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Abstract

Negative Sampling is an essential technique
for dense retrieval that can be utilized to ef-
fectively train retrieval models, which signifi-
cantly effects the retrieval performance. While
existing negative sampling methods have al-
ready achieved promising results by leverag-
ing hard negatives, there still lacks a general
principle to guide negative sampling, includ-
ing negative candidate construction and nega-
tive sampling distribution design. To address
it, we conduct a theoretical analysis of nega-
tive sampling in dense retrieval and propose
the quasi-triangular principle to illustrate the
triangular-like relationship among query, posi-
tive document, and negative document. Relying
on this principle, we develop a simple yet ef-
fective negative sampling method, TriSampler ,
which aims to sample more informative nega-
tives within a constrained region. Experimental
results indicate that our TriSampler can achieve
superior retrieval performance across various
representative retrieval models.

1 Introduction

Recently, dense retrieval has gained tremendous
attention due to its excellent performance in real-
world downstream applications, such as open-
domain question answer (Karpukhin et al., 2020),
web search (Xiong et al., 2020), and conversational
search (Yu et al., 2021). In dense retrieval, the re-
trieval models must distinguish relevant documents
for a specific query from all other negative docu-
ments in the entire corpus. Due to a large number
of negative documents, it is not feasible to take
advantage of all of them. Consequently, negative
sampling is keypoint to address the above issue.
Previous efforts have investigated massive neg-
ative sampling methods to sample negatives for
dense retrieval, such as in-batch negatives, ran-
dom negatives, hard negatives, and debiased nega-
tives. Inspired by contrastive learning (Oord et al.,
2018; He et al., 2020; Chen et al., 2020), dense
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Figure 1: Insight experiments to illustrate the signifi-
cance of the quasi-triangular principle.

retrieval models adopt in-batch negatives, a special
case of random negatives, to enhance training ef-
ficiency, which reuses samples within the current
batch and not requires additional sampling opera-
tions. However, results in several works (Faghri
et al., 2017; Kalantidis et al., 2020; Robinson et al.,
2020; Karpukhin et al., 2020; Gao et al., 2021)
show that such easy random negatives may not
provide sufficient information for model training
and result in sub-optimal retrieval performance. To
address this issue, hard negative sampling meth-
ods (Karpukhin et al., 2020; Xiong et al., 2020;
Zhan et al., 2021; Qu et al., 2020; Sun et al., 2022)
have been effectively exploited to improve perfor-
mance, which aim to sample top-k hard negatives
based on the current model or an auxiliary retrieval
model. A critical challenge associated with hard
negatives is the potential presence of false nega-
tives, which may degrade performance (Schroff
et al., 2015; Chuang et al., 2020; Qu et al., 2020;
Zhou et al., 2022).

Although prior works have employed various
negative sampling methods to achieve promising
retrieval results, a general principle guiding nega-



tive sampling remains unclear that should clearly
quantify the relationship among query, positive doc-
ument, and negative document. It is necessary to
propose an explicit negative sampling method that
can sample more informative negatives within a
constraint region (i.e. relationship) based on this
principle.

To gain a better understanding of the negative
sampling principle, we design two extended experi-
ments: (1) sampling negatives from a spherical-like
region where the query acts as the center and the
positive similarity serves as the radius; (2) sam-
pling negatives on the concentric-sphere region
that is centered on the positive document. Such a
spherical-like region allows for a more controllable
negative sampling method since it restricts the sam-
pling space aroud the query. This concentric-sphere
region aims to sample negatives that are related but
not too similar to the positive document. As shown
in Figure 1, constraining the sampling of negatives
within a triangular-like region can bring about im-
provements in retrieval performance. By doing so,
the retrieval model can effectively distinguish rele-
vant (positive) and irrelevant (negative) documents
since the sampled negatives are drawn from a more
confined and meaningful region. Therefore, the in-
sights gained from the above experiments suggest
that the principle of constraining negatives within
a triangular-like region is beneficial for retrieval
performance.

In this paper, we propose a general negative sam-
pling principle called quasi-triangular principle to
constrain the sampled negatives within a triangular-
like region. To implement this principle, we de-
velop a straightforward and effective negative sam-
pling method TriSampler, comprising of negative
candidate construction and negative sampling dis-
tribution implementation. Experimental results in
four retrieval benchmarks demonstrate that TriSam-
pler can achieve better retrieval performance com-
pared to other negative sampling methods. More-
over, TriSampler exhibits its adaptiveness and com-
patibility with a range of classical retrieval models,
including AR2, ANCE, and RocketQA.

2 Related Work

Dense retrieval. Dense retrieval (Lee et al., 2019;
Karpukhin et al., 2020; Xiong et al., 2020; Khattab
and Zaharia, 2020) shows tremendous success in
many downstream tasks (e.g. open-domain QA
and web search) compared with the traditional

sparse retrieval models (e.g. TF-IDF and BM25).
The primary paradigm is to model semantic in-
teraction between queries and passages based on
the learned representations. Most dense retrieval
models leverage the pretrained language models
to learn latent semantic representations for both
queries and passages. Lee et al. (2019) first pro-
posed the dual-encoder retrieval architecture based
on BERT, paving the way for a new retrieval ap-
proach. In order to model fine-grained semantic
interaction between queries and passages, Poly-
encoder (Humeau et al., 2019), ColBERT (Khattab
and Zaharia, 2020), and ME-BERT (Luan et al.,
2021) explored multi-representation dual-encoder
to enhance retrieval performance. Besides, knowl-
edge distillation has become a vital technique to
enhance the capacity of the dual-encoder by dis-
tilling knowledge from a more powerful reader to
a classical retriever (Qu et al., 2020; Ren et al.,
2021b; Lin et al., 2020; Hofstétter et al., 2021).

Recently, massive works have investigated task-
related pre-training methods for dense retrieval
models (Gao and Callan, 2021a,b; Wang et al.,
2021; Ren et al., 2021a; Oguz et al., 2021; Meng
et al., 2021). Condenser (Gao and Callan, 2021a)
proposed the Condenser architecture to enforce the
late backbone layers to aggregate the whole infor-
mation. coCondenser (Gao and Callan, 2021b)
leveraged contrastive learning to incorporate a
query-agnostic contrastive loss. PAIR (Ren et al.,
2021a) and DPR-PAQ (Oguz et al., 2021) also de-
signed special tasks in pre-training to enhance re-
trieval models. Additionally, jointly training re-
trieval models with the rerank model can bring
about better performance. Sachan et al. (2021) pro-
posed an end-to-end training method to jointly or
individually model the retrieved documents. Zhang
et al. (2021) adopted adversarial training to model
the retriever and the reranker.

Negative sampling in dense retrieval. Several
recent works (Karpukhin et al., 2020; Xiong et al.,
2020; Qu et al., 2020; Zhan et al., 2021) demon-
strate that hard negative sampling plays a crucial
role in enhancing dense retrieval. Previous studies
on negative sampling can be roughly categorized
into three categories: (1) random sampling is the
simplest way to obtain negatives. As an efficient
random sampling method, in-batch negatives are
widely used in dense retrieval models (Karpukhin
et al., 2020; Zhan et al., 2021). Such an approach is
sub-optimal because random negatives have been



proven to be too easy for learning effective models.
RocketQA (Qu et al., 2020) adopted cross-batch
negatives to increase the number of random neg-
atives, resulting in better performance. (2) hard
negative sampling can improve model generaliza-
tion and accelerate convergence. DPR (Karpukhin
et al., 2020) additionally integrated hard negative
passages from BM25 into in-batch negatives for
dense passage retrieval. ANCE (Xiong et al., 2020)
verified that global hard negatives obtained from
the current retrieval model can significantly en-
hance the retrieval performance. ADORE (Zhan
et al., 2021) proposed a dynamic negative sam-
pling method to train retrieval models. ANCE-
Tele (Sun et al., 2022) combined past iterations by
a momentum queue and future iterations by a look-
head operation to select hard negatives for stable
training. (3) debiased hard negative sampling can
efficiently alleviate false negatives. RocketQA (Qu
et al., 2020) utilized a well-trained cross-encoder
to select hard negatives for the dual-encoder train-
ing. SimANS (Zhou et al., 2022) proposed ambigu-
ous negatives to reweight the relevant score with
the positives. Different from the abovementioned
methods, our TriSampler aims to sample negatives
within a triangular-like region based on a general
quasi-triangular principle, which constraints the
range of negative candidates and provides more
informative negatives for model training.

3 Understanding Negative Sampling

In this section, we first review the preliminary for
dense retrieval and then analyze the vital role of
negative sampling in dense retrieval from the per-
spective of objective.

3.1 Preliminary for Dense Retrieval

Previous dense retrieval works (Karpukhin et al.,
2020; Xiong et al., 2020) aim to distinguish the
most relevant documents DT from a large doc-
ument corpus D for a given query ¢q. Typically,
these retrieval models leverage negative sampling
method to sample several negatives to substitute the
entire corpus for model training, thus significantly
reducing training costs. The objective function for
dense retrieval can be simplified as:

L= 3 Uslhghye), s(h b))

q dteDtd—eD—
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where [(-) represents a loss function, such as cross
entropy or hinge loss, s(-) denotes the dot product

used to measure the similarity metric, h, and hy
represent query embedding and document embed-
ding that are encoded by a query encoder and a
document encoder respectively. The pre-trained
language models (PLMs) (Devlin et al., 2018;
Liu et al., 2019; Zhang et al., 2019) serve as dual-
encoder and the representations of the [CLS] token
are leveraged as embeddings.

The construction of negative candidates D~ de-
pends on either the current retrieval model or sparse
retrieval model (BM25). The final negatives are
then sampled based on different negative sampling
distributions.

3.2 Analysis for Negative Sampling

A representative dense retrieval model is trained on
training triples {(q,d",{d"}"_,)} where (¢,d")
is a positive query-document pair and {d~ }}" ; are
the sampled negative irrelevant documents. A con-
ventional contrastive loss for dense retrieval can be
formulated as:

exp(s™)
exp(st) + >0 exp(s; )

L=-lo 2)

where s denotes positive similarity score between
the query and the corresponding positive docu-
ment s(hy,hy+), s~ represents negative similarity
score between the query and negative document
s(hg,hy-).

The gradient of the above contrastive loss can be
split into two parts in terms of s™ and i

oL _ X eapls)
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According to Equation 3, the gradient with re-
spect to the negative document is proportional to
the negative similarity score exp(s; ). The nega-
tives obtained through random sampling possess
very low similarity scores, leading to gradients
close to zero and providing minimal contribution
to model training. The negatives that are sampled
from the top K nearest irrelevant documents can
provide larger similarity scores, facilitating the re-
trieval model to achieve faster convergence. How-
ever, the gradients with respect to the positive doc-
ument will be bounded into a fixed value when
negative similarity scores are much larger than the
positive ones. As a result, the negatives should



satisfy a specific constraint relationship. A simple
relationship is s &~ s~ where negatives are sam-
pled from the spherical-like region. Such sampled
negatives provide more information for accelerat-
ing model convergence, effectively alleviating zero
or fixed-value gradients.

The above analysis clearly demonstrates that neg-
atives within the constraint region st ~ s~ can
eliminate excessively hard or easy negatives. Be-
sides, we incorporate the similarity score between
the positive document and negatives into negative
sampling. The specific relationship among query,
positive document, and negative document will be
discussed in Section 4.1.

4 Method

As analyzed in Section 3.2, a promising negative
sampling method should be satisfied the constraint
region sT &~ s, suggesting that sampling nega-
tives from the spherical-like region. However, the
entire spherical region is vast for negative sam-
pling, for example, negatives far away from the
positive document may not provide more valuable
information since the retrieval model should be
able to distinguish positive and negative documents.
Therefore, we propose the quasi-triangular prin-
ciple where the sampled negatives are constrained
within a triangular-like region. Based on this prin-
ciple, we develop a simple and effective negative
sampling method TriSampler.

4.1 The Principle of Negative Sampling

Here, we propose the quasi-triangular principle to
simulate the pairwise relationship among a training
triple (q,d*, d ™) for improving negative sampling
in dense retrieval. The principle constrains the
region of sampled negatives within a triangular-like
region rather than the entire spherical-like region.
Figure 2 demonstrates the planar projection of a
sphere where the angular 6 in the triangular-like
region can be defined as:

S(h(Zahd+)
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In the triangular-like region, the boundary for
negatives is § = 60°. Compared with the whole
spherical-like region, this constraint further pushes
the negatives closer to the positive documents.
Such a region simultaneously ensures that nega-
tives possess high similarity with both the query
and positive document, which helps to alleviate is-
sues related to false negatives that are too close to

the query and uninformative negatives that are far
from the query and the positive.
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Figure 2: The proposed quasi-triangular principle for
negative sampling in dense retrieval.

4.2 Negative Candidates

To provide more informative negative candidates,
we follow the quasi-triangular principle to con-
struct negative candidates D, within a triangular-
like region for any certain query g. Specifically, we
first sample the top-ranked irrelevant documents in
terms of the query based on the current retrieval
model, which is widely used in previous hard neg-
ative selection methods (Xiong et al., 2020; Zhan
et al., 2021; Zhang et al., 2021; Zhou et al., 2022).
Then, we can obtain the relevant scores between
the positive document and the above top-ranked
documents. After that, based on the abovemen-
tioned relevant scores s(hg, hy-) and s(hg+,hy-)
where d~ € TopK,, p-). we derive the following
criteria for constructing a more informative nega-
tive candidate set that satisfies the quasi-triangular
principle:

* Negative candidates should conform to the first
range constraint s(hy, hy+) =~ s(hg, h,-), which
can effectively eliminate too hard or too easy
negatives;

* Negative candidates should be in line with
the second range constraint s(hg+,h;-) >
s(hg, hy-), which can provide more informative
negative candidates.

4.3 Negative Sampling Distribution

The primary goal of negative sampling method
is to design an effective distribution for sampling
high-quality negatives from the negative candidates.
Based on the quasi-triangular principle, we formu-
late the first distribution for the range constraint
s(hg,hg) =~ s(hg, hy-) as:

p((iq,) x exp(—% % (57 —sT)?) (5)



where s~ and st represent s(h,, h;-) and
s(hg, hg+) respectively. Such a distribution elim-
inates too hard negatives (i.e. false negatives)
and further consolidates the first range constraint
sT ~ s~. The resulting distribution is performed
on the top-ranked negative candidates TopK, p-)

to obtain transitional negatives f)q_ .

In the second range constraint, we devise a new
distribution to obtain the final negatives for retrieval
model training. In specific, negatives that are close
to positive should be assigned with higher sam-
pling probabilities among the triangular-like region.
Thus, the distribution can be represented as:

pg— x ReLU(s(hg+,hy-) — S(hq7hd*)) (6)

where this distribution is conducted on transitional
negatives f)q_ .

The key insight of using the RuL.U function is
that it can exclude negatives that are not in the
triangular-like region and further guarantee that
negatives that are closer to positive possess higher
sampling probabilities. In this way, the sampled
negatives can satisfy the quasi-triangular principle,
providing more informative negatives to enhance
retrieval performance for dense retrieval models.

4.4 Discussion

In this work, we propose the quasi-triangular prin-
ciple to guide negative sampling in dense retrieval
and design a negative sampling method TriSampler
to sample more informative and valuable negatives.
TriSampler is a general method that can be directly
applied to existing dense retrieval models by sub-
stituting the default negative sampling method. Al-
gorithm 1 represents the overall training process of
TriSampler. Here, we discuss the connection and
discrimination between TriSampler and previous
negative sampling methods.

* TriSampler vs RandNS. RandNS (Huang et al.,
2020) is a basic method that randomly samples
negatives from a huge set of negative candi-
dates. TriSampler relies on the quasi-triangular
principle to sample more informative negatives
within the triangular-like region. Different from
RandNS that assigns equal weights for each neg-
ative, TriSampler leverages a well-designed dis-
tribution to sample negatives.

TriSampler vs TopNS. TopNS aims to sample
top-k ones from all ranked negatives based on
a dynamic-trained dense retrieval model (Xiong

Algorithm 1: Algorithm of TriSampler

Input: Positive query-documents
{(q,D")}, document corpus D.
Build ANN index on D.
Generate the top-ranked negative candidates
TopK,, p-) from D.

[ S

Sample transitional negatives 15; from

(@)
p

Sample final negatives 25(; ={d },

w

TopK,, p- with distribution p

£

based on distribution p;- from D .
Construct training data {(g, D", 75; )}

wm

etal.,2020; Zhan et al., 2021) or a sparse retrieval
model (Karpukhin et al., 2020) (BM25). Unlike
TopNS which has a higher risk of false negatives,
TriSampler eliminates too hard negatives via a
constraint triangular-like region.

* TriSampler vs SIimANS. SimANS (Zhou et al.,
2022) designs a negative sampling distribution to
sample ambiguous negatives, which avoids sam-
pling negatives that are either too hard or too easy.
Similar to SimANS, TriSampler also devises two
distributions for the constraint region. The main
difference between these is that TriSampler lim-
its negatives within a triangular-like region while
SimANS leverages top-ranked negatives as the
sampling region.

e TriSampler vs ANCE-Tele. ANCE-Tele (Sun
et al., 2022) combines three types of negatives
(standard ANCE negatives, momentum negatives,
and lookahead negatives) to form negative candi-
dates and then randomly sample negatives from
the above candidates. Different from ANCE-
Tele, TriSampler constraints the sampling region
within a triangular-like region and employs two
specifically-designed distributions for sampling.

S Experiments

5.1 Experimental Setup

Datasets. We conduct experiments on the first
retrieval stage of four benchmarks: three pas-
sage retrieval datasets: MS MARCO passage
(MS Pas) (Nguyen et al., 2016), Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019), and Trivi-
aQA (TQA) (Joshi et al., 2017), and a document
retrieval dataset: MS MARCO document (MS



Doc) (Nguyen et al., 2016). The statistics of each
dataset is illustrated in Table 1.

Datasets | Training  Dev Test Documents
NQ 58,880 8,757 3,610 21,015,324
TQA 60,413 8,837 11,313 21,015,324
MS Pas | 502,939 6,980 - 8,841,823
MS Doc | 367,013 5,193 - 3,213,835

Table 1: The statistics of four retrieval datasets.

Evaluation metrics. We evaluate retrieval per-
formance using official evaluation methodologies,
such as MMR@10 and R@¥k. For the NQ and TQA
datasets, R@20 and R@100 serve as metrics to mea-
sure whether the top-£ retrieved passages contain
the answer span. For the MS MARCO datasets, we
evaluate the results on their dev datasets in terms of
MRR@10 and R@50 for MS Pas dataset, MRR@10
and R@100 for MS Doc dataset.

Baselines. We compare our proposed TriSampler-
with previously established baselines for retrieval
benchmarks. Baselines can be generally divided
into the following categories.

* Sparse Retrieval. The compared sparse re-
trieval models contains BM25 (Yang et al.,
2017) and improved variants of BM25 mod-
els that incorporate pretrained language mod-
els, such as doc2query (Nogueira et al.,
2019a), DeepCT (Dai and Callan, 2019),
docTTTTTquery (Nogueira et al., 2019b), and
GAR (Mao et al., 2020).

* Dense Retrieval. Massive dense retrieval
baselines have investigated a variety of
training methods to improve the retrieval
performance, such as hard negative sam-
pling (Karpukhin et al., 2020; Xiong et al.,
2020; Zhan et al., 2021; Zhou et al., 2022), dis-
tillation (Qu et al., 2020; Lu et al., 2022; Ren
et al., 2021b), integrating rerankers into re-
trievers (Zhang et al., 2021), pre-training (Ren
et al., 2021a; Gao and Callan, 2021b,a), etc.
Among these, hard negative sampling is a par-
ticularly important strategy. DPR (Karpukhin
et al., 2020), RocketQA (Qu et al., 2020),
ANCE (Xiong et al., 2020), ADORE (Zhan
et al., 2021), and SimANS (Zhou et al., 2022)
attempt to design various negative sampling
methods to obtain top-k hard negatives.

Implementation Details. We implement TriSam-
pler based on SOTA dense retrieval model

AR2 (Zhang et al., 2021) and run all experiments
on 8 NVIDIA Tesla A100 GPUs. Following AR2,
ERNIE-2.0-base (Sun et al., 2020) serves as a back-
bone model to encode queries and passages. Sim-
ilar to SIimANS (Zhou et al., 2022), we directly
utilize checkpoints in the AR2 model to continue
training with our proposed TriSampler. For MS
Doc dataset, the model parameters are initialized
with STAR (Zhan et al., 2021). In our experiments,
the ratio of positive to negative pairsissetto 1 : 15,
the inner product is leveraged to estimate the rel-
evance score and Faiss (Johnson et al., 2019) is
adopted for efficient similarity search. We utilize
the top-200 passages for NQ and TQA datasets and
the top-400 documents for MS Pas and MS Doc
datasets as negative candidates.

5.2 Overall Results

Our TriSampler achieves a better retrieval perfor-
mance than all baselines on all metrics (See Table 2
and Table 3). The improvements primarily stem
from the superiority of the quasi-triangular princi-
ple over previous hard negative sampling methods.
Since the measurement principle between query-
negatives and pos_passage-negatives may share a
quasi-triangular principle (See Section 3.2), previ-
ous methods are unable to capture this principle or
even overlook the impact of pos_passage-negatives.
Our TriSampler aims to construct negative can-
didates based on the abovementioned principle.
Moreover, the newly designed negative sampling
distribution focuses on sampling informative nega-
tives that are simultaneously close to both the query
and the positive passage, effectively providing high-
quality negatives to accelerate model convergence.
To verify the adaptiveness of TriSampler to dif-
ferent genres of dense retrieval models, we also
integrate it into two representative retrieval mod-
els: ANCE (Xiong et al., 2020) and RocketQA (Qu
et al., 2020). For fairness, we only substitute the
default negative sampling method in these two re-
trieval models with TriSampler. Experimental re-
sults in Table 2 show that our TriSampler is a gen-
eral method that can be naturally applied to various
dense retrieval models. Such a method can provide
more informative negatives to consistently improve
downstream performance in dense retrieval.

5.3 Why TriSampler performs better?

Perspective of candidates. To deepen the un-
derstanding of TriSampler, we vary the selec-
tion methods of negative candidates and conduct



Method NQ TQA MS Pas
R@20 R@100 | R@20 R@100 | MRR@10 R@50
BM25 (Yang et al., 2017) 59.1 73.7 66.9 76.7 18.7 59.2
doc2query (Nogueira et al., 2019b) - - - - 21.5 64.4
DeepCT (Dai and Callan, 2019) - - - - 24.3 69.0
docTTTTTquery (Nogueira et al., 2019a) 27.7 75.6
GAR (Mao et al., 2020) 74.4 85.3 80.4 85.7 - -
DPR (Karpukhin et al., 2020) 78.4 85.4 79.3 84.9 - -
ME-BERT (Luan et al., 2021) - - - - 33.8 -
Joint top-k (Sachan et al., 2021) 81.8 87.8 81.3 86.3 - -
Individual top-k (Sachan et al., 2021) 84.0 89.2 83.1 87.0 - -
RocketQAv2 (Ren et al., 2021b) 83.7 89.0 - - 38.8 86.2
PAIR (Ren et al., 2021a) 83.5 89.1 - - 379 86.4
DPR-PAQ (Oguz et al., 2021) 84.0 89.2 - - 31.1 -
Condenser (Gao and Callan, 2021a) 83.2 88.4 81.9 86.2 36.6 -
coCondenser (Gao and Callan, 2021b) 84.3 89.0 83.2 87.3 38.2 -
ANCE-Tele (Sun et al., 2022) 84.9 89.7 83.4 87.3 39.1 -
ERNIE-Search (Lu et al., 2022) 85.3 89.7 - - 40.1 -
AR2+SimANS (Zhou et al., 2022) 86.2 90.3 84.6 88.1 40.9 88.7
ANCE (Xiong et al., 2020) 81.9 87.5 80.3 85.3 33.0 81.1
ANCE + TriSampler 83.8 89.1 834 87.2 35.8 834
RocketQA (Qu et al., 2020) 82.7 88.5 - - 37.0 85.5
RocketQA + TriSampler 85.3 89.6 - - 38.3 86.0
AR?2 (Zhang et al., 2021) 86.0 90.1 84.4 87.9 39.5 87.8
AR2 + TriSampler 86.5 90.7 85.0 88.5 414 89.1

Table 2: Results on three retrieval benchmarks, including NQ test set, TQA test set, and MS Pas dev set. The results

of baselines are directly obtained from the original papers and results not provided are marked as

Method MRR@100 R@100
BM25 (Yang et al., 2017) 27.9 80.7
DPR (Karpukhin et al., 2020) 32.0 86.4
ANCE (Xiong et al., 2020) 37.7 89.4
STAR (Zhan et al., 2021) 39.0 91.3
ADORE (Zhan et al., 2021) 40.5 91.9
AR?2 (Zhang et al., 2021) 41.8 914
AR2+SimANS (Zhou et al., 2022) 43.1 92.3
AR2+TriSampler 43.8 93.1

Table 3: Experimental performance on MS Doc dev set.

two extended experiments on the NQ dataset
and the MS Pas dataset using the AR?2 retrieval
model: (1) top-k query-document ranked nega-
tive candidates D, = TopK,, p-); (2) top-k
document-document ranked negative candidates
Dq_ = TOsz(d-i»’D—).

As shown in Table 4, TriSampler surpasses all
other variants of negative candidate selection meth-
ods, indicating the effectiveness of our TriSampler.
For TopK, p-) and TopK 4+ p-), they seem to
only account for the impact of the query or positive

T3]

document on negatives, ignoring the triangular-like
relationship outlined in Section 4.1. TriSampler
combines these two methods based on the quasi-
triangular principle, which alleviates the excessive
reliance on the query and constrains the region of
negative candidates. Consequently, TriSampler can
achieve enhanced performance, suggesting that the
triangular-like relationship is a valuable constraint
for selecting negative candidates.

NQ MS Pas
Method R@20 R@I100 | MRR@10 R@50
TopK,, ,—, | 862 903 40.9 837
TopK, 4t o) | 855 904 403 88.5
TriSampler 86.5 90.7 41.4 89.1

Table 4: Various negative candidate selection methods
on the NQ dataset and the MS Pas dataset.

Perspective of distributions. To demonstrate the
effectiveness of the negative sampling distribution
proposed in TriSampler, we evaluate the retrieval
performances on three variations of TriSampler on



the MS Pas dataset: (1) Uniform sampling that
assigns negative candidates with equal weights; (2)
TopK Sampling that leverages the relevant score
as sampling weights; (3) Debiased Sampling that
computes sampling weights by reducing the impact
of the positive relevant score.

Table 5 reveals that TriSampler outperforms the
other variant negative sampling distributions. Ac-
cording to Equation (5), the negative sampling
distribution suggested by TriSampler adheres to
the quasi-triangular principle. This principle al-
locates higher sampling probabilities to negatives
that are closer to the positive document within a
restricted region. This observation confirms that
a well-designed sampling distribution can indeed
contribute to enhanced performance.

Method MRR@10 R@50 R@Il1k
Uniform Sampling 39.7 879 98.6
TopK Sampling 40.6 88.6  98.7
Debiased Sampling 41.1 88.9  98.8
TriSampler 41.4 89.1 989

Table 5: Various negative sampling distributions on the
MS Pas dataset.

5.4 Further Analysis

Impact of negative sample size. We further in-
vestigate the impact of negative sample size k on
retrieval performance using the AR2 model. We
vary k in the range of {1,5,11,15} and conduct
experiments on the NQ and the TQA datasets. As
depicted in Figure 3, retrieval performance con-
sistently enhances with the increasing number of
negatives, verifying the significance of negative
sample size in improving performance. These ex-
perimental results align with findings from Rock-
etQA, which also suggest that increasing the num-
ber of negatives contributes to better retrieval per-
formance.
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Figure 3: The impact of negative sample size on the NQ
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Training efficiency comparison. To explore the
training efficiency of TriSampler, we test the wall-
clock time cost, including the cost of training per
batch Costp and the cost of training instances con-
struction Costc. As shown in Table 6, it is obvi-
ously observed that the training cost of TriSam-
pler is slightly higher compared with SimANS. Al-
though TriSampler requires more time to construct
training instances, the cost is distributed across
t = 2000 training steps, resulting in a per-batch
cost of Costc/; = 0.055s. Thus, the overall cost
for training each batch has increased only slightly.
However, the total training time to reach optimal
performance is reduced because our TriSampler
achieves faster convergency (See Figure 4). To sum
up, TriSampler demonstrates improved efficiency
gains in comparison to SIimANS.

Method Costp Costc Costeyy  Costauy
AR2+SimANS 2.9s 85s 0.043s  2.943s
AR2+TriSampler | 3.0s 110s  0.055s  3.055s

Table 6: Training efficiency comparison on the NQ
dataset.
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Figure 4: Training convergency curves comparison be-
tween SIMANS and TriSampler on the NQ dataset.

6 Conclusion

In this paper, we investigate the fundamental prin-
ciple that negative sampling should satisfy in dense
retrieval. First, we analyze negative sampling from
the perspective of objective. Next, we propose
a general principle to guide negative sampling,
termed the quasi-triangular principle. This prin-
ciple suggests that the sampled negatives should
be constrained within a triangular-like region. Fi-
nally, building upon this principle, we propose a
negative sampling method TriSampler to sample
more informative negatives within the constrained
region. Experiments on four benchmark datasets
show that TriSampler can achieve better retrieval
performance compared with other methods.



Limitations

Although our study presents an effective negative
sampling principle for guiding the selection of neg-
atives in dense retrieval, we recognize two limita-
tions in our work. First, we have only evaluated
our TriSampler on benchmark datasets. In future
work, we hope to apply TriSampler to real-world
industrial dataset and investigate the applicability
of the quasi-triangular principle across different
domains. Second, the proposed TriSampler method
may not be the optimal solution based on the quasi-
triangular principle. Further research is needed
to devise a better approach for achieving negative
sampling within the constrained region.

Despite these limitations, we offer a general prin-
ciple for negative sampling in dense retrieval that
can serves as a foundation for future research.
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