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Abstract

Negative Sampling is an essential technique001
for dense retrieval that can be utilized to ef-002
fectively train retrieval models, which signifi-003
cantly effects the retrieval performance. While004
existing negative sampling methods have al-005
ready achieved promising results by leverag-006
ing hard negatives, there still lacks a general007
principle to guide negative sampling, includ-008
ing negative candidate construction and nega-009
tive sampling distribution design. To address010
it, we conduct a theoretical analysis of nega-011
tive sampling in dense retrieval and propose012
the quasi-triangular principle to illustrate the013
triangular-like relationship among query, posi-014
tive document, and negative document. Relying015
on this principle, we develop a simple yet ef-016
fective negative sampling method, TriSampler ,017
which aims to sample more informative nega-018
tives within a constrained region. Experimental019
results indicate that our TriSampler can achieve020
superior retrieval performance across various021
representative retrieval models.022

1 Introduction023

Recently, dense retrieval has gained tremendous024

attention due to its excellent performance in real-025

world downstream applications, such as open-026

domain question answer (Karpukhin et al., 2020),027

web search (Xiong et al., 2020), and conversational028

search (Yu et al., 2021). In dense retrieval, the re-029

trieval models must distinguish relevant documents030

for a specific query from all other negative docu-031

ments in the entire corpus. Due to a large number032

of negative documents, it is not feasible to take033

advantage of all of them. Consequently, negative034

sampling is keypoint to address the above issue.035

Previous efforts have investigated massive neg-036

ative sampling methods to sample negatives for037

dense retrieval, such as in-batch negatives, ran-038

dom negatives, hard negatives, and debiased nega-039

tives. Inspired by contrastive learning (Oord et al.,040

2018; He et al., 2020; Chen et al., 2020), dense041

Figure 1: Insight experiments to illustrate the signifi-
cance of the quasi-triangular principle.

retrieval models adopt in-batch negatives, a special 042

case of random negatives, to enhance training ef- 043

ficiency, which reuses samples within the current 044

batch and not requires additional sampling opera- 045

tions. However, results in several works (Faghri 046

et al., 2017; Kalantidis et al., 2020; Robinson et al., 047

2020; Karpukhin et al., 2020; Gao et al., 2021) 048

show that such easy random negatives may not 049

provide sufficient information for model training 050

and result in sub-optimal retrieval performance. To 051

address this issue, hard negative sampling meth- 052

ods (Karpukhin et al., 2020; Xiong et al., 2020; 053

Zhan et al., 2021; Qu et al., 2020; Sun et al., 2022) 054

have been effectively exploited to improve perfor- 055

mance, which aim to sample top-k hard negatives 056

based on the current model or an auxiliary retrieval 057

model. A critical challenge associated with hard 058

negatives is the potential presence of false nega- 059

tives, which may degrade performance (Schroff 060

et al., 2015; Chuang et al., 2020; Qu et al., 2020; 061

Zhou et al., 2022). 062

Although prior works have employed various 063

negative sampling methods to achieve promising 064

retrieval results, a general principle guiding nega- 065
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tive sampling remains unclear that should clearly066

quantify the relationship among query, positive doc-067

ument, and negative document. It is necessary to068

propose an explicit negative sampling method that069

can sample more informative negatives within a070

constraint region (i.e. relationship) based on this071

principle.072

To gain a better understanding of the negative073

sampling principle, we design two extended experi-074

ments: (1) sampling negatives from a spherical-like075

region where the query acts as the center and the076

positive similarity serves as the radius; (2) sam-077

pling negatives on the concentric-sphere region078

that is centered on the positive document. Such a079

spherical-like region allows for a more controllable080

negative sampling method since it restricts the sam-081

pling space aroud the query. This concentric-sphere082

region aims to sample negatives that are related but083

not too similar to the positive document. As shown084

in Figure 1, constraining the sampling of negatives085

within a triangular-like region can bring about im-086

provements in retrieval performance. By doing so,087

the retrieval model can effectively distinguish rele-088

vant (positive) and irrelevant (negative) documents089

since the sampled negatives are drawn from a more090

confined and meaningful region. Therefore, the in-091

sights gained from the above experiments suggest092

that the principle of constraining negatives within093

a triangular-like region is beneficial for retrieval094

performance.095

In this paper, we propose a general negative sam-096

pling principle called quasi-triangular principle to097

constrain the sampled negatives within a triangular-098

like region. To implement this principle, we de-099

velop a straightforward and effective negative sam-100

pling method TriSampler, comprising of negative101

candidate construction and negative sampling dis-102

tribution implementation. Experimental results in103

four retrieval benchmarks demonstrate that TriSam-104

pler can achieve better retrieval performance com-105

pared to other negative sampling methods. More-106

over, TriSampler exhibits its adaptiveness and com-107

patibility with a range of classical retrieval models,108

including AR2, ANCE, and RocketQA.109

2 Related Work110

Dense retrieval. Dense retrieval (Lee et al., 2019;111

Karpukhin et al., 2020; Xiong et al., 2020; Khattab112

and Zaharia, 2020) shows tremendous success in113

many downstream tasks (e.g. open-domain QA114

and web search) compared with the traditional115

sparse retrieval models (e.g. TF-IDF and BM25). 116

The primary paradigm is to model semantic in- 117

teraction between queries and passages based on 118

the learned representations. Most dense retrieval 119

models leverage the pretrained language models 120

to learn latent semantic representations for both 121

queries and passages. Lee et al. (2019) first pro- 122

posed the dual-encoder retrieval architecture based 123

on BERT, paving the way for a new retrieval ap- 124

proach. In order to model fine-grained semantic 125

interaction between queries and passages, Poly- 126

encoder (Humeau et al., 2019), ColBERT (Khattab 127

and Zaharia, 2020), and ME-BERT (Luan et al., 128

2021) explored multi-representation dual-encoder 129

to enhance retrieval performance. Besides, knowl- 130

edge distillation has become a vital technique to 131

enhance the capacity of the dual-encoder by dis- 132

tilling knowledge from a more powerful reader to 133

a classical retriever (Qu et al., 2020; Ren et al., 134

2021b; Lin et al., 2020; Hofstätter et al., 2021). 135

Recently, massive works have investigated task- 136

related pre-training methods for dense retrieval 137

models (Gao and Callan, 2021a,b; Wang et al., 138

2021; Ren et al., 2021a; Oğuz et al., 2021; Meng 139

et al., 2021). Condenser (Gao and Callan, 2021a) 140

proposed the Condenser architecture to enforce the 141

late backbone layers to aggregate the whole infor- 142

mation. coCondenser (Gao and Callan, 2021b) 143

leveraged contrastive learning to incorporate a 144

query-agnostic contrastive loss. PAIR (Ren et al., 145

2021a) and DPR-PAQ (Oğuz et al., 2021) also de- 146

signed special tasks in pre-training to enhance re- 147

trieval models. Additionally, jointly training re- 148

trieval models with the rerank model can bring 149

about better performance. Sachan et al. (2021) pro- 150

posed an end-to-end training method to jointly or 151

individually model the retrieved documents. Zhang 152

et al. (2021) adopted adversarial training to model 153

the retriever and the reranker. 154

Negative sampling in dense retrieval. Several 155

recent works (Karpukhin et al., 2020; Xiong et al., 156

2020; Qu et al., 2020; Zhan et al., 2021) demon- 157

strate that hard negative sampling plays a crucial 158

role in enhancing dense retrieval. Previous studies 159

on negative sampling can be roughly categorized 160

into three categories: (1) random sampling is the 161

simplest way to obtain negatives. As an efficient 162

random sampling method, in-batch negatives are 163

widely used in dense retrieval models (Karpukhin 164

et al., 2020; Zhan et al., 2021). Such an approach is 165

sub-optimal because random negatives have been 166
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proven to be too easy for learning effective models.167

RocketQA (Qu et al., 2020) adopted cross-batch168

negatives to increase the number of random neg-169

atives, resulting in better performance. (2) hard170

negative sampling can improve model generaliza-171

tion and accelerate convergence. DPR (Karpukhin172

et al., 2020) additionally integrated hard negative173

passages from BM25 into in-batch negatives for174

dense passage retrieval. ANCE (Xiong et al., 2020)175

verified that global hard negatives obtained from176

the current retrieval model can significantly en-177

hance the retrieval performance. ADORE (Zhan178

et al., 2021) proposed a dynamic negative sam-179

pling method to train retrieval models. ANCE-180

Tele (Sun et al., 2022) combined past iterations by181

a momentum queue and future iterations by a look-182

head operation to select hard negatives for stable183

training. (3) debiased hard negative sampling can184

efficiently alleviate false negatives. RocketQA (Qu185

et al., 2020) utilized a well-trained cross-encoder186

to select hard negatives for the dual-encoder train-187

ing. SimANS (Zhou et al., 2022) proposed ambigu-188

ous negatives to reweight the relevant score with189

the positives. Different from the abovementioned190

methods, our TriSampler aims to sample negatives191

within a triangular-like region based on a general192

quasi-triangular principle, which constraints the193

range of negative candidates and provides more194

informative negatives for model training.195

3 Understanding Negative Sampling196

In this section, we first review the preliminary for197

dense retrieval and then analyze the vital role of198

negative sampling in dense retrieval from the per-199

spective of objective.200

3.1 Preliminary for Dense Retrieval201

Previous dense retrieval works (Karpukhin et al.,202

2020; Xiong et al., 2020) aim to distinguish the203

most relevant documents D+ from a large doc-204

ument corpus D for a given query q. Typically,205

these retrieval models leverage negative sampling206

method to sample several negatives to substitute the207

entire corpus for model training, thus significantly208

reducing training costs. The objective function for209

dense retrieval can be simplified as:210

L =
∑
q

∑
d+∈D+

∑
d−∈D−

l(s(hq,hd+), s(hq,hd−))

(1)211

where l(·) represents a loss function, such as cross212

entropy or hinge loss, s(·) denotes the dot product213

used to measure the similarity metric, hq and hd 214

represent query embedding and document embed- 215

ding that are encoded by a query encoder and a 216

document encoder respectively. The pre-trained 217

language models (PLMs) (Devlin et al., 2018; 218

Liu et al., 2019; Zhang et al., 2019) serve as dual- 219

encoder and the representations of the [CLS] token 220

are leveraged as embeddings. 221

The construction of negative candidates D− de- 222

pends on either the current retrieval model or sparse 223

retrieval model (BM25). The final negatives are 224

then sampled based on different negative sampling 225

distributions. 226

3.2 Analysis for Negative Sampling 227

A representative dense retrieval model is trained on 228

training triples {(q, d+, {d−}ni=1)} where (q, d+) 229

is a positive query-document pair and {d−}ni=1 are 230

the sampled negative irrelevant documents. A con- 231

ventional contrastive loss for dense retrieval can be 232

formulated as: 233

L = − log
exp(s+)

exp(s+) +
∑n

i=1 exp(s
−
i )

(2) 234

where s+ denotes positive similarity score between 235

the query and the corresponding positive docu- 236

ment s(hq,hd+), s− represents negative similarity 237

score between the query and negative document 238

s(hq,hd−). 239

The gradient of the above contrastive loss can be 240

split into two parts in terms of s+ and s−j : 241

∂L
∂s+

= −
∑n

i=1 exp(s
−
i )

exp(s+) +
∑n

i=1 exp(s
−
i )

,

∂L
∂s−j

=
exp(s−j )

exp(s+) +
∑n

i=1 exp(s
−
i )

(3) 242

According to Equation 3, the gradient with re- 243

spect to the negative document is proportional to 244

the negative similarity score exp(s−j ). The nega- 245

tives obtained through random sampling possess 246

very low similarity scores, leading to gradients 247

close to zero and providing minimal contribution 248

to model training. The negatives that are sampled 249

from the top K nearest irrelevant documents can 250

provide larger similarity scores, facilitating the re- 251

trieval model to achieve faster convergence. How- 252

ever, the gradients with respect to the positive doc- 253

ument will be bounded into a fixed value when 254

negative similarity scores are much larger than the 255

positive ones. As a result, the negatives should 256
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satisfy a specific constraint relationship. A simple257

relationship is s+ ≈ s− where negatives are sam-258

pled from the spherical-like region. Such sampled259

negatives provide more information for accelerat-260

ing model convergence, effectively alleviating zero261

or fixed-value gradients.262

The above analysis clearly demonstrates that neg-263

atives within the constraint region s+ ≈ s− can264

eliminate excessively hard or easy negatives. Be-265

sides, we incorporate the similarity score between266

the positive document and negatives into negative267

sampling. The specific relationship among query,268

positive document, and negative document will be269

discussed in Section 4.1.270

4 Method271

As analyzed in Section 3.2, a promising negative272

sampling method should be satisfied the constraint273

region s+ ≈ s−, suggesting that sampling nega-274

tives from the spherical-like region. However, the275

entire spherical region is vast for negative sam-276

pling, for example, negatives far away from the277

positive document may not provide more valuable278

information since the retrieval model should be279

able to distinguish positive and negative documents.280

Therefore, we propose the quasi-triangular prin-281

ciple where the sampled negatives are constrained282

within a triangular-like region. Based on this prin-283

ciple, we develop a simple and effective negative284

sampling method TriSampler.285

4.1 The Principle of Negative Sampling286

Here, we propose the quasi-triangular principle to287

simulate the pairwise relationship among a training288

triple (q, d+, d−) for improving negative sampling289

in dense retrieval. The principle constrains the290

region of sampled negatives within a triangular-like291

region rather than the entire spherical-like region.292

Figure 2 demonstrates the planar projection of a293

sphere where the angular θ in the triangular-like294

region can be defined as:295

θ = | arccos( s(hq ,hd+ )

||hq ||·||hd+ ||)− arccos(
s(hq ,hd− )

||hq ||·||hd− ||) (4)296

In the triangular-like region, the boundary for297

negatives is θ = 60◦. Compared with the whole298

spherical-like region, this constraint further pushes299

the negatives closer to the positive documents.300

Such a region simultaneously ensures that nega-301

tives possess high similarity with both the query302

and positive document, which helps to alleviate is-303

sues related to false negatives that are too close to304

the query and uninformative negatives that are far 305

from the query and the positive. 306

Query

Positive Document

More Sampled Negative Document

Less Sampled Negative Document

Figure 2: The proposed quasi-triangular principle for
negative sampling in dense retrieval.

4.2 Negative Candidates 307

To provide more informative negative candidates, 308

we follow the quasi-triangular principle to con- 309

struct negative candidates D−
q within a triangular- 310

like region for any certain query q. Specifically, we 311

first sample the top-ranked irrelevant documents in 312

terms of the query based on the current retrieval 313

model, which is widely used in previous hard neg- 314

ative selection methods (Xiong et al., 2020; Zhan 315

et al., 2021; Zhang et al., 2021; Zhou et al., 2022). 316

Then, we can obtain the relevant scores between 317

the positive document and the above top-ranked 318

documents. After that, based on the abovemen- 319

tioned relevant scores s(hq,hd−) and s(hd+ ,hd−) 320

where d− ∈ TopKs(q,D−), we derive the following 321

criteria for constructing a more informative nega- 322

tive candidate set that satisfies the quasi-triangular 323

principle: 324

• Negative candidates should conform to the first 325

range constraint s(hq,hd+) ≈ s(hq,hd−), which 326

can effectively eliminate too hard or too easy 327

negatives; 328

• Negative candidates should be in line with 329

the second range constraint s(hd+ ,hd−) ≥ 330

s(hq,hd−), which can provide more informative 331

negative candidates. 332

4.3 Negative Sampling Distribution 333

The primary goal of negative sampling method 334

is to design an effective distribution for sampling 335

high-quality negatives from the negative candidates. 336

Based on the quasi-triangular principle, we formu- 337

late the first distribution for the range constraint 338

s(hq,hd+) ≈ s(hq,hd−) as: 339

p
(q)
d− ∝ exp(−1

4
∗ (s− − s+)2) (5) 340

4



where s− and s+ represent s(hq,hd−) and341

s(hq,hd+) respectively. Such a distribution elim-342

inates too hard negatives (i.e. false negatives)343

and further consolidates the first range constraint344

s+ ≈ s−. The resulting distribution is performed345

on the top-ranked negative candidates TopKs(q,D−)346

to obtain transitional negatives D̃−
q .347

In the second range constraint, we devise a new348

distribution to obtain the final negatives for retrieval349

model training. In specific, negatives that are close350

to positive should be assigned with higher sam-351

pling probabilities among the triangular-like region.352

Thus, the distribution can be represented as:353

pd− ∝ ReLU(s(hd+ ,hd−)− s(hq,hd−)) (6)354

where this distribution is conducted on transitional355

negatives D̃−
q .356

The key insight of using the RuLU function is357

that it can exclude negatives that are not in the358

triangular-like region and further guarantee that359

negatives that are closer to positive possess higher360

sampling probabilities. In this way, the sampled361

negatives can satisfy the quasi-triangular principle,362

providing more informative negatives to enhance363

retrieval performance for dense retrieval models.364

4.4 Discussion365

In this work, we propose the quasi-triangular prin-366

ciple to guide negative sampling in dense retrieval367

and design a negative sampling method TriSampler368

to sample more informative and valuable negatives.369

TriSampler is a general method that can be directly370

applied to existing dense retrieval models by sub-371

stituting the default negative sampling method. Al-372

gorithm 1 represents the overall training process of373

TriSampler. Here, we discuss the connection and374

discrimination between TriSampler and previous375

negative sampling methods.376

• TriSampler vs RandNS. RandNS (Huang et al.,377

2020) is a basic method that randomly samples378

negatives from a huge set of negative candi-379

dates. TriSampler relies on the quasi-triangular380

principle to sample more informative negatives381

within the triangular-like region. Different from382

RandNS that assigns equal weights for each neg-383

ative, TriSampler leverages a well-designed dis-384

tribution to sample negatives.385

• TriSampler vs TopNS. TopNS aims to sample386

top-k ones from all ranked negatives based on387

a dynamic-trained dense retrieval model (Xiong388

Algorithm 1: Algorithm of TriSampler
Input: Positive query-documents

{(q,D+)}, document corpus D.
1 Build ANN index on D.
2 Generate the top-ranked negative candidates

TopKs(q,D−) from D.
3 Sample transitional negatives D̃−

q from

TopKs(q,D−) with distribution p
(q)
d− .

4 Sample final negatives D̂−
q = {d−}ni=1

based on distribution pd− from D̃−
q .

5 Construct training data {(q,D+, D̂−
q )}

et al., 2020; Zhan et al., 2021) or a sparse retrieval 389

model (Karpukhin et al., 2020) (BM25). Unlike 390

TopNS which has a higher risk of false negatives, 391

TriSampler eliminates too hard negatives via a 392

constraint triangular-like region. 393

• TriSampler vs SimANS. SimANS (Zhou et al., 394

2022) designs a negative sampling distribution to 395

sample ambiguous negatives, which avoids sam- 396

pling negatives that are either too hard or too easy. 397

Similar to SimANS, TriSampler also devises two 398

distributions for the constraint region. The main 399

difference between these is that TriSampler lim- 400

its negatives within a triangular-like region while 401

SimANS leverages top-ranked negatives as the 402

sampling region. 403

• TriSampler vs ANCE-Tele. ANCE-Tele (Sun 404

et al., 2022) combines three types of negatives 405

(standard ANCE negatives, momentum negatives, 406

and lookahead negatives) to form negative candi- 407

dates and then randomly sample negatives from 408

the above candidates. Different from ANCE- 409

Tele, TriSampler constraints the sampling region 410

within a triangular-like region and employs two 411

specifically-designed distributions for sampling. 412

5 Experiments 413

5.1 Experimental Setup 414

Datasets. We conduct experiments on the first 415

retrieval stage of four benchmarks: three pas- 416

sage retrieval datasets: MS MARCO passage 417

(MS Pas) (Nguyen et al., 2016), Natural Ques- 418

tions (NQ) (Kwiatkowski et al., 2019), and Trivi- 419

aQA (TQA) (Joshi et al., 2017), and a document 420

retrieval dataset: MS MARCO document (MS 421
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Doc) (Nguyen et al., 2016). The statistics of each422

dataset is illustrated in Table 1.423

Datasets Training Dev Test Documents
NQ 58,880 8,757 3,610 21,015,324

TQA 60,413 8,837 11,313 21,015,324
MS Pas 502,939 6,980 - 8,841,823
MS Doc 367,013 5,193 - 3,213,835

Table 1: The statistics of four retrieval datasets.

Evaluation metrics. We evaluate retrieval per-424

formance using official evaluation methodologies,425

such as MMR@10 and R@k. For the NQ and TQA426

datasets, R@20 and R@100 serve as metrics to mea-427

sure whether the top-k retrieved passages contain428

the answer span. For the MS MARCO datasets, we429

evaluate the results on their dev datasets in terms of430

MRR@10 and R@50 for MS Pas dataset, MRR@10431

and R@100 for MS Doc dataset.432

Baselines. We compare our proposed TriSampler-433

with previously established baselines for retrieval434

benchmarks. Baselines can be generally divided435

into the following categories.436

• Sparse Retrieval. The compared sparse re-437

trieval models contains BM25 (Yang et al.,438

2017) and improved variants of BM25 mod-439

els that incorporate pretrained language mod-440

els, such as doc2query (Nogueira et al.,441

2019a), DeepCT (Dai and Callan, 2019),442

docTTTTTquery (Nogueira et al., 2019b), and443

GAR (Mao et al., 2020).444

• Dense Retrieval. Massive dense retrieval445

baselines have investigated a variety of446

training methods to improve the retrieval447

performance, such as hard negative sam-448

pling (Karpukhin et al., 2020; Xiong et al.,449

2020; Zhan et al., 2021; Zhou et al., 2022), dis-450

tillation (Qu et al., 2020; Lu et al., 2022; Ren451

et al., 2021b), integrating rerankers into re-452

trievers (Zhang et al., 2021), pre-training (Ren453

et al., 2021a; Gao and Callan, 2021b,a), etc.454

Among these, hard negative sampling is a par-455

ticularly important strategy. DPR (Karpukhin456

et al., 2020), RocketQA (Qu et al., 2020),457

ANCE (Xiong et al., 2020), ADORE (Zhan458

et al., 2021), and SimANS (Zhou et al., 2022)459

attempt to design various negative sampling460

methods to obtain top-k hard negatives.461

Implementation Details. We implement TriSam-462

pler based on SOTA dense retrieval model463

AR2 (Zhang et al., 2021) and run all experiments 464

on 8 NVIDIA Tesla A100 GPUs. Following AR2, 465

ERNIE-2.0-base (Sun et al., 2020) serves as a back- 466

bone model to encode queries and passages. Sim- 467

ilar to SimANS (Zhou et al., 2022), we directly 468

utilize checkpoints in the AR2 model to continue 469

training with our proposed TriSampler. For MS 470

Doc dataset, the model parameters are initialized 471

with STAR (Zhan et al., 2021). In our experiments, 472

the ratio of positive to negative pairs is set to 1 : 15, 473

the inner product is leveraged to estimate the rel- 474

evance score and Faiss (Johnson et al., 2019) is 475

adopted for efficient similarity search. We utilize 476

the top-200 passages for NQ and TQA datasets and 477

the top-400 documents for MS Pas and MS Doc 478

datasets as negative candidates. 479

5.2 Overall Results 480

Our TriSampler achieves a better retrieval perfor- 481

mance than all baselines on all metrics (See Table 2 482

and Table 3). The improvements primarily stem 483

from the superiority of the quasi-triangular princi- 484

ple over previous hard negative sampling methods. 485

Since the measurement principle between query- 486

negatives and pos_passage-negatives may share a 487

quasi-triangular principle (See Section 3.2), previ- 488

ous methods are unable to capture this principle or 489

even overlook the impact of pos_passage-negatives. 490

Our TriSampler aims to construct negative can- 491

didates based on the abovementioned principle. 492

Moreover, the newly designed negative sampling 493

distribution focuses on sampling informative nega- 494

tives that are simultaneously close to both the query 495

and the positive passage, effectively providing high- 496

quality negatives to accelerate model convergence. 497

To verify the adaptiveness of TriSampler to dif- 498

ferent genres of dense retrieval models, we also 499

integrate it into two representative retrieval mod- 500

els: ANCE (Xiong et al., 2020) and RocketQA (Qu 501

et al., 2020). For fairness, we only substitute the 502

default negative sampling method in these two re- 503

trieval models with TriSampler. Experimental re- 504

sults in Table 2 show that our TriSampler is a gen- 505

eral method that can be naturally applied to various 506

dense retrieval models. Such a method can provide 507

more informative negatives to consistently improve 508

downstream performance in dense retrieval. 509

5.3 Why TriSampler performs better? 510

Perspective of candidates. To deepen the un- 511

derstanding of TriSampler, we vary the selec- 512

tion methods of negative candidates and conduct 513
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Method
NQ TQA MS Pas

R@20 R@100 R@20 R@100 MRR@10 R@50
BM25 (Yang et al., 2017) 59.1 73.7 66.9 76.7 18.7 59.2

doc2query (Nogueira et al., 2019b) - - - - 21.5 64.4
DeepCT (Dai and Callan, 2019) - - - - 24.3 69.0

docTTTTTquery (Nogueira et al., 2019a) 27.7 75.6
GAR (Mao et al., 2020) 74.4 85.3 80.4 85.7 - -

DPR (Karpukhin et al., 2020) 78.4 85.4 79.3 84.9 - -
ME-BERT (Luan et al., 2021) - - - - 33.8 -

Joint top-k (Sachan et al., 2021) 81.8 87.8 81.3 86.3 - -
Individual top-k (Sachan et al., 2021) 84.0 89.2 83.1 87.0 - -

RocketQAv2 (Ren et al., 2021b) 83.7 89.0 - - 38.8 86.2
PAIR (Ren et al., 2021a) 83.5 89.1 - - 37.9 86.4

DPR-PAQ (Oğuz et al., 2021) 84.0 89.2 - - 31.1 -
Condenser (Gao and Callan, 2021a) 83.2 88.4 81.9 86.2 36.6 -

coCondenser (Gao and Callan, 2021b) 84.3 89.0 83.2 87.3 38.2 -
ANCE-Tele (Sun et al., 2022) 84.9 89.7 83.4 87.3 39.1 -

ERNIE-Search (Lu et al., 2022) 85.3 89.7 - - 40.1 -
AR2+SimANS (Zhou et al., 2022) 86.2 90.3 84.6 88.1 40.9 88.7

ANCE (Xiong et al., 2020) 81.9 87.5 80.3 85.3 33.0 81.1
ANCE + TriSampler 83.8 89.1 83.4 87.2 35.8 83.4

RocketQA (Qu et al., 2020) 82.7 88.5 - - 37.0 85.5
RocketQA + TriSampler 85.3 89.6 - - 38.3 86.0
AR2 (Zhang et al., 2021) 86.0 90.1 84.4 87.9 39.5 87.8

AR2 + TriSampler 86.5 90.7 85.0 88.5 41.4 89.1

Table 2: Results on three retrieval benchmarks, including NQ test set, TQA test set, and MS Pas dev set. The results
of baselines are directly obtained from the original papers and results not provided are marked as “-”.

Method MRR@100 R@100
BM25 (Yang et al., 2017) 27.9 80.7

DPR (Karpukhin et al., 2020) 32.0 86.4
ANCE (Xiong et al., 2020) 37.7 89.4
STAR (Zhan et al., 2021) 39.0 91.3

ADORE (Zhan et al., 2021) 40.5 91.9
AR2 (Zhang et al., 2021) 41.8 91.4

AR2+SimANS (Zhou et al., 2022) 43.1 92.3
AR2+TriSampler 43.8 93.1

Table 3: Experimental performance on MS Doc dev set.

two extended experiments on the NQ dataset514

and the MS Pas dataset using the AR2 retrieval515

model: (1) top-k query-document ranked nega-516

tive candidates D−
q = TopKs(q,D−); (2) top-k517

document-document ranked negative candidates518

D−
q = TopKs(d+,D−).519

As shown in Table 4, TriSampler surpasses all520

other variants of negative candidate selection meth-521

ods, indicating the effectiveness of our TriSampler.522

For TopKs(q,D−) and TopKs(d+,D−), they seem to523

only account for the impact of the query or positive524

document on negatives, ignoring the triangular-like 525

relationship outlined in Section 4.1. TriSampler 526

combines these two methods based on the quasi- 527

triangular principle, which alleviates the excessive 528

reliance on the query and constrains the region of 529

negative candidates. Consequently, TriSampler can 530

achieve enhanced performance, suggesting that the 531

triangular-like relationship is a valuable constraint 532

for selecting negative candidates. 533

Method
NQ MS Pas

R@20 R@100 MRR@10 R@50
TopKs(q,D−) 86.2 90.3 40.9 88.7

TopKs(d+,D−) 85.5 90.4 40.3 88.5
TriSampler 86.5 90.7 41.4 89.1

Table 4: Various negative candidate selection methods
on the NQ dataset and the MS Pas dataset.

Perspective of distributions. To demonstrate the 534

effectiveness of the negative sampling distribution 535

proposed in TriSampler, we evaluate the retrieval 536

performances on three variations of TriSampler on 537
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the MS Pas dataset: (1) Uniform sampling that538

assigns negative candidates with equal weights; (2)539

TopK Sampling that leverages the relevant score540

as sampling weights; (3) Debiased Sampling that541

computes sampling weights by reducing the impact542

of the positive relevant score.543

Table 5 reveals that TriSampler outperforms the544

other variant negative sampling distributions. Ac-545

cording to Equation (5), the negative sampling546

distribution suggested by TriSampler adheres to547

the quasi-triangular principle. This principle al-548

locates higher sampling probabilities to negatives549

that are closer to the positive document within a550

restricted region. This observation confirms that551

a well-designed sampling distribution can indeed552

contribute to enhanced performance.553

Method MRR@10 R@50 R@1k
Uniform Sampling 39.7 87.9 98.6

TopK Sampling 40.6 88.6 98.7
Debiased Sampling 41.1 88.9 98.8

TriSampler 41.4 89.1 98.9

Table 5: Various negative sampling distributions on the
MS Pas dataset.

5.4 Further Analysis554

Impact of negative sample size. We further in-555

vestigate the impact of negative sample size k on556

retrieval performance using the AR2 model. We557

vary k in the range of {1, 5, 11, 15} and conduct558

experiments on the NQ and the TQA datasets. As559

depicted in Figure 3, retrieval performance con-560

sistently enhances with the increasing number of561

negatives, verifying the significance of negative562

sample size in improving performance. These ex-563

perimental results align with findings from Rock-564

etQA, which also suggest that increasing the num-565

ber of negatives contributes to better retrieval per-566

formance.567

(a) NQ (b) TQA

Figure 3: The impact of negative sample size on the NQ
dataset.

Training efficiency comparison. To explore the 568

training efficiency of TriSampler, we test the wall- 569

clock time cost, including the cost of training per 570

batch CostD and the cost of training instances con- 571

struction CostC . As shown in Table 6, it is obvi- 572

ously observed that the training cost of TriSam- 573

pler is slightly higher compared with SimANS. Al- 574

though TriSampler requires more time to construct 575

training instances, the cost is distributed across 576

t = 2000 training steps, resulting in a per-batch 577

cost of CostC/t = 0.055s. Thus, the overall cost 578

for training each batch has increased only slightly. 579

However, the total training time to reach optimal 580

performance is reduced because our TriSampler 581

achieves faster convergency (See Figure 4). To sum 582

up, TriSampler demonstrates improved efficiency 583

gains in comparison to SimANS. 584

Method CostD CostC CostC/t Costall
AR2+SimANS 2.9s 85s 0.043s 2.943s

AR2+TriSampler 3.0s 110s 0.055s 3.055s

Table 6: Training efficiency comparison on the NQ
dataset.

Figure 4: Training convergency curves comparison be-
tween SimANS and TriSampler on the NQ dataset.

6 Conclusion 585

In this paper, we investigate the fundamental prin- 586

ciple that negative sampling should satisfy in dense 587

retrieval. First, we analyze negative sampling from 588

the perspective of objective. Next, we propose 589

a general principle to guide negative sampling, 590

termed the quasi-triangular principle. This prin- 591

ciple suggests that the sampled negatives should 592

be constrained within a triangular-like region. Fi- 593

nally, building upon this principle, we propose a 594

negative sampling method TriSampler to sample 595

more informative negatives within the constrained 596

region. Experiments on four benchmark datasets 597

show that TriSampler can achieve better retrieval 598

performance compared with other methods. 599

8



Limitations600

Although our study presents an effective negative601

sampling principle for guiding the selection of neg-602

atives in dense retrieval, we recognize two limita-603

tions in our work. First, we have only evaluated604

our TriSampler on benchmark datasets. In future605

work, we hope to apply TriSampler to real-world606

industrial dataset and investigate the applicability607

of the quasi-triangular principle across different608

domains. Second, the proposed TriSampler method609

may not be the optimal solution based on the quasi-610

triangular principle. Further research is needed611

to devise a better approach for achieving negative612

sampling within the constrained region.613

Despite these limitations, we offer a general prin-614

ciple for negative sampling in dense retrieval that615

can serves as a foundation for future research.616
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