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In the observation sequence, the system 
shows movement to the northeast…
Regarding to the predicted sequence, 
from the Dynamic Consistency aspect… 

Pred.

GT

Pred.

GT

Give a report of the evaluated sequence. 
First describe the content…

What is your description of the 
observation image? Afterward, 
could you evaluate… 

In the observation image, the precipitation area 
is large in scale with extreme precipitation as 
the maximum level observed… 

You are an AI reasoning assistant… the 
deeper causes behind the results.

This nowcasting exercise focuses on very 
short-range precipitation… 

Given 10 frames predict the next 12 frames of 
VIL data. 

Generate a radar VIL data from the 
provided satellite infrared images.
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Figure 1: Illustration of Omni-Weather’s unified capabilities.

ABSTRACT

Weather modeling requires both accurate prediction and mechanistic interpretation,
yet existing methods treat these goals in isolation, separating generation from un-
derstanding. To address this gap, we present Omni-Weather, the first multimodal
foundation model that unifies weather generation and understanding within a single
architecture. Omni-Weather integrates a radar encoder for weather generation tasks,
followed by unified processing using a shared self-attention mechanism. Moreover,
we construct a Chain-of-Thought dataset for causal reasoning in weather genera-
tion, enabling interpretable outputs and improved perceptual quality. Extensive
experiments show Omni-Weather achieves state-of-the-art performance in both
weather generation and understanding. Our findings further indicate that generative
and understanding tasks in the weather domain can mutually enhance each other.
Omni-Weather also demonstrates the feasibility and value of unifying weather
generation and understanding.

1 INTRODUCTION

A significant trend in AI research is the rise of foundation models that unify generation and un-
derstanding within a single architecture. Multimodal LLMs such as InternVL Chen et al. (2024c),
UniGen Tian et al. (2025), and Lumina-omnilv Pu et al. (2025) demonstrate that perception and
synthesis can be integrated seamlessly, achieving strong generalization across visual and textual
domains. These advances highlight the opportunity to extend unified generation–understanding
paradigms to weather domain, where both predictive accuracy and interpretability are essential.
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Recently, weather generation and understanding tasks have made notable progress. On the gener-
ation side, nowcasting models such as PreDiff Gao et al. (2023), DiffCast Yu et al. (2024), and
CasCast Gong et al. (2024) forecast convective evolution from radar sequences, supporting early
warnings of hazards like flooding. Radar inversion methods He et al. (2025b) further reconstruct
radar observables from satellite channels, enabling precipitation monitoring in regions without radar
coverage. On the understanding side, models such as RadarQA He et al. (2025a) and WeatherQA Ma
et al. (2024) generate diagnostic reports or identify severe weather impacts from atmospheric fields.

Text Encoder

FFN

Self Attention

VAE Encoder

FFN

Self Attention

Text Encoder

FFN

VAE Encoder

FFN

Shared Self Attention

VAE DecoderText Decoder

Image Encoder

VAE Decoder

Image Encoder

Text Decoder

Figure 2: Comparison between separated architec-
tures for weather understanding / generation (top)
and unified framework with shared self-attention
(bottom).

Despite these advances, unified architectures
remain absent in the weather domain. As
shown in Figure 2, existing approaches are di-
vided into two disjoint paradigms: model such
as ClimaX Nguyen et al. (2023) and Weath-
erGFM Zhao et al. (2024) excel at forecasting
and downscaling but lack interpretation, while
understanding models such as RadarQA He et al.
(2025a) and WeatherQA Ma et al. (2024) pro-
vide diagnostic reasoning yet cannot synthesize
physical fields. However, atmospheric systems
are inherently multiscale, shaped by storm gen-
esis, intensification and decay, where accurate
prediction is often accompanied by the need for
mechanistic interpretation. Moreover, extreme
events such as rapid intensification of cyclones
demand models that can not only predict haz-
ardous outcomes but also explain the underlying
drivers for actionable decision-making. Current
studies isolate these links—generative nowcasting models do not understand radar observations,
yet MLLMs do not predict radar variables. Bridging this gap with a foundation model that unifies
generation and understanding is therefore an urgent requirement for weather domain.

To this end, we propose Omni-Weather, a unified multimodal foundation model for both weather
generation and understanding. By consolidating these tasks within a shared backbone (Figure 2,
bottom), we further propose a Chain-of-Thought dataset tailored for causal reasoning in generation
tasks, which enables Omni-Weather to be finetuned with explicit reasoning supervision and to
perform thinking inference. Through this integration, Omni-Weather bridges predictive accuracy
with interpretability, marking a step toward reasoning unified foundation models for weather.

The main contributions of this work can be summarized as follows:

• We introduce the first multimodal foundation model in weather that jointly addresses both
generation tasks (e.g., nowcasting, inversion) and understanding tasks (e.g., diagnostic
reasoning, question answering) within a single model.

• We demonstrate that training both generation and understanding tasks together provides
complementary supervision signals, enabling Omni-Weather to learn more transferable
representations of storm evolution and improving performance on both sides.

• We propose a Chain-of-Thought (CoT) dataset and explore its integration into weather
generation, enhancing perceptual quality and interpretability as a first step toward explainable
generative modeling in weather domain.

2 RELATED WORK

Weather generation models.

Weather generation models aim to synthesize physically consistent weather fields from historical or
multi-modal observations Han et al. (2024); Chen et al. (2023); Gao et al. (2023); Yu et al. (2024);
Gao et al. (2022); Lam et al. (2023). Examples include DiffSR He et al. (2025b), which reconstructs
composite radar reflectivity from satellite infrared and lightning inputs, and CasCast Gong et al.
(2024), which predicts precipitation evolution from past VIL sequences. Beyond convective-scale
nowcasting, GenCast Price et al. (2023) and Stormer Nguyen et al. (2024) scale diffusion and
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transformer architectures to medium-range ensemble forecasting, while Pangu-Weather Bi et al.
(2022) enables fast and accurate 3D high-resolution global forecasts. More recently, foundation-scale
Earth-system models such as ClimaX Nguyen et al. (2023), FengWu Chen et al. (2023); Han et al.
(2024), Aurora Bodnar et al. (2025), and Prithvi WxC Schmude et al. (2024) extend the foundation-
model paradigm Wiggins & Tejani (2022) to climate and weather, and WeatherGFM Zhao et al.
(2024) introduces in-context learning for generalist nowcasting and inversion. Parallel to these
modeling efforts, CLLMate Li et al. (2025) proposes a multimodal benchmark for weather and
climate event forecasting that unifies several datasets, including SEVIR, which is also the primary
radar dataset used in this work; while we follow prior radar nowcasting literature in focusing on
SEVIR, a systematic evaluation on the broader CLLMate suite is an interesting direction for future
work. However, existing models and benchmarks are primarily designed for medium-range or global
forecasting and downscaling, and they do not explicitly address understanding or reasoning at the
event level, leaving interpretability and evaluation of their predictions largely unexplored.

Weather understanding models aim to interpret weather signals and provide human-readable
insights, often through natural language or diagnostic reasoning. Early studies adapt pretrained
language models such as ClimateBERT Webersinke et al. (2021); Schimanski et al. (2023) and
ClimateNLP Krishnan & Anoop (2023) to analyze textual weather reports, focusing on tasks such as
climate risk assessment, report classification, and domain adaptation. More recent work emphasizes
multimodal inputs, combining imagery with text. For example, WeatherQA Ma et al. (2024) takes
20 images of atmospheric parameters to predict regions impacted by severe convection, while
RadarQA He et al. (2025a) leverages both radar observations and numerical forecasts to generate
expert-like quality assessment reports. In parallel, Aquilon Varambally et al. takes an initial step
toward multimodal weather LLMs that jointly process gridded fields and language, showing that our
model is among the first multimodal architectures specifically targeting the weather/radar domain
rather than standing entirely on its own. These approaches demonstrate the feasibility of applying
large language models to meteorology, but they remain largely limited to understanding tasks
alone. In particular, existing models specialize in either textual analysis or visual reasoning without
integrating predictive generation, leaving the connection between physical simulation and diagnostic
interpretation underexplored.

Unified multimodal models integrate visual understanding and generation within a single architec-
ture, leveraging advances in LLMs and diffusion models Chen et al. (2025a; 2024b;a; 2025b); Pu
et al. (2025); Zhao et al. (2024). Transfusion Zhou et al. (2024) unifies text prediction and image
diffusion within a single transformer trained end-to-end on both modalities. LMFusion Shi et al.
(2024) adapts pretrained text-only LLMs by freezing language modules and introducing parallel
image-specific branches for efficient multimodal generation. MetaMorph Tong et al. (2024) employs
Visual-Predictive Instruction Tuning (VPiT) to enable LLMs to jointly predict text and continuous
visual tokens from multimodal instructions. MetaQuery Pan et al. (2025) connects frozen MLLMs
with diffusion decoders using learnable queries, enabling generation without compromising under-
standing capabilities. BLIP3-o Chen et al. (2025a) sequentially combines autoregressive modeling
and diffusion to generate CLIP-aligned visual features, achieving state-of-the-art performance across
modalities. BAGEL Deng et al. (2025) scales unified modeling through pretraining on interleaved
text-image-video data, demonstrating emergent multimodal reasoning and manipulation abilities.

3 METHOD

In this section, we first introduce a unified representation of weather generation and understand-
ing tasks, where radar nowcasting, radar inversion, and radar image / sequence understanding are
formulated under a consistent sequence-to-sequence paradigm. We then present Omni-Weather, a
multimodal foundation model that integrates these tasks within a shared backbone, with a detailed
exposition of its architecture, modality-specific encoders, and multi-task training objectives. Finally,
we describe the integration of chain-of-thought reasoning, including the construction of causal anno-
tations and their incorporation in both training and inference, which not only enhances interpretability
but also improves the perceptual quality of weather forecasts.

3.1 UNIFIED REPRESENTATION OF WEATHER GENERATION AND UNDERSTANDING TASKS

Weather modeling encompasses a wide range of objectives, from predicting future radar fields Gao
et al. (2022) to generating textual assessments of forecast quality He et al. (2025a). To systematically
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    Give a report of the 
evaluated sequence. First 
describe the content… 
then focus on ... 

  Given 10 frames VIL (Vertically Integrated Liquid), predict the next 12 frames of 
VIL (Vertically Integrated Liquid) data. 
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Radar Sequence 
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Text 
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...

...

    Generate a radar VIL (Vertically Integrated Liquid) data from the provided 
IR069 and IR107 satellite infrared images.

    What is your description of the 
observation image? … evaluate the 
quality of the evaluated image on 
miss, false alarm, sharpnes…

     In the observation image, the precipitation area is 
small in scale with extreme precipitation as the maximum 
level observed. The distribution of… 

. . . . . .

Radar Sequence Understanding

Radar Image Understanding

Radar Inversion

Radar Nowcasting

Radar Sequence Understanding

Radar Image Understanding

Radar Inversion

Radar Nowcasting

    Please assign levels … based 
on the four dimensions: miss, 
false alarm, sharpness and 
high value matching…

The task requires utilizing satellite channels IR107 and IR069 from the 
SEVIR dataset as input to generate radar VIL characteristics. IR107 
presents a compact, blob-like low-value signature with its deepest.... IR069 
simultaneously reveals an equally blob-shaped... Consequently …

{‘Overall Performance’: ‘fair’, ‘Miss Performance’: ‘great’, 
‘False Alarm Performance’: ‘good’… 

  The task requires utilizing satellite channels IR107 and 
IR069 from the SEVIR dataset as input to generate 
radar VIL characteristics. IR107 presents a compact, 
blob-like low-value signature with its deepest brightness-
temperature depression anchored at the domain center; 
this quasi-circular cold core signifies towering, glaciated 
cloud tops produced by a vigorous convective updraft... 

IR069 simultaneously reveals an equally 
blob-shaped minimum co-located at the 
same central position; the pronounced 
depression in the 6.9 µm water-vapor 
channel confirms …

                          

    How would you rate the sequence 
on the three dimensions, dynamic 
consistency, high value retaining. 
Then provide ... 

{‘Overall Performance’: ‘fair’, ‘Dynamic Consistency 
Performance’: ‘fair’, ‘Cumulative Precipitation…

    In the observation sequence, the convective system 
shows movement to the northeast with a decrease in the 
number of convective cells ...

  You are an AI reasoning assistant for satellite-to-radar 
translation… given one pair of IR069 image frames and IR107 image 
frames, first extract their cloud and moisture attributes….

  You are an AI reasoning assistant for weather nowcasting, capable of text–visual 
chain of thought; given 10 input VIL frames image, first extract their radar 
attributes, then causally infer the radar attributes for the next 12 frames...

  This nowcasting exercise focuses on very short-range 
precipitation prediction by ingesting the last ten VIL 
frames as input. The forecaster must translate the 
information present at t0–t9 ... thereby extending 
guidance through the next hour. These temporal choices 
set the stage for assessing the governing motion ... the 
Main motion direction observed ...

  This nowcasting exercise focuses on very short-range precipitation prediction by 
ingesting the last ten VIL frames as input. The forecaster must translate the information 
present at t0–t9 into a projection of the following twelve frames, thereby extending...

Figure 3: Framework and Task paradigm of Omni-Weather.

organize this diversity, we categorize the tasks into two groups: weather generation, which focuses
on producing future or cross-modal meteorological fields; weather understanding, which requires
generating natural-language descriptions and evaluations. To support both categories, we leverage
the SEVIR dataset Veillette et al. (2020), which provides time-aligned radar and satellite sequences
of severe weather events. Below, we detail our task paradigm corresponding to each category.

Weather Generation. Radar nowcasting aims to predict the short-term evolution of precipitation
fields. Specifically, given ten VIL frames, the model generates the subsequent twelve frames,
thereby forecasting the spatio-temporal dynamics of convective systems. Radar inversion focuses
on translating satellite observations into radar-derived quantities. In this task, two infrared channels
(IR069 and IR107) are provided as input, and the objective is to reconstruct the corresponding VIL
field, which requires a cross-modal mapping between satellite imagery and radar measurements.

Weather Understanding. Radar understanding tasks require the model to generate natural-language
descriptions or structured assessments from radar observations and model forecasts. The input can be
either a single VIL frame or a temporal sequence of frames, while the output is expected to cover key
aspects, including storm morphology, intensity, temporal evolution, and forecast quality (e.g., misses
or false alarms). This formulation follows RadarQA He et al. (2025a), where textual reports for
frame and sequence are designed to support expert interpretation beyond traditional weather forecast
metrics, which not only aligns more closely with real-world meteorological analysis, but also unifies
image-level and sequence-level evaluation.

3.2 OMNI-WEATHER: FOUNDATION MODEL FOR WEATHER GENERATION AND
UNDERSTANDING

Unified multimodal Model. Inspired by recent advances in unified multimodal foundation models
such as Bagel-7B-MoT Deng et al. (2025), we design Omni-Weather to handle both generation
and understanding tasks within a single architecture. Instead of training separate models for each
objective, all tasks are expressed in a consistent sequence-to-sequence format. Given a task-specific
prompt pt, a radar sequence input xt and target output yt (e.g., future radar sequence or radar
assessment report), the model learns the mapping

yt = Fθ(pt, xt), (3.1)

where Fθ denotes the shared transformer backbone. This formulation allows a single model to flexibly
switch across tasks by conditioning on pt while maintaining unified training.
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Architecture. As shown in Figure 3, Omni-Weather unifies generation and understanding within
a single backbone by embedding all task prompts through the text encoder, thereby ensuring a
shared textual space for conditioning across diverse tasks. In contrast, generation and understanding
tasks have varying feature processing approches for vision model. Specifically, For Radar Image /
Sequence Understanding, visual inputs (e.g., a single VIL frame or a twelve-frame VIL sequence)
are encoded by the understanding encoder and concatenated with the corresponding text prompt;
the fused tokens are subsequently processed by shared self-attention layers, and the text decoder
produces natural-language descriptions. For Radar Inversion, satellite channels are embedded by the
generation encoder, fused in the shared self attention layers, and decoded by the VAE decoder to
reconstruct the VIL field. For Radar Nowcasting tasks, ten input VIL frames are encoded by radar
sequence encoder. Specifically, we instantiate this temporal encoder with EarthFormer Gao et al.
(2022) to provide motion-aware tokens that stabilize long-horizon dynamics and improve temporal
coherence. Since directly forcing the backbone to learn multi-frame evolution with Gen Encoder
proved less stable, conditioning the shared attention layers on EarthFormer’s temporally aggregated
tokens preserves the unified pipeline while injecting reliable temporal structure. Conditioned on the
fused representation, the VAE decoder outputs the forecast sequence of the next twelve VIL frames.
For radar inversion, we directly reuse the pretrained weights of the FLUX.1-schnell general-purpose
visual VAE as the continuous latent representation and decoder for the VIL field. This VAE, trained
on large-scale natural images, maps 256× 256 inputs into a compact latent space and reconstructs
them with high fidelity, enabling us to leverage its strong generic visual tokenizer capacity without
designing task-specific components. In this work we keep the VAE entirely frozen and only train
the unified backbone to map satellite observations into radar latent codes, which already suffices to
obtain stable and high-quality radar inversion.

Training Objectives We initialize Omni-Weather from the pretrained Bagel-7B-MoT, which provides
a strong multimodal backbone trained on large-scale general data. Building on this foundation, we
conduct domain-specific supervised finetuning jointly across all weather tasks.

Formally, let τt(·) be the modality-specific encoder for task t. The model input sequence is defined as

Xt =
[
τtext(pt) ; τt(xt) ; κt

]
, (3.2)

where κt are optional conditioning tokens (e.g., temporal embeddings produced by the nowcasting
encoder). The shared backbone produces contextualized tokens

ŷt =

{
Gϕ(fθ(Xt)) , t ∈ Tgen,

Lψ(fθ(Xt)) , t ∈ Tunder.
(3.3)

Here, fθ(·) is the shared encoder/backbone that produces task representations; Gϕ is the VAE decoder
for generation tasks Tgen; Lψ is the text decoder for understanding tasks Tunder. For understanding
tasks t ∈ Tunder, we train the text decoder with a standard autoregressive language-modeling
objective:

Lunder =
∑

t∈Tunder

λt

(
−

nt∑
k=1

log pψ
(
yt,k | yt,<k, fθ(Xt)

))
, (3.4)

where nt is the target text length and pψ denotes the token distribution produced by Lψ . Here, λt is a
scalar task-level weight that balances the contribution of different understanding tasks within this loss
family.

Analogously, for generation tasks t ∈ Tgen, we adopt a mean-squared reconstruction loss over pixels
/ frames:

Lgen =
∑
t∈Tgen

λt
1

|Ωt|
∥∥ŷt − yt

∥∥2
2
, (3.5)

where Ωt indexes the target for task t. In both cases, λt is only a per-task scalar weight and not a
multiplicative term between Lgen and Lunder; the overall supervised fine-tuning objective is the sum
L = Lgen +Lunder. Since each task loss is already normalized by |Ωt| or nt so that their magnitudes
are comparable, we set all λt = 1 in our experiments. This SFT objective unifies generation and
understanding under shared representation while preserving task-specific decoders.
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Attributes Annotation

System
Prompt

Attribute
Options

"Morphology": {"choice": str, "rationale": str},
"Max pixel level": {"choice": str, "rationale": str},
"Main motion direction": {"choice": str, "rationale": str},
"Main motion speed": {"choice": str, "rationale": str},
"Rotation center": {"choice": str, "rationale": str},
…

The output must 
be valid JSON 
(no markdown 
fences), with the 
following keys:Return

Format

    You are a meteorological expert … Use the taxonomy below and produce a 
complete `analysis_label` covering all attributes… 
    Return a strict JSON object in English with the exact schema.

Data Preprocess

Visualization

SEVIR Raw Data

Frame Division

Input Target

Attributes

Threshold Filter

Modal Extraction

Morphology
Area

Coverage
Evolution

Morphological
Evolution

Chain-of-Thought Annotation

    You are a senior meteorological nowcasting expert building 
a high-quality CoT dataset. Write in precise, fluent 
ENGLISH. For every step, produce flowing sentences only. Do 
NOT use bullet points, numbered lists, dashes, or tables. 
Use the exact taxonomy key names verbatim when referring 
to keywords; never rename or invent new keys. Init thought 
must rely ONLY on INPUT annotations; 

Temporal Causal 
Factors

Perceptual Causal 
Factors

Direct Outcomes Deep Outcomes

output

inject

Task instruction

Temporal causal 
factor extraction

Perceptual casual 
factor extraction 

Direct outcomes

Deep outcomes

Quality Control

Structure Check

Causal Alignment

Terminology

Format Check

Abandon

Input Frames Target Frames

Figure 4: Construction of our CoT data. First, we preprocess the raw SEVIR data to obtain
high-quality input / output frame pairs. Second, we carefully design prompts and leverage GPT-4o for
attributes annotation. Third, the annotated attributes are incorporated into CoT prompts to generate
CoT annotations, followed by a quality verification step to produce the final CoT dataset.

3.3 CHAIN-OF-THOUGHT CONSTRUCTION FOR WEATHER GENERATION REASONING

While unified training enables multi-task learning across generation and understanding, the resulting
models still behave as black boxes, lacking explicit reasoning. To enhance interpretability and causal
inference, we introduce Chain-of-Thought (CoT) supervision as an auxiliary instruction layer for
generation tasks. The CoT explicitly captures causal and perceptual factors underlying meteorological
evolution, thereby guiding the model toward more structured reasoning about storm dynamics.

Chain-of-Thought for Causal Reasoning in Weather. Our CoT formulation is tailored to the
weather domain, where reasoning is framed as causal inference over storm dynamics. To oper-
ationalize this, we design a taxonomy of causal elements with expert-defined keywords, refined
via GPT-based annotation. The taxonomy is adapted from RadarQA but restructured according
to annotation difficulty: causal factors (e.g., morphology, intensity, motion) are relatively direct
to extract, whereas outcome indicators (e.g., storm evolution patterns) require higher-level infer-
ence. For nowcasting, causal factors are first derived from the input VIL sequence, then combined
with projected causal factors of the forecast frames to infer the more difficult outcome indicators
describing future storm behavior. For satellite-to-radar inversion, reasoning involves only causal
factors, enabling a direct projection from satellite channels to a single VIL frame. Based on this
structure, we construct CoT traces in a three-stage pipeline (Figure 4): attribute annotation with
GPT-4o, task-specific reasoning generation with GPT-o3, and automated verification for structural
consistency, causal alignment, and terminology normalization. Detailed taxonomy design, reasoning
procedures, and prompt template are provided in Appendix A.4.

Integration for unified framework. We incorporate CoT reasoning into Omni-Weather from two
complementary perspectives. First, during the training phase, CoT serves as auxiliary supervision,
requiring the model to generate both intermediate reasoning text and the final prediction, which guides
the backbone toward causal interpretability. Second, during inference, CoT is utilized as a reasoning
prompt, concatenated with task-specific instructions and inputs to steer the model toward more
structured and explainable outputs. This integration allows CoT to not only enhance interpretability
but also improve perceptual fidelity and qualitative consistency of generation tasks.

4 EXPERIMENTS

4.1 IMPLEMENTATION AND EVALUATION

We train our model end-to-end on a node with 8× H200 GPUs for 20k steps, using packed sequences
and the AdamW optimizer Loshchilov & Hutter (2017) with a base learning rate of 2× 10−4, weight
decay of 0.05, and cosine decay scheduling with a 2k-step warm-up. All images are capped at a
resolution of 256× 256, resulting in approximately 256 visual tokens per image.

For generation tasks, we report pixel-level metrics (e.g., CSI, CRPS) to evaluate radar accuracy and
perceptual metrics (e.g., LPIPS, RadarQA score) to capture structural and semantic consistency. For
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Radar Nowcasting

Radar Inversion

  <think> This task involves short-range precipitation nowcasting that leverages the last ten VIL 
frames to predict the subsequent twelve frames. The model must distill the recent convective evolution 
and translate it into a reliable forecast of precipitation intensity and structure for the next hour. 
  Building on the task objective, the Main motion direction observed from t0 to t9 is toward the 
northeast, accompanied by a consistent Main motion speed that is slightly above average. The 
dominant Rotation center is located in the southwest quadrant, and the primary convective system 
maintains a blob-like shape with minimal change in size or location. This stable morphology forms the 
basis for assessing the system's potential for further development.  
  Within this coherent temporal and spatial context, the deep-level convective characteristics can be 
described as follows: the present intensity is classified as very strong (181-219), with no significant 
Modifying influence from extreme values. The system is well-organized, displaying a compact blob-like 
configuration that shows little sign of fragmentation. The Areal coverage remains steady, reflecting a 
balance between intense but unchanging updrafts and a lack of new cell formation. These features 
collectively define the starting point for the forecast period. Given the system's recent behavior, the 
forthcoming twelve-frame forecast can be expected to show: a) persistent intensity at very strong levels b) 
stable areal coverage and organization c) no significant movement or rotation toward new regions. 
maintains a blob-like shape with minimal structural variation. This reasoning provides the causal 
foundation for the forthcoming visual prediction. </think>

  <think> The task ingests SEVIR IR107 and IR069 to infer radar VIL. A solitary, very cold IR107 
minimum sits in the central-west, indicating a taller, thicker cloud with concentrated water loading, while 
IR069 shows a collocated low that confirms abundant upper-level moisture supporting sustained precipitation. 
The two minima are blob-shaped and tightly overlapped, pointing to a compact, non-banded core rather 
than a line. Consequently, the expected VIL peaks over this central-west cell, giving a high maximum rain 
class, a blob-like isolated morphology, and a central-west sector for the strongest convection. </think>

  <think> The task uses SEVIR IR107 and IR069 as inputs to infer radar VIL. A broad, continuous IR107 
minimum dominates the central field, with extremely cold brightness temperatures signifying a very tall, 
thick cloud mass. IR069 presents an equally expansive low, confirming abundant upper-level moisture that 
supports sustained precipitation production. Accordingly, the expected VIL is very high across this central 
domain, with the maximum rain class at the strong/extreme level, a large, compact blob-shaped 
morphology, and the centered core region identified as the locus of strongest convection.  </think>

Radar Sequence Understanding

{'Overall Performance': 'fair', 'Dynamic Consistency Performance': 'good', 'Cumulate Precipitation 
Performance': 'poor', 'High Value Performance': 'great'}

  In the observation sequence, the convective system moves eastward, with an increase in the 
number of convective cells and intensification of their intensity. The system exhibits a scattered, 
multiple block-like shape that dilates over time, while its degree of organization decreases and its 
coverage range increases. 
  Regarding the evaluated sequence, the dynamic consistency performance is fair, indicating that 
the speed of the convective system is consistent with observations. However, differences in shape 
changes are most pronounced in the center, primarily due to scale changes. The scale of newly 
formed and dissipating convective cells is consistent with observations, and no artifacts are 
present. For cumulate precipitation, the performance is poor, as the model significantly under-
predicts precipitation sums in the east and west. High-value retain performance is great, with 
most high-value regions preserved; however, under-prediction is notable in the center. 
  In summary, while the evaluated sequence demonstrates fair dynamic consistency and strong 
high-value retention, its poor performance in cumulate precipitation prediction highlights 
significant shortcomings, particularly in precipitation sums in the east and west. These issues 
suggest the need for model improvements to enhance precipitation accuracy.

Radar Image Understanding

    In the observation image, the precipitation area is medium in scale, with the 
maximum precipitation level reaching extreme. The precipitation distribution shows 
a scattered pattern with irregular, elongated, and clustered formations. 
    The miss rate performance is great overall, with low misses for most precipitation 
levels, although significant misses are observed for intense and extreme precipitation. 
These misses are concentrated in the central region. The false alarm rate performance is 
good, with a slightly low false alarm rate for most precipitation levels. However, light 
precipitation shows significant false alarms in the eastern region. The sharpness 
performance is good, with a high degree of consistency in details and contours 
between the observation and prediction. The high-value region performance is also good, 
with most high-value regions accurately predicted, though under-prediction remains an 
issue in the center.
    In summary, the evaluated image demonstrates good overall performance, with 
slightly high similarity to the observation. While the miss rate and false alarm rate are 
generally low, misses for intense level and false alarms for light and sunny conditions 
impact accuracy. The sharpness and high-value matching are strong, indicating well-
preserved detail and accurate representation of high-intensity regions. 

{'Overall Performance': 'great', 'Miss Performance': 'great', 'False Alarm Performance': 
'good', 'Sharpness Performance': 'good', 'High Value Performance': 'good'}

Ground Truth

Prediction

1. Frame Rating

2. Frame Assessment

1. Sequence Rating

2. Sequence Assessment

Figure 5: A set of qualitative results. We show two radar inversion examples with think traces, a
nowcasting case where Omni-Weather (with think trace) is compared against CasCast, DiffCast, and
EarthFormer, and one example each of radar image and sequence understanding with attribute scores
and textual evaluations. Omni-Weather surpasses all baselines.

understanding tasks, evaluation follows RadarQA protocols, considering both prediction–reference
alignment and LLM-based external judgments. To ensure fair comparison, we benchmark against
the strongest available models: CasCast, DiffCast, and EarthFormer for nowcasting; WeatherGFM,
UNet, and ViT for satellite-to-radar inversion; and GPT4-Score as well as the domain-specialized
RadarQA for understanding. Full details of metrics and baselines are provided in Appendix A.3.
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Table 1: Quantitative results on Weather Generation and Weather Understanding tasks.The best
results are highlighted in bold, and the second-best results are underscored. Abbreviations: CSI-M -
CSI-Mean, R.S - Radar Score, CSI-P4 - CSI-Pool4, CSI-P16 - CSI-Pool16, C-16 - CSI@16, C-74 -
CSI@74, C-160 - CSI@160, C-181 - CSI@181, C-219 - CSI@219, Dyn. - Dynamic Consistency,
Cum. - Cumulate Precipitation, H. Val. - High. Value, R._L - Rouge_L, B.S - BertScore, Sharp. -
Sharpness. Metrics marked with ↓ denote lower-is-better objectives, whereas metrics without such
notation should be interpreted as higher-is-better.

Weather Generation

Method
Radar Nowcasting

Method
Radar Inversion

CSI-M R.S CSI-P4 CSI-P16 CRPS ↓SSIM LPIPS ↓ R.S RMSE ↓ C-16 C-74 C-160 C-181 C-219

Earthformer 0.389 1.92 0.401 0.387 0.037 0.729 0.322 UNet 1.75 0.821 0.222 0.370 0.180 0.153 0.079

Diffcast 0.375 2.43 0.407 0.511 0.033 0.739 0.235 ViT 2.01 0.445 0.602 0.436 0.180 0.131 0.042

Cascast 0.384 2.72 0.414 0.518 0.031 0.746 0.207 WeatherGFM 2.28 0.436 0.619 0.447 0.208 0.157 0.053

Omni-Weather 0.384 2.69 0.427 0.539 0.026 0.746 0.179 - 2.42 0.514 0.622 0.469 0.263 0.221 0.118

Omni-Weather-thinking 0.353 2.86 0.421 0.542 0.028 0.751 0.166 - 2.51 0.507 0.621 0.473 0.277 0.230 0.129

Weather Understanding

Method
Radar Sequence Understanding Radar Image Understanding

Overall Dyn. Cum. H. Val. R._L B.S GPT4 Overall Miss FAR H. Val. Sharp. R._L B.S GPT4

Claude-sonnet-4 20.79 20.79 20.79 21.78 0.287 0.745 5.73 32.79 32.56 34.19 24.77 46.05 0.368 0.743 5.18

Gemini-2.5-pro 27.59 28.34 26.72 22.47 0.254 0.739 5.77 21.40 31.16 29.65 29.30 40.58 0.348 0.741 5.63

GPT-5 49.50 36.63 35.64 30.69 0.213 0.690 6.85 56.05 21.74 32.79 40.81 48.49 0.297 0.702 6.31

RadarQA 66.17 53.31 48.94 80.52 0.436 0.815 6.87 61.51 67.67 65.35 69.19 78.60 0.512 0.809 6.58

Omni-Weather 61.79 64.05 45.19 67.29 0.446 0.810 7.48 64.30 92.21 88.72 91.4 91.74 0.543 0.760 6.03

4.2 EXPERIMENTAL RESULTS

Currently, there exists no unified model capable of simultaneously handling both weather generation
and weather understanding tasks. Existing approaches are typically specialized, such as Cascast
or DiffCast for forecasting, or understanding-only models such as RadarQA for evaluation. In
contrast, Omni-Weather is designed as a single framework to integrate generation and understanding.
While aiming for strong quantitative performance across generation and understanding tasks, our
experiments further investigate how a unified framework supports mutual gains between these tasks,
reveals trade-offs between perceptual reasoning and pixel-level accuracy, and leverages both scientific
and general-domain data for improved learning.

Omni-Weather achieves superior performance in weather generation. As shown in Table 1,
Omni-Weather improves both deterministic accuracy and perceptual quality in nowcasting. Compared
with single-task baselines, our model reduces CRPS by over 15% and improves LPIPS by more
than 25%, while maintaining similar CSI and SSIM. On the radar inversion task, Omni-Weather
consistently surpasses both specialized (i.e., WeatherGFM) and generalist (i.e., UNet and ViT)
models, achieving higher CSI scores across all thresholds, with gains up to 20% at high-value levels.
Furthermore, when augmented with thinking inference, Omni-Weather achieves clear improvements
in perceptual quality, LPIPS decreases by nearly 10% while showing minor reductions on pixel-level
metrics such as CSI-Mean. This highlights that explicit reasoning can enhance visual fidelity and
interpretability with limited cost to deterministic accuracy.

Omni-Weather delivers strong results in weather understanding. Table 1 also presents results for
weather understanding tasks. Closed-source LLMs fail to adapt to this task, often achieving accuracies
below 30%. While RadarQA serves as a competitive benchmark, Omni-Weather surpasses it: on
radar image understanding, accuracy on key attributes (e.g., Miss, False Alarm) exceeds RadarQA
by 20–25 points, and on radar sequence understanding, Dynamic Consistency improves by over 10
points with a 5% overall gain. These results highlight that Omni-Weather attains strong capability in
understanding both weather sequences and single frames data.
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Table 2: Training only Understanding (U), only
Generation (G), or Joint (U+G). Frame / Sequence
tasks are evaluated in accuracy, GPT4-Score for
understanding, CSI-M, RMSE for generation.

Setting
Understanding Generation

Accuracy ↑ GPT4-score ↑ CSI-M ↑ RMSE ↓

Und-only 81.95 / 54.34 5.78 / 6.03 - -

Gen-only - - 0.303 / 0.323 0.590 / 19.01

Joint (U+G) 86.65 / 59.58 7.48 / 6.03 0.338 / 0.347 0.514 / 17.11

Table 3: Effect of CoT finetuning and thinking
inference. ↑ higher is better, ↓ lower is better.
Training both with CoT finetuning and thinking
inference achieves the best result in most metrics.
Abbreviation: R.S - Radar-Score.

CoT FT Think Inf. CSI-M ↑ CRPS ↓ R.S ↑ LPIPS ↓ GPT4-Score ↑

✓ ✗ 0.347 0.023 2.423 0.182 -

✗ ✓ 0.237 0.042 2.032 0.213 4.21

✓ ✓ 0.335 0.023 2.657 0.163 7.82

Omni-Weather demonstrates versatile qualitative performance across tasks. Figure 5 illustrates
Omni-Weather’s outputs across both generation and understanding tasks. In the radar inversion
task, Omni-Weather generates VIL fields with richer high-value structures and reasoning traces
linking satellite cues to radar responses. In the radar nowcasting task, forecasts exhibit fine-grained
storm details with improved spatial reflected by higher Radar-Score, and the think traces offer
interpretable accounts of storm evolution. For radar understanding tasks, Omni-Weather delivers
expert-like outputs, combining attribute-level ratings with detailed textual evaluations that provide
domain-specific insights.

4.3 ABLATION STUDIES AND ANALYSIS

Impact of joint training on generation and understanding. To examine whether generation and
understanding tasks can benefit each other, we performed supervised fine-tuning on Bagel-7B-MoT
using only understanding data (U-only), only generation data (G-only), or both jointly (U+G), and
evaluated on 200 randomly sampled validation examples per task. As shown in Table 2, joint training
improves performance across both understanding and generation: understanding achieves higher
overall scores and better consistency, while generation gains in both accuracy and perceptual quality.
These results indicate that unified training enables the model to both learn and interpret weather data
more effectively, with generation and understanding tasks mutually enhancing each other.

Effectiveness of Mixed Scientific and General Data. We conducted an additional experiment
by finetuning Bagel-7B-MoT on SEVIR alone versus SEVIR combined with 20k samples from
the general metaquery Pan et al. (2025) dataset. As shown in Figure 6, the inclusion of general
data consistently improves model performance, particularly in deterministic metrics and perceptual
quality indicators. These findings suggest that while scientific data anchors domain-specific fidelity,
general data provides auxiliary coverage of diverse patterns, enabling the model to learn more robust
cross-modal information for better representations.

Perceptual Trade-offs in Reasoning. We investigate the impact of CoT-annotated supervision
and reasoning-based inference on radar nowcasting, evaluating 200 carefully sampled test cases.
As shown in Table 3, reasoning introduces a clear trade-off: richer prompts yield more detailed
generations and improvements in perceptual image metrics (e.g., LPIPS, Radar-Score), while pixel-
level measures such as CSI moderately decline. Beyond images, we also evaluate the generated
textual explanations with a GPT4-Score, which assigns higher scores to CoT-enhanced outputs,
confirming gains in interpretability. A case study in Figure 7 further illustrates this effect, where
reasoning produces sharper storm structures and more coherent temporal evolution despite lower CSI,
suggesting that it prioritizes semantic and structural fidelity over pixel-wise alignment. Qualitative
comparisons of reasoning content are provided in Appendix A.5.

5 CONCLUSION

We introduce Omni-Weather, a unified foundation model for weather generation and understanding.
Through a shared backbone, it supports both generation and understanding tasks. This design allows
the model to surpass task-specific baselines and enables reasoning analysis. The reasoning ability
further enhances interpretability and improves the perceptual quality of radar sequences, highlighting
the potential of Omni-Weather as a generalist foundation model for future weather applications.
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0.3352

0.7455

0.0231

0.3471
0.7583

0.0226

csi-mean ssim-mean crps-mean

w/o general data
w/ general data

↑↑ ↓

Figure 6: Effect of mixed data.

Target w/ thinking w/o thinking

LPIPS: 0.114
Radar-Score: 3.19
CSI-Mean: 0.392 

LPIPS: 0.129
Radar-Score: 2.93
CSI-Mean: 0.420 

Figure 7: Case study with thinking.

Limitations. First, Omni-Weather cannot yet adapt to general-domain VAEs. Second, broader vali-
dation across diverse weather tasks, such as medium-range forecasting and typhoon track prediction,
remains necessary. Addressing these limitations will be crucial for advancing foundation models
toward more robust and universally applicable weather intelligence.

ETHICS AND REPRODUCIBILITY STATEMENT

This work develops a unified model for weather generation and understanding, aiming to improve
interpretability and perceptual quality in meteorological forecasting. The datasets used (e.g., SEVIR,
RadarQA) are publicly available, and all experiments follow their licenses without involving sensitive
information. We acknowledge that unified models may be misused without expert oversight; thus, our
method is intended for research purposes and should be complemented by professional interpretation.
To support reproducibility, we provide detailed descriptions of tasks, model design, training objec-
tives, and evaluation protocols, and we release a Chain-of-Thought dataset for causal reasoning at
https://anonymous.4open.science/r/cot-data-E3D4/ along with its construction
code. Upon acceptance, we will further release the complete codebase, model checkpoints, and
data-processing scripts to ensure transparency and verifiability.
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A APPENDIX

A.1 OVERVIEW

This Appendix is structured as follows:

• Sec. A.2: Details of task paradigm and dataset.

• Sec. A.3: Details of evaluation metrics.

• Sec. A.4: Data construction of Chain-of-thought dataset.

• Sec. A.5 : Details about Chain-of-though reasoning.

• Sec. A.6: More experimental results of Omni-Weather.

• Sec. A.7: Qualitative results of Omni-Weather.

• Sec. A.8: Usage of LLM.

A.2 MORE DETAILS ABOUT DATASETS AND TASK

A.2.1 DATA DETAIL

SEVIR. The Storm EVent ImagRy (SEVIR) dataset is a large-scale collection of temporally aligned
weather observations covering the continental United States. It integrates multiple sensing modalities,
including visible and infrared satellite imagery, lightning event records, and mosaics of Vertically
Integrated Liquid (VIL) derived from NEXRAD radar. In this work, we focus on the radar-based
VIL product, which provides a spatio-temporal representation of convective storm structures. SEVIR
contains over 20,000 storm events sampled between 2017 and 2020, each spanning a 4-hour window
at 5-minute resolution and covering approximately 384 km × 384 km regions. To support short-range
forecasting tasks, sequences are typically arranged as input–output pairs, where a set of observed
frames is used to predict future VIL evolution. The images are normalized to the range [0, 255]
and evaluated against threshold-based metrics (e.g., CSI, HSS) following established protocols.
This combination of multi-sensor coverage, temporal alignment, and standardized evaluation makes
SEVIR a widely adopted benchmark for data-driven weather prediction.

RadarQA Dataset. RQA-70K from RadarQA is a large-scale forecast quality analysis dataset
encompassing four tasks: frame rating, frame assessment, sequence rating, and sequence assessment.
RQA-70K is constructed through a combination of human annotation and automated labeling. By in-
tegrating traditional forecasting metrics with expert knowledge, the dataset provides a comprehensive
benchmark for the assessment of weather radar forecasting.

A.2.2 TASK DETAIL

Weather Generation. For radar nowcasting, the model is trained to predict the short-term spatio-
temporal evolution of precipitation. Specifically, we use sequences of 10 observed VIL frames as
input and require the model to generate the subsequent 12 frames. All frames are preprocessed
to a spatial resolution of 256 × 256, which balances coverage of mesoscale convective features
with computational efficiency. This setting follows standard short-range nowcasting protocols but is
tailored to emphasize fine-scale storm structures, ensuring that the model learns both spatial coherence
and temporal continuity in convective system development.

Weather Understanding. Weather understanding tasks require the model to produce natural-language
descriptions and evaluations based on radar observations or forecast sequences. The input can be
either a single VIL frame or a sequence of frames, and the output is a structured report covering key
meteorological aspects such as storm morphology, intensity, temporal evolution, and forecast quality
(e.g., hits, misses, or false alarms). Following the RadarQA benchmark, model responses are rated
along multiple dimensions using a four-level ordinal scale (fair, poor, good, great), which are mapped
to numerical values 1–4. Scores are then averaged across dimensions to obtain the Radar Score,
providing a comprehensive indicator of diagnostic quality. This task formulation bridges language
modeling with domain-specific evaluation, enabling models not only to assess physical forecasts but
also to generate expert-like reasoning aligned with meteorological practice.
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A.3 EVALUATION PROTOCOLS AND METRICS

To enable a more comprehensive and accurate assessment, we employ a diverse set of evaluation
metrics across different tasks. The detailed definitions of these metrics are provided below.

CSI. Critical Success Index (CSI) is widely used in the evaluation for weather forecasting tasks.
Formally, it is defined as:

CSI =
TP

TP + FN + FP
(A.1)

where TP , FP , and FN denote the number of true positives, false positives, and false negatives,
respectively. Following Cascast Gong et al. (2024), we apply thresholds at 16, 74, 133, 160, 181, and
219 to evaluate model performance across different VIL intensity ranges.

SSIM Wang et al. (2004). Structural Similarity Index Measure (SSIM) is a perceptual metric that
quantifies the similarity between two images by comparing their contrast, luminance, and structure.
Formally, it is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(A.2)

where µx and µy are the means of x and y, σ2
x and σ2

y are the variances, σxy is the covariance, and
C1, C2 are small constants to stabilize the division. Higher SSIM values indicate stronger similarity
between the prediction and observation.

CRPS. Continuous Ranked Probability Score (CRPS) evaluates the accuracy of probabilistic
forecasts by comparing Cumulative Distribution Function (CDF) with observation x. Formally, it is
defined as:

CRPS(F, x) =

∫ +∞

−∞

(
F (y)− 1{y ≥ x}

)2
dy (A.3)

where 1{y ≥ x} is the indicator function.
LPIPS Zhang et al. (2018). Learned Perceptual Image Patch Similarity (LPIPS) is a perceptual

metric designed to evaluate similarity between images in a manner aligned with human judgment.
LPIPS leverages neural networks to compute differences in deep feature-based representations.

Rouge_L Lin (2004). Rouge_L is widely used for evaluating the quality of generated text by
measuring the Longest Common Subsequence (LCS) between a candidate and reference sequence.
Rouge_L accounts for sentence-level similarity, capturing both content and fluency.

BertScore Zhang et al. (2019). BertScore is a learned mertic for evaluating text generation
that leverages text embeddings from pretrained language models (e.g., Bert) to compute similarity
between candidate and reference sentences.

GPT4-Score. GPT4-Score leverages the reasoning and understanding capabilities of GPT4 to
assess generated outputs. Specifically, both the ground truth and the prediction are provided to
GPT-4, which evaluates the prediction based on overall accuracy, content richness, and fidelity to the
reference.

Radar-Score.RadarQA formulates radar understanding as a rating task, where model-generated
diagnostic reports are assessed along multiple meteorologically relevant dimensions, such as storm
morphology, intensity, temporal evolution, and forecast quality. Each dimension is rated on a four-
level ordinal scale {fair, poor, good, great}, which are mapped to numerical values 1 to 4. The Radar
Score is then obtained by averaging these ratings across all evaluated dimensions, producing a single
interpretable measure that reflects the overall diagnostic quality of the model’s output.

A.4 DETAIL OF CHAIN-OF-THOUGHT CONSTRUCTION

To enable causal reasoning over storm dynamics in the weather domain, we carefully design a CoT
data construction pipeline to generate high-quality CoT data.

Data Preprocess. First, we extract the raw data from the SEVIR dataset and segment each event
into three pairs of 10-frame inputs and 12-frame outputs. Second, we filter out samples with limited
informative content and visualize the retained frames using SEVIR’s colormap.

Attributes Annotation. For the constructed input / output frame pairs, we perform attributes
annotation by designing a structured prompt, which encompasses four components: system prompt,
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attribute options, return format, and caution instructions. The prompt is then provided to a large
language model to generate structured JSON outputs that serve as inputs for the subsequent CoT
annotation process.

System Prompt for Attribute Annotation

You are a meteorological expert. You will be given an animated GIF containing the 10/12
LABEL frames to generate the final conclusions. Use the taxonomy below and produce
a complete "analysis_label" covering all attributes, consistent with the LABEL sequence.
Use only the exact option strings provided for each attribute; if an attribute is not apparent
from the LABEL frames, set "choice" to "not apparent". In "rationale", use probabilistic
language when evidence is weak (e.g., "likely", "possible"). Do not reference or speculate
about INPUT frames.
Orientation & mapping (do not ignore):
Images are rendered with ‘origin=’upper’‘. Treat the top of the image as North (N), the bottom
as South (S), the left as West (W), and the right as East (E). - Up = North, Down = South, Left
= West, Right = East. - Diagonals: Up-Left = Northwest, Up-Right = Northeast, Down-Left
= Southwest, Down-Right = Southeast. Do not rotate or flip the images. Determine ‘Main
motion direction‘ strictly using this mapping.
Definitions (used consistently throughout):
- Convective cell: a contiguous region whose pixel value exceeds a reflectivity/intensity thresh-
old (>32 on a 0–255 scale; colorbar green and above). Very small isolated speckles can be
ignored when they are unlikely to influence scene-level judgment. - Main convective system:
the dominant connected system within the scene (the most spatially prominent/organized
aggregate of cells). When multiple candidates exist, use the overall/aggregate pattern that
best represents the sequence. Taxonomy (attributes and allowed options):{enum_text} Return
a strict JSON object in English with the exact schema:{schema_text}

Attribute Options

"Morphology": (
"Spatial organization pattern at the start window (or across the input window); "
"scattered = many small isolated cells distributed broadly (low organization); "
"banded = elongated/narrow rainband aligned along a main axis; "
"blob-like = one or a few dominant compact clusters with larger areal extent; "
"spiral = curved/spiraling rainbands (e.g., tropical cyclones/mesoscale vortices); "
"layered = sheet-like, wide coverage with uniform texture and less distinct boundaries; "
"bow-shaped = an arced/bowing reflectivity segment (e.g., bow echo)."

),
"Max pixel level": (

"Peak intensity represented by the maximum pixel value across the scene (0–255). "
"Use the provided bins: no significant (0–31), very weak (31–73), weak (74–132), "
"moderate (133–159), strong (160–180), very strong (181–218), extreme (219–255)."
" Pixel intensity values map directly to the provided colorbar."

),
"Initial position of the main convective system": (

"Coarse location of the dominant connected system at t0 in image coordinates; "
"Centered / N / S / W / E / four quadrants; or ’no clear main system’ if dominance is

ambiguous."
),
"Main motion direction": (

"Dominant displacement of the MAIN system (aggregate of cells above threshold >32)
across frames. "

"If multiple clusters move differently or displacement is unclear, choose ’no obvious
motion’."
),
"Main motion speed": (

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

"Qualitative speed class based on normalized displacement per frame relative to image
size: "

"near-stationary / slow / moderate / fast / very fast."
),
"Rotation center": (

"Approximate sector of the rotation center if clear cyclonic/anticyclonic rotation is
present (N/NE/E/SE/S/SW/W/NW); "

"otherwise ’no rotation’ or ’location uncertain’."
),
"Change in number of convective cells": (

"Trend in the count of distinct convective cells. "
"Ignore tiny isolated speckles when appropriate."

),
"Morphological evolution of the main system": (

"Primary structural change of the MAIN system over time: elongation, shrinkage,
expansion, "

"merging, splitting, dissipation, generation."
),
"Intensity evolution": (

"Overall trend of reflectivity/brightness of the MAIN system: strengthening / weakening
/ roughly unchanged."
),
"Areal coverage evolution": (

"Trend in the areal extent of above-threshold pixels (>32): "
"expanding / roughly unchanged / rapidly shrinking / expand then shrink / shrink then

gradually expand."
),
"Organization evolution": (

"Change in connectedness/ordering of the system: becoming connected (fragmented →
more coherent), becoming fragmented (coherent → more broken), "

"connected then gradually weakening (coherent but loosening/fading), fragmented then
becoming connected (consolidation), no obvious change."
),

Return Format for Attribute Annotation

The output must be valid JSON (no markdown fences), with the following keys:
{

"sample_id": str,
"analysis_input": {

"annotations": {
"Morphology": {"choice": str, "rationale": str},
"Max pixel level": {"choice": str, "rationale": str},
"Initial position of the main convective system": {"choice": str, "rationale":

str},
"Main motion direction": {"choice": str, "rationale": str},
"Main motion speed": {"choice": str, "rationale": str},
"Rotation center": {"choice": str, "rationale": str},
"Change in number of convective cells": {"choice": str, "rationale": str},
"Morphological evolution of the main system": {"choice": str, "rationale":

str},
"Intensity evolution": {"choice": str, "rationale": str},
"Areal coverage evolution": {"choice": str, "rationale": str},
"Organization evolution": {"choice": str, "rationale": str}

},
"global_rationale": str

}
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}

Additional Rules for Attribute Annotation

Additional rules:
- Consider only INPUT frames (t0..t9); do not mention LABEL frames.
- Cover all attributes above.
- For each attribute, ‘choice‘ must be one of the listed options verbatim, or the literal

string "not apparent" when evidence is insufficient.
- Keep explanations concise, using terms like "likely" / "possible" when appropriate.
- Orientation & mapping (do not ignore): Images are rendered with ‘origin=’upper’‘.

Treat the top of the image as North (N), the bottom as South (S), the left as West (W),
and the right as East (E). For diagonals: up-left=Northwest, up-right=Northeast, down-
left=Southwest, down-right=Southeast. Do not rotate or flip the images.

- Consistency check for "Main motion direction": Verify that the apparent displacement
on the image (screen coordinates) matches the above mapping before choosing. If uncertain,
choose "no obvious motion".

- Definition of "Main motion direction": Determine motion using the contiguous regions
where pixel value > 31 (i.e., colorbar green and above). Track the overall trajectory of
these regions from t0 to t9 (or t10 to t11 for LABEL). If multiple such regions exist, report
their general/aggregate motion direction. If regions are too fragmented or exhibit multiple
inconsistent directions, set the direction to "no obvious motion".

CoT Annotation. After obtaining the annotated attribute data, the large language model is prompted
to generate outputs in a predefined sequence: task instruction, Temporal causal factor, perceptual
causal factor, direct outcomes, and deep outcomes. The system prompt, cautions, return format, and
instruction for each step are detailed as follows.

System Prompt for CoT Annotation

You are a senior meteorological nowcasting expert building a high-quality CoT dataset. Write
in precise, fluent ENGLISH. For every step, produce flowing sentences only. Do NOT use
bullet points, numbered lists, dashes, or tables. Use the exact taxonomy key names verbatim
when referring to keywords; never rename or invent new keys. Init thought must rely ONLY
on INPUT annotations; Summary thought must rely ONLY on LABEL annotations. Keep the
reasoning scientific and case-specific.

Instructions and Examples for each Step

INIT THOUGHT (INPUT-based; do not use LABEL):
Step 1 — Task instruction:
Explain in 2–3 sentences that this is a short-range precipitation nowcasting task based on the
last 10 VIL frames, and the goal is to forecast the next 12 frames.
Step 2 — Temporal causal factor extraction (merged with temporal description):
Write a single descriptive paragraph that uses ONLY the temporal causal factor keywords.
Explicitly restate the choices for "Main motion direction", "Main motion speed", and "Ro-
tation center" as observed from t0–t9, and keep the prose strictly descriptive. Do NOT
include meta-summaries such as “this establishes a premise”, avoid invented terminology,
mechanisms, or evaluative language, and do not reference perceptual or outcome keywords.
Use present/immediate past tense and clear compass terms.
Example (style only): "Across t0–t9, ’Main motion direction’ is east, ’Main motion speed’ is
slow, and ’Rotation center’ is no rotation, so the motion is a slow eastward translation without
rotational signatures."
Step 3 — Perceptual causal factor extraction (merged with spatial description):
Write a single descriptive paragraph that uses ONLY the perceptual causal factor keywords.
Explicitly restate the choices for "Morphology", "Max pixel level", and "Initial position of
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the main convective system" as observed from t0–t9, and keep the prose strictly descriptive.
Do NOT include meta-summaries such as “this defines a baseline”, avoid mechanisms
or evaluative language, and do not reference temporal or outcome keywords. Use the
present/immediate past tense.
Example (style only): "The ’Morphology’ is blob-like, the ’Max pixel level’ is strong, and the
’Initial position of the main convective system’ is centered, yielding compact high-intensity
echoes near the center across t0–t9."
Step 4 — Direct outcomes (1st-Tier Outcome):
Analyze ONLY the direct outcome keyword "Intensity evolution". Write exactly ONE
concise sentence that delivers the conclusion for "Intensity evolution", justified solely by
the temporal and perceptual paragraphs (Steps 2–3). The sentence must explicitly name
"Intensity evolution". Do NOT reference deep outcomes, mechanisms, grids, coordinates,
or any terms not present in the keyword taxonomy. Avoid generic phrases like "structural
pressure" or "integration forces".
Example (style only): "For ’Intensity evolution’, the strong yet steady baseline together
with slow translation and no rotation supports an assessment that intensity remains roughly
unchanged."
Step 5 — Deep outcomes (2nd-Tier Structural Outcome):
Analyze ONLY the deep outcome keywords "Areal coverage evolution" and "Organization
evolution". Write exactly TWO sentences in a single flowing paragraph: one sentence for
"Areal coverage evolution" and one for "Organization evolution". Each sentence must deliver
a concise conclusion justified by the temporal and perceptual paragraphs (Steps 2–3) and the
direct outcome (Step 4), and must explicitly name the corresponding deep outcome keyword.
Do NOT introduce mechanisms here; do NOT add invented terminology or extra commentary.
Example (style only): "’Areal coverage evolution’ remains stable under slow translation and
steady intensity; ’Organization evolution’ shows no obvious change because the blob-like
structure and absence of rotation provide no pathway to linearization or fragmentation."
Final summary paragraph:
After completing Steps 1–5, write a short paragraph (2–4 sentences) that integrates the
INPUT-based reasoning across all steps into a coherent training target. Keep it as flowing
prose with no lists. Place it under "init_thought.summary".

QUality Control. After obtaining the annotated CoT data, we perform a three-step quality control:
Structure Check, Causal Alignment, and Terminology. Data that pass all steps are retained for training
and included in the final CoT dataset.

Instructions and Examples for each Step

You are a meteorology expert and scientific writing reviewer. Your task is to evaluate a
model-generated explanation of a radar-based weather event.
The explanation may be in Chinese or English. Please read it carefully and then score it along
the following dimensions, on a 0–10 scale (higher is better):
1. Clarity of explanation structure - 0–3: Disorganized, hard to follow, key steps or logic are
unclear. - 4–6: Overall understandable, but some parts are confusing or poorly organized.
- 7–8: Mostly clear, with a logical structure and reasonable flow. - 9–10: Very clear and
well-structured, with a coherent narrative from beginning to end.
2. Coverage of key radar features - 0–3: Mentions very few relevant radar features or misses
the main phenomena. - 4–6: Covers some important radar elements, but with gaps or missing
key aspects. - 7–8: Covers most key radar elements (e.g., echo intensity, spatial pattern,
evolution, convective cores, stratiform regions, etc.) with reasonable completeness. - 9–10:
Thorough coverage of all key radar elements that are relevant to the situation, with appropriate
detail.
3. Physical plausibility of the evolution - 0–3: Description is largely physically implausible
or contradicts basic meteorology. - 4–6: Partly reasonable but contains some questionable
or unjustified physical statements. - 7–8: Physically reasonable and broadly consistent with
typical mesoscale/convective evolution. - 9–10: Highly plausible physical interpretation with
clear, meteorologically sound reasoning.
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4. Overall quality - Give a holistic score that reflects the overall usefulness and scientific
quality of the explanation, considering *all* of the above dimensions. - This does not need to
be a strict mathematical average, but it should be consistent with the dimension scores.
Important: - Base your judgment only on the given explanation and general meteorological
knowledge. - Do not invent additional information that is not supported by the explanation. -
Be consistent and use the full 0–10 range when appropriate.
Now evaluate the following explanation:
[EXPLANATIONSTART ]EXPLANATIONTEXT [EXPLANATIONEND]
Please respond in the following JSON format (do not add extra text):
"structurescore” :< 0 − 10number >, ”structurecomment” : ” <
shortjustification > ”, ”coveragescore” :< 0 − 10number >, ”coveragecomment” :
” < shortjustification > ”, ”physicsscore” :< 0−10number >, ”physicscomment” :
” < shortjustification > ”, ”overallscore” :< 0− 10number >, ”overallcomment” :
” < shortjustification > ”

Finally, we obtained 4,000 CoT annotations for radar nowcasting and 4,000 CoT annotations for
radar inversion, which together form our CoT dataset for generation tasks.

Note that We use **gpt-4o-2024-11-20** for annotation and **gpt-o3** for chain-of-thought genera-
tion.

A.5 MORE DETAIL ABOUT REASONING

We provide qualitative comparisons between Omni-Weather with and without CoT finetuning on both
radar inversion and radar nowcasting tasks. Figures 8 and 9 present three representative cases for
radar inversion and radar nowcasting. As shown, the CoT-finetuned model produces reasoning traces
that not only accompany the generated radar fields with higher perceptual quality, but also deliver
interpretable textual explanations grounded in storm dynamics. In contrast, the non-CoT model tends
to generate “thinking” outputs that resemble post-hoc quality evaluations rather than causal reasoning,
lacking direct connection to the generation process itself. This highlights that CoT supervision guides
the model toward producing reasoning that is both explanatory and predictive, effectively bridging
image generation with meteorological interpretation.

A.6 MORE EXPERIMENT RESULTS

All ablations in this section are conducted on the SEVIR test set with 200 sequences under the
nowcasting task. We report CSI-mean, CSI-pool4-mean, CSI-pool16-mean, SSIM, and PSNR. Higher
values are better for all metrics.

Radar Sequence Encoder vs. VAE Encoder To validate the effectiveness of the proposed radar
sequence encoder, we compare it against a vanilla VAE encoder. As shown in Table 4, the radar
sequence encoder achieves consistent improvements across all CSI metrics, SSIM, and PSNR,
demonstrating that modeling temporal radar sequences brings substantial gains.

Table 4: Comparison of radar sequence encoder and VAE encoder.

CSI-mean CSI-pool4-mean CSI-pool16-mean SSIM PSNR

VAE encoder 0.2358 0.2912 0.4356 0.7528 21.42

Radar sequence encoder 0.3471 0.4003 0.5390 0.7621 23.22

Mixing General and Weather Data We further explore the impact of mixing general-purpose
data (“gen”) and weather radar data (“weather”). Here, the notation “1gen30%+weather70%”
means that one general dataset with 30% proportion is combined with 70% weather data, while
“2gen30%+weather70%” means two general datasets each contributing 30% combined with 70%
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Input

w/o thinking

w/ thinking

GT

w/ cot finetune thinking

w/o cot finetune thinking

The task employs SEVIR IR107 and IR069 to infer radar VIL. In the north-central sector, IR107 shows a 
strong cold minimum, indicating a tall and thick convective tower, while IR069 presents a collocated low, 
confirming sufficient upper-level moisture to sustain precipitation. The overlap is compact and blob-shaped, 
standing out clearly from the surrounding warmer environment. Radar echoes verify this with a concentrated 
high-reflectivity core to the north-central edge of a broader convective mass. Consequently, the expected VIL 
is high over this isolated northern blob, yielding a compact isolated morphology, and the north-central sector 
identified as the focus of strongest convection. The structure is coherent and stable, without rotation, 
supporting a confident nowcast grounded in persistence and simple advection.

In the given task, the quality of the weather forecasting image was assessed based on its alignment with the 
observed data across several aspects. The dynamic consistency performance was rated as good, indicating 
strong agreement with the observed dynamics. The predicted image maintained a consistent scale for both 
newly formed and dissipating convective cells and preserved the observed shape changes and organization 
patterns without introducing artifacts. Regarding cumulate precipitation, the performance was assessed as 
good, though the model under-predicted precipitation values in the east and southeast regions. For high 
value retain, performance was rated as great, as most high-value regions were successfully retained; 
however, over-prediction occurred, with significant mismatches noted in the eastern areas. In summary, the 
evaluated image demonstrated reliable dynamic consistency, accurate representation of precipitation trends 
with minor regional underestimations, and strong retention of high-value precipitation areas despite 
localized over-predictions. Overall, the forecasting image quality was robust.

Input

w/o thinking

w/ thinking

GT

w/ cot finetune thinking

w/o cot finetune thinking

The task uses SEVIR IR107 and IR069 to infer radar VIL. A distinct cold IR107 minimum appears in the 
northern sector, indicating a tall and dense convective tower, while IR069 reveals a collocated low that 
confirms strong upper-level moisture support. The overlap is blob-shaped and concentrated, standing out 
against weaker surroundings. Radar echoes align with this signature, showing a compact, high-reflectivity core 
embedded in a modest convective cluster. Consequently, the expected VIL is high within this northern blob, 
yielding a compact isolated morphology, and the northern sector identified as the main convective focus. The 
system remains steady and non-rotating, enabling a confident nowcast based on persistence and simple 
advection.

In the given task, the quality of the weather forecasting image was assessed based on its alignment with real-
world observations. The evaluated image demonstrated good performance in several aspects, including high 
similarity to the observed precipitation distribution, accurate prediction of precipitation levels, and 
consistency in spatial features such as the absence of artifacts and shape characteristics. Additionally, the 
evaluated image maintained strong dynamic consistency, with predicted convective system characteristics 
closely matching observations. However, minor discrepancies were noted, particularly in the scale of 
convective cells—larger for intense precipitation and smaller for light precipitation— cumulatively affecting 
precipitation sums in specific regions, notably the center and north. In terms of content captioning, detailed 
precipitation distribution and convective system behaviors were described accurately, reinforcing the 
evaluated image's reliability. In summary, the evaluated image's overall performance was pronounced, with 
high fidelity in precipitation and dynamic system attributes, minor regional prediction errors.

Input

w/o thinking

w/ thinking

GT

w/ cot finetune thinking

w/o cot finetune thinking

The task uses SEVIR IR107 and IR069 to infer radar VIL. In the central belt, IR107 highlights a compact cold 
minimum, signaling a tall and thick convective tower, while IR069 reveals a collocated low, confirming 
adequate upper-level moisture to sustain precipitation. The overlap forms a blob-shaped but embedded feature 
within a broader field of moderate signals. Radar echoes show a concentrated high-reflectivity cell surrounded 
by weaker scattered returns, consistent with a multicell environment. Consequently, the expected VIL is high 
over the central blob, with a compact isolated morphology embedded in a broader cluster, and the central 
sector marked as the main convective focus. The system is organized but not rotating, supporting a confident 
nowcast built on persistence and straightforward advection.

In the given task, the quality of the weather forecasting image is assessed based on its representation of 
precipitation attributes. The analysis reveals that the evaluated image has good performance in terms of 
dynamic consistency, as the predicted direction aligns well with the observed dynamics, and no artifacts are 
present. Additionally, the scale of both forming and dissipating convective cells matches the observed image, 
while the changes in shape remain consistent spatially. For the precipitation attributes, the prediction 
demonstrates great performance overall, though there is an underestimation of very heavy precipitation in 
the east and intense precipitation in the south. Based on this information, the content caption can be refined 
to emphasize the dynamic consistency and accurate representation of precipitation levels, while highlighting 
areas of under-prediction. The overall structure of the content remains consistent, with dynamic consistency 
being a key strength and areas of improvement noted for specific precipitation levels. This ensures that the 
evaluated image's strengths and limitations are clearly communicates to the forecasting community.

Figure 8: Radar Inversion Thinking Comparison.
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In the given task, the quality of the weather forecasting image is assessed based on its representation of precipitation attributes. 
The analysis reveals that the evaluated image has good performance in terms of dynamic consistency, as the predicted direction 
aligns well with the observed dynamics, and no artifacts are present. Additionally, the scale of both forming and dissipating 
convective cells matches the observed image, while the changes in shape remain consistent spatially. For the precipitation 
attributes, the prediction demonstrates great performance overall, though there is an underestimation of very heavy 
precipitation in the east and intense precipitation in the south. Based on this information, the content caption can be refined to 
emphasize the dynamic consistency and accurate representation of precipitation levels, while highlighting areas of under-
prediction. The overall structure of the content remains consistent, with dynamic consistency being a key strength and areas of 
improvement noted for specific precipitation levels. This ensures that the evaluated image's strengths and limitations are clearly 
communicates to the forecasting community.

This task involves short-range precipitation nowcasting that leverages the most recent ten VIL frames to predict the subsequent 
twelve frames.  Building on the task objective, the Main motion direction from t0 to t9 is consistently east, indicating a rightward 
translation of the convective system; the Main motion speed is moderate; the Rotation center is classified as no rotation. These 
temporal descriptors set the stage for the perceptual factors. Within this temporal context, the Morphology is blob-like, 
presenting as a compact yet expansive cluster; the Max pixel level remains very strong (160–181); the Initial position of the main 
convective system is centered at t0 and then shifts eastward. These perceptual descriptors prepare the assessment of the direct 
outcome. Given the perceptual factors above, the direct outcome is that the system’s future behavior is plan encapsulated by the 
provided temporal and perceptual patterns, leading to a focused assessment of the deeper structural outcomes. Extending to 
structural outcomes, the Intensity is roughly unchanged because the Max pixel level persists while the moderate eastward motion 
maintains the present convective strength. The Areal coverage evolution is expanding as the blob-like system spreads eastward, 
allowing precipitation to be distributed over a broader area. These structural insights complete the reasoning chain.

w/ cot finetune thinking

w/o cot finetune thinking
In the given image, the precipitation area is small in scale, with the maximum precipitation level reaching extreme. The 
precipitation is distributed primarily in the eastern and central regions, and the shape of the precipitation area is irregular, with 
scattered patches and some elongated structures. The evaluated weather forecasting model demonstrates good performance in 
terms of dynamic consistency, as the predicted direction of the precipitation area aligns well with the observed eastward and 
central distribution, and there are no apparent artifacts. The scale of both dissipating and newly formed convective cells in the 
predicted area is consistent with the observed data. Furthermore, the cumulate precipitation performance is good, with many 
predicted values matching the observed data; however, under-prediction is noted in the east and center regions. For high-value 
retention, the performance is fair, as only part of the high-value precipitation regions are accurately predicted, with the most 
significant mismatch occurring in the eastern area. Overall, the evaluated model shows strong dynamic consistency and 
satisfactory cumulate precipitation prediction but underperforms in retaining high-value precipitation regions.

This task involves short-range precipitation nowcasting that leverages the most recent ten VIL frames to predict the following 
twelve frames. Building on the task objective, the Main motion direction is east, the Main motion speed is moderate, and the 
Rotation center is no rotation. These temporal descriptors now guide the look at perceptual factors. Within this temporal context, 
the Morphology is blob-like with a compact but slightly elongated precipitation core, the Max precipitation level is extreme, and 
the Initial position of the main convective system is center. These perceptual descriptors prepare the assessment of the direct 
outcome. Given the perceptual factors above, the analysis of direct outcome leads to the following reasoning: "The convective 
system maintains its blob-like form while translating eastward at a moderate speed, with the core precipitation area persisting at 
an extreme level without significant expansion or contraction. " This supports the conclusion that the forthcoming shape and 
intensity will remain similar to the present, setting up the discussion of deep outcomes. Extending to structural outcomes, the 
cumulatively advected precipitation is east, and the convective system exhibits a stable, non-rotating structure that preserves its 
precipitation elements. These structural tendencies indicate that future frames will likely mirror the current distribution. 

w/ cot finetune thinking

w/o cot finetune thinking
In the given task, the quality of the weather forecasting image is assessed based on its alignment with observed data across 
several attributes. The evaluated image demonstrates good performance in terms of the distribution of precipitation, which is 
consistent with the observed data, showing clustered precipitation areas in the center and eastern regions. The maximum 
precipitation level predicted is extreme, matching the observed peak precipitation values. Additionally, the evaluated image 
maintains consistency in the shape of precipitation areas, presenting irregular patterns. From the perspective of causing 
prediction errors, the evaluated image exhibits notable weaknesses. The false alarm rate for intense precipitation is high, with 
over-prediction primarily in the center direction. Similarly, the false alarm rate for very heavy precipitation is significant, with 
over-prediction in the center direction. These discrepancies underscore the challenges in accurately distinguishing between 
high precipitation levels. In summary, the evaluated image shows good overall performance with accurate distribution and 
maximum precipitation predictions but struggles with false alarms, particularly for intense and very heavy precipitation. 

This task involves short-range precipitation nowcasting that leverages the most recent ten VIL frames to predict the subsequent 
twelve frames. Building on the task objective, the Main motion direction from t0 to t9 is east, the Main motion speed is moderate, 
and the Rotation center is no rotation, indicating a steady eastward drift without any discernible spin. These temporal 
characteristics provide the dynamic backdrop for the forthcoming perceptual analysis. Within this temporal context, the 
Morphology remains banded, the Max pixel level stays very strong, and the Initial position of the main convective system is 
centered at t0 before embarking on its eastward journey. Given the perceptual factors above, Intensity evolution is roughly 
unchanged because the persistent very strong Max pixel level, combined with moderate eastward motion and the absence of a 
Rotation center, suggests neither significant intensification nor decay, thereby paving the way to evaluate deeper structural 
outcomes. Extending to structural outcomes, Areal coverage evolution is expanding as the banded system elongates eastward 
while maintaining its strength, leading to an increasing precipitation footprint. Organization evolution is becoming connected 
because the moderate, non-rotational motion allows individual convective elements to merge into a more coherent structure. 

Figure 9: Radar Nowcasting Thinking Comparison.
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weather data. As reported in Table 5, using a single general dataset at 30% ratio achieves the best
balance and outperforms other settings.

Table 5: Results under different generation data mixing strategies.

CSI-mean CSI-pool4-mean CSI-pool16-mean SSIM PSNR

1gen30%+weather70% 0.2501 0.2994 0.4261 0.6866 19.67

1gen70%+weather30% 0.1386 0.1726 0.2859 0.6187 16.66

1gen50%+weather50% 0.2478 0.2956 0.4174 0.6823 19.15

2gen30%+weather70% 0.1091 0.1345 0.2274 0.6013 16.64

CFG Setting Lastly, we examine the choice of the classifier-free guidance (CFG) parameter. As
shown in Table 6, setting CFG= 2 yields better overall performance compared with CFG= 1, espe-
cially on CSI metrics, SSIM, and PSNR. Therefore, we adopt CFG= 2 as the default configuration.

Table 6: Ablation on CFG settings.

CSI-mean CSI-pool4-mean CSI-pool16-mean SSIM PSNR

CFG=2 0.2501 0.2994 0.4261 0.6866 19.67

CFG=1 0.1824 0.2208 0.3305 0.5123 17.33

A.7 MORE QUALITATIVE RESULTS

We provide additional qualitative examples of Omni-Weather on radar nowcasting, radar inversion,
and radar understanding tasks. Figures 10–12 illustrate diverse cases, complementing the quantitative
results in the main paper and highlighting the model’s ability to capture storm dynamics and generate
interpretable assessments.

A.8 USAGE OF LLM

Large language models were employed as an auxiliary tool to support manuscript preparation,
including grammar checking, sentence refinement, and clarification of technical descriptions. All
AI-suggested text was carefully reviewed and revised by the authors to ensure accuracy, clarity, and
scientific integrity.
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Radar Nowcasting

Radar Inversion

  <think> This task addresses short-range precipitation nowcasting by utilizing the most recent ten VIL 
frames to predict the subsequent twelve frames. The primary objective is to translate the observed 
vertical integrated liquid patterns into an accurate and physically coherent depiction of future convective 
behavior. In terms of temporal dynamics, the main convective cluster exhibits a steady eastward drift at a 
moderate speed, with discernible displacement between frames but no evidence of cyclonic or 
anticyclonic rotation, providing a clear temporal context for subsequent reasoning. Perceptually, the 
convective system presents a blob-like morphology with a compact yet slightly elongated precipitation 
core, extreme maximum precipitation values indicating intense rainfall, and an initial position centered 
within the domain. These temporal and perceptual attributes collectively suggest that the convective 
system will maintain its blob-like structure while translating eastward, with the core precipitation area 
persisting at extreme intensity, without substantial expansion, contraction, or distortion. From a structural 
perspective, the cumulatively advected precipitation follows the dominant eastward motion, while the 
system maintains a stable, non-rotating organization that preserves the spatial distribution and individual 
elements of precipitation. Taken together, these temporal, perceptual, and structural characteristics imply 
that future frames are likely to mirror the current configuration, with persistence in both morphological 
and intensity attributes, and with cumulative eastward advection of precipitation over the next twelve 
frames. This integrated reasoning synthesizes all observed factors to provide a comprehensive forecast, 
emphasizing continuity in convective shape, and stability in precipitation intensity. </think>

  <think> The task applies SEVIR IR107 and IR069 to infer radar VIL. A distinct, very cold IR107 minimum 
sits over the center, marking a thick, tall convective tower, while IR069 shows a perfectly low, confirming 
strong upper-level moisture support. The overlap produces a tight, blob-shaped feature with sharp edges, 
consistent with a focused convective pulse. Radar echoes confirm this with a compact high-reflectivity core 
surrounded by weaker cells. Consequently, the VIL is strongly elevated over this central blob, yielding an 
isolated and compact morphology, and a central core focus as the seat of strongest convection.  </think>

  <think> The task uses SEVIR IR107 and IR069 to infer radar VIL. In the central portion, IR107 shows a 
pronounced cold minimum, indicating a tall and thick convective tower, while IR069 reveals a collocated low, 
confirming abundant upper-level moisture supply. The overlap forms a compact, blob-like feature with well-
defined boundaries. Radar echoes match this signal, with a concentrated high-reflectivity core embedded 
among weaker surrounding cells. Consequently, the VIL peaks high over this central cluster,  a compact 
isolated morphology, and a central sector as the dominant convective focus.  </think>

Radar Sequence Understanding

{'Overall Performance': 'fair', 'Dynamic Consistency Performance': 'fair', 'Cumulate Precipitation 
Performance': 'fair', 'High Value Performance': 'good'}

  In the observation sequence, the convective system moves to the southeast, with the number and 
intensity of convective cells remaining essentially unchanged. The system exhibits a scattered, 
multiple block-like shape that also stays consistent over time, with no significant changes in its 
degree of organization or range of coverage. These characteristics provide a strong reference 
framework for evaluating the predicted sequence.
  The Dynamic Consistency of the evaluated sequence is rated as fair, indicating moderate 
alignment with the observed sequence. While the speed of the convective system is consistent, 
notable differences in shape changes occur in the north, primarily due to scale changes. Newly 
formed convective cells are smaller, while dissipating cells are larger, but no artifacts are present. 
The Cumulate Precipitation performance is also fair, with under-predictions in the cumulative 
precipitation sum, particularly in the northern and central regions. Lastly, the High Value Retain 
performance is poor, as only a small number of high-value regions are retained. Over-prediction of 
high-value areas is observed, with the most significant mismatches occurring in the north.
  In summary, the evaluated weather forecasting sequence demonstrates fair performance in 
dynamic consistency and cumulative precipitation but poor performance in retaining high-values. 

Radar Image Understanding

    In the observation image, the precipitation primarily appears in a medium scale. The 
maximum precipitation level reaches extreme intensity. The precipitation area is 
distributed across the center and north regions, with shapes that are elongated and 
clustered in a linear formation stretching from the north to the center. 
  Miss rate assessment reveals that although overall performance is great, a significant 
deficiency exists in intense and very heavy precipitation levels. Intense precipitation in 
the north and very heavy precipitation in the center are frequently under-represented. 
Regarding false alarm rate, while generally good with low over-prediction, light 
precipitation in the north is often over-reported as moderate, and areas of sunny weather 
in the southeast are over-reported as light precipitation. The sharpness performance 
appears good, showing accurate representation of a large part of the details and accurate 
boundaries of precipitation regions. However, high-value matching performance is fair, 
as significant mismatches in the north for extreme rainfall indicate under-prediction.
  In summary, the evaluated image's overall performance is fair due to notable issues in 
representing intense and very heavy precipitation levels and consistent under-
representation of high-value regions, particularly in the northern areas. 

{'Overall Performance': 'fair', 'Miss Performance': 'great', 'False Alarm Performance': 
'good', 'Sharpness Performance': 'good', 'High Value Performance': 'fair'}

Ground Truth

Prediction

Figure 10: Qualitative Result 1.
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  <think> This task involves short-range precipitation nowcasting that leverages the most recent ten VIL 
frames to predict the following twelve frames. The objective is to translate the observed vertical 
integrated liquid patterns into an accurate depiction of future convective behavior. 
  Building on the task objective, the Main motion direction is east as the convective cluster drifts steadily 
toward the right side of the domain, the Main motion speed is moderate because the displacement 
between frames is noticeable yet not rapid, and the Rotation center is no rotation since no cyclonic or 
anticyclonic swirl appears in the sequence. Within this temporal context, the Morphology is blob-like 
with a compact but slightly elongated precipitation core, the Max precipitation level is extreme, and the 
Initial position of the main convective system is center. These perceptual descriptors prepare the 
assessment of the direct outcome. Given the perceptual factors above, the analysis of direct outcome 
leads to the following reasoning: "The convective system maintains its blob-like form while translating 
eastward at a moderate speed, with the core precipitation area persisting at an extreme level without 
significant expansion or contraction. "  Extending to structural outcomes, the cumulatively advected 
precipitation is east since the dominant motion direction is eastward, and the convective system exhibits 
a stable, non-rotating structure that preserves its individual precipitation elements. These structural 
tendencies indicate that future frames will likely mirror the current distribution and organization without 
major dynamic restructuring. In summary, the observed convective system shows blob-like stability in 
shape, extreme precipitation in intensity, and moderate eastward translation without rotation.  </think>

  <think> The task uses SEVIR IR107 and IR069 to infer radar VIL. A well-defined cold IR107 minimum 
dominates the central field, indicating a tall and thick convective tower with strong vertical development. 
IR069 shows a collocated low in the same region, confirming abundant upper-level moisture that supports 
sustained precipitation. The overlap is compact and blob-shaped, with sharp boundaries and a circular outline.  
Consequently, the expected VIL is very high over this central blob, yielding a strong maximum rain class, a 
compact and isolated morphology, and a central convective core as the focus of strongest activity.   </think>

  <think> The task uses SEVIR IR107 and IR069 to infer radar VIL. Several cold IR107 minima appear across 
the scene, with the largest located in the southern sector, signaling tall and thick convective towers. IR069 
shows overlapping lows at the same positions, confirming sufficient upper-level moisture to sustain these cells. 
The overlap is mostly blob-shaped but fragmented into multiple patches, consistent with scattered multicell 
convection. Consequently, the expected VIL is high over the southern core, with a scattered blob-like to 
cluster morphology, and the southern-to-central sector highlighted as the main convective focus. </think>

Radar Sequence Understanding

{'Overall Performance': 'fair', 'Dynamic Consistency Performance': 'good', 'Cumulate Precipitation 
Performance': 'fair', 'High Value Performance': 'good'}

  In the observation sequence, the convective system moves to the northeast, with an increase in the 
number and intensity of convective cells. The system exhibits a multiple block-like shape that 
dilates over time, while the degree of organization decreases and the range of coverage increases. 
  In terms of quality assessment, the dynamic consistency of the evaluated sequence is fair. The 
speed of the convective system is consistent with observations, but significant differences in shape 
changes occur in the west, primarily due to discrepancies in the number of convective cells. The 
newly formed convective cells in the predicted sequence are smaller in scale, while dissipating 
cells are larger. Notably, there are no artifacts in the predicted sequence. Regarding cumulate 
precipitation, the performance is poor, as the model over-predicts precipitation in the west and 
under-predicts it in the southwest and north. However, the high-value retain performance is good, 
with a substantial number of high-value regions preserved in the prediction. Despite this, the 
overall high-value prediction is under-predicted, with the most mismatches occurring in the west.
    In summary, the evaluated sequence demonstrates fair dynamic consistency, poor cumulate 
precipitation performance, and good high-value retain performance. Overall, the sequence shows 
requires refinement to better capture key meteorological features for operational forecasting.

Radar Image Understanding

    In the observation image, the precipitation area is medium in scale with extreme 
precipitation levels concentrated in the northeast. The precipitation is distributed 
primarily across the northern region, with its shape exhibiting elongated clusters. 
  Regarding the quality of the evaluated image, the miss rate performance is fair overall, 
with significant under-representation of intense and extreme precipitation levels, 
particularly in the northeast direction. The false alarm rate performance, while generally 
low, shows poor results for very heavy and heavy precipitation levels, especially in the 
northern region. Sharpness performance is fair, showing slight inconsistencies with 
observation data, as certain contour details and boundaries are not accurately 
represented. High-value matching performance is good, with a large portion of high-
value regions accurately predicted, though there is under-representation of concentrated 
extreme precipitation areas in the northeast.
  Overall, the evaluated image exhibits fair quality with slight deficiencies in miss rate, 
false alarm rate, and sharpness, alongside reasonably consistent high-value region 
predictions. The overall performance is impacted by the under-representation of extreme 
precipitation and notable false alarms, which directly reduce forecasting accuracy. 

{'Overall Performance': 'fair', 'Miss Performance': 'great', 'False Alarm Performance': 
'great', 'Sharpness Performance': 'fair', 'High Value Performance': 'good'}

Ground Truth

Prediction

Figure 11: Qualitative Result 2.
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Radar Inversion

  <think> This task involves short-range precipitation nowcasting that leverages the most recent ten VIL 
frames to predict the subsequent twelve frames. The objective is to translate the observed spatiotemporal 
patterns into an accurate forecast of future convective intensity and structure. These basic requirements 
naturally lead to an examination of temporal factors. Building on the task objective, the Main motion 
direction from t0 to t9 is east, the Main motion speed is moderate, and the Rotation center is no rotation, 
indicating a steady eastward drift without any discernible spin. These temporal characteristics provide the 
dynamic backdrop for the forthcoming perceptual analysis. Within this temporal context, the 
Morphology remains banded, the Max pixel level stays very strong (181-219), and the Initial position of 
the main convective system is centered at t0 before embarking on its eastward journey. These perceptual 
descriptors follow directly from the temporal setting and prepare the assessment of the direct outcome. 
Given the perceptual factors above, Intensity evolution is roughly unchanged because the persistent very 
strong Max pixel level, combined with moderate eastward motion and the absence of a Rotation center, 
suggests neither significant intensification nor decay, thereby paving the way to evaluate deeper 
structural outcomes. Extending to structural outcomes, Areal coverage evolution is expanding as the 
banded system elongates eastward while maintaining its strength, leading to an increasing precipitation 
footprint. Organization evolution is becoming connected because the moderate, non-rotational motion 
allows individual convective elements to merge into a more coherent structure. These structural insights 
complete the causal chain and set up the-value assessment.  </think>

  <think> The task applies SEVIR IR107 and IR069 to infer radar VIL. A broad IR107 minimum dominates 
the eastern sector, with very cold brightness temperatures highlighting a thick, expansive cloud shield. IR069 
shows a collocated low across the same region, confirming abundant upper-level moisture to sustain heavy 
precipitation. The overlap is wide and elongated, producing a large blob-like structure with a rounded but 
extended footprint.  Consequently, the expected VIL is very high over the broad eastern core, with a large 
blob-like morphology, and the eastern sector identified as the primary convective focus. </think>

  <think> The task applies SEVIR IR107 and IR069 to infer radar VIL. A narrow, elongated IR107 minimum 
appears in the western sector, indicating a vertically developed but line-shaped convective tower. IR069 shows 
a collocated low along the same strip, confirming adequate upper-level moisture to sustain rainfall. The 
overlap produces a slender, band-like feature rather than a compact blob. Consequently, the expected VIL is 
moderately high along the elongated strip, giving a banded morphology, and the western sector as the main 
convective focus. Organization is linear but not rotational.  </think>

Radar Sequence Understanding

{'Overall Performance': 'fair', 'Dynamic Consistency Performance': 'fair', 'Cumulate Precipitation 
Performance': 'good', 'High Value Performance': 'good'}

  In the observation sequence, the convective system moves to the northeast, with an increase in the 
number of convective cells and a stable intensity. The system maintains an irregular shape with no 
significant changes in shape, while the degree of organization decreases and the coverage range 
remains essentially unchanged. Regarding the evaluated sequence, the dynamic consistency 
performance is fair, indicating moderate alignment with the observed sequence. The speed of the 
convective system is consistent with observations, but the greatest shape change discrepancies 
occur in the northeast, primarily due to differences in the number of convective cells. Newly 
formed cells are smaller in scale, whereas dissipating cells are larger, and no artifacts are present. 
For cumulate precipitation, the performance is good, with many values accurately predicted; 
however, under-prediction occurs in the center and northeast regions. High-value retain 
performance is poor, with significant mismatches in the northeast. In summary, the evaluated 
sequence demonstrates fair dynamic consistency, good cumulate precipitation prediction with 
regional under-predictions, and poor high-value retention, particularly in the northeast. Overall, 
while the forecast captures general precipitation trends, discrepancies in cell characteristics and 
high-value regions reduce its reliability for meteorological applications.

Radar Image Understanding

    In the observation image, the precipitation is of medium scale, with the maximum 
precipitation level reaching extreme. The precipitation areas are primarily distributed in 
the northern region. Their shape is irregular, featuring elongated and scattered clusters 
with some connective patterns. 
  For the quality assessment of the evaluated image, the miss rate performance is overall 
great, indicating low misses across most precipitation levels, although significant misses 
occur for intense and extreme precipitation in the northeast, often under-reported as very 
heavy. The false alarm rate is generally great, with low occurrences across levels; 
however, there are notable false alarms for heavy and very heavy precipitation in the 
north, frequently over-reported as very heavy and intense. Sharpness remains fair, 
highlighting an inconsistency in capturing finer details and contours between observed 
and evaluated data. High-value region performance is good, with most high-intensity 
areas accurately predicted, though underestimation is evident in the northeast.
    In summary, the evaluated image demonstrates fair overall performance. Although the 
miss rate and false alarm rate are generally low, significant errors in the classification of 
intense and extreme precipitation reduce forecast reliability.

{'Overall Performance': 'fair', 'Miss Performance': 'great', 'False Alarm Performance': 
'great', 'Sharpness Performance': 'fair', 'High Value Performance': 'good'}

Ground Truth

Prediction

Figure 12: Qualitative Result 3.
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