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ABSTRACT

Most of the self-supervised representation learning methods are based on the con-
trastive loss and the instance-discrimination task, where augmented versions of
the same image instance (“positives”) are contrasted with instances extracted from
other images (“negatives”). For the learning to be effective, a lot of negatives
should be compared with a positive pair, which is computationally demanding.
In this paper, we propose a different direction and a new loss function for self-
supervised representation learning which is based on the whitening of the latent-
space features. The whitening operation has a “scattering” effect on the batch
samples, which compensates the use of negatives, avoiding degenerate solutions
where all the sample representations collapse to a single point. Our Whitening
MSE (W-MSE) loss does not require special heuristics (e.g. additional networks)
and it is conceptually simple. Since negatives are not needed, we can extract mul-
tiple positive pairs from the same image instance. We empirically show that W-
MSE is competitive with respect to popular, more complex self-supervised meth-
ods. The source code of the method and all the experiments is included in the
Supplementary Material.

1 INTRODUCTION

One of the current main bottlenecks in deep network training is the dependence on large annotated
training datasets, and this motivates the recent surge of interest in unsupervised methods. Specif-
ically, in self-supervised representation learning, a network is (pre-)trained without any form of
manual annotation, thus providing a means to extract information from unlabeled-data sources (e.g.,
text corpora, videos, images from the Internet, etc.). In self-supervision, label information is re-
placed by a prediction problem using some form of context or using a pretext task. Pioneering work
in this direction was done in Natural Language Processing (NLP), in which the co-occurrence of
words in a sentence is used to learn a language model (Mikolov et al., 2013a;b; Devlin et al., 2019).
In Computer Vision, typical contexts or pretext tasks are based on: (1) the temporal consistency
in videos (Wang & Gupta, 2015; Misra et al., 2016; Dwibedi et al., 2019), (2) the spatial order of
patches in still images (Noroozi & Favaro, 2016; Misra & van der Maaten, 2019; Hénaff et al., 2019)
or (3) simple image transformation techniques (Ji et al., 2019; He et al., 2019; Wu et al., 2018). The
intuitive idea behind most of these methods is to collect pairs of positive and negative samples: two
positive samples should share the same semantics, while negatives should be perceptually different.
A triplet loss (Sohn, 2016; Schroff et al., 2015; Hermans et al., 2017; Wang & Gupta, 2015; Misra
et al., 2016) can then be used to learn a metric space which should represent the human perceptual
similarity. However, most of the recent studies use a contrastive loss (Hadsell et al., 2006) or one
of its variants (Gutmann & Hyvärinen, 2010; van den Oord et al., 2018; Hjelm et al., 2019), while
Tschannen et al. (2019) show the relation between the triplet loss and the contrastive loss.

It is worth noticing that the success of both kinds of losses is strongly affected by the number and
the quality of the negative samples. For instance, in the case of the triplet loss, a common practice
is to select hard/semi-hard negatives (Schroff et al., 2015; Hermans et al., 2017). On the other hand,
Hjelm et al. (2019) have shown that the contrastive loss needs a large number of negatives to be
competitive. This implies using batches with a large size, which is computationally demanding,
especially with high-resolution images. In order to alleviate this problem, Wu et al. (2018) use a
memory bank of negatives, which is composed of feature-vector representations of all the training
samples. He et al. (2019) conjecture that the use of large and fixed-representation vocabularies is
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one of the keys to the success of self-supervision in NLP. The solution proposed by He et al. (2019)
extends Wu et al. (2018) using a memory-efficient queue of the last visited negatives, together with
a momentum encoder which preserves the intra-queue representation consistency. Chen et al. (2020)
have performed large-scale experiments confirming that a large number of negatives (and therefore a
large batch size) is required for the contrastive loss to be efficient. Concurrently with our work, Grill
et al. (2020) have suggested that it is not necessary to rely on the contrastive scheme, introducing a
high-performing alternative based on bootstrapping.

In this paper we propose a new self-supervised loss function which first scatters all the sample
representations in a spherical distribution1 and then penalizes the positive pairs which are far from
each other. In more detail, given a set of samples V = {vi}, corresponding to the current mini-
batch of images B = {xi}, we first project the elements of V onto a spherical distribution using a
whitening transform (Siarohin et al., 2019). The whitened representations {zi}, corresponding to V ,
are normalized and then used to compute a Mean Squared Error (MSE) loss which accumulates the
error taking into account only positive pairs (zi, zj). We do not need to contrast positives against
negatives as in the contrastive loss or in the triplet loss because the optimization process leads to
shrinking the distance between positive pairs and, indirectly, scatters the other samples to satisfy the
overall spherical-distribution constraint.

In summary, our contributions are the following:

• We propose a new loss function, Whitening MSE (W-MSE), for self-supervised training.
W-MSE constrains the batch samples to lie in a spherical distribution and it is an alternative
to positive-negative instance contrasting methods.

• Our loss does not rely on negatives, thus including more positive samples in the batch can
be beneficial; we indeed demonstrate that multiple positive pairs extracted from one image
improve the performance.

• We empirically show that our W-MSE loss outperforms the commonly adopted contrastive
loss when measured using different standard classification protocols. We show that W-MSE
is competitive with respect to state-of-the-art self-supervised methods.

2 BACKGROUND AND RELATED WORK

A typical self-supervised method is composed of two main components: a pretext task, which ex-
ploits some a-priori knowledge about the domain to automatically extract supervision from data, and
a loss function. In this section we briefly review both aspects, and we additionally analyse the recent
literature concerning feature whitening.

Pretext Tasks. The temporal consistency in a video provides an intuitive form of self-supervision:
temporally-close frames usually contain a similar semantic content (Wang & Gupta, 2015; van den
Oord et al., 2018). Misra et al. (2016) extended this idea using the relative temporal order of 3
frames, while Dwibedi et al. (2019) used a temporal cycle consistency for self-supervision, which
is based on comparing two videos sharing the same semantics and computing inter-video frame-to-
frame nearest neighbour assignments.

When dealing with still images, the most common pretext task is instance discrimination (Wu et al.
(2018)): from a training image x, a composition of data-augmentation techniques are used to extract
two different views of x (xi and xj). Commonly adopted transformations are: image cropping,
rotation, color jittering, Sobel filtering, etc.. The learner is then required to discriminate (xi, xj)
from other views extracted from other samples (Wu et al., 2018; Ji et al., 2019; He et al., 2019; Chen
et al., 2020).

Denoising auto-encoders (Vincent et al., 2008) add random noise to the input image and try to
recover the original image. More sophisticated pretext tasks consist in predicting the spatial order
of image patches (Noroozi & Favaro, 2016; Misra & van der Maaten, 2019) or in reconstructing
large masked regions of the image (Pathak et al., 2016). Hjelm et al. (2019); Bachman et al. (2019)
compare the holistic representation of an input image with a patch of the same image. Hénaff et al.

1Here and in the following, with “spherical distribution” we mean a distribution with a zero-mean and an
identity-matrix covariance.
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(2019) use a similar idea, where the comparison depends on the patch order: the appearance of a
given patch should be predicted given the appearance of the patches which lie above it in the image.

In this paper we use standard data augmentation techniques on still images to obtain positive pairs,
which is a simple method to get self-supervision (Chen et al., 2020) and does not require a pretext-
task specific network architecture (Hjelm et al., 2019; Bachman et al., 2019; Hénaff et al., 2019).

Loss functions. Denoising auto-encoders use a reconstruction loss which compares the generated
image with the input image before adding noise. Other generative methods use an adversarial loss
in which a discriminator provides supervisory information to the generator (Donahue et al., 2017;
Donahue & Simonyan, 2019).

Early self-supervised (deep) discriminative methods used a triplet loss (Wang & Gupta, 2015; Misra
et al., 2016): given two positive images xi, xj and a negative xk (Sec. 1), together with their corre-
sponding latent-space representations zi, zj , zk, this loss penalizes those cases in which zi and zk
are closer to each other than zi and zj plus a margin m:

LTriplet = −max(zTi zk − zTi zj +m, 0). (1)

Most of the recent self-supervised discriminative methods are based on some contrastive loss (Had-
sell et al., 2006) variant, in which zi and zj are contrasted against a set of negative pairs. Following
the common formulation proposed by van den Oord et al. (2018):

LContrastive = − log
exp (zTi zj/τ)∑K

k=1,k 6=i exp (zTi zk/τ)
, (2)

where τ is a temperature hyperparameter which should be manually set and the sum in the denom-
inator is over a set of K − 1 negative samples. Usually K is the size of the current batch, i.e.,
K = 2N , being N the number of the positive pairs. However, as shown by Hjelm et al. (2019),
the contrastive loss (2) requires a large number of negative samples to be competitive. Wu et al.
(2018); He et al. (2019) use a set of negatives much larger than the current batch, by pre-computing
latent-space representations of old samples. SimCLR (Chen et al. (2020)) uses a simpler, but com-
putationally very demanding, solution based on large batches.

While recent works (van den Oord et al., 2018; Hénaff et al., 2019; Hjelm et al., 2019; Bachman
et al., 2019; Ravanelli & Bengio, 2018) draw a relation between the contrastive loss and an estimate
of the mutual information between the latent-space image representations, Tschannen et al. (2019)
showed that the success of this loss is likely related to learning a metric space, similarly to what
happens with a triplet loss. On the other hand, Wang & Isola (2020) showed that the L2 normalized
contrastive loss asymptotically converges to the minimization of two desirable characteristics of the
latent-space representations on the surface of the unit hypersphere: uniformity and semantic align-
ment. In the same paper, the authors propose two new losses (Luniform and Lalign) which explicitly
deal with these characteristics.

Concurrently with our work, BYOL (Grill et al. (2020)) proposes a “bootstrapping” scheme which is
alternative to the positive-negative contrastive learning. In BYOL, an “online” network is optimised
to predict the output of a “target” network, whose parameters are a running average of the online
network. The predictions of the two networks are compared using an additional prediction network
and an MSE loss. However, very recently, Fetterman & Albrecht (2020) and Tian et al. (2020) have
empirically shown that BYOL can avoid a collapsed solution through the use of the Batch Norm
(BN) (Ioffe & Szegedy, 2015) which avoids constant representations. Our work can be seen as a
generalization of this finding with a much simpler network architecture (more details in Sec. 3.1).

In this paper we propose a different loss which is competitive with respect to other alternatives. Our
loss formulation is simpler because it does not require a proper setting of the τ hyperparameter in
equation 2, m in equation 1, or additional networks with a specific weight update schemes as in
BYOL.

Feature Whitening. We adopt the efficient and stable Cholesky decomposition (Dereniowski &
Marek, 2004) based whitening transform proposed by Siarohin et al. (2019) to project our latent-
space vectors into a spherical distribution (more details in Sec. 3). Note that Huang et al. (2018);
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1) Initial representaion space V 2)  Whitened representation
space Z

3)  Normalized representation
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5)  An intermediate iteration,
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Figure 1: A schematic representation of the W-MSE based optimization process. Positive pairs
are indicated with the same shapes and colors. (1) A representation of the feature batch V when
training starts. (2, 3) The distribution of the elements after whitening and L2 normalization. (4)
The MSE computed over the normalized z features encourages the network to move the positive
pair representations closer to each other. (5) The subsequent iterations move closer and closer the
positive pairs, while the relative layout of the other samples is forced to lie in a spherical distribution.

Siarohin et al. (2019) use whitening transforms in the intermediate layers of the network for a com-
pletely different task: extending BN to a multivariate batch normalization.

3 THE WHITENING MSE LOSS

Given an image x, we extract an embedding z = f(x; θ) using an encoder network f(·; θ)
parametrized with θ (more details below). We require that: (1) the image embeddings are drawn
from a non-degenerate distribution (the latter being a distribution where, e.g., all the representations
collapse to a single point), and (2) positive image pairs (xi, xj), which share a similar semantics,
should be clustered close to each other. We formulate this problem as follows:

minθ E dist(zi, zj), (3)
s.t. cov(zi, zi) = cov(zj , zj) = I, (4)

where dist(·) is a distance between vectors, I is the identity matrix and (zi, zj) corresponds to a
positive pair of images (xi, xj). With equation 4, we constrain the distribution of the z values to
be non-degenerate, hence avoiding that all the probability mass is concentrated in a single point.
Moreover, equation 4 makes all the components of z to be linearly independent from each other,
which encourages the different dimensions of z to represent different semantic content. We define
the distance with the cosine similarity, implemented with MSE between normalized vectors:

dist(zi, zj) =

∥∥∥∥ zi
‖zi‖2

− zj
‖zj‖2

∥∥∥∥2

2

= 2− 2
〈zi, zj〉

‖zi‖2 · ‖zj‖2
(5)

In Appendix C we also include other experiments in which the cosine similarity is replaced by the
Euclidean distance. We provide below the details on how positive image samples are collected, how
they are encoded and how the above optimization is implemented.

First, similarly to Chen et al. (2020), we obtain positive samples sharing the same semantics from
a single image x and using standard image transformation techniques. Specifically, we use a com-
position of image cropping, grayscaling and color jittering transformations T (·;p). The parameters
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Figure 2: A scheme of our training procedure. First, d (d = 4 in this case) positive samples are
generated using augmentations. These images are transformed into vectors with the encoder E(·).
Next, they are projected onto a lower dimensional space with a projection head g(·). Then, Whiten-
ing projects these vectors onto a spherical distribution, followed by an optional L2 normalization.
Finally, the dashed curves show all the d(d− 1)/2 = 6 comparisons used in our W-MSE loss.

(p) are selected uniformly at random and independently for each positive sample extracted from the
same image: xi = T (x;pi). We concisely indicate with pos(i, j) the fact that xi and xj (xi, xj ∈ B,
B the current batch) have been extracted from the same image.

The number of positive samples per image d may vary, trading off diversity in the batch and the
amount of the training signal. Favoring more negatives, most of the methods use one positive pair
(d = 2). However, Ji et al. (2019) have demonstrated improved performance with 5 samples, while
Caron et al. (2020) use 8 samples. In our MSE-based loss (see below), we use all the possible
d(d − 1)/2 combinations of positive samples. We include experiments for d = 2 (1 positive pair)
and d = 4 (6 positive pairs).

For representation learning, we use a backbone encoder network E(·). E(·), trained without human
supervision, will be used in Sec. 4 for evaluation using standard protocols. We use a standard
ResNet-18 (He et al., 2016) as the encoder, and h = E(x) is the output of the average-pooling layer.
This choice has the advantage to be simple and easily reproducible, in contrast to other methods
which use encoder architectures specific for a given pretext task (see Sec. 2). Since h ∈ R512 is
a high-dimensional vector, following Chen et al. (2020) we use a nonlinear projection head g(·) to
project h in a lower dimensional space: v = g(h), where g(·) is implemented with a MLP with one
hidden layer and a BN layer. The whole network f(·) is given by the composition of g(·) with E(·)
(see Fig. 2).

Given N original images and a batch of samples B = {x1, ...xK}, where K = Nd, let V =
{v1, ...vK}, be the corresponding batch of features obtained as described above. In the proposed
W-MSE loss we compute the MSE over allNd(d−1)/2 positive pairs, where constraint 4 is satisfied
using the reparameterization of the v variables with the whitened variables z:

LW−MSE(V ) =
2

Nd(d− 1)

∑
(vi,vj)∈V,pos(i,j)

dist(zi, zj), (6)

where z = Whitening(v), and:

Whitening(v) = WV (v − µV ). (7)

In equation 7, µV is the mean of the elements in V : µV = 1
K

∑
k vk, while the matrix WV is such

that: W>V WV = Σ−1
V , being ΣV the covariance matrix of V :

ΣV =
1

K − 1

∑
k

(vk − µV )(vk − µV )T . (8)

For more details on how WV is computed, we refer to Appendix B. Equation 7 performs the full
whitening of each vi ∈ V and the resulting set of vectors Z = {z1, ..., zK} lies in a zero-centered
distribution with a covariance matrix equal to the identity matrix (Fig. 1).
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Figure 3: Batch slicing. V is first partitioned in d parts (d = 2 in this example). We randomly
permute the first part and we apply the same permutation to the other d− 1 parts. Then, we further
split all the partitions and we create sub-batches (Vi). Each Vi is independently used to compute the
sub-batch specific whitening matrix W i

V and centroid µiV .

The intuition behind the proposed loss is that equation 6 penalizes positives which are far apart from
each other, thus leading g(E(·)) to shrink the inter-positive distances. On the other hand, since Z
must lie in a spherical distribution, the other samples should be “moved” and rearranged in order to
satisfy constraint 4 (see Fig. 1).

Batch Slicing. The estimation of the Mean Square Error in equation 6 depends on the whitening
matrixWV , which may have a high variance over consecutive iteration batches Vt, Vt+1, .... For this
reason, inspired by the resampling methods (Efron, 1982), given a batch V , we slice V in different
non-overlapping sub-batches and we compute a whitening matrix independently for each sub-batch.
In more details, we first partition the batch in d parts, being d the number of positives extracted from
one image. In this way, each partition contains elements extracted from different original images
(i.e., no pair of positives is included in a single partition, see Fig. 3). Then, we randomly permute
the elements of the each partition with the same permutation. Next, each partition is further split
in sub-batches, using the heuristic that the size of each sub-batch (Vi) should be equal to the size
of embedding (v) times 2 (this prevents instability issues when computing the covariance matrices).
Next, for each Vi, we use only its elements to compute a corresponding whitening matrix W i

V ,
which is used to whiten the elements of Vi only (Fig. 3). In the loss computation (equation 6), all
the elements of all the sub-batches are used, thus implicitly alleviating the differences among the
different whitening matrices. Finally, it is possible to repeat the whole operation several times and
to average the result to get a more robust estimate of equation 6.

3.1 DISCUSSION

In a common instance-discrimination task (Sec. 2), e.g., solved using equation 2, the similarity
of a positive pair (zTi zj) is contrasted with the similarity computed with respect to all the other
samples (zk) in the batch (zTi zk, 1 ≤ k ≤ K, k 6= i). However, zk and zi, extracted from different
image instances, can occasionally share the same semantics (e.g., xi and xk are two different image
instances of the unknown “cat” class). Conversely, the proposed W-MSE loss does not force all the
instance samples to lie far from each other, but it only imposes a soft constraint (equation 4), which
avoids degenerate distributions.

Note that previous work (He et al., 2019; Hénaff et al., 2019; Chen et al., 2020) highlighted that
BN may be harmful for learning semantically meaningful representations because the network can
“cheat” and exploit the batch statistics in order to find a trivial solution to equation 2. However,
our whitening transform (equation 7) is applied only to the very last layer of the network f(·) (see
Fig. 2) and it is not used in the intermediate layers, which is instead the case of BN. Hence, our f(·)
cannot learn to exploit subtle inter-sample dependencies introduced by batch-statistics because of
the lack of other learnable layers on top of the z features.

Similarly to equation 6, in BYOL (Grill et al., 2020) an MSE loss is used to compare the latent rep-
resentations of two positives computed by slightly different networks without contrasting positives
with negatives (Sec. 2). However, the MSE loss alone is inclined to collapse the representations of
all the images to a constant value, which would make the MSE computation equal to zero. In BYOL,
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both the projection and the prediction sub-networks have BN layers, and, very recently, (Fetterman
& Albrecht, 2020; Tian et al., 2020) have empirically shown that BYOL, without these BN layers,
generates collapsed latent-space representations with a close-to-chance level classification accuracy.
The reason of this behaviour seems to depend on the fact that the feature standardization in BN
scatters the z values in a batch and avoids constant representations. Our W-MSE can be seen as
a generalization of this implicit property of BYOL, in which the z values of the current batch are
full-whitened, so preventing possible collapsing effects of the MSE loss. Importantly, we reach this
result without the need of a target network or sophisticated training protocols.

Finally, note that using BN alone without whitening, as in W-MSE, and without additional networks,
as in BYOL, is not sufficient. Indeed, if we just minimize an MSE after feature standardization,
the network can easily find a solution where all the dimensions of the embedding represent the
same feature. We have empirically verified this behaviour in preliminary experiments based on
standardization, in which the network converges to a zero loss value after a few epochs but with a
low classification accuracy.

4 EXPERIMENTS

We test our loss and its competitors on the following datasets.

• CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009), two small-scale datasets com-
posed of 32× 32 images with 10 and 100 classes, respectively.

• Tiny ImageNet (Le & Yang, 2015), a reduced version of ImageNet, composed of 200
classes with images scaled down to 64×64. The total number of images is: 100K (training)
and 10K (testing).

• STL-10 (Coates et al., 2011), also derived from ImageNet, with 96× 96 resolution images.
While CIFAR-10, CIFAR-100 and Tiny ImageNet are fully-labeled, STL-10 is composed
of 5K labeled training samples (500 per class) and 100K unlabeled training examples from
a similar but broader distribution of images. There are additional 8K labeled testing images.

• ImageNet-100, a random 100-class subset of ImageNet (the list of the 100 classes is pub-
lished in (Wang & Isola, 2020)), consisting of unaltered ImageNet images.

Setting. The goal of our experiments is to compare W-MSE with state-of-the-art losses, isolating the
effects of other settings, such as the architectural choices. For this reason, we use the same encoder
E(·) ResNet-18 for all the experiments. We independently select the best hyperparameter values for
every method and every dataset. Each method uses L2 feature normalization unless otherwise stated.
Contrastive refers to our implementation of the contrastive loss (equation 2) following the details
in (Chen et al., 2020), with temperature τ = 0.5. BYOL is our reproduction of (Grill et al., 2020),
introduced concurrently with our work. For this method we use the exponential moving average
with cosine increasing, starting from 0.99. W-MSE 2 and W-MSE 4 correspond to our method with
d = 2 and d = 4 positives extracted per image, respectively. For CIFAR-10 and CIFAR-100, the
slicing sub-batch size is 128, for Tiny ImageNet and STL-10, it is 256. For experiments W-MSE 2
for Tiny ImageNet and STL-10 we use 4 iterations of batch slicing, for all other experiments we use
1 iteration.

In all the experiments, we use the Adam optimizer (Kingma & Ba, 2014). For all the tested methods
(including ours), we use the same number of epochs and the same learning rate schedule. Specif-
ically, for CIFAR-10 and CIFAR-100, we use 1,000 epochs with learning rate 3 × 10−3; for Tiny
ImageNet, 1,000 epochs with learning rate 2 × 10−3; for STL-10, 2,000 epochs with learning rate
2 × 10−3. We use learning rate warm-up for the first 500 iterations of the optimizer, and a 0.2
learning rate drop 50 and 25 epochs before the end. We use a mini-batch size of K = 1024 samples.
The dimension of the hidden layer of the projection head g(·) is 1024. The weight decay is 10−6.
Finally, we use an embedding size of 64 for CIFAR-10 and CIFAR-100, and an embedding of size
of 128 for STL-10 and Tiny ImageNet. For ImageNet-100 we use a configuration similar to the Tiny
ImageNet experiments, and 240 epochs of training.

As a common practice when using ResNet-like architectures for small-size image resolutions, in
all the experiments, except ImageNet-100, we have a first convolutional layer with kernel size 3,
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Table 1: Classification accuracy (top 1) of a linear classifier and a 5-nearest neighbors classifier for
different loss functions and datasets with a ResNet-18 encoder.

Method CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
linear 5-nn linear 5-nn linear 5-nn linear 5-nn

Contrastive 91.80 88.42 66.83 56.56 90.51 85.68 48.84 32.86
BYOL 91.73 89.45 66.60 56.82 91.99 88.64 51.00 36.24
W-MSE 2 91.55 89.69 66.10 56.69 90.36 87.10 48.20 34.16
W-MSE 4 91.99 89.87 67.64 56.45 91.75 88.59 49.22 35.44

Table 2: Classification accuracy on ImageNet-100. W-MSE (2 and 4) are based on a ResNet-18
encoder. † indicates that the results are based on a ResNet-50 encoder and the values are reported
from (Wang & Isola, 2020).

Method linear (top 1) linear (top 5) 5-nn
MoCo † 72.80 91.64 -
Lalign and Luniform

† 74.60 92.74 -
W-MSE 2 76.00 93.14 67.04
W-MSE 4 79.02 94.46 71.32

stride 1 and padding 1. Additionally, in case of CIFAR-10 and CIFAR-100, we remove the first max
pooling layer.

Image Transformation Details. We extract crops with a random size from 0.2 to 1.0 of the original
area and a random aspect ratio from 3/4 to 4/3 of the original aspect ratio, which is a commonly
used data-augmentation technique. We also apply horizontal mirroring with probability 0.5. Finally,
we apply color jittering with configuration (0.4, 0.4, 0.4, 0.1) with probability 0.8 and grayscaling
with probability 0.1. For ImageNet-100 we follow details in (Chen et al., 2020): crop size from 0.08
to 1.0, stronger jittering (0.8, 0.8, 0.8, 0.2), grayscaling probability 0.2, and Gaussian blurring with
0.5 probability.

Evaluation Protocol. The most common evaluation protocol for unsupervised feature learning is
based on freezing the network encoder (E(·), in our case) after unsupervised pre-training, and then
train a supervised linear classifier on top of it. Specifically, the linear classifier is a fully-connected
layer followed by softmax, which is placed on top of E(·) after removing the projection head g(·).
In all the experiments we train the linear classifier for 500 epochs using the Adam optimizer and
the labeled training set of each specific dataset, without data augmentation. The learning rate is
exponentially decayed from 10−2 to 10−6. The weight decay is 5× 10−6.

In our experiments, we also include the accuracy of a k-nearest neighbors classifier (k-nn, k = 5).
The advantage of using this classifier is that it does not require additional parameters and training,
and it is deterministic.

4.1 COMPARISON WITH THE STATE OF THE ART

Tab. 1 shows the results of the experiments on small and medium size datasets. For W-MSE, 4
samples are generally better than 2. The contrastive loss performs the worst in most cases. The
W-MSE 4 accuracy is the best on CIFAR-10 and CIFAR-100, while BYOL leads on STL-10 and
Tiny ImageNet, although the gap between the two methods is minor. In Appendix A, we plot the
linear classification accuracy during training for the STL-10 dataset. The plot shows that W-MSE
4 and BYOL have a similar performance during most of the training. However, in the first 120
epochs, BYOL significantly underperforms W-MSE 4 (e.g., the accuracy after 20 epochs: W-MSE
4, 79.98%; BYOL, 73.24%), indicating that BYOL requires a “warmup” period. On the other hand,
W-MSE performs well from the beginning. This property is useful in those domains which require a
rapid adaptation of the encoder, e.g., due to the change of the data distribution in continual learning
or in reinforcement learning.
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Tab. 2 shows the results on a larger dataset (ImageNet-100). In that table, MoCo is the contrastive-
loss based method proposed in (He et al., 2019), where a momentum encoder and a large queue of
negatives are used to improve the contrast of the positive pairs with respect to the other samples (see
Sec. 2). Lalign and Luniform are the two losses proposed in (Wang & Isola, 2020) (Sec. 2). Note that,
while W-MSE (2 and 4) in Tab. 2 refer to our method with a ResNet-18 encoder, the other results are
reported from (Wang & Isola, 2020), where a much larger-capacity network (i.e., a ResNet-50) is
used as the encoder. Despite this large difference in the encoder capacity, both versions of W-MSE
significantly outperform the other two compared methods in this dataset.

4.2 TRAINING TIME COMPLEXITY

Following (Siarohin et al., 2019), the complexity of the whitening transform isO(k3 +Mk2), where
k is the embedding dimension and M is the size of the sub-batch used in the batch slicing process.
Since k < M (see Sec. 3), the whitening transform is O(Mk2), which is basically equivalent to
the forward pass of M activations in a fully-connected layer connecting two layers of k neurons
each. In fact, the training time is dominated by other architectural choices which are usually more
computationally demanding than the loss computation. For instance, BYOL (Grill et al., 2020)
needs 4 forward passes through 2 networks for each pair of positives. Hence, to evaluate the wall-
clock time, we measure the time spent for one mini-batch iteration by all the methods compared in
Tab. 1. We use the STL-10 dataset, a ResNet-18 encoder and a server with one Nvidia Titan Xp
GPU. Time of one iteration: Contrastive - 459ms, BYOL - 602ms, W-MSE 2 - 478ms, W-MSE 4 -
493ms. The 19ms difference between Contrastive and W-MSE 2 is due to the whitening transform.
Since the factual time is mostly related to the sample forward and backward passes, the d(d − 1)
positive comparisons in equation 6 do not significantly increase the wall-clock time of W-MSE 4
with respect to W-MSE 2.

4.3 CONTRASTIVE LOSS WITH WHITENING

Table 3: Accuracy of the whitened contrastive loss on CIFAR-10 trained for 200 epochs.

Method linear 5-nn
Contrastive 89.66 86.55
Contrastive with Whitening diverged
Contrastive, unnormalized features 79.48 76.60
Contrastive with Whitening, unnormalized features 77.39 74.14

In this section, we analyse the effect of the whitening transform in combination with the contrastive
loss. Tab. 3 shows the results. The first row refers to the standard contrastive loss. Note that the
difference with respect to Tab.1 is due to the use of only 200 training epochs. The second row refers
to equation 2, where the features (z) are computed using equation 7 and then L2 normalized, while
in the last two rows, z is not normalized. If the features are whitened and then normalized, we
observed an unstable training, with divergence after a few epochs. The unnormalized version with
whitening converged, but its accuracy is worse than the standard contrastive loss (both normalized
and unnormalized). This experiments show that whitening itself does not improve the performance,
but it only allows to satisfy the constraint 4.

5 CONCLUSION

In this paper, we have proposed a new self-supervised representation learning loss, W-MSE, which
is alternative to common loss functions used in the field. Differently from the triplet loss and the
contrastive loss, both of which are based on comparing an instance-level similarity against other
samples, W-MSE computes only the intra-positive distances, while using a whitening transform to
avoid degenerate solutions. Despite W-MSE is very simple, its classification accuracy is comparable
with state-of-the-art methods, achieving results significantly higher than MoCo, which requires an
additional momentum encoder and a large queue of past samples. W-MSE is also comparable with
BYOL, which needs an additional target network and a specific training protocol. We believe that
the use of whitening to avoid collapsing effects can inspire other self-supervised methods.
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A TRAINING DYNAMICS

Fig. 4 and 5 show the training dynamics for each of the considered losses. Charts are smoothed with
a 0.3 moving average for readability (curves before smoothing are shown semi-transparent).
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Figure 4: Training dynamics on STL-10 dataset for linear classifier
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Figure 5: Training dynamics on STL-10 dataset for 5-nn classifier

B CHOLESKY WHITENING AND BACKPROGATION

We compute WV (equation 8) following (Siarohin et al., 2019) and using the Cholesky decomposi-
tion. The Cholesky decomposition is based on the factorisation of the covariance symmetric matrix
using two triangular matrices: ΣV = LL>, where L is a lower triangular matrix. Once we get L,
we compute the inverse of L, and we get: WV = L−1. Note that Cholesky decomposition is fully
diferentiable and it is implemented in all of the major frameworks, such as PyTorch and TensorFlow.
However, for the sake of completeness, we provide below the gradient computation.
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B.1 GRADIENT COMPUTATION

We provide here the equations for whitening differentiation. Let Z be the whitened version of the
batch V , i.e., Z = WV (V − µV ) (equation 7). The gradient ∂L∂V can be computed by:

∂L

∂V
=

2

K − 1

∂L

∂Σ
V +WT

V

∂L

∂Z
. (9)

where the partial derivative ∂L
∂Z is backpropogated, while ∂L

∂Σ is computed as follows:

∂L

∂Σ
= −1

2
WT
V

(
P ◦ ∂L

∂WV
WT
V +

(
P ◦ ∂L

∂WV
WT
V

)T)
WV (10)

In equation 10, ◦ is Hadamard product, while ∂L
∂WV

is:

∂L

∂WV
=
∂L

∂Z
V T , (11)

and P is:

P =


1
2 0 · · · 0

1 1
2

. . . 0

1
. . . . . . 0

1 · · · 1 1
2

 .

C EUCLIDEAN DISTANCE

Table 4: Classification accuracy (top 1) using the Euclidean distance (unnormalized embeddings)
on STL-10.

Method linear 5-nn
Contrastive 78.00 71.07
BYOL 80.83 74.94
W-MSE 2 89.91 85.56
W-MSE 4 90.40 87.09

The cosine similarity is a crucial component in most of the current self-supervised learning ap-
proaches. This is usually implemented with an L2 normalization of the latent representations, which
corresponds to projecting the features on the surface of the unit hypersphere. However, in our W-
MSE, the whitening transform projects the representation onto a spherical distribution (intuitively,
we can say on the whole unit hypersphere). Preserving the module of the features before the L2

normalization may be useful in some applications, e.g., clustering the features after the projection
head using a Gaussian mixture model. Tab. 4 shows an experiment on the STL-10 dataset where we
use unnormalized embeddings for all the methods (and τ = 1 for the contrastive loss). Comparing
Tab. 4 with Tab. 1, the accuracy decrease of W-MSE is significantly smaller than the other methods.
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