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ABSTRACT

Camera-based vision systems pose privacy risks, whereas lensless cameras present
a viable alternative by omitting visual semantics from their measurements due to
the absence of lenses. However, these captured lensless measurements pose chal-
lenges for existing computer vision tasks such as object segmentation that usu-
ally require visual input. To address this problem, we propose a lensless object
segmentation network via feature demultiplexing and task decoupling (FDTD-
Net) to perform object segmentation for lensless measurements. Specifically, we
propose an optical-aware feature demultiplexing mechanism to get meaningful
features from lensless measurements without visual reconstruction and design a
multi-task learning framework decoupling the lensless object segmentation task
into two subtasks, i.e., the reason for contour distribution maps (CDM) and body
distribution maps (BDM), respectively. Extensive experiments demonstrate that
our FDTDNet achieves highly accurate segmentation effect, which sheds light on
privacy-preserving high-level vision with compact lensless cameras.

1 INTRODUCTION

Lensless cameras (Tan et al. (2019); Pan et al. (2021b;a); Salman et al. (2022)) utilize simple, planar
optics to convert light into complex patterns, rendering the images unintelligible without knowledge
of the mask configurations. Their enhanced privacy features make them promising for privacy-
focused applications (Pan et al. (2021b); Yin et al. (2022)). For object segmentation in Fig. 1(a),
traditional systems use converging lenses to capture clear images before applying segmentation
algorithms, making them vulnerable to network attacks. Lensless cameras produce ambiguous mea-
surements that help safeguard sensitive information (Pan et al. (2021b); Yin et al. (2022)). The
typical lensless method (You et al. (2022)) involves restoring the image using the mask, followed
by conventional segmentation, as illustrated in Fig. 1(b). However, this method has drawbacks: it
prevents data hijacking but is still susceptible to software attacks on reconstructed images. Addition-
ally, segmentation accuracy suffers from blurry reconstructions and suboptimal mask designs Yin
et al. (2022), while the reconstruction adds computational overhead, making it less suitable for edge
computing.

To enhance segmentation accuracy while ensuring privacy, we propose a one-step method for lens-
less object segmentation. Unlike the classical two-step process, our method directly segments ob-
jects from lensless measurements without intermediate reconstructions, as shown in Fig. 1(c). How-
ever, extracting sufficient semantic features in the absence of visual input presents a severe challenge.

To overcome this limitation, we propose an optical-aware feature demultiplexing (OFD) mechanism
aimed at refining the features obtained from lensless measurements. This concept is underpinned
by the observation that lensless measurements exhibit a direct linear correlation with visual images
through the measurement matrix. Similarly, the semantic features corresponding to these measure-
ments can be represented through a linear relationship based on the semantic attributes of the visual
images. Considering this, we define Y as the lensless measurement, A as the measurement matrix,
and X as the original image. Correspondingly, Yθi , Aθ, and Xθi denote the associated semantic
features. Inspired by (Dong et al. (2021)), the above relationship can be succinctly articulated by the
following linear equation,

Y = A ◦X =⇒ Yθi = Aθ ◦Xθi . (1)

Building upon this correlation, we propose a feature demultiplexing and task decoupling network
(FDTDNet) for lensless object segmentation. Our approach reconstructs desired features Xθi from

1
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Figure 1: Comparison of object segmentation methods: traditional lens-based (top), two-step lens-
less (middle), and our optimized one-step lensless methods. Ours improves privacy protection
against data interception and software vulnerabilities while maintaining robust segmentation effect.

semantic features Yθi while preserving privacy, utilizing the OFD mechanism. By integrating OFD
with a Pyramid Vision Transformer (PVT), we enhance long-range feature extraction to tackle seg-
mentation challenges. We further decouple segmentation labels into a contour distribution map
(CDM) and a body distribution map (BDM) to mitigate imbalanced pixel distribution issues. To
facilitate effective aggregation of CDM and BDM, we introduce a mutual learning strategy using
the contour-body interaction (CBI) module. Our main contributions are as follows:

• To our best knowledge, we investigate direct object segmentation from lensless measurements
and propose a high-accuracy lensless object segmentation method, which verifies the potential of
applying lensless imaging directly to various high-level tasks.

• We model the linear equation between the semantic features bound to lensless measurements
and those corresponding to visual inputs. By the proposed OFD, we obtain the expected semantic
features to enhance prediction performance.

• We decouple the segmentation task into CDM and BDM inference by contour-/body-distribution
learning branches. And a contour-body interaction (CBI) module is proposed for reasoning segmen-
tation results from correlations between CDM and BDM.

• Extensive experiments on two datasets (i.e., directly captured (DIRC) dataset and display captured
(DISC) dataset) indicate that our FDTDNet outperforms state-of-the-art methods by a large margin.

2 RELATED WORKS

2.1 LENSLESS IMAGING

Lensless imaging (M. Salman et al. (2017); Nick et al. (2018); Pan et al. (2022); Jiachen et al. (2020))
provides an effective way to handdle size constraints in areas like smartphone photography and
micro-robotics, relying on masks with amplitude and phase encoding as key components. Different
mask architectures have driven the creation of prototypes such as the Fresnel Zone Aperture (FZA)
camera (Jiachen et al. (2020); Wu et al. (2021)), FlatCam (M. Salman et al. (2017)), PhlatCam
(Nick et al. (2018)), and DiffuserCam (Vivek et al. (2020)). These prototypes have proven valuable
in areas such as hyperspectral imaging (Monakhova et al. (2020)), fluorescence microscopy (Alok
et al. (2017)), light field encoding Tajima et al. (2017); Cai et al. (2020), and depth sensing (Nick
et al. (2018); Tian & Yang (2022)). Recently, researchers have expanded lensless imaging to high-
level semantic tasks, successfully achieving recognition (Pan et al. (2021a); Tan et al. (2019); Zhang
et al. (2022); Aschenbrenner et al. (2024)), face verification (Tan et al. (2019); Cai et al. (2024)), and
object segmentation (Yin et al. (2022; 2024)), showing its potential for high-level inference tasks.
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2.2 RECONSTRUCTION-FREE SEMANTIC INFERENCE

Reconstruction-free semantic inference has attracted significant attention, finding applications in
fields such as biomedicine, agriculture, and non-visual recognition (Lei et al. (2019); Isogawa et al.
(2020); Qiu et al. (2024)). This kind of method offers key benefits in terms of privacy-preserving
and reduced computational costs, especially in image recognition (Dave et al. (2022); Hinojosa
et al. (2022)). In single-pixel cameras, it enhances computational efficiency (Ji et al. (2022); Liu
et al. (2023)), and in lensless cameras, it enables tasks like classification directly from raw mea-
surements (Cai et al. (2024); Perez et al. (2024); Yang et al. (2024)). Recent research has focused
on pixel-level reasoning tasks like image segmentation (Yang et al. (2022)). In (You et al. (2022)),
human eye segmentation was studied using a reconstruction-before-segmentation approach, but the
high computational cost limited practical use. The works (Yin et al. (2022; 2024)) introduced an
end-to-end network for segmenting objects from lensless imaging data, but its performance was
constrained by the need for original scene supervision. Thus, achieving high-precision segmenta-
tion in lensless imaging remains challenges.

3 METHODOLOGY

3.1 MOTIVATION AND OVERVIEW

Among various lensless camera prototypes, FlatCam (M. Salman et al. (2017)) stands out for its
wide range of applications due to its high luminous flux, lightweight setups, and cost-effectiveness.
We investigate object segmentation based on the FlatCam imaging model, although our method is
also easily adaptable to other lensless camera models. FlatCam utilizes a separable mask pattern,
i.e., the 2-D mask pattern, which can be represented by the outer product of two 1-D patterns. The
imaging model is formulated as

Y = ALXA⊤
R + ξ, (2)

where AL ∈ RV×M and A⊤
R ∈ RN×W denote matrices that correspond 1D convolutions along the

rows and columns, respectively. The ξ repsents the additive noise.

Lensless cameras produce multiplexed measurements Y devoid of visual information, complicating
object segmentation. To tackle this, we propose FDTDNet, a lensless object segmentation method
leveraging feature demultiplexing and task decoupling. We first develop an optical-aware feature
demultiplexing (OFD) mechanism integrated with a Pyramid Vision Transformer (PVT) for seman-
tic feature decoupling. Then, the segmentation task is divided into contour distribution map (CDM)
and body distribution map (BDM) subtasks, enhancing edge feature learning and reducing interfer-
ence. We implement a contour-distribution learning branch with a dual-path attention (DPA) and
a body-distribution learning branch with contextual exploration (CE) and hierarchical information
fusion (HIF) for CDM and BDM predictions, respectively. A cross-branch learning strategy via the
contour-body interaction (CBI) module further improves segmentation by exploiting the correlation
between CDM and BDM.

3.2 OPTICAL-AWARE FEATURE DEMULTIPLEXING (OFD) MECHANISM

Unlike previous works that extract features from natural images, our encoder derive cues from lens-
less measurements, making conventional encoders ineffective. Thus, we propose a feature demulti-
plexing mechanism by integrating the OFD at the end of the PVT encoder to mine high-level infor-
mation. First, we utilize the PVT for feature extraction in lensless object segmentation, generating
outputs across four stages:

Yθ1 , Yθ2 , Yθ3 , Yθ4 = PVT(Y ) . (3)

Based on Eq. (1) and the lensless imaging model in Eq. (2), the above semantic features Yθi
(i = 1, 2, 3, 4) is modeled as:

Yθi = AL,θiXθiA
⊤
R,θi + ξ, (4)

where Xθi , AL,θi , and AR,θi denote the X , AL, and AR in the feature space. Therefore, the task of
reasoning about Xθi from Yθi can be modeled as an inverse problem. To obtain Xθi for boosting
the lensless object segmentation task, inspired by (Salman et al. (2022)), our OFD-based extractor
is designed as the Tikhonov regularization problem as:

argmin
Xθi

∥∥Yθi −AL,θiXθiA
⊤
R,θi

∥∥2
2
+Kθi ∥Xθi∥

2
2 , (5)

3
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Figure 2: The proposed FDTDNet framework includes: (1) a PVT and OFD-based extractor for
reconstructing semantics, (2) a contour-distribution learning branch with the DPA, and a body-
distribution learning branch with the CE and HIF for inferring CDM and BDM, respectively, and
(3) a CBI-based mutual learning strategy to derive segmentation results from CDM and BDM.

where Kθ is the learnable regularization parameter. The Eq. (5) can be sovlved by Wiener deconvo-
lution (Haywood & Younes (2023)) as:

X̂θi = OFD(Yθi ;AL,θi , AR,θi)

= VL,θi [(ΣL,θiU
⊤
L,θiYθiUR,θiΣR,θi)./(σL,θiσ

⊤
R,θi +Kθi)]V

⊤
R,θi ,

(6)

satisfies with
AL,θi

SVD
= UL,θiΣL,θiV

⊤
L,θi , AR,θi

SVD
= UR,θiΣR,θiV

⊤
R,θi , (7)

where SVD is the singular value decomposition (SVD). The AL,θi and AR,θi are updated by

AL,θi = fAL
(AL) , AR,θi = fAR

(AR) , (8)

where fAL(·) and fAR(·) represent the 3× 3 convolution layer + batch normalization (BN) + ReLU
+ down-sampling operator. We denote each side output as Xθi for X̂θi . The detailed derivation of
the OFD is illustrated in Appendix A.1. Importantly, the OFD mechanism facilitates back-end tasks
without visual reconstruction, mitigating sensitive privacy leakage.

3.3 TASK DECOUPLING

We assume the contour distribution follows a Gaussian distribution with zero mean and a standard
deviation of σ. The ideal contour distribution and body distribution are defined as follows:

Pcdm(p) =
1√
2πσ

e−
(DT(p))2

2σ2 , Pbdm(p) = 1− 1√
2πσ

e−
(DT(p))2

2σ2 , (9)

where σ = 1√
2π

to keep Pcdm and Pbdm in the range [0,1]. DT(p) represents the shortest Euclidean
distance from pixel p to the boundary. DT(p) is pixel-dependent, varying with classification (fore-
ground or background) and relative position. Pixels closer to the object’s center receive higher
values, while those farther away or in the background have lower values. We multiply the generated
Pcdm and Pbdm with the original binary image I to remove the background interference as

Icdm = I ⊙ Pcdm, Ibdm = I ⊙ Pbdm, (10)

4
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Figure 3: Example of label decoupling: the label is decomposed into a contour distribution map
(CDM) and a body distribution map (BDM).

where ⊙ represents element-wise multiplication. Icdm and Ibdm mean the CDM and BDM as shown
in Fig. 3, respectively. Accordingly, the segmentation task is decoupled into the inference subtasks
for CDM and BDM.

Body-Distribution Learning. The body information is critical for determining the overall segmen-
tation effect. We design a body-distribution learning branch to mine the accurate main region. We
feed the multi-level side outputs of OFD into the designed contextual exploration (CE) module for
extracting contextual information. Then, we introduce the hierarchical information fusion (HIF)
module to aggregate the outputs from the multi-layer CE modules to obtain the BDM results. The
details of CE and HIF are explained in Fig. 11 of Appendix A.3.

Contour-Distribution Learning. The contour is usually used as a prime cue to refine the object
morphology for accurate segmentation. We design the contour-distribution learning branch consist-
ing of the dual-path attention (DPA) to focus on learning contour information. The details of DPA
are explained in Fig. 12 of Appendix A.4.

3.4 CONTOUR-BODY INTERACTION (CBI)
Considering the correlation between CDM and BDM, we propose the CBI in combination with graph
convolutional neural networks. As shown in Fig. 4, the CBI consists of three main components:
cross-layer correlation, polishing gate, and mask generation.

Cross-layer Correlation. For the input feature map {T1, T2} ∈ RC×H×W , we apply two 1 × 1
convolutional layers (Gedge and Gnode) to transform {T1, T2} into two independent representations,
and then extract the transformed feature patches into two groups, i.e., G′ = {p′

i | 1 ≤ i ≤ K} and
G′′ = {p′′

i | 1 ≤ i ≤ K}, via the unfolding operation funfold (shown in Fig. 4). The feature patches
in G′ and G′′ have the following feature representations:

p′
i = funfold (Gedge (T1)), p′′

i = funfold (Gnode (T2)), (11)

where G′ is used to build graph connections and G′′ is assigned as the graph nodes. Given a set of
feature patches G′, we flatten each patch into a feature vector and compute feature similarity using
the dot product, resulting in a similarity matrix S ∈ RK×K , defined as:

S = FC (Flatten(G′
i))⊗ FC (Flatten(G′

i)) , (12)

where ⊗ denotes the matrix multicaption. Flatten (·) is the flatten operator, FC (·) is the full con-
nected layer. Consider Si,:, the i-th row of S, representing the similarity of the i-th node to other
nodes. We employ a dynamic number of neighbors for each node based on the nearest principle.
This is achieved through a dynamic KNN (DKNN) module, which generates an adaptive threshold

5
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Figure 4: Illustration of the CBI. It consists of three main components: cross-layer correlation,
polishing gate, and mask generation.

for each node, selecting neighbors with similarities above this threshold as candidates. The average
value of Si,: represents the average importance of different nodes to the i-th node, denoted as Qi.
As shown in Fig. 4, to improve the adaptability, we apply the node-specific affine transformation to
calculate Qi as:

Qi =
φ2 (p

′
i)

K

K∑
k=1

Si,k + φ1 (p
′
i) =

β

K

K∑
k=1

Si,k + α, (13)

where α = φ1 (p
′
i) and β = φ2 (p

′
i). φ1 and φ2 are two distinct Wp × Hp convolutional layers,

embedding each node into specific affine transform parameters, i.e., α and β. To achieve a different
threshold truncation, we utilize the ReLU function to truncate input features and normalize the
similarity of all connected nodes by the softmax function to calculate the attention weights by

αi,j =
exp (Ai,j)∑

j∈Ni
exp (Ai,j)

, j ∈ Ni, Ai,: = ReLU (Si,: −Qi) , (14)

where A ∈ RK×K is the adjacency matrix in which Ai,j is assigned the similarity weight if p′
j

connect to p′
i, otherwise equal to zero. Ni is the set of indexes of neighboring nodes. The feature

aggregation process is a graph described as a weighted sum of all connected neighbors:

p̂i =
∑
j∈Ni

αi,j × p′′
j =

∑
j∈Ni

αi,j × Gnode (pj) . (15)

We extract feature patches from the graph to aggregate into a feature map via folding operation.
Overlapping regions are handled by averaging to suppress blocking effects. Global residual connec-
tivity in the cross-layer correlation module further enhances the result. The output of this module is
expressed as r = ffold (p̂1, p̂2, ..., p̂i, ..., p̂K) , ffold (·) is a folding operation, as shown in Fig. 4.
The extracted cross-layer correlation matrix r is normalized by a softmax operator along the rows
and columns, respectively, to locate the object regions involved in the high-level semantics by

F 1
corr = Rp (Rp (Gedge (T1))⊙ S(r)), F 2

corr = Rp
(
Rp (Gnode (T2))⊙ S

(
r⊤

))
, (16)

where Rp(·) is the reshape operation and S(·) is the softmax operator. F 1
corr, F

2
corr ∈ RC×H×W are

features containing rich location information. Since we perform matrix-based cross-layer correlation
operations on F 1

corr and F 2
corr with low computational cost.

Polishing Gate. To address redundancy in {F 1
corr, F

2
corr}, we introduce an effective gating mech-

anism to refine location information. Using a 1 × 1 convolution, we generate response maps in

6
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[0, 1]1×H×W for {F 1
corr, F

2
corr}. These maps filter out redundant information by gating mechanism

as F 1
gate = Sigmoid

(
Conv1×1

(
F 1
corr

))
⊙ F 1

corr, F
2
gate = Sigmoid

(
Conv1×1

(
F 2
corr

))
⊙ F 2

corr,{
F 1

gate , F
2
gate

}
∈ RC×H×W are the polished features. Conv1×1 is the 1× 1 convolution layer.

Mask Generation. Moreover, we adopt the residual connection to merge F 1
gate and T1 as well as

F 2
gate and T2, respectively, resulting F̂ 1

gate and F̂ 2
gate by F̂ 1

gate = DSConv
(
F 1

gate + T1

)
, F̂ 2

gate =

DSConv
(
F 2

gate + T2

)
, DSConv(·) is the 3 × 3 depth-wise separable convolution layer.

The generated F̂ 1
gate and F̂ 2

gate are fused to generate the segmenatation map by Pseg =

Sigmoid
(
Conv1×1

(
DSConv

(
F̂ 1

gate ⊙ F̂ 2
gate

)))
. We completely extract location information

from F̂ 1
gate and F̂ 2

gate to accurately determine the object regions.

3.5 LOSS FUNCTION

To well train the FDTDNet, we combine the weighted BCE loss ℓwBCE (Wei et al. (2020)) and
weighted IoU loss ℓwIOU (Wei et al. (2020)), that is, Ls = ℓwBCE + ℓwIOU to perform supervised
learning on the CDM, BDM, and final segmentation maps. Thus the total loss function is:

LAll = Ls(PCDM, GCDM) + Ls(PBDM, GBDM) + Ls(Pseg, Gseg), (17)

where PCDM, PBDM, and Pseg are the predicted CDM, BDM, and final segmentation maps, respec-
tively. GCDM, GBDM, and Gseg are the true CDM, BDM, and segmentation maps, respectively.

4 EXPERIMENTS

4.1 SETUPS

Datasets. We use the datasets (Yin et al. (2024)) for lensless object segmentation named directly
captured (DIRC) dataset and display captured (DISC) dataset (Yin et al. (2024)). The DIRC dataset
is used for testing, and it consists of 30 natural scene images directly captured from 10 different
scenes. The DISC dataset is collected from Display, including 5.2K paired data for training (DISC-
Train) and 0.7K for testing (DISC-Test). Note that the measurements are captured by FlatCam.

Evaluation Metrics. To quantitatively evaluate the performance of each method, we use six eval-
uation matrices, including mean absolute error (M), mean E-measure (Eξ) (Fan et al. (2021)),
weighted F-measure(Fw

β ) (Margolin et al. (2014)), S-measure (Sα) (Fan et al. (2017)), mean Dice
(mDice), and mean IoU (mIoU).

Implementation Details. In our FDTDNet, the PVT pre-trained on ImageNet initializes the
backbone. We train the FDTDNet by the Adam optimizer with “cosine” learning rate policy as
lr = 0.5× init r × (1 + cos(π ∗ epoch/max epoch)), where the initial learning rate init r is set
to 5 × 10−4 and training epoch epoch ∈ [1,max epoch], max epoch = 100. The whole network
is trained with a batch size of 8. All experiments are implemented in Pytorch 1.8.0 and trained on a
Linux 20.04 server with a single GPU of NVIDIA RTX 3090.

Compared Methods. For a fair evaluation, we compare our method with following methods:
(1) Current advanced object segmentation methods, including CDMNet (Song et al. (2023)),
SINetV2 (Fan et al. (2022)), C2FNet (Chen et al. (2022)), OCENet (Liu et al. (2022)), Zoom-
Net (Pang et al. (2022)), TransUnet (Chen et al. (2021)), and BDG-Net (Qiu et al. (2022));
And (2) Existing object inference methods for lensless imaging: LLI T (Pan et al. (2021a)),
Raw3dNet (Zhang et al. (2022)), EyeCoD (You et al. (2022)), LOINet (Yin et al. (2022)), and
RecSegNet (Yin et al. (2024)). We employ open-source codes from public repositories to imple-
ment established comparison methods. To ensure consistency, all methods are retrained on a shared
training dataset.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Evaluation on DISC-Test Dataset. Figure 5 displays segmentation results from our FDTDNet and
various state-of-the-art methods (CDMNet, C2FNet, SINetV2, BDG-Net, OCENet, TransUnet, and
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Table 1: Comparison of our FDTDNet and other 12 state-of-the-art methods. ↑ means that the more
prominent, the better, and ↓ means that the more minor, the more remarkable. The first, second, and
third-ranked performances are highlighted in red, green, and blue, respectively.

Methods DISC-Test DIRC

Fw
β ↑ M ↓ Eξ ↑ Sα ↑ mDice ↑ mIoU ↑ Fw

β ↑ M ↓ Eξ ↑ Sα ↑ mDice ↑ mIoU ↑
CDMNet 0.535 0.241 0.688 0.652 0.618 0.473 0.739 0.117 0.805 0.738 0.756 0.679
C2FNet 0.493 0.291 0.639 0.562 0.557 0.405 0.713 0.119 0.793 0.763 0.826 0.704
SINetV2 0.363 0.360 0.502 0.357 0.365 0.399 0.658 0.126 0.754 0.732 0.785 0.697
BDG-Net 0.508 0.261 0.665 0.582 0.553 0.405 0.645 0.151 0.746 0.714 0.768 0.679
OCENet 0.585 0.222 0.711 0.628 0.632 0.499 0.767 0.116 0.829 0.794 0.835 0.726

TransUNet 0.551 0.242 0.743 0.678 0.593 0.463 0.764 0.117 0.817 0.781 0.833 0.708
ZoomNet 0.661 0.177 0.811 0.753 0.716 0.605 0.773 0.115 0.815 0.787 0.840 0.752

LLI T 0.721 0.137 0.802 0.748 0.764 0.669 0.742 0.115 0.821 0.759 0.817 0.732
Raw3dNet 0.749 0.118 0.827 0.752 0.777 0.674 0.779 0.105 0.834 0.778 0.836 0.749
EyeCoD 0.755 0.127 0.808 0.756 0.782 0.679 0.785 0.097 0.838 0.786 0.833 0.752
LOINet 0.763 0.129 0.832 0.764 0.799 0712 0.791 0.103 0.844 0.792 0.858 0.779

RecSegNet 0.866 0.067 0.907 0.861 0.879 0.818 0.854 0.078 0.858 0.891 0.867 0.824

FDTDNet 0.902 0.056 0.916 0.875 0.902 0.841 0.918 0.047 0.923 0.903 0.907 0.874

ZoomNet) on the DISC-Test dataset. Many comparison methods struggle with low-contrast (3rd,
4th, 6th rows) and cluttered backgrounds (1st, 2nd, 5th rows), failing to segment objects accurately
due to their limited capacity to extract details from lensless measurements. In contrast, FDTDNet
employs feature demultiplexing, yielding superior segmentation. Further analysis in Fig. 13 in Ap-
pendix A.6 compares our method with existing lensless segmentation techniques (LLI T, Raw3dNet,
EyeCoD, LOINet, and RecSegNet). While these methods perform well, FDTDNet achieves re-
sults closest to ground truths. Tab. 1 quantifies lensless object segmentation performance, showing
FDTDNet outperforms all competitors across metrics. Specifically, it reduces M by 12.5% and
improves Fw

β , Eξ, Sα, mDice, and mIoU by 3.3%, 0.4%, 2.0%, 2.0%, and 2.8%, respectively, com-
pared to RecSegNet. Note that our method advances task decomposition by using CDM and BDM
with a CBI module for mutual learning, tailored to lensless imaging’s ambiguous boundaries. Unlike
CDMNet’s edge-based focus, our dual-branch design achieves more comprehensive segmentation.

(a) (b) (c) (d) (e) (f) (h) (i) (j) (k)(g)

Figure 5: Comparison with state-of-the-art methods on the DISC-Test dataset. The (a) is the lensless
measurements corresponding to real images (b); The (c) is the real segmentation maps corresponding
to (b); The (d)–(k) are the segmentation results by our FDTDNet, CDMNet, C2FNet, SINetV2,
BDG-Net, OCENet, TransUnet, and ZoomNet.

Evaluation on DIRC Dataset. With limited visual input causing failures in most comparison meth-
ods on DIRC dataset, we adopt the training setups in (Yin et al. (2024)) to obtain results, as shown
in Tab. 1. While comparison methods with the setups in (Yin et al. (2024)) perform well on DIRC
dataset due to simpler objects and uniform backgrounds, our FDTDNet consistently outperforms
them across all metrics. Notably, it reduces M by 34.7% and enhances Fw

β , Eξ, Sα, mDice, and
mIoU by 7.1%, 6.7%, 0.9%, 4.0%, and 5.3%, respectively, compared to RecSegNet. Fig. 6 show-
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cases segmentation results, revealing that many methods struggle with accurate segmentation due to
the lack of visual semantics in lensless measurements. In contrast, FDTDNet excels, demonstrating
its robust generalization capability.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

Figure 6: Comparison with state-of-the-art methods on the DIRC dataset. The (a) is lensless mea-
surements; (b) is the restored images by FlatNet (Salman et al. (2022)); The (c) is the real seg-
mentation maps corresponding to (b); The (d)–(m) are the segmentation results by our FDTDNet,
CDMNet, C2FNet, SINetV2, BDG-Net, OCENet, TransUnet, ZoomNet, LOINet, and RecSegNet.

4.3 ABLATION STUDIES

Ablation Studies on Tasks. Table 2 presents the comparison results obtained through various task
supervisions. Note that “Segm” refers to the direct segmentation map supervision, “Edge” denotes
the edge supervision, “CDM” represents the CDM supervision, and “BDM” symbolizes the BDM
supervision. The configuration incorporating CDM outperforms the configuration involving edge,
suggesting that CDM supervision is more effective than edge supervision. Furthermore, the amalga-
mation featuring BDM exhibits superior performance compared with the configuration incorporating
segmentation maps. This validates that a more effective feature representation could be learned for
the body regions without interfering with edges.

Table 2: Comparison of different task supervision on DISC-Test dataset. The first-ranked result is
highlighted in red.

Task Fw
β ↑ M ↓ Eξ ↑ Sα ↑ mDice ↑ mIoU ↑

CDM + Segm 0.889 0.065 0.881 0.864 0.887 0.814
Edge+ Segm 0.882 0.066 0.882 0.861 0.885 0.815
BDM + Edge 0.885 0.066 0.885 0.861 0.883 0.814
BDM + Segm 0.889 0.067 0.886 0.863 0.884 0.814

Full model 0.902 0.056 0.916 0.875 0.902 0.841

(a) (b) (c) (d) (e) (f) (g) (h) (k)(i) (j)

Figure 7: Ablation studies on the DISC-Test dataset. The (d)–(k) corresponding to Conf1–Conf8.
The (a) is the lensless measurements of the underlying scenes (b) by the lensless camera; The (c) is
the ground truth segmentation maps corresponding to (b).

Ablation Studies on Components. We explore the effectiveness of each component in our FDTD-
Net. Note that removed HIF is replaced by upsampling + concatenation + convolution, removed
DPA is replaced by 3 × 3 convolution layer, and removed CBI is replaced by concatenation. For
the above configuration, we obtain the corresponding evaluation results, as illustrated in Fig. 7 and
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Tab. 3. From the results in Fig. 7 (d)–(h) and Conf1–Conf5 in Tab. 3, the removal of each com-
ponent (i.e., CE, OFD, DPA, HIF, and CBI) results in a drop of segmentation performance. These
results demonstrate the effectiveness of the individual components.

Ablation Studies on Loss Functions. To further explore the effect of our method, we analyze each
loss function, and the corresponding results are shown in Fig. 7(i), (j), as well as Conf6 and Conf7 in
Tab. 3. Employing only either ℓwBCE or ℓwIOU leads to a degradation of predicted effect, while better
results are obtained by training our network with the total loss function (i.e., Fig. 7(k) and Conf8 in
Tab. 3). These results indicate that a tailored loss functions are necessary for our FDTDNet.

Table 3: Ablation studies on DISC-Test dataset. The first-ranked result is highlighted in red.

ConfID
Component Loss Function Evaluation Metrics

OFD CE DPA HIF CBI LwIOU LwBCE Fw
β ↑ M ↓ Eξ ↑ Sα ↑ mDice ↑ mIoU ↑

Conf1 ✓ ✓ ✓ ✓ ✓ ✓ 0.652 0.231 0.694 0.667 0.708 0.588
Conf2 ✓ ✓ ✓ ✓ ✓ ✓ 0.676 0.207 0.726 0.723 0.771 0.613
Conf3 ✓ ✓ ✓ ✓ ✓ ✓ 0.683 0.189 0.747 0.726 0.805 0.621
Conf4 ✓ ✓ ✓ ✓ ✓ ✓ 0.852 0.084 0.867 0.805 0.877 0.805
Conf5 ✓ ✓ ✓ ✓ ✓ ✓ 0.746 0.173 0.776 0.728 0.748 0.698
Conf6 ✓ ✓ ✓ ✓ ✓ ✓ 0.824 0.103 0.857 0.804 0.829 0.783
Conf7 ✓ ✓ ✓ ✓ ✓ ✓ 0.867 0.062 0.901 0.837 0.878 0.803
Conf8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.902 0.056 0.916 0.875 0.902 0.841

4.4 LIMITATIONS

While our method performs well in conventional scenarios, it shows performance degradation in
unconventional cases, as analyzed in Fig. 8. Specifically, non-uniform or hollow target regions lead
to missed detections (first row), small targets result in false positives (second row), and blurred target
boundaries cause significant false positives. These issues arise from inherent challenges in lensless
imaging, such as optical cross-talk and complex scenes. The method excels with flat, high-intensity,
large targets but struggles in more complex conditions. Future work should address these limitations
by (1) expanding datasets to include diverse scenarios, (2) applying domain adaptation for improved
generalization, and (3) adopting frequency-adaptive techniques to mitigate cross-talk artifacts.

(a) (b) (c) (d) (e) (f) 

Figure 8: Illustration of failure cases. The (a) is the lensless measurements of the underlying scene
(b) by the lensless camera; The (c) is the ground truth segmentation maps corresponding to (b); The
(d)–(f) are the segmentation results from our method, LOINet, and RecSegNet, respectively.
5 CONCLUSION

This paper addresses the challenges of lensless object segmentation by the proposed one-step
method, FDTDNet, developing an optical-aware feature demultiplexing mechanism and decom-
posing the task into CDM and BDM inference subtasks. For the former, the FDTDNet applies a new
extractor combining OFD and PVT for reconstructing semantic features. Moreover, for the latter, we
enhance lensless object segmentation performance by incorporating contour-distribution and body-
distribution learning branches and a contour-body interaction strategy. Extensive experiments on the
DISC-Test and DIRC datasets show that our FDTDNet outperforms state-of-the-art methods across
various evaluation metrics and highlights its potential in advancing the field of lensless imaging.
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A APPENDIX

A.1 THE DERIVATION DETAILS OF THE OFD

Combining Eq. (1) with the lensless imaging model in Eq. (2), the above semantic features Yθi
(i = 1, 2, 3, 4) is modeled as:

Yθi = AL,θiXθiA
⊤
R,θi + ξ, (18)
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where Xθi , AL,θi , and AR,θi denote the X , AL, and AR in the feature space. Therefore, the task of
reasoning about Xθi from Yθi can be modeled as an inverse problem. To obtain Xθi for boosting
the lensless object segmentation task, inspired by (Salman et al. (2022)), our OFD-based extractor
is designed as the Tikhonov regularization problem as:

argmin
Xθi

∥∥Yθi −AL,θiXθiA
⊤
R,θi

∥∥2
2
+Kθi ∥Xθi∥

2
2 , (19)

where Kθ is the learnable regularization parameter.

The Eq. (19) represents a convex optimization problem, implying the existence of a unique mini-
mum, which corresponds to the function value at the point where its derivative equals zero. To solve
this, we set the derivative of Eq. (19) to zero, yielding:

A⊤
L,θi(AL,θiXθiA

⊤
R,θi − Yθi)AR,θi +KθiXθi = 0. (20)

Expanding the first term and rearranging yields:

A⊤
L,θiAL,θiXθiA

⊤
R,θiAR,θi +KθiXθi = A⊤

L,θiYθiAR,θi . (21)

Getting the SVD of AL,θi and AR,θi as:

AL,θi =SVD UL,θiΣL,θiV
⊤
L,θi , AR,θi

SVD
= UR,θiΣR,θiV

⊤
R,θi

A⊤
L,θi =SVD VL,θiΣ

⊤
L,θiU

⊤
L,θi , A⊤

R,θi

SVD
= VR,θiΣ

⊤
R,θiU

⊤
R,θi .

(22)

Thus we can further obatain:

A⊤
L,θiAL,θi

SVD
= VL,θiΣ

⊤
L,θiU

⊤
⊤,θiUL,θiΣL,θiV

⊤
L,θi = VL,θiΣ

2
L,θiV

⊤
L,θi

A⊤
R,θiAR,θi

SVD
= VR,θiΣ

⊤
R,θiU

⊤
R,θiUR,θiΣR,θiV

⊤
R,θi = VR,θiΣ

2
R,θiV

⊤
R,θi .

(23)

Combining Eq. (23) with Eq. (23), we can obtain:

VL,θiΣ
2
L,θiV

⊤
L,θiXθiVR,θiΣ

2
R,θiV

⊤
R,θi +KθiXθi = VL,θiΣL,θiU

⊤
L,θiYθiUR,θiΣR,θiV

⊤
R,θi . (24)

Multiplying both sides of the Eq. (24) with V ⊤
L,θi

from the left and VR,θi from the right yields:

Σ2
L,θiV

⊤
L,θiXθiVR,θiΣ

2
R,θi +KθiV

⊤
L,θiXθiVR,θi = ΣL,θiU

⊤
L,θiYθiUR,θiΣR,θi . (25)

Let σL,θi and σR,θi denote the diagonal entries of Σ2
L,θi

and Σ2
R,θi

, respectively, yields:

V ⊤
L,θiXθiVR,θi ⊙ (σL,θiσ

⊤
R,θi) +KθiV

⊤
L,θiXθiVR,θi = ΣL,θiU

⊤
L,θiYθiUR,θiΣR,θi , (26)

where ⊙ denotes element-wise multiplication. We further obtain

V ⊤
L,θiXθiVR,θi = (ΣL,θiU

⊤
L,θiYθiUR,θiΣR,θi)./(σL,θiσ

⊤
R,θi +Kθi), (27)

where ./ denotes element-wise division. Therefore, the solution of Eq. (19) is written as

X̂θi = OFD(Yθi ;AL,θi , AR,θi)

= VL,θi [(ΣL,θiU
⊤
L,θiYθiUR,θiΣR,θi)./(σL,θiσ

⊤
R,θi +Kθi)]V

⊤
R,θi ,

(28)

where the AL,θi and AR,θi are updated by AL,θi = fAL (AL) and AR,θi = fAR (AR). fAL(·) and
fAR(·) represent the 3× 3 convolution layer + batch normalization (BN) + ReLU + down-sampling
operator. We denote each side output as Xθi for X̂θi . Note that AL and AR are primarily associated
with the system’s system function and do not inherently contain scene-specific information, limiting
their semantic content. With simpler convolutional operations for AL and AR, network complexity
is reduced while maintaining efficiency. Figure 9 shows the output results at different levels of OFD.
As seen, OFD focuses on deriving semantically relevant features, such as object contours, to drive
downstream tasks, rather than reconstructing visual details. This approach effectively prevents the
leakage of visual information.
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Figure 9: Examples of output results from different levels of OFD. All results are zoomed to the
same visualization size for comparison.

A.2 THE DETAILS OF DATASETS

To perform object segmentation tasks for lensless imaging measurements, we construct two datasets
named directly captured (DIRC) dataset and display captured (DISC) dataset. DIRC dataset is a test-
ing dataset by directly capturing natural scenes containing 30 images across 10 scenes. DISC dataset
is collected from Display-Captured dataset1 (Khan et al. (2019)) containing 1000 categories of sce-
narios and the corresponding lensless imaging measurements. By removing unqualified scenes, we
obtain 5.9K paired images with 869 categories, which cover flying, aquatic, terrestrial, amphibians,
sky, vegetation, and indoor categories. Each category has at least 1 scenario and at most 10 scenar-
ios. The DISC dataset includes 5.2K paired data for training (called DISC-Train) and 0.7K paired
data for testing (called DISC-Test). The construction steps of these two datasets are detailed as
follows.

First, we use Eiseg2 software (a well-known datasets annotation application) combined with manual
refinement to label binary maps Imask for the two datasets.

Next, to perform the multi-task learning strategy with body distribution maps (BDM) Ibdm and
contour distribution maps (CDM) Icdm, we acquire Ibdm and Icdm via Eqs. (9) and (10) of the main
manuscript.

Finally, we perform a double-check to ensure the accuracy of the labels, i.e., Imask, Ibdm, and Icdm.

Fig. 10 presents some examples showing the reliable annotation of our datasets. Note that the
DISC-Train dataset is used to train both our method and the baselines, while the DISC-Test and
DIRC datasets are employed for testing to evaluate the performance of each method.

A.3 THE DETAILS OF BODY-DISTRIBUTION LEARNING

The body information is critical for determining the overall segmentation effect. Thus, we design
a body-distribution learning branch consisting of three contextual exploration (CE) modules and a
hierarchical information fusion (HIF) module.

Contextual Exploration (CE). As illustrated in Xia et al. (2024), for the human eye, group receptive
fields of different sizes are beneficial for enhancing the perception of tiny areas near the focal point
of the retina. Following this strategy, we propose a CE module that simulates the mechanism of the
human eye in perceiving external objects to obtain a coarse representation of their bodies. The CE
module consists of five branches, denoted as bk (k = 1, 2, ..., 5), as shown in Fig. 11. Except for the
first and last branches with only one 1× 1 convolution, other branches have four convolutions with
a size of 1 × 1, 1 × (2k − 1), (2k − 1) × 1, and 3 × 3. First, the outputs of the first four branches
are combined by concatenation, followed by a convolution to adjust the channel number to match
that of b5. Then, the results above are element-wise multiplied with the output of b5 and then fed
into the ReLU activation function to obtain the final features. As shown in Fig. 2, we cascade the
CE module at the end of the OFD to get the features C2, C3, and C4, respectively.

Hierarchical Information Fusion (HIF). We aggregate three outputs of the CE modules, i.e., C2,
C3, and C4, to refine the object regions embedded. Unlike the way the partial decoder works, the

1https://siddiquesalman.github.io/flatnet/
2https://github.com/PaddleCV-SIG/EISeg
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(a) Measurements (b) Underlying Scenes (c) Segmentation Maps (d) Body Distribution Maps 

(BDM) 

(e) Contour Distribution Maps 

(CDM) 

Figure 10: Examples of our dataset. (a)–(e) represent lensless imaging measurements, underlying
scenes, ground truth (GT), BDM, and CDM.
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Figure 11: Illustration of CE and HIF.

HIF modifies the skip between different scale features and neighborhood features to sufficiently
enhance the bodies of objects and compensate for the details. The detailed structure is shown in
Fig. 11. The HIF outputs T2, fed into one 1× 1 convolution layer for obtaining the BDM.

A.4 THE DETAILS OF CONTOUR-DISTRIBUTION LEARNING

The contour information is usually used as a prime cue to refine the object morphology for accurate
segmentation. We design the contour-distribution learning branch consisting of the DPA to focus
on learning contour information. As shown in Fig. 12, through a 3 × 3 convolution layer, we first
transform the output of the first OFD, i.e., Xθ1 ∈ R3×H×W , into F1 ∈ RC×H×W , where C,
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Table 4: Ablation study on the weight setting of loss functions.
ID Configuration Fw

β ↑ M ↓ Exi ↑ Sα ↑ mDice ↑ mIoU ↑
#1 LwIOU + 0.5 ∗ LwBCE 0.898 0.056 0.913 0.872 0.899 0.839
#2 0.5 ∗ LwIOU + LwBCE 0.893 0.057 0.909 0.864 0.892 0.831
#3 0.5 ∗ LwIOU + 0.5 ∗ LwBCE 0.899 0.056 0.911 0.873 0.898 0.837
#4 LwBCE 0.867 0.062 0.901 0.837 0.878 0.803
#5 LwIOU 0.824 0.103 0.857 0.804 0.829 0.783
#6 LwIOU + LwBCE 0.902 0.056 0.916 0.875 0.902 0.841

H , and W are the channel, height, and width of F1, respectively. Then, we apply global average
pooling (GAP) in the spatial dimension of F1 to calculate channel-wise statistics and a channel
downscaling convolution to generate a feature representation. Further, the feature representation
is passed through two parallel channel-upscaling convolutions to generate two feature descriptors,
i.e., V1 and V2, each of dimension is C × 1× 1. Moreover, attentional activations W1 and W2 after
softmax of V1 and V2 are generated for calibration and aggregation of F1. Finally, we add up the
two results obtained to get T1.
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Figure 12: Illustration of the DPA.

A.5 ABLATION STUDY ON THE COEFFICIENTS FOR LOSS FUNCTIONS

To provide a more comprehensive analysis of our method, we conducted additional experiments
on the weight selection of each loss function, building upon the original ablation studies. The
quantitative results are presented in Tab. 4. The results demonstrate that variations in performance
across different weight configurations are marginal. Given above, we empirically adopted a 1:1
weight ratio.

A.6 THE COMPARISON RESULTS BY OUR METHOD AND EXISTING LENSLESS
SEGMENTATION TECHNIQUES

For fair evaluation, we also select state-of-the-art method (LLI T, Raw3dNet, EyeCoD, LOINet,
RecSegNet) for comparisons as shown in Fig. 13. Our method demonstrates more precise segmen-
tation results compared to these methods.

A.7 COMPLEXITY ANALYSIS

Fig. 14 displays the comparison results for complexity among the aforementioned 9 methods and
our FDTDNet, considering parameters (Param), Floating Point Operations (FLOPs), and Frame
Per Second (FPS). Our method features 25.87M parameters and 6.82G FLOPs, which are at an
intermediate level. Furthermore, our method achieves a frame rate of 35.9 FPS, thereby fulfilling
the essential real-time processing requirements. These results highlight that our FDTDNet achieves
a favorable balance between performance and complexity.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 13: Comparison with state-of-the-art methods on the DISC-Test dataset. The (a) is the lens-
less measurements corresponding to real images (b); The (c) is the real segmentation maps cor-
responding to (b); The (d)–(i) are the segmentation results by our FDTDNet, LLI T, Raw3dNet,
EyeCoD, LOINet, and RecSegNet.

A.8 THE COMPARISON RESULTS BY OUR METHOD AND ”RECONSTRUCTION +
SEGMENTATION” TWO-STEP METHODS

While the focus of this paper is on the architecture and its potential benefits, we acknowledge the
importance of comparing our method with traditional reconstruction-based methods. To this end, we
employ FlatNet to reconstruct the underlying scene, followed by segmentation using methods such
as CDMNet, BDG-Net, and ZoomNet as the “reconstruction + segmentation” two-step methods.
Our method, however, retains its original configuration. The comparative results shown in Fig. 15
clearly demonstrate that our method outperforms these state-of-the-art methods in segmentation
accuracy.

A.9 MULTI-OBJECT SEGMENTATION RESULTS BY COMPARISON METHODS AND OURS

To further demonstrate the potential of our method in multi-object segmentation, we provide addi-
tional visualization results, as shown in Fig. 16. The figure illustrates that while all methods achieve
partial segmentation of multiple objects, false positives and missed detections increase as the num-
ber of objects grows. Compared to other methods, ours achieves significantly higher segmentation
accuracy. However, we acknowledge that there is still room for improvement in multi-object seg-
mentation performance. In future work, we aim to enhance this aspect to increase its practical
applicability.
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Figure 14: Complexity analysis of our FDTDNet and other state-of-the-art methods in terms of
Param, FLOPs and FPS.

Ours CDMNet BDG-Net ZoomNetMeasurement Real Scene Reconstruction Real Label

Figure 15: Comparison experiment between the “reconstruction + segmentation” two-step method
and ours.
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Figure 16: Multi-object segmentation results by comparison methods and ours. The (a) is the lens-
less measurements corresponding to real images (b); The (c) is the real segmentation maps cor-
responding to (b); The (d)–(i) are the segmentation results by our FDTDNet, LLI T, Raw3dNet,
EyeCoD, LOINet, and RecSegNet.
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