestrin, 2016) — and then apply a post29

hoc interpretability method (e.g. Lundberg and Lee, 2017; Ribeiro et al., 2016). But data in these30

applications are often very sparse in space, so we might hope to estimate an association well even31

when prediction quality could be very poor. (B) We might fit an interpretable model to start. For32

instance, when the response is continuous, Buja et al. (2019a) argue that a linear model can be used to33

estimate associations even when the data are highly nonlinear — that is, even when the linear model34

is (potentially very) misspecified.35
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Additional challenges arise in the applications described, though. Namely, the spatial locations where36

we want to draw inferences need not align well with the locations where we have data. E.g., in37

example (c) above, scientists have access to sensors across the state but are interested in associations38

in major Texas cities. Moreover, neither the training nor target locations are random. E.g., in Texas,39

air pollution monitor placement is decided by state and local governments under regulatory constraints40

from the United States Environmental Protection Agency. And major Texas cities are not randomly41

sampled from a larger population. For continuous responses, Burt et al. (2025a) address these42

concerns; they provide confidence intervals that maintain nominal coverage over spatial associations,43

even when training and target spatial locations can be nonaligned and nonrandom.44

However, their method requires continuous responses with homoskedastic (spatially constant) noise.45

In all of the applications discussed above, and many other spatial analyses, the response is binary- or46

count-valued, and so the noise is heteroskedastic in space. To instead provide confidence intervals for47

binary- or count-valued data, we might naturally think to apply the delta method (van der Vaart, 1998,48

Chapter 3) to the estimator from Burt et al. (2025a). However, the delta method requires a consistent49

point estimate. In the present work, we show that the point estimate from Burt et al. (2025a) is not50

generally consistent.51

Therefore, we need both a new estimator, as well as a new confidence interval, for the binary- and52

count-valued response setting. We provide these in the present work. Along the way, we also provide53

an estimator and asymptotically valid confidence intervals for continuous responses with spatially54

varying noise. In particular, we suggest a new point estimate inspired by Buja et al. (2019a), Buja55

et al. (2019b), Burt et al. (2025b), and Burt et al. (2025a); our estimate starts from a (misspecified but56

interpretable) generalized linear model (GLM) but takes into account nonrandom and nonaligned57

sampling of spatial locations. We show that in an infill asymptotic setting, where we have a sequence58

of spatial locations that eventually becomes dense in space but may not be sampled from any59

probability measure, our estimator is consistent. This consistency requires adaptivity; we demonstrate60

that the estimator of Burt et al. (2025a) and standard GLM point estimates using the training data are61

generally not consistent in this setting. We establish asymptotic normality of our estimator under62

conditions strictly more general than assuming training locations are sampled from a distribution63

supported around target locations. Our approach requires a Lyapunov central limit theorem applicable64

to non-identically distributed data. We propose a new, computationally efficient variance estimator65

suitable for problems with spatially varying noise and prove its consistency under infill asymptotics.66

Combining these results, we propose confidence intervals that can be computed efficiently from the67

available data, and prove that these confidence intervals are asymptotically conservative.68

Our simulations demonstrate that existing methods can lead to fundamentally incorrect conclusions. In69

some cases, all baseline confidence intervals achieve zero empirical coverage and produce associations70

with the wrong sign while excluding zero. Our method consistently achieves coverage at or above the71

nominal level and never produces wrong-signed associations with confidence intervals excluding zero.72

Importantly, one simulation requires extrapolation, demonstrating that even when infill assumptions73

are unrealistic, our approach often provides conservative uncertainty estimates.74

2 Setup and Background75

We first describe our data and data-generating process. Then we describe our (misspecified) model76

and estimand. Our assumed data-generating process and estimand in this section are similar to those77

in Burt et al. (2025a). Our estimator, theory, and experiments form our major contributions (in78

subsequent sections) and are substantially different from Burt et al. (2025a).79

2.1 Data-Generating Process80

The training data consist of N fully observed triples (Sn, Xn, Yn)
N
n=1, with spatial location Sn ∈ S ,81

covariate Xn ∈ RP , and response Yn ∈ Y ⊂ R. While our motivation and experiments focus82

on Y = {0, 1} (binary-valued) or Y = N (count-valued), our treatment also handles Yn ∈ R. S83

represents geographic space; we assume S is a metric space with metric dS . We collect the training84

covariates in the matrix X ∈ RN×P and the training responses in the N -tuple Y ∈ YN .85

The target data consist of M pairs (S⋆
m, X⋆

m)Mm=1, with S⋆
m ∈ S, X⋆

m ∈ RP . The corresponding86

responses {Y ⋆
m}Mm=1 are unobserved. We collect target covariates in X⋆ ∈ RM×P and unobserved87
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target responses in a tuple Y ⋆ ∈ YM . Our goal is to use the training data to estimate associations88

between covariates and responses at these new target locations.89

Similar assumptions to past work. Our first three assumptions follow Burt et al. (2025a) in allowing90

a smooth, nonparametric relationship between spatially varying variables. We start by assuming that91

both training and target covariates are fixed functions of spatial location. This assumption is most92

natural when covariates represent environmental or meteorological measurements taken at specific93

times, or averaged over a time period.94

Assumption 1 (Burt et al. (2025a), Assumption 1). There exists a (deterministic) function χ : S →95

RP such that X⋆
m = χ(S⋆

m) for 1 ≤ m ≤ M and Xn = χ(Sn) for 1 ≤ n ≤ N .96

As in Burt et al. (2025a), we assume that the conditional expectation of the response can be written as97

E[Yn|Xn, Sn] = g(Xn, Sn), for some nonparametric function g. Under Assumption 1, the covariates98

are themselves fixed functions of location, so we can define f : S → R, f(S) = g(χ(S), S). In other99

words, f maps each spatial location directly to the expected value of the response at that location.100

Importantly, unlike Burt et al. (2025a, Assumption 2), we do not assume homoskedastic, Gaussian101

noise; we instead allow spatially varying noise and discrete response variables.102

Assumption 2. There exists a function f : S → R such that for all m ∈ {1, . . . ,M},E[Y ⋆
m|S⋆

m] =103

f(S⋆
m) and for all n ∈ {1, . . . , N},E[Yn|Sn] = f(Sn). Moreover, Y ⋆

m|S⋆
m and Yn|Sn are indepen-104

dent for all 1 ≤ m ≤ M and 1 ≤ n ≤ N .105

Assumption 3 encodes the idea that nearby points in space have similar expected responses. Intuitively,106

it rules out arbitrarily sharp changes in f across very small spatial distances. This pattern is common107

in environmental and geostatistical data, where smooth spatial variation is a natural prior belief.108

Assumption 3 (Burt et al. 2025a, Assumption 4). The conditional expectation of the response, f , is an109

L-Lipschitz function from (S, dS) → (R, | · |). That is, for any s, s′ ∈ S , |f(s)−f(s′)| ≤ LdS(s, s
′).110

New data-generating process assumptions. Because we do not assume spatially constant Gaussian111

errors on the responses, we need assumptions that control the tail behavior of the possible responses.112

Our next three assumptions concern higher moments of the response as a function of spatial location.113

Specifically, we assume that we can define a conditional variance function and a conditional fourth114

central moment function, and that these functions are bounded (and, for the variance, continuous).115

These conditions are generally quite mild. For binary responses, these assumptions hold automati-116

cally: the variance is bounded because the outcome is bounded, and continuity of the mean (from117

Assumption 3) already implies continuity of the variance. For count and continuous responses, it is118

natural to expect that the probability mass or density of the outcome varies smoothly across space.119

This intuition is even stronger than required here, since smoothness of the probability distribution120

implies continuity of the variance. Finally, for any uniformly bounded response, both the bounded121

variance (Assumption 4) and bounded fourth moment (Assumption 6) conditions follow immediately.122

Assumption 4. There exists a conditional variance function ρ2 : S → [0,∞) defined by ρ2(s) =123

E[(Y (S)− f(S))2|S = s], and this function is uniformly bounded by a constant BY .124

Assumption 5. The function ρ2 from Assumption 4 is continuous on S.125

Assumption 6. There exists a conditional fourth central moment function α : S → [0,∞) defined by126

α(s) = E[(Y (S)− f(S))4|S = s], and this function is uniformly bounded by a constant C.127

2.2 Model and Estimand128

Generalized linear model coefficients describe the direction and magnitude of the associations between129

covariates and discrete response variables, and will be our inferential target. A (well-specified) GLM130

assumes that — for a covariate-response pair (x, y) — the distribution of the response y has probability131

mass function h(y; θ) = c(y) exp(θy−κ(θ)), θ = xTβ⋆ (Nelder and Wedderburn, 1972; McCullagh132

and Nelder, 1989) where θ is the canonical parameter, κ is the cumulant generating function, c(y) is133

a base measure, and β⋆ are the true regression coefficients. κ is convex and infinitely differentiable.134

The data log-likelihood is135

ℓ(β;Y ) = C +

N∑
n=1

XT
n βYn − κ(XT

n β), (1)
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where C is a term that does not depend on β. Under a well-specified model with independent and136

identically distributed (i.i.d.) data and mild regularity conditions, the maximum likelihood estimator137

obtained by maximizing Eq. (1) converges to the true coefficients β⋆ (Wald, 1949). In contrast,138

when the model is misspecified, maximizing the log-likelihood instead yields the coefficients that139

minimize the Kullback–Leibler (KL) divergence between the model and the true data-generating140

process (White, 1982). In either case, the estimator is asymptotically normal. We discuss the use of141

asymptotic normality to construct confidence intervals for parameters in well-specified GLMs, as142

well as other approaches for constructing confidence intervals in GLMs in Appendix B.143

Our Maximum Likelihood Estimand. Our goal is to describe how covariates are associated with144

the response variable at the target locations, using data observed at the training locations. Because145

these two sets of locations may differ, we define our estimand as the parameter in the (parametric)146

GLM family considered that provides the best approximation to the true response process at the target147

distribution of locations. This generalizes the least squares approach considered in Burt et al. (2025a)148

to other (non-Gaussian) exponential families and follows the general framework of fitting parametric149

models as ‘projections’ outlined in Buja et al. (2019b, §2.1). Formally, we define the population150

maximum likelihood parameter conditional on the target locations as151

βMLE = arg max
β∈RP

M∑
m=1

E[log h(Y ⋆
m;X⋆T

m β)|S⋆
m]. (2)

In Appendix A, we show that βMLE equivalently minimizes the Kullback–Leibler divergence between152

the data-generating process and the GLM family, conditional on the distribution over locations taken153

to be the target distribution.154

Assumption 7. There exists a parameter βMLE solving Eq. (2), and the corresponding population155

log-likelihood is strictly concave in an open neighborhood containing βMLE.156

Assumption 7 guarantees uniqueness of the estimator and ensures that the Hessian of the log-likelihood157

is positive definite at βMLE. In the case of linear models, a necessary and sufficient condition is that158

X⋆ is full-rank (c.f. Burt et al., 2025a, Assumption 4). More generally, it is necessary that X⋆ is full159

rank, though not always sufficient. Intuitively, this condition prevents attempting to estimate more160

parameters than there are independent pieces of information at the target sites. In what follows, we161

focus on inference — both point estimates and confidence intervals — for individual parameters of162

interest, βMLE
p = eTp β

MLE, where ep ∈ RP is the unit vector selecting the pth component (i.e., with a163

single 1 at entry p and 0 elsewhere).164

3 Inference for Misspecified GLMs Under Infill Asymptotics165

In this section, we describe our procedure for inference in generalized linear models with misspecifi-166

cation and nonrandom spatial sampling.167

Overview of Inference Strategy. A desirable property for an estimator is consistency: with enough168

training data, the estimator should converge to the estimand, the true underlying quantity of interest.169

In our spatial setting, however, it is not just the amount of training data that matters, but also where170

the data are located. This naturally leads to the framework of infill asymptotics, which considers the171

case where increasingly many training points are observed in the neighborhoods of the fixed target172

locations. In Section 3.1, we show that existing methods are not necessarily consistent even in this173

idealized setting, and propose an estimator that is. While estimating an association consistently is174

reassuring for many scientific applications, it is also important to quantify uncertainty about the quality175

of this point estimate. In Section 3.2, we use a Lyapunov central limit theorem (for non-identically176

distributed data) to show our point estimate is asymptotically normal. This allows us to construct177

confidence intervals around our point estimate that are asymptotically valid. These confidence178

intervals depend on the (unknown) variance of the response at the target locations. We propose a179

computationally efficient estimator for this spatially varying variance, and prove its consistency under180

infill asymptotics.181

3.1 Consistency under Infill Asymptotics182

We adopt the infill asymptotic framework of, e.g., Cressie (2015, §5.8) and Burt et al. (2025b, §3).183
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Definition 1 (Infill Asymptotics). Given a (fixed) set of target locations (S⋆
m)Mm=1, a sequence of184

training locations (Sn)
∞
n=1 satisfies infill asymptotics with respect to (S⋆

m)Mm=1 if, for all 1 ≤ m ≤ M ,185

and any open neighborhood Um containing S⋆
m, |{n ∈ N : Sn ∈ Um}| = ∞.186

Intuitively, infill asymptotics requires that around each target location, the training set becomes187

arbitrarily dense as the sample size grows. In Appendix C we give an example showing that even188

under favorable conditions — Gaussian noise and smooth response surface — both the point estimate189

based on 1-nearest-neighbor considered in Burt et al. (2025a) and the ordinary least squares estimate190

can fail to achieve consistency under infill asymptotics with model misspecification.191

A Consistent Estimator under Infill Asymptotics. We develop an estimator that is consistent192

under infill asymptotics. Our approach builds on the intuition of Burt et al. (2025a), who proposed193

borrowing training responses to estimate (unobserved) responses at target locations. However, the194

key modification we introduce to ensure consistency is to allow the number of neighbors used for195

borrowing to grow adaptively with the size of the training set. Burt et al. (2025b) relied on a similar196

adaptive construction to show consistency in the simpler setting of mean estimation.197

Define the function τ : RM → RP , τ(A) = argmaxβ∈RP

∑M
m=1 X

⋆T
m βAm − κ(X⋆T

m β). The198

estimand (Eqs. (1) and (2)) is βMLE = τ(E[Y ⋆|S⋆]). Our strategy is to average information from199

responses near each target point to build an estimator, Â, for E[Y ⋆|S⋆]. And then to use τ(Â) as200

an estimator for βMLE. To instantiate this, we follow Burt et al. (2025a, Definition 10) and use a201

nearest-neighbor weighting scheme.202

Definition 2 (Nearest-Neighbor Weight Matrix). Given training locations (Sn)
N
n=1, target locations203

(S⋆
m)Mm=1, and a fixed kN ∈ N, define the kN -nearest-neighbor weight matrix by204

ΨN,kN
mn =

{
1/kN Sn ∈ {kN closest training locations to S⋆

m}
0 otherwise.

(3)

For definiteness, we assume that, if multiple training locations are equidistant from a target, ties are205

broken uniformly at random.206

This yields an estimator that we can calculate from the observed data:207

β̂N,kN = τ(ΨN,kNY ) = arg max
β∈RP

M∑
m=1

X⋆T
m β(ΨN,kNY )m − κ(X⋆T

m β). (4)

Burt et al. (2025a) proposed the same estimator with kN = 1, so that each target location borrows208

information only from its closest training neighbor. While this approach may be adequate empirically209

when the number of target locations is large, Counterexample 1 shows that it fails to deliver consis-210

tency under infill asymptotics. Since consistency of β̂N is a prerequisite for establishing asymptotic211

normality of our estimator, a more robust choice of kN is required. We propose an adaptive rule for212

selecting kN : the key idea is to gradually increase the number of neighbors whenever the current213

neighbors (including the newly observed training location) are all sufficiently close to the target sites.214

Theorem 1. Fix any M ∈ N and (S⋆
m)Mm=1. Let (Sn)

∞
n=1 be a sequence of points in S such that215

infill asymptotics holds with respect to (S⋆
m)Mm=1. Suppose Assumptions 1 to 4 and 7. With adaptively216

chosen neighbors as discussed in Theorem D.1, β̂N,kN → βMLE, where convergence is in probability.217

The proof of Theorem 1 as well as a formal characterization of the adaptive scheme for selecting the218

number of neighbors are provided in Appendix D. Intuitively, the procedure adapts the number of219

neighbors so that as training data accumulate near the targets, the estimator gradually incorporates220

more information without sacrificing local accuracy.221

Limitations when Extrapolating. In cases where extrapolation is needed because the training data222

are not available near the target locations (either because of finite data or because the distribution223

of training locations is not supported near the target locations), we cannot hope to estimate βMLE224

arbitrarily well. In particular, we simply do not know how E[Y ⋆
m|S⋆

m] behaves in the extrapolation225

setting, and our assumptions together with the data are not strong enough for βMLE to be identified.226

Our approach therefore focuses on the regime where infill asymptotics holds, which is precisely the227

setting where consistent estimation is achievable.228
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3.2 Asymptotically Valid Confidence Intervals229

We now focus on quantifying uncertainty around β̂N,kN . Our focus is on the construction of230

confidence intervals that are (asymptotically) guaranteed to achieve nominal coverage. Precisely, we231

will construct confidence intervals that satisfy the following under our data generating assumptions232

and infill asymptotics.233

Definition 3 (Asymptotically Conservative Confidence Interval). For any 1 ≤ p ≤ P and234

any α ∈ (0, 1) a sequence of confidence intervals (Iαp,N )∞N=1 is asymptotically conservative if235

limN→∞ P(βMLE
p ∈ Iαp,N ) ≥ 1− α.236

Asymptotic Normality. Constructing confidence intervals for arbitrary random variables is challeng-237

ing. But constructing confidence intervals for normal random variables is easier, and so we follow238

a classical approach to deriving confidence intervals in which we first show that our estimator is239

asymptotically normal. We use a Lyapunov central limit theorem together with the delta method (van240

der Vaart, 1998, Chapter 3), to show that under the same setup as Theorem 1241 √
kN (βMLE − β̂N,kN ) → N (B, τ ′(E[Y ⋆|S⋆])TΛ⋆τ ′(E[Y ⋆|S⋆])), (5)

B = τ ′(E[Y ⋆|S⋆])T(E[Y ⋆|S⋆]−ΨN,kNE[Y |S]) and Λ⋆
mm′ = δmm′V[Y ⋆

m|S⋆
m].

Here τ ′ maps from a point in RM to the Jacobian of τ at that point. and δmm′ is a Kronecker delta,242

so Λ⋆ is diagonal. A formal statement and proof are in Appendix E.4, Theorem E.2. Equation (5)243

depends on τ ′(E[Y ⋆|S⋆]), which is not observed. In practice and in our later theory, we use a244

(consistent) point estimate for this Jacobian τ ′(ΨN,kNY ).245

Bounding the Bias. We need to control the bias, B. After replacing E[Y ⋆|S⋆] with ΨN,kNY each246

coordinate of the bias is a linear combination of evaluations of the conditional expectation of the247

response, f , at training and target locations. Burt et al. (2025a, Appendix B.2) showed that such a248

linear combination can be bounded in terms of a 1-Wasserstein distance that is efficiently computable.249

We provide additional detail in Proposition E.2.250

Plug-in Estimate of V[Y ⋆|S⋆]. We do not have access to V[Y ⋆
m|S⋆

m] for 1 ≤ m ≤ M , which is251

needed to compute the variance of the point estimate. We propose a nearest-neighbor approach.252

Definition 4 (Nearest-Neighbor Variance Estimator). For each 1 ≤ n ≤ N , let ζN (n′) be the index253

of the nearest-neighbor of Sn′ in the other training data (Sn)
N
n=1,n̸=n′ . Define the diagonal matrix254

ΛN ∈ RN×N , ΛN
nn = 1

2 (Yn − YζN (n))
2.255

We show in Appendix E.2 that, assuming infill asymptotics, kNΨN,kNΛNΨN,kNT → Λ⋆. Burt et al.256

(2025a) proposed to use 1
N tr(ΛN ) to estimate the noise variance in homoskedastic linear regression,257

but did not establish its consistency or propose how to handle spatially varying noise.258

Statement of Confidence Intervals. We now have the ingredients to define our confidence interval:259

Iαp,N =
[
β̂N,kN
p − zα/2σ̂p − B̃p, β̂

N,kN
p + zα/2σ̂p + B̃p

]
, (6)

with σ̂p = ∥(ΛN )1/2(ΨN,kN )Tτ ′(ΨN,kNY )ep∥2, B̃p = L sup
f∈F1

∣∣∣ N∑
n=1

vNn f(Sn)−
M∑

m=1

wN
mf(S⋆

m)
∣∣∣,

Here zα/2 is the (1− α/2) quantile of the standard normal distribution; ep ∈ RP is the pth standard260

basis vector; wN = X⋆ τ ′
(
ΨN,kNY

)
ep; and vN = ΨN,kN wN . The set F1 denotes the 1-Lipschitz261

functions on (S, dS). We use ∥ · ∥2 for the Euclidean (ℓ2) norm on vectors. A classic confidence262

interval [β̂N,kN
p ± zα/2σ̃p] uses model-trusting standard errors and does not account for potential263

bias due to model-misspecification and nonrandom sampling. Sandwich estimators use standard264

errors that are valid under misspecification, but still do not account for potential bias because of the265

interaction between misspecification and nonrandom sampling. Our confidence interval, Eq. (6) uses266

standard errors that are still valid under misspecification, and accounts for potential bias.267

Asymptotic Validity of Confidence Intervals. We now state our main result, that the confidence268

interval in Eq. (6) is conservative under infill asymptotics. We prove Theorem 2 in Appendix E.269

Theorem 2. Take the setup and assumptions of Theorem 1. Suppose the number of neighbors is270

chosen as in Theorem D.1 with at =
1√
t

for t ∈ N and Assumptions 5 and 6. Then the confidence271

interval defined in Eq. (6) is asymptotically conservative.272
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Figure 1: We summarize the data generating processes for the first (top) and second (bottom)
simulation study. The left two plots show the distribution of train (blue) and target (orange) locations.
The third panel shows the (unobserved) expected response surface.

4 Experiments273

In this section, we present two simulation studies to evaluate the performance of the proposed274

method for logistic regression. Throughout, we consider three baselines: logistic regression, logistic275

regression using the sandwich covariance estimator (Huber, 1967), and weighted logistic regression276

using kernel density estimation (Shimodaira, 2000). While logistic regression is a classic method,277

confidence intervals from logistic regression are widely used in scientific applications (e.g. Lee et al.,278

2025; Zhang et al., 2023; Ahn et al., 2024). We give more detail on baseline methods in Appendix F.1.279

Evaluation Metrics. We evaluate methods along four complementary dimensions. Our primary280

focus is on empirical coverage and the proportion of false positives, since failure on either dimension281

undermines the reliability of statistical conclusions. Empirical coverage measures the proportion of282

confidence intervals that contain the true parameter value; we regard a method as successful if its283

coverage is at or above the nominal level of 0.95. The proportion of false positives measures the284

frequency with which a confidence interval excludes 0 but assigns the wrong sign to the parameter;285

this rate should remain close to or below the nominal level of 0.05. Conditional on reliability, we286

then assess whether methods provide informative conclusions. Two metrics capture this aspect: the287

average width of confidence intervals, which should be as small as possible given adequate coverage,288

and the proportion of true positives, defined as the fraction of intervals excluding 0 with the correct289

sign, which should be as high as possible. Narrow intervals and a high rate of true positives indicate290

that a method can identify associations precisely and with confidence.291

These metrics illustrate the balance between validity and informativeness. A method that always292

returns a degenerate interval of width zero (a single point) would appear confident whenever it guesses293

the correct sign, yet would completely fail to reflect uncertainty. Conversely, a method that always294

returns the entire real line would achieve perfect coverage and no false positives, but would provide295

no useful scientific guidance. We therefore regard a method as successful if it achieves coverage near296

the nominal rate, maintains a low false positive proportion, and produces intervals that are narrow297

enough to support meaningful conclusions — for example, correctly and confidently identifying the298

direction of association.299

Data-Generating Process. In both simulations, we simulate 250 datasets according to data-generating300

processes described in detail in Appendix F.2 and illustrated in Fig. 1. The two simulations are301

intended to highlight contrasting regimes: the first one reflects a setting where the infill asymptotics302

assumption is reasonable, whereas for the second one extrapolation is unavoidable. In the latter case,303

we anticipate wider confidence intervals, reflecting the inherent difficulty of the task. For our method,304
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Figure 2: From left to right, coverage average confidence interval width, proportion of false positives
and proportion of true positives for each method on the first simulation (top) and the second simulation
(bottom). Coverage should be above the nominal level (dashed line in first column), and the proportion
of false positives should be below 0.05. Given these properties, we would like confidence intervals
that are as narrow as possible, and return many true positives.

we set the Lipschitz constant of the conditional expectation function to its true value, L = 0.25, in305

both simulations.306

In each experiment, we draw 10000 training locations uniformly from [−1, 1]2. The target locations307

are then constructed differently across the two designs. In the first experiment, targets are concentrated308

within a subset of the square, determined by a scale parameter, so that the infill property holds. In309

the second experiment, targets are concentrated but shifted outside the main support of the training310

set, to the right of the square, thereby requiring extrapolation. The two left panels of Fig. 1 depict311

the distribution of training and target locations for the infill (top) and extrapolation (bottom) settings.312

In both experiments, we use a single covariate equal to the first coordinate of the spatial location.313

Responses are generated from a Bernoulli distribution whose conditional expectation varies smoothly314

with space. The rightmost panel of Fig. 1 displays this conditional expectation for both designs, with315

the precise mathematical forms given in Appendix F.316

Results. We summarize the results across the two simulations in Fig. 2. Our method consistently317

achieves coverage at or above the nominal 0.95 level and does not produce false positives. By contrast,318

the baseline methods frequently fall far short of nominal coverage: in the second simulation, all319

baselines achieve zero coverage for certain instances. This failure is accompanied by high rates of320

false positives, meaning the baselines often return intervals that confidently — but incorrectly —321

assign the wrong sign to the association.322

The strength of our method lies in its reliability: it avoids misleading conclusions even in challenging323

extrapolation regimes. The cost of this conservativeness is wider confidence intervals and, conse-324

quently, a smaller proportion of true positives compared to the baselines. This trade-off is expected,325

as our method protects against worst-case bias rather than optimizing for power. Improvements in326

power may be possible, but in scenarios dominated by extrapolation, additional assumptions would327

be needed to confidently and correctly make inference about the direction of an association.328

5 Discussion329

In this work, we developed a new framework for inference on associations in generalized linear330

models under spatial misspecification and covariate shift. Through theory and simulations, we show331

that our estimator is consistent under infill asymptotics and that our intervals achieve valid coverage,332

unlike existing approaches which often fail dramatically. Our method is conservative, avoiding false333

positives even in challenging extrapolation settings. Looking ahead, we are particularly interested334

in applying our method to real datasets in scientific domains such as environmental monitoring,335

epidemiology, and climate science, where robust and reliable inference on spatial associations is336

critical.337
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A Interpretation of Target Maximum Likelihood406

In this section, we show that Eq. (2) minimizes the conditional KL divergence from the true data-407

generating process over the model class, when the target locations are distributed according to the408

discrete measure that assigns equal weight to each target location. This follows the standard argument409

that maximum likelihood minimizes a KL divergence, but we reconstruct the argument to emphasize410

that in our setting it is conditional on the target locations.411

Proposition A.1. Suppose Assumptions 1, 2 and 7. Let P ⋆ denote the joint measure of spatial412

locations, covariates and responses, with the measure over spatial locations fixed to equal the discrete413

measure that assigns equal weight to each target location. For β ∈ RP , define P β to be the measure414

over spatial locations fixed to equal the discrete measure that assigns equal weight to each target415

location, the covariates equal to χ(S), and the response generated with conditional log likelihood of416

the response equal to Eq. (1). Suppose there exists a β ∈ RP such that KL(P ⋆, P β) ≤ ∞. Then,417

βMLE = argminβ∈RP KL(P ⋆, P β).418

Proof. Let Ω = {β ∈ RP : KL(P ⋆, P β) < ∞}. Ω is non-empty by assumption. And the minimizer419

of KL(P ⋆, P β) must occur in β as this KL divergence is infinite outside of Ω by definition. Let420

P ⋆
Y ⋆
m|S⋆

m
denote the conditional distribution of Y ⋆

m given S⋆
m under the data generating process, and421

P β
Y ⋆
m|S⋆

m
denote the conditional distribution of Y ⋆

m given S⋆
m under the generalized linear model with422

parameter β. For any β ∈ Ω, and using the chain rule of KL divergence (Cover and Thomas, 2006,423

Theorem 2.5.3), and because the measure of P β and P ⋆ over the locations and covariates is the same424

by construction,425

KL(P ⋆, P β) =
1

M

M∑
m=1

∫
log

dP ⋆
Y ⋆
m|S⋆

m

dP β
Y ⋆
m|S⋆

m

dP ⋆
Y ⋆
m|S⋆

m
(A.1)

=
1

M

M∑
m=1

E[− log h(Y ⋆
m;X⋆T

m β)|S⋆
m] + C, (A.2)
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where C is the entropy (for discrete Y ) or differential entropy (for continuous Y ). Minimizing over β426

arg min
β∈RP

KL(P ⋆, P β) = argmin
β∈Ω

KL(P ⋆, P β) = arg max
β∈RP

M∑
m=1

E[log h(Y ⋆
m;X⋆T

m β)|S⋆
m], (A.3)

The right hand side is the same as Eq. (2), and so βMLE minimizes a KL divergence to the true data427

generating process, conditional on the target locations.428

B Alternative Approaches for Confidence Intervals for Well-Specified429

Generalized Linear Models430

Confidence Intervals Based on Asymptotic Normality. A standard approach for constructing431

confidence intervals that are valid for large sample sizes follows from the general theory of asymptotic432

normality of maximum likelihood estimators (MLEs) Cramér (1946); Wald (1949). Informally, if433

β̂n is the MLE of β⋆ based on n samples, then under well-specification,
√
n(β⋆ − β̂n) ≈ N (0, I−1

β⋆ )434

where Iβ⋆ is the Fisher information matrix. In practice, Iβ⋆ can be estimated using the observed Fisher435

information matrix, (Îβ,n)i,j =
∑N

n=1
∂2ℓn(β,Yn)

∂βi∂βj
, where ℓn(β;Yn) = Cn(Yn)+XT

n βYn−κ(XT
n β)436

is the log-likelihood of a single data point. An asymptotic confidence interval for the pth coefficient437

β⋆
p then takes the form: β⋆

p ∈ β̂p ± z1−α/2σ̃
2
p, where σ̃2

p is the pth diagonal entry of Î−1
β,n, and z1−α/2438

is the (1 − α/2)-quantile of the standard normal distribution. Even if the model is misspecified,439

maximum likelihood leads to an asymptotically normal estimator when the data remain i.i.d., though440

the variance is no longer governed by the Fisher information. In this case, confidence intervals441

are obtained using a sandwich variance estimator (White, 1982). A detailed treatment of these442

asymptotics can be found in van der Vaart (1998, Chapter 4). We provide further discussion of443

alternative confidence interval constructions for well-specified GLMs in Appendix B.444

Alternative Approaches for Confidence Intervals in GLMs. While the asymptotic approximation445

based on the observed Fisher information, described in Section 2, is widely used, there are other446

approaches exist for constructing confidence intervals for well-specified generalized linear models.447

For logistic regression (Cox and Snell, 1989, Chapter 2) describes how to construct confidence448

intervals that are exact in finite samples. These exact methods are typically more computationally449

intensive, but can be used to construct confidence intervals that are valid even for small sample sizes.450

Venzon and Moolgavkar (1988) use the asymptotic χ2 distribution of the profile log likelihood to451

construct asymptotic confidence intervals. The extent to which our methods can be adapted to these452

approaches is an interesting question for future work.453

C Inconsistency of Point Estimation for Existing Methods454

In this section, we provide additional details proving the claims in Counterexample 1. We first state455

the counterexample.456

Counterexample 1 (Several Existing Methods are Not Consistent Under Infill Asymptotics for457

Homoskedastic Linear Models with Gaussian Noise). Assume Assumptions 2 and 3 with spatial458

domain [−0.75, 1], two target locations S⋆
m = ±0.5, f(S) = S2 and χ(S) = S. Suppose responses459

follow Y ⋆ = f(S⋆)+ϵ, ϵ ∼ N (0, 1). Consider least squares linear regression fit without an intercept.460

Then Assumptions 4 to 6 hold, as does Assumption 7 with βMLE = 0. Further, if the training data461

are uniformly distributed on [−0.75, 1], then infill asymptotics holds almost surely. However, neither462

the estimator proposed in Burt et al. (2025a) nor the ordinary least square estimator based on the463

training data converge to 0 in probability.464

The first claim we show is that Assumptions 4 to 6 and Assumption 7 hold, with βMLE = 0. First,465

ρ2(S) = V(ϵ) = 1, and so Assumptions 4 and 5 hold. Next, the conditional 4th moment is again a466

constant function of space that is equal to the 4th moment of N (0, 1), which is 3, and is therefore467

bounded so Assumption 6 holds. Finally, the log likelihood is468

ℓ(β) = C +
1

2
E[−(0.25 + ϵ1 + 0.5β)2 − (0.25 + ϵ2 − 0.5β)2] (C.1)
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Taking derivatives469

ℓ′(β) =
1

2
E[−(0.25 + ϵ1 + 0.5β) + (0.25 + ϵ2 − 0.5β)] = −0.25β, ℓ′′(β) = −0.25. (C.2)

This is (globally) concave by the 2nd derivative test, and has a unique maximum at the solution of470

ℓ′(β) = 0, which is β = 0.471

Our remaining claim is that OLS and the nearest-neighbor method with a single neighbor approach472

considered in Burt et al. (2025a) are not consistent. The ordinary least squares estimate converges to473

the solution of the training normal equations,474

E[x2]−1E[xy] = E[x2]−1E[x3] ̸= 0, (C.3)

where we used that because the distribution of X is not symmetric about 0, E[x3] ̸= 0.475

To show that estimator in Burt et al. (2025a) is not consistent, we show its variance does not converge476

to 0. Because the distribution of S⋆ is absolutely continuous with respect to Lebesgue measure, with477

probability 1, for every N , there is a single training location closest to S⋆
1 and a single training location478

closest to S⋆
2 . For all N , the variance of the estimator in Burt et al. (2025a) is then (0.52) ∗ 1 = 0.25,479

which does not converge to 0. We conclude this estimator is also not consistent.480

We conjecture that the consistency of importance weighted approaches depends on continuity of481

the covariates as a function of space and selection of the bandwidth parameter. We expect that the482

bandwidth parameter would have to be selected in an adaptive way for consistency to hold.483

D Proof of Consistency of Point Estimation for our Method484

In this section, we prove Theorem 1, which shows that our point estimate is consistent under infill485

asymptotics. We first state a complete version of Theorem 1 that includes an explicit definition for486

the adaptive choice of neighbors.487

Theorem D.1. Fix any M ∈ N and (S⋆
m)Mm=1. Let (Sn)

∞
n=1 be a sequence of points in S such that488

infill asymptotics holds with respect to (S⋆
m)Mm=1. Suppose Assumptions 1 to 4 and 7. Choose any489

positive sequence (at)
∞
t=1 that tends to 0. Define the sequence kN recursively by, k1 = 1 and490

kN+1=


kN + 1 max

1≤m≤M
1≤n≤N+1

1{Sn is a kN + 1 nearest-neighbor ofS⋆
m ∈ S1:N+1}d(S⋆

m, Sn) ≤ akN

kN otherwise.
(D.1)

Then β̂N,kN → βMLE, where convergence is in distribution.491

We first show that the sequence of number of neighbors (kN )∞N=1 has two desirable properties. First,492

it tends to infinity. Second, the maximum distance of the kN nearest-neighbors to each target in493

location tends to 0 as N increases. The first property is needed for the variance of our estimate to tend494

to 0, and the second property is ensures that the bias in our point estimate goes to 0 as N increases.495

Proposition D.1. Fix any M ∈ N and (S⋆
m)Mm=1. Let (Sn)

∞
n=1 be a sequence of points in S. Then496

if (Sn)
∞
n=1 satisfies infill asymptotics with respect to (S⋆

m)Mm=1. Choose (at)
∞
t=1 to be any positive497

sequence tending to 0. Define the sequence (kN )∞N=1 by k1 = 1 and498

kN+1 =

{
kN + 1 RN+1,kN+1 ≤ akN

kN otherwise.
(D.2)

with RN,t = max
1≤m≤M

max
1≤n≤N

1{Sn is a t nearest-neighbor ofS⋆
m}d(S⋆

m, Sn) Then the following two499

properties hold:500

1. limN→∞ kN = ∞; and501

2. limN→∞ RN,kN
= 0.502

Proof. We first show that the sequence (kN )∞N=1 is unbounded. Because it is monotone increasing,503

this implies property 1.504
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Towards contradiction, suppose there exists a least upper bound K such that kN ≤ K for all N .505

Because the kN , we can find a K such that kN = K for some N , and K. Because kN is monotone506

increasing, it must be the case that for all N ≥ N0, kN = K. Therefore, we must have that for all507

N ≥ N0,508

RN+1,K+1 > aK > 0. (D.3)

Otherwise, there would exist an N ′ such that kN ′+1 = K+1 (by condition 1 in the definition of kN+1,509

contradicting that K is an upper bound on (kN )∞n=1. we would have kN ′+1 = kN ′ + 1 = K + 1.510

We now show that there exists a Ñ such that for all N ≥ Ñ , RN,K ≤ aK leading to a con-511

tradiction. Because infill asymptotics holds, for 1 ≤ m ≤ M , there exists a NaK ,m,K such512

that for all N ≥ NaK ,m,K , there exists at least K training locations in B(S⋆
m, aK). Define513

Ñ = max1≤m≤M NaK ,m,K . Then for all N ≥ Ñ514

max
1≤m≤M

max
1≤m≤N

1{Sn is a K nearest-neighbor ofS⋆
m}d(S⋆

m, Sn) ≤ aK , (D.4)

because the K nearest-neighbors of S⋆
m are all contained in B(S⋆

m, aK) for each 1 ≤ m ≤ M . This515

is a contradiction, leading to the conclusion that no upper bound on (kN )∞N=1 exists, and therefore516

property 1 holds.517

It remains to show that property 2 holds. The sequence (RN,kN
)∞N=1 only (possibly) increases518

between pairs N,N + 1 such that kN+1 = kN + 1.519

For such N , RN+1,kN+1
≤ akN

. For any N such that kN ≥ 2,520

RN+1,kN+1
≤ max(RN,kN

, akN
). (D.5)

Applying the previous equation to its own right hand side, for any N such that kN−1 ≥ 2,521

RN+1,kN+1
≤ max(akN−1, akN

). (D.6)

Because (at)
∞
t=1 tends to 0 and kN → ∞, limN→∞ max(akN−1, akN

) = 0. Therefore, RN,kN
is a522

non-negative sequence bounded above by a sequence tending to 0, and so limN→∞ RN,kN
= 0.523

We now show that the second condition implies the weaker condition that the average distance of the524

kN nearest-neighbors to each target location tends to 0 as N increases. This is a useful condition525

because it implies that the bias in our point estimate goes to 0 as N increases.526

Proposition D.2. Let (kN )∞N=1 be a sequence of numbers of neighbors such that527

1. limN→∞ kN = ∞528

2. limN→∞ max1≤m≤M max1≤n≤N 1{Sn is a kN nearest-neighbor ofS⋆
m}d(S⋆

m, Sn) = 0.529

Then limN→∞ max1≤m≤M
1
kN

∑N
n=1 1{Sn is a kN nearest-neighbor of S⋆

m}d(S⋆
m, Sn) = 0.530

Proof. By Hölder’s inequality531

max
1≤m≤M

1

kN

N∑
n=1

1{Sn is a kN nearest-neighbor of S⋆
m}d(S⋆

m, Sn) (D.7)

≤ max
1≤m≤M

max
1≤n≤N

1{Sn is a kN nearest-neighbor ofS⋆
m}d(S⋆

m, Sn). (D.8)

The result follows from taking a limit on both sides as N → ∞, using the the left side is nonnegative,532

and that the right side tends to 0.533

In showing consistency of our point estimate, we rely on the following lemma, which shows that534

the point estimate β̂N,kN is a continuous function of the estimator of the conditional expectation535

ΨN,kNY , on an open neighborhood containing of the conditional expectation E[Y ⋆|S⋆].536

Lemma D.1. Suppose Assumptions 1 to 4 and 7. Define the map τ : RM → RP by537

τ(A) = arg max
β∈RP

M∑
m=1

X⋆T
m βAm − κ(X⋆T

m β). (D.9)

Then τ is well-defined and continuously differentiable on an open neighborhood containing E[Y ⋆|S⋆].538
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Proof. Define the function F : R2P×P → RP , F (C, β) = C −X⋆Tκ′(X⋆β). The matrix of partial539

derivatives of F with respect to β evaluated at β⋆ is H⋆ = X⋆TΓ(X⋆Tβ⋆)−1X⋆ where Γ maps an540

element of RM to the diagonal matrix with diagonal entries: Γ(a)mm = κ′′(am).541

The implicit function theorem Krantz and Parks (2013, Theorem 3.3.1), together with Assump-542

tion 7 implies that there exists a (unique) function η in an open neighborhood containing C⋆ :=543

X⋆TE[Y ⋆|S⋆] such that for all C in this open neighborhood F (C, η(C)) = 0.. Furthermore, because544

the log-likelihood is smooth, η is continuously differentiable in an open neighborhood containing C⋆.545

By construction η(C⋆) = β⋆.546

Define τ(A) = η(X⋆TA) for all A ∈ RM . Let UC⋆ be an open neighborhood containing C⋆, such547

that η is well-defined, continuously differentiable on UC⋆ and F (C, η(C)) = 0 for all C ∈ UC⋆ .548

The map α → X⋆Tα is continuously differentiable and surjective. Because composition of continu-549

ously differentiable functions is continuously differentiable and there exists an open neighborhood550

V ⊂ RM such that X⋆TV ⊂ UC⋆ and so τ is well-defined and continuously differentiable on an551

open set containing E[Y ⋆|S⋆].552

It remains to show that there is an open neighborhood containing E[Y ⋆|S⋆] such that τ(A) =553

argmaxβ∈RP

∑M
m=1 X

⋆T
m βAm − κ(X⋆T

m β). The definition of η implies that, F (C, η(C)) = 0 for554

all C in an open neighborhood of C⋆. This in turn implies that for all A in an open neighborhood of555

E[Y ⋆|S⋆],556

F (X⋆TA, η(X⋆TA)) = F (X⋆TA, τ(X⋆TA)) = X⋆TA−X⋆Tκ′(X⋆τ(X⋆TA)) = 0. (D.10)
This is the first order optimality condition for the maximum in Eq. (D.9). To check second order557

optimality, we can inspect the Hessian — which only depends on A through the value of τ(A).558

This is strictly positive definite in β for all A in an open neighborhood of E[Y ⋆|S⋆], as it is strictly559

positive definite in a neighborhood of β⋆ by Assumption 7, and because we have already shown τ is560

continuous.561

The second main ingredient in the proof of Theorem 1 is the following lemma, which shows that the562

empirical conditional expectation converges to the true conditional expectation in distribution.563

Lemma D.2. Suppose Assumptions 1 to 4 and 7. Let (kN )∞N=1 be any sequence of numbers of564

neighbors such that565

1. limN→∞ kN = ∞566

2. limm→∞ max1≤m≤M
1
kN

∑N
n=1 1{Sn is a kN nearest-neighbor of S⋆

m}d(S⋆
m, Sn) → 0.567

Then ΨN,kNYN → E[Y ⋆|S⋆] in distribution, where ΨN,kN is the kN nearest-neighbor weight matrix568

defined in Definition 2.569

Proof. The proof has two steps. First, we show that the expected value of the estimator converges570

to E[Y ⋆|S⋆]. This uses the second property of the sequence of number of neighbors (kN )∞N=1571

together with Assumption 3. Second, we use a weak law of large numbers to show that the empirical572

conditional expectation converges in distribution to its expected value.573

Step 1. We first show that E[ΨN,kNYN |S1, . . . , SN ] → E[Y ⋆|S⋆]. By the definition of ΨN,kN574

E[ΨN,kNYN |S1, . . . , SN ] =
1

kN

M∑
m=1

N∑
n=1

1{Sn is a kN nearest-neighbor of S⋆
m}E[YN |S1, . . . , SN ].

(D.11)

By Assumption 2 and Assumption 3 for any 1 ≤ m ≤ M ,575

|E[(ΨN,kNYN )m|S1, . . . SN ]− E[Y ⋆
m|S⋆

m]| (D.12)

=

∣∣∣∣∣ 1

kN

N∑
n=1

1{Sn is a kN nearest-neighbor of S⋆
m}(f(Sn)− f(S⋆

m))

∣∣∣∣∣ (D.13)

≤ L

kN

N∑
n=1

1{Sn is a kN nearest-neighbor of S⋆
m}d(S⋆

m, Sn). (D.14)
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By the second property of (kN )∞N=1576

lim
N→∞

max
1≤m≤M

1

kN

N∑
n=1

1{Sn is a kN nearest-neighbor of S⋆
m}d(S⋆

m, Sn) = 0. (D.15)

Therefore,577

lim
N→∞

max
1≤m≤M

∣∣E[(ΨN,kNYN )m|S1, . . . SN ]− E[Y ⋆
m|S⋆

m]
∣∣ = 0. (D.16)

We next show that ΨN,kNYN → E[Y ⋆|S⋆] in distribution. For this we use a weak law of large578

numbers for triangular arrays. Centering gives us,579

(ΨN,kNYN )m =
1

kN

N∑
n=1

1{Sn is a kN nearest-neighbor of S⋆
m}(Yn − E[Yn|Sn]) (D.17)

+ E[(ΨN,kNYN )m|S1, . . . SN ]. (D.18)
The random variables Yn − E[Yn|Sn] have mean 0. For each 1 ≤ m ≤ M , N ∈ N and 1 ≤ n ≤ N ,580

define581

Ỹ N
n,m =

1

kN
1{Sn is a kN nearest-neighbor of S⋆

m}(Yn − E[Yn|Sn]). (D.19)

For N ∈ N. The conditional variance of the partial sums is582

V[
N∑

n=1

Ỹ N
n,m] =

1

k2N

N∑
n=1

1{Sn is a kN nearest-neighbor of S⋆
m}E[(Yn − E[Yn|Sn])

2|Sn] (D.20)

≤ BY

kN
. (D.21)

The inequality follows from Assumption 4 and the fact that583

N∑
n=1

1{Sn is a kN nearest-neighbor of S⋆
m} = kN . (D.22)

Therefore, for each 1 ≤ m ≤ M , the sequence (Ỹ N
n,m)Nn=1 is a triangular array of independent584

random variables with mean 0 and variance bounded by BY

kN
. By the first property of the (kN )∞N=1585

sequence, V(
∑N

n=1 Ỹ
N
n,m) → 0 as N → ∞. By Chebyshev’s inequality586

P

(∣∣∣∣∣ 1

kN

N∑
n=1

1{Sn is a kN nearest-neighbor of S⋆
m}(Yn − E[Yn|Sn])

∣∣∣∣∣ > ϵ

)
≤ BY

kN ϵ2
. (D.23)

Because BY

kN ϵ2 → 0 as N → ∞587

1

kN

N∑
n=1

1{Sn is a kN nearest-neighbor of S⋆
m}(Yn − E[Yn|Sn]) → 0 (D.24)

in distribution for each 1 ≤ m ≤ M . Therefore, (ΨN,kNYN )m → E[Y ⋆
m|S⋆

m] in distribution for each588

1 ≤ m ≤ M .589

We now show that for any sequence (kN )∞N=1 that satisfies the two properties described in Proposi-590

tion D.2, our point estimate β̂N,kN converges in distribution to the maximum likelihood parameter591

βMLE.592

Theorem D.2. Suppose Assumptions 1 to 4 and 7. Let (kN )Nn=1 be chosen as in Theorem 1. Then593

β̂N,kN → βMLE, where convergence is in distribution.594

Proof of Theorem 1. Proposition D.1 and Proposition D.2 imply the selected kn satisfy the assump-595

tions of Lemma D.2, and so596

ΨN,kNYN → E[Y ⋆|S⋆] (D.25)
in distribution. By Lemma D.1, the map τ is continuous on an open neighborhood containing597

E[Y ⋆|S⋆]. The continuous mapping theorem implies598

β̂N,kN = τ(ΨN,kNYN ) → τ(E[Y ⋆|S⋆]) = βMLE (D.26)
in distribution.599

15



E Proof of Asymptotic Validity of Confidence Intervals600

In this section, we prove Theorem 2. We first prove a lemma that states that, for large N , the601

nearest-neighbor sets used in estimation are disjoint for each m. This simplifies our analysis, as602

many of the sums involved then consist of independent random variables. We then show that our603

variance estimate is consistent, and that our stated bound on the bias is an upper bound on a consistent604

estimate of the bias. Next, we prove asymptotic normality of our estimate of E[Y ⋆|S⋆]. Finally, we605

use the delta method to prove asyptotic normality of our estimator, and combine this with our earlier606

consistency results for the moments to show Theorem 2.607

E.1 Preliminary Results608

We first show the following lemma, which will be used in several subsequent results. It states that for609

large N , the nearest-neighbor sets used for estimating E[Y ⋆|S⋆] are disjoint.610

Lemma E.3. Let (Sn)
N
n=1 be a sequence of points in S such that infill asymptotics holds with respect611

to (S⋆
m)Mm=1. Suppose that kN is chosen according to Theorem 1. Then there exists an N0 such that612

for all N ≥ N0, and all 1 ≤ m,m′ ≤ M with m ̸= m′ and 1 ≤ n ≤ N , ΨN,kN
mn ΨN,kN

m′n = 0.613

Proof. Because all the (S⋆
m)Mm=1 are distinct we can find an ϵ > 0 such that for all 1 ≤ m,m′ ≤ M ,614

m ̸= m′, we have that dS(S⋆
m, S⋆

m′) > 2ϵ. Proposition D.1, property 2 implies that there exists615

an N0 such that for all N ≥ N0 and all 1 ≤ m ≤ M , if Sn is a kN nearest-neighbor of S⋆
m, then616

dS(Sn, S
⋆
m) < ϵ. For all 1 ≤ m,m′ ≤ M with m ̸= m′ and any 1 ≤ n ≤ N the triangle inequality617

states618

dS(Sn, S
⋆
m) + dS(Sn, S

⋆
m′) ≥ dS(S

⋆
m, S⋆

m′) > 2ϵ. (E.1)

Therefore either dS(Sn, S
⋆
m) > ϵ or dS(Sn, S

⋆
m′) > ϵ. This implies that for all N ≥ N0, Sn619

cannot be a kN nearest-neighbor of both S⋆
m and S⋆

m′ . We conclude that for all N ≥ N0, and all620

1 ≤ m,m′ ≤ M with m ̸= m′ and 1 ≤ n ≤ N , ΨN,kN
mn ΨN,kN

m′n = 0.621

We next show that one point cannot be the nearest-neighbor of many other points in Euclidean622

space. This is a key lemma that will be used in the our proof of consistency of our variance estimate.623

Lemma E.5. It us used to show that the estimate of the variance does not place too much weight on624

any single observation.625

Lemma E.4. Let A ⊂ Rd a finite set. For any p ∈ A, define the set626

Ap := {a ∈ A : d(a, p) = min
a′∈A

d(a, a′)}. (E.2)

Then |Ap| ≤ Hd where Hd is a constant that is independent of the set A and the point p.627

Proof. For a point p and a set A, let A− {p} = {a− p : a ∈ A}. Then, Ap = (A− {p})0. As the628

set A is an arbitrary finite set in our statement, we may assume p = 0 without loss of generality.629

We can restrict to cases where |A0| ≥ 2. Otherwise the constant Hd = 2 suffices. In the case,630

|A0| ≥ 2, let a, a′ ∈ A0 be distinct points. Without loss of generality, we assume that ∥a∥ ≤ ∥a′∥631

(otherwise rename the points).632

For any such points, the definition of A0 implies633

∥a∥ ≤ ∥a− a′∥ and ∥a′∥ ≤ ∥a− a′∥. (E.3)

We will show that this implies that the angle between a and a′ cannot be too small. Using the Hilbert634

space structure of Rd, we can rewrite Eq. (E.3)635

0 ≤ ∥a′∥2 − 2⟨a, a′⟩ and ∥a∥2 − 2⟨a, a′⟩. (E.4)

Define,636

θ =
⟨a, a′⟩
∥a∥∥a′∥ . (E.5)
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Expanding the squared distance637

∥a− a′∥2 = ∥a∥2 + ∥a′∥2 − 2θ∥a∥∥a′∥. (E.6)
Then638

∥a∥2 − 2θ∥a∥∥a′∥ > 0 (E.7)

and so, using that ∥a∥ ≤ ∥a′∥, cos(θ) ≤ 1
2 .This implies that the normalized vectors a

∥a∥ and a′

∥a′∥ are639

at least 60◦ apart, which in turn implies that they are separated by a distance of at least 1. The number640

of distinct points satisfying this criterion separation criterion is upper bounded by the 1/2-packing641

number of the unit sphere embedded in Rd, which is finite because the sphere is compact. Therefore,642

there can be at most Hd points in A0, where Hd is the 1/2-packing number of the unit sphere643

embedded in Rd.644

E.2 Consistency of Variance Estimate645

Define the sequence of maps ζN : {1, . . . , N} → {1, . . . , N} to map Sn to the index of its nearest-646

neighbor (not equal to itself). We assume that all Sn are distinct, although random tie-breaking can647

be used otherwise, with some added complexity needed to handle additional probabilistic arguments.648

Lemma E.5. Let (Sn)
N
n=1 be a sequence of points in Rd such that infill asymptotics holds with649

respect to (S⋆
m)Mm=1. Suppose Assumptions 1 to 6. Then kNΨN,kNΛ(ΨN,kn)T → Λ⋆, where ΛN is650

a diagonal matrix with ΛN
nn = 1

2 (Yn − YζN (n)) and Λ⋆ is a diagonal matrix with Λ⋆ = V[Y ⋆
m|S⋆

m]651

for 1 ≤ m ≤ M and convergence is in distribution.652

Proof. We write entries in the matrix653

kN (ΨN,kNΛN (ΨN,kN )T)mm′ = kN

N∑
n=1

ΨN,kN
mn ΨN,kN

m′n

1

2
(Yn − YζN (n))

2. (E.8)

By Lemma E.3, for all N sufficiently large, for m ̸= m′, we have ΨN,kN
mn ΨN,kN

m′n = 0. Therefore, for654

all N sufficiently large, kN (ΨN,kNΛN (ΨN,kN )T)mm′ is diagonal, and we need only consider the655

entries with m = m′.656

We expand the quadratic form in Eq. (E.8), and use the identity ΨN,kN
mn = kN (ΨN,kN

mn )2657

kN (ΨN,kNΛN (ΨN,kN )T)mm=
1

2

N∑
n=1

ΨN,kN
mn Y 2

n︸ ︷︷ ︸
:=Γ1

+
1

2

N∑
n=1

ΨN,kN
mn Y 2

ζN (n)︸ ︷︷ ︸
:=Γ2

−
N∑

n=1

ΨN,kN
mn YnYζN (n)︸ ︷︷ ︸

:=Γ2

.

(E.9)

We will show that the terms Γ1 and Γ2 each converge to 1
2 (V[Y

⋆|S⋆]+E[Y ⋆|S⋆]2), and Γ3 converges658

in distribution to E[Y ⋆|S⋆]2. Given these results, Slutsky’s lemma (van der Vaart, 1998, Lemma659

2.8), implies completes the proof of the lemma, as each term converges to a constant. For Γ1,Γ2 and660

Γ3, the general proof of convergence will be the same: we first show the expectation converges to661

the claimed value, and then show that the variance converges to 0. Convergence in distribution is a662

consequence of the variance tending to 0 and Chebyshev’s inequality.663

The expected value of Γ1 is664

E[Γ1] =
1

2kn

N∑
n=1

1{Sn is a kN nearest-neighbor ofS⋆
m}E[Y 2

n ] (E.10)

=
1

2kn

N∑
n=1

1{Sn is a kN nearest-neighbor ofS⋆
m}(E[Yn]

2 + V[Yn]). (E.11)

Proposition D.1, property 2, implies that d(Sn, S
⋆
m) → 0 for all terms such that665

1{Sn is a kN nearest-neighbor of } ≠ 0. Using continuity of the mean and variance of the response666

(Assumptions 3 and 5)667

lim
N→∞

max
1≤n≤N

1{Sn is a kN near. neigh. ofS⋆
m}((E[Yn]

2 + V[Yn])−(E[Y ⋆
m]2 + V[Y ⋆

m])) = 0.

(E.12)
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And so668

lim
N→∞

1

kn

N∑
n=1

1{Sn is a kN nearest-neighbor ofS⋆
m}(E[Yn]

2 + V[Yn]) = E[Y ⋆
m]2 + V[Y ⋆

m].

(E.13)

We next verify that the variance of Γ1 tends to 0. Because the Yn are independent669

V
[1
2

N∑
n=1

ΨN,kN
nm Yn] =

1

4k2n

N∑
n=1

1{Sn is a kN nearest-neighbor ofS⋆
m}V[Y 2

n ]. (E.14)

Assumption 3 implies that within an open neighborhood of any of the test locations, E[Yn] is uniformly670

bounded. Combining this with Assumptions 4 and 6 for N sufficiently large, there exists a constant K671

such that 1{Sn is a kN nearest-neighbor ofS⋆
m}V[Y 2

n ] ≤ 1{Sn is a kN nearest-neighbor ofS⋆
m}K.672

Therefore,673

lim
N→∞

V
[
Γ1

]
≤ lim

N→∞

K

4kN
= 0 (E.15)

where the last equality used that limN→∞ kN = ∞ (Proposition D.1, property 1).674

We now consider Γ2 (Eq. (E.9)). Because SζN (n) is the nearest-neighbor of Sn, d(SζN (n), Sn) ≤675

d(S⋆
m, Sn) + minn′ ̸=n d(Sn′ , S⋆

m) and so676

d(S⋆
m, SζN (n)) ≤ d(S⋆

m, Sn) + d(SζN (n), Sn) = 2d(S⋆
m, Sn) + min

n′ ̸=n
d(Sn′ , S⋆

m). (E.16)

By the infill assumption and Proposition D.1, property 2,677

lim
N→∞

1{Sn is a kN nearest-neighbor ofS⋆
m}(2d(S⋆

m, Sn) + min
n′ ̸=n

d(Sn′ , S⋆
m)) = 0. (E.17)

We can now apply the same argument as we used for Γ1 to show the expectation of Γ2 converges:678

E[Γ2] = =
1

2

N∑
n=1

ΨN,kN
nm (E[Yζ(n)]

2 + V[YζN (n)]). (E.18)

Now using Assumption 3, Assumption 5 and that d(SζN (n), S
⋆
m) → 0, for all terms such that679

ΨN,kN
nm ̸= 0,680

lim
N→∞

1

2

N∑
n=1

ΨN,kN
nm (E[Yζ(n)]

2 + V[YζN (n)]) =
1

2
(E[Y ⋆]2 + V[Y ⋆]).

We now show the variance of Γ2 tends to 0.681

1

2

N∑
n=1

ΨN,kN
nm Y 2

ζ(n) =
1

2

N∑
n′=1

(
N∑

n=1

ΨN,kN
nm 1{n′ = ζN (n)}

)
Y 2
n′ . (E.19)

This is a sum of independent terms. We define the weights682

aNn′,m =

(
1

2

N∑
n=1

ΨN,kN
nm 1{n′ = ζN (n)}

)
. (E.20)

Then,683

V
[1
2

N∑
n=1

ΨN,kN
nm Y 2

ζN (n)

]
=

N∑
n′=1

(aNn′,m)2V[Y 2
n′ ] (E.21)
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From the definition of aNn′,m, and using Lemma E.4684

N∑
n′=1

(aNn′,m)2 =
1

4

(
N∑

n=1

ΨN,kN
nm

N∑
r=1

ΨN,kN
rm 1{r = ζN (n)}

)
(E.22)

≤ 1

4kN

(
N∑

n=1

ΨN,kN
nm Hd

)
(E.23)

≤ Hd

4kN
. (E.24)

Also, for any open neighborhood containing S⋆
m, for all N sufficiently large aNn′ = 0 unless Sn′ is685

contained in this open neighborhood, so that for terms with non-zero coefficient V[Y 2
n′ ] is uniformly686

bounded by some constant K by combining Assumptions 3, 4 and 6. Therefore, for all N sufficiently687

large,
∑N

n′=1(a
N
n′)2V[Y 2

n′ ] ≤ HdK
4kN

which tends to 0 because kN → ∞ (Proposition D.1, property688

1).689

We consider Γ3 (Eq. (E.9)).690

N∑
n=1

ΨN,kN
mn E[YnYζN (n)] =

N∑
n=1

ΨN,kN
mn E[Yn]E[YζN (n)]. (E.25)

Because E[Yn],E[YζN (n)] → E[Y ⋆
m] for all n such that ΨN,kN

mn ̸= 0, this converges to E[Y ⋆
m]2. It691

remains to show that the variance of Γ3 converges 0. We expand into variances and covariances,692

V[
N∑

n=1

ΨN,kN
mn YnYζ(n)] =

N∑
n′=1

N∑
n=1

ΨN,kN
mn ΨN,kN

mn′ Cov(YnYζ(n), Yn′Yζ(n′)). (E.26)

We can upper bound the covariance term as,693 ∣∣Cov(YnYζ(n), Yn′Yζ(n′))
∣∣ (E.27)

≤ (1{n = n′}+ 1{n = ζ(n′)}+ 1{n′ = ζ(n)}+ 1{ζ(n) = ζ(n′)}) max
1≤n≤N

V(YnYζ(n)).

(E.28)

Because Yn, Yζ(n) are independent,694

V(YnYζ(n)) = V(Yn)V(Yζ(n)) + V(Yn)E[Yζ(n)]
2 + V(Yζ(n))E[Yn]

2. (E.29)

This is bounded by a constant in a region containing the training locations by Assumptions 3 and 4.695

Call this constant γ. Then,696

V[
N∑

n=1

ΨN,kN
mn YnYζ(n)] (E.30)

≤ γ

N∑
n=1

N∑
n′=1

ΨN,kN
mn ΨN,kN

mn′ (1{n = n′}+ 1{n = ζ(n′)}+ 1{n′ = ζ(n)}+ 1{ζ(n) = ζ(n′)}) .

(E.31)

We now count the number of non-zero terms in this double sum and show that it is O(kN ). The697

indicator n = n′ contributes exactly kN non-zero terms; Lemma E.4 implies the indicators 1{n =698

ζ(n′)}, 1{n′ = ζ(n)} contribute at most HdkN . Finally,699

N∑
n=1

N∑
n′=1

ΨN,kN
mn ΨN,kN

mn′ 1{ζN (n) = ζN (n′)} (E.32)

=

N∑
r=1

1{∃n : r = ζN (n)}
N∑

n=1

N∑
n′=1

ΨN,kN
mn ΨN,kN

mn′ 1{ζN (n) = r}1{ζN (n′) = r} (E.33)

=

N∑
r=1

1{∃n : r = ζN (n)}
(

N∑
n=1

ΨN,kN
mn 1{ζN (n) = r}

)2

. (E.34)
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The total number of r that are nearest-neighbors to a point that is a kN nearest-neighbor of S⋆
m cannot700

exceed kN . And
(∑N

n=1 Ψ
N,kN
mn 1{ζN (n) = r}

)2
≤ Hd

kN
. Therefore, this final sum is O(1/kN ). We701

conclude the variance of Γ3 converges to zero as N tends to infinity.702

E.3 Asymptotic Normality of Estimate of Conditional Expectation703

We begin by proving that the estimate of the conditional expectation ΨN,kNY is asymptotically704

normal. We first recall the Lyapunov central limit theorem for triangular arrays.705

Theorem E.1 (Lyapunov Central Limit Theorem, Theorem 27.3 Billingsley 1995). Let706

{Zn1, . . . , Zntn} be independent random variables for each n ∈ N, with707

µnt = E[Znt], σ2
nt = V[Znt], s2n =

tn∑
t=1

σ2
nt.

Assume s2n → ∞ and sn > 0 for all n. Suppose there exists δ > 0 such that the Lyapunov condition708

holds:709

lim
N→∞

1

s2+δ
n

tn∑
t=1

E
[
|Znt − µnk| 2+δ

]
= 0.

Then710 ∑tn
t=1(Znt − µnt)

sn
→ N (0, 1).

That is, the normalized sum converges in distribution to a standard normal random variable.711

We now prove the following lemma, which involves verifying the Lyapunov condition for entries of712 √
kNΨN,kN (Y − E[Y |S]).713

Lemma E.6. Let (Sn)
N
n=1 be a sequence of points in S such that infill asymptotics holds with respect714

to (S⋆
m)Mm=1. Suppose that kN is chosen according to Theorem 1. Suppose Assumptions 1 to 4 and 7715

Then,716

lim
N→∞

√
kNΨN,kN (Y − E[Y |S]) = N (0,Λ⋆) (E.35)

where Λ⋆ is a diagonal matrix with Λ⋆
mm = V[Y ⋆

m|S⋆
m] for 1 ≤ m ≤ M .717

Proof. By Lemma E.3, for N sufficiently large, the rows of ΨN,kN are disjoint. Therefore, the entries718

of ΨN,kN (Y − E[Y |S]) are independent for sufficiently large N , and so it suffices to show that each719

entry of the vector
√
kNΨN,kN (Y −E[Y |S]) converges in distribution to a univariate normal random720

variable.721

Let RN
m = (

√
kNΨN,kN (Y − E[Y |S]))m be the mth entry of the vector

√
kNΨN,kN (Y − E[Y |S]),722

and define rNnm =
√
kNΨN,kN

nm (Y − E[Y |S]), so that RN
m =

∑N
n=1 r

N
nm. The variance of RN

m is723

V[RN
m] = kN

N∑
n=1

(ΨN,kN
mn )2V[Yn|Sn] =

N∑
n=1

ΨN,kN
mn V[Yn|Sn]. (E.36)

Assumption 5 and Proposition D.1 imply724

N∑
n=1

ΨN,kN
mn V[Yn|Sn] → V[Y ⋆

m|S⋆
m]. (E.37)

If V[Y ⋆
m|S⋆

m] = 0, then V[RN
m] → 0 and so RN

m → 0 in distribution, as claimed in this case.725

Otherwise, we consider the limit726

lim
N→∞

1

V[RN
m]4

N∑
n=1

E[|rNnm|4] (E.38)

= lim
N→∞

1

(
∑N

n=1 Ψ
N,kN
mn V[Yn|Sn])4

N∑
n=1

E[|
√
kNΨN,kN

nm (Y − E[Y |S])|4] (E.39)

= lim
N→∞

1

k2N (
∑N

n=1 Ψ
N,kN
mn V[Yn|Sn])4

N∑
n=1

ΨN,kN
nm E[|(Yn − E[Yn|S])|4] (E.40)
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Assumption 6 implies
∑N

n=1 Ψ
N,kN
nm E[|(Yn−E[Yn|S])|4] ≤ C, and since

∑N
n=1 Ψ

N,kN
mn V[Yn|Sn] →727

V[Y ⋆
m|S⋆

m] ̸= 0 the Lyapunov condition holds.728

Proposition E.1. Let (Sn)
N
n=1 be a sequence of points in S such that infill asymptotics holds with729

respect to (S⋆
m)Mm=1. Suppose that kN is chosen according to Theorem 1 with at =

1√
t
. Suppose730

Assumptions 1 to 4 and 7 Then,731 √
kN (ΨN,kNY − E[Y ⋆|S⋆]) → N (B,Λ⋆), (E.41)

for B ∈ RM with Bm =
√
kN

(∑N
n=1 Ψ

N,kN f(Sn)− f(S⋆
m)
)

and Λ⋆ is a diagonal matrix with732

Λ⋆
mm = V[Y ⋆

m|S⋆
m] for 1 ≤ m ≤ M .733

Proof. Adding zero,734 √
kN (ΨN,kNY − E[Y ⋆|S⋆]) =

√
kN (ΨN,kNY − E[Y |S]) +

√
kN (ΨN,kN (E[Y |S]− E[Y ⋆|S⋆]).

(E.42)

Lemma E.6 implies that
√
kN (ΨN,kNY − E[Y |S]) → N (0,Λ⋆. Considering the second term,735

For all kN > 2,736 ∣∣∣∣∣√kN

(
N∑

n=1

ΨN,kN f(Sn)− f(S⋆
m)

)∣∣∣∣∣ ≤ L

(
N∑

n=1

ΨN,kNd(Sn, S
⋆
m)

)
(E.43)

≤ L

(
N∑

n=1

ΨN,kNd(Sn, S
⋆
m)

)
(E.44)

≤ LkN√
kN

akN−1. (E.45)

Because at =
1√
t
, LkN√

kN
akN−1 ≤ 2L. This implies that this bias term is O(1).737

E.4 Proof of Asymptotic Validity of Confidence Intervals738

We now prove that the confidence intervals defined in Section 3.1 are asymptotically valid. We first739

show that the confidence intervals, with linearization around the true parameter, are asymptotically740

valid. A key lemma along the way is van der Vaart (1998, Theorem 3.1), which is essentially the741

conclusion of the delta method. We recall this theorem here for convenience.742

Lemma E.7 (Delta Method). Let ϕ be a map defined on a subset D ⊂ RM → RP that is differ-743

entiable at θ. Let Tn be random vectors taking values in D. If rN (TN − θ) → T for (rN )∞N=1 a744

sequence such that rn → ∞, then rN (ϕ(TN )− ϕ(θ)) → ϕ′
θ(T ) in distribution.745

We apply this lemma together with Lemma E.6 to show that the point estimate β̂N,kN is asymptotically746

normal. After that what will remain is to use consistency of the variance estimate to show that using747

the estimated variance in place of the true variance yields asymptotically valid confidence intervals,748

and to use consistency of the point estimate to show that linearization around the point estimate749

instead of the true parameter yields asymptotically valid confidence intervals.750

Theorem E.2 (Asymptotic Normality of Point Estimate). Let (Sn)
N
n=1 be a sequence of points in S751

such that infill asymptotics holds with respect to (S⋆
m)Mm=1. Suppose Assumptions 1 to 7. Let β̂N,kN752

be the point estimate defined in Eq. (4). Then,753 √
kN (β̂N,kN − βMLE) → N (τ ′(C⋆)B, τ ′(C⋆)Λ⋆τ(C⋆)T), (E.46)

where B and Λ⋆ are as in Proposition E.1754

Proof. We apply Lemma E.7 with ϕ = τ and TN = ΨN,kNY . The point estimate β̂N,kN is given by755

τ(ΨN,kNY ). The true parameter βMLE is given by τ(E[Y ⋆|S⋆]). Proposition E.1 implies756 √
kN (ΨN,kNY − E[Y ⋆|S⋆]) → N (B,Λ⋆). (E.47)
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Therefore, we can apply the delta method (Lemma E.7) to conclude that757 √
kN (β̂N,kN − βMLE) =

√
kN (τ(ΨN,kNY )− τ(E[Y ⋆|S⋆])) (E.48)

→ N (τ ′(C⋆)B, τ ′(C⋆)Λ⋆τ(C⋆)T), (E.49)

as desired.758

From this, we conclude that,759 √
kN (β̂N,kN

p − βMLE
p ) → N (eTp τ

′(C⋆)B, eTp τ
′(C⋆)Λ⋆τ(C⋆)Tep). (E.50)

where ep is the pth standard basis vector in RP . Defining σ2
p = eTp τ

′(C⋆)Λ⋆τ(C⋆)Tep, we can760

construct the pivotal quantity761

Zp =

√
kN (β̂N,kN

p − βMLE
p − eTp τ

′(C⋆)B)√
σ2
p

→ N (0, 1). (E.51)

This gives us the corollary that, when linearized around the true parameter, the confidence intervals762

are asymptotically valid.763

Corollary 1 (Asymptotic Validity of Confidence Intervals Linearized Around True Parameter). Let764

(Sn)
N
n=1 be a sequence of points in S such that infill asymptotics holds with respect to (S⋆

m)Mm=1.765

Suppose Assumptions 1 to 7. Let β̂N,kN be the point estimate defined in Eq. (4). Then for any766

1 ≤ p ≤ P ,767

lim
N→∞

P
(
β̂N,kN
p − zα/2σp − µ ≤ βMLE

p ≤ β̂N,kN
p + zα/2σp − µ

)
= 1− α (E.52)

where µp = eTp τ
′(C⋆)B and σ2

p = eTp τ
′(C⋆)Λ⋆τ(C⋆)Tep for all 1 ≤ p ≤ P .768

Slutsky’s lemma implies that we can replace µp and σ2
p with consistent estimates of the true bias and769

variance.770

Corollary 2 (Asymptotic Validity of Confidence Intervals With Consistent Estimates). With the771

same assumptions as in Corollary 1, let β̂N,kN be the point estimate defined in Eq. (4). Then for any772

1 ≤ p ≤ P ,773

lim
N→∞

P
(
β̂N,kN
p − zα/2σ̂p − µ̂ ≤ βMLE

p ≤ β̂N,kN
p + zα/2σ̂p − µ̂

)
= 1− α (E.53)

where µ̂ = eTp τ
′(ΨN,kNY )B and σ̂2 = eTp τ

′(ΨN,kNY )ΨN,kNΛN (ΨN,kN )Tτ ′(ΨN,kNY )Tep for774

all 1 ≤ p ≤ P .775

The remaining issue is that, we do not know µ̂, because it depends on the unknown function f . We776

can bound it using the same approach as in Burt et al. (2025a).777

Proposition E.2 (Bounding the bias, Burt et al. (2025a, Proposition 12)).

|µ̂| ≤ L sup
f∈F1

∣∣∣∣∣
M∑

m=1

wmf(S⋆
m)−

N∑
n=1

vnf(Sn)

∣∣∣∣∣ , (E.54)

where w = τ ′(ΨN,kNY )Tep and v = ΨN,kNw and F1 is the set of 1-Lipschitz functions. Moreover,778

this can be computed efficiently by reduction to a 1-Wasserstein distance between empirical measures.779

Proof. The bias term µ̂ is given by780

µ̂ =

M∑
m=1

wmf(S⋆
m)−

N∑
n=1

vnf(Sn). (E.55)

If L = 0, f is constant and bias is 0. Otherwise, 1
Lf ∈ F1, and the inequality follows from781

Assumption 3. The second part of the proposition is Burt et al. (2025a, Proposition 12).782
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F Additional Experimental Details for Simulation Studies783

F.1 Baseline Methods784

We compare the proposed method with three baselines:785

• Logistic Regression (LR): Fit a logistic regression model to the training data and evaluate786

the confidence intervals on the target data using the standard errors from the model.787

• Logistic Regression with Sandwich Estimator (LR-Sandwich): Fit a logistic regression788

model to the training data and use the sandwich estimator to compute the standard errors for789

the confidence intervals on the target data.790

• Weighted Logistic Regression (WLR): Fit a weighted logistic regression model to the791

training data, where the weights are determined by the ratio of the kernel density estimates792

of the covariate distribution in the training and target data. The weights are computed as793

follows:794

wi =
p̂T (Xi)

p̂S(Xi)
(F.1)

where p̂T (Xi) is the kernel density estimate of the covariate distribution in the target data795

and p̂S(Xi) is the kernel density estimate of the covariate distribution in the training data.796

The kernel density estimates are computed using Gaussian kernels with bandwidths selected797

using cross-validation. The weighted logistic regression is then fit using the weights wi.798

F.2 Data Generation799

Infill Simulation. We generate the training locations uniformly on [−1, 1]2. We generate the800

target locations on [−scale, scale]2 for scale = {i/16}16i=1. We use a single covariate, X that801

is equal to the first spatial coordinate. The expected value of the response variable is given by a802

1/1 + exp(−h(X)), where h(X) is a piecewise linear function,803

h(X) =


X if X < −0.125

0.875−X if − 0.125 ≤ X < 0.125

0.625 +X if X ≥ 0.125

(F.2)

The response is a Bernoulli random variable with success probability given by the expected value.804

We generate 10000 training data points and 100 target locations. The training and target locations,805

conditional expectation of the response, and observed are shown in Fig. 1.806

Because the logit of the expected response surface is not linear, logistic regression is misspecified.807

When the target points are primarily between [−0.125, 0.125], the expected response surface is808

approximately linear, with a negative slope. On the other hand, over the entire domain, the expected809

response surface increasing, and should have a positive slope. This means that the logistic regression810

model will be biased, and the bias will depend on the amount of distribution shift between the811

training and target data. The amount of distribution shift is controlled by the scale parameter, which812

determines how far the target locations are from zero.813

Extrapolation Simulation. We generate data as in the previous experiment, except that the target814

data is now uniformly distributed on [−j + 1, j + 1]× [−1, 1] for j ∈ {i/16}8i=1. We also define a815

new function h(X) that is a piecewise linear function with a different slope, defined as follows:816

h(X) =

{
X if X < 0.875

0.875−X if X ≥ 0.875
(F.3)

This function has a positive slope for X < 0.875 and a negative slope for X ≥ 0.875. The expected817

response surface is given by 1/1 + exp(−h(X)), and the response is a Bernoulli random variable818

with success probability given by the expected value. As before we generate 10000 training points819

and 100 target points. We repeat the process for 250 datasets.820
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