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ABSTRACT

Neutrino telescopes detect rare interactions of particles produced in some of the
most extreme environments in the Universe. This is accomplished by instrument-
ing a cubic-kilometer volume of naturally occurring transparent medium with light
sensors. Given their substantial size and the high frequency of background in-
teractions, these telescopes amass an enormous quantity of large variance, high-
dimensional data. These attributes create substantial challenges for analyzing and
reconstructing interactions, particularly when utilizing machine learning (ML)
techniques. In this paper, we present a novel approach, called om2vec, that
employs transformer-based variational autoencoders to efficiently represent neu-
trino telescope events by learning compact and descriptive latent representations.
We demonstrate that these latent representations offer enhanced flexibility and
improved computational efficiency, thereby facilitating downstream tasks in data
analysis.

1 INTRODUCTION

Neutrino telescopes search for rare interactions caused by neutrinos, an elusive particle central to
many open questions in the Standard Model of particle physics, such as the origin of their masses
and the matter anti-matter asymmetry of the universe. The leading detector in operation today, the
IceCube Neutrino Observatory, comprises 5,160 optical modules (OMs) arranged on strings deep
within the clear ice of the Antarctic glacier (see |Aartsen et al.| (2017)). Each OM is designed to
precisely record the arrival times of photons, forming a photon arrival time distribution (PATD). The
data gathered by IceCube are archived as “events,” which are triggered when a specific number of
coincident light detections occur between OMs in neighboring strings, signaling the presence of a
charged particle. Figure|l|is an artistic representation of the photons produced in a neutrino inter-
action and their subsequent detection in the OMs. A neutrino telescope typically classifies events
into categories based on the morphology of the light detected: cascade-like events, identifiable by
their approximately spherical spatial distribution; and track-like events, characterized by their elon-
gated, linear spatial morphology. In IceCube, events are recorded at an approximate rate of 3000
per second, constituting a large data rate. Moreover, comparable or even larger optical neutrino
telescopes are either under construction or planned, such as KM3NeT (Aiello et al., 2019), Baikal-
GVD (Avrorin et al, 2018), P-ONE (Agostini et al.l [2020), IceCube-Gen2 (Aartsen et al.| [2021)),
TRIDENT (Ye et al., 2022)), and HUNT (Huang et al., [2023)), signaling a need to develop methods
for efficiently handling neutrino telescope data.

The accurate reconstruction and prediction of the interacting particle’s physical properties—
including its energy, direction, and type— from the PATDs recorded by each OM, is essential for
informing and facilitating downstream physics analyses. A significant challenge in this task is the
incorporation of the full-timing information provided by the PATDs of the OMs, which are char-
acterized by high dimensionality and variable lengths. Interaction events may last several us, yet
ns-scale timing resolution is needed on the PATDs for most downstream physics analyses. Further-
more, as illustrated by OM#1 in Figure[I] some OMs near the interaction point can detect up to tens
of thousands of photons in the highest-energy and brightest events. On the other hand, many further
OMs record only a few photons, resulting in highly irregular events; illustrated in the OM#2 distri-
bution on the same figure. In this paper, we introduce a transformer-based variational autoencoder
(VAE), termed om2vec, which encodes PATDs into a fixed-size compact latent representation.
om2vec is trained to reconstruct the input PATD as readout by OMs, using only the information
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from its encoded latent space. In this sense, it learns an efficient and more flexible representation
of the data recorded in each OM. Our approach provides several significant advantages over exist-
ing methods, including improved information retention, greater reliability, faster processing speed,
and reduced hyperparameter dependence. We also demonstrate that utilizing transformers for this
particular problem is particularly effective, by comparing it to a baseline fully-connected network.
We argue that these advantages make this the first “one-size-fits-all” neutrino event representation
learner, making it suitable for deployment at the earliest stages of experimental data collection. This
will serve to circumvent the challenges inherent in raw neutrino telescope data, and facilitate the
rapid adoption of more sophisticated ML techniques from the image-processing community into the
neutrino physics field. Source code, datasets, and pre-trained checkpoints can be found on GitHub.
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Figure 1: An artistic rendition of a cascade-like event, showcasing how photon arrival time distribu-
tions (PATDs) are recorded in neutrino telescopes. A neutrino interaction producing photons occurs
in the detector medium, where it is surrounded by photon-detecting optical modules (OMs). The
photon arrival times are recorded and counted, as shown in the histograms in the above figure. The
amount of photons a particular OM sees is highly variable and generally depends on its proximity
to the interaction point. The main goal of om2vec is to convert the PATD on each OM in the event
into a fixed-size latent representation.

1.1 RELATED WORKS

Machine learning techniques have successfully been applied to neutrino reconstruction tasks in re-
cent years, notably in neutrino telescopes such as IceCube (Choma et al., |Abbasi et al.| 2021}
Huennefeld et al.| 2021} [Abbasi et all, 2022} 2023; 2023; Jin et al., [2024;

et al, [2024) and KM3NeT (De Sio} [2019; [Aiello et all, 2020; Reck et al. [2021}; [Guderian 2022}
Mauro & de Wasseige), [2023)). Previous studies have employed various approaches to address the

challenges of working with neutrino telescope data. One approach uses summary statistics
[2021)), utilizing key variables that summarize the PATD of a given OM. This method yields
greater efficiency and flexibility, as each OM has a fixed-size description of the timing distribu-
tion, allowing events to be formatted as 2D images with multiple features per pixel. However, the
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summary statistics lose a substantial amount of information present in the original PATD. An alter-
native method involves parameterizing the PATD by fitting an asymmetric Gaussian mixture model
(AGMM). In this study, we implemented a basic AGMM to serve as a comparison, drawing inspira-
tion from [Huennefeld et al.|(2021)). While this retains significantly more information than summary
statistics, the optimization process can be slow and prone to failure, with a strong dependence on
hyperparameters, e.g., the number of Gaussian components. Our transformer-based VAE approach
builds upon these previous methods while addressing their limitations.
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Figure 2: Model architecture of om2vec. Input embeddings are generated from the binned PATDs.
Each encoder (decoder) block operates on both the feature and sequence dimensions, where feed-
forward layers are used to downsample (upsample) the length of the distributions. In the decoder, a
memory embedding is learned to keep the decoder independent of the encoder.

Since their inception, VAEs have been extensively utilized for learning effective data representations
and generative modeling (Kingma & Welling, |2022). More recently, transformers have demonstrated
exceptional performance in handling sequential data (Vaswani et al.| |2017). Given the time series
nature of our dataset, we incorporate transformer layers to enhance feature learning capabilities.
Our model employs the standard encoder-decoder structure, as illustrated in Figure 2] We assume a
Gaussian prior for the latent space and train the encoder to learn the parameters 4 and o, with some
added random noise €. The re-parameterization trick is then utilized to construct the latent represen-
tation z while maintaining proper gradient flow to these parameters. A key property of VAEs over
regular autoencoders is their continuous latent space, meaning that similar representations within
this space correspond to similar reconstructed PATDs.

The input data PATDs are formatted as one-dimensional time series sequences of equal length, with
each element corresponding to a specific time in sequence. Each element features a single attribute:
the number of photon hits occurring during that particular time window. We first expand the feature
space with an input embedding layer. The encoder and decoder are constructed by stacking blocks.
Importantly, we employ a hybrid approach that operates across both the feature and sequence dimen-
sions. Transformer layers process the feature dimension, followed by a feed-forward network that
down-samples or up-samples the sequence length in the encoder and decoder, respectively. Linear
layers are then used to flatten the feature dimension into latent representations, as well as to generate
output logits after the decoder. We use a simple vector of learnable parameters, the "memory em-
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bedding,” which acts as the memory input for the transformer decoder layers. After the final linear
layer, the outputs are fed through the softmax function to obtain a properly normalized probability
density. We interpret the final softmax activation’s output as the probability of detecting a photon
hit in each timing bin.

3 DATASETS

Simulations play a key role in neutrino physics experiments, facilitating preliminary testing that
informs experiment development and subsequent physics analyses. As such, the field has devel-
oped sophisticated simulation tools capable of generating events for incorporation into our training
datasets. In this paper, we present results trained and tested on simulated events, but emphasize that
the methodology can be readily applied to real detector data. We employ the open-source simulation
toolkit Prometheus (Lazar et al.,2024) to emulate an IceCube-like array of OMs within Antarctic
ice. We generate four datasets of events based on the different neutrino interaction types, correspond-
ing to the distinct flavors of the neutrino, v. Specifically, these interactions are the charged-current
electron neutrino (v, CC), muon neutrino (v, CC), and tau neutrino (v, CC) interactions, alongside
the neutral-current (v NC) interactions. Notably, the v, CC, v, CC, and v NC interactions produce
predominantly spherical cascade-like events, while the v,, CC interactions result in long track-like
events. Additionally, as further detailed in Section [5] the PATDs generated by v, CC interactions
are of particular interest to physicists due to their potential to exhibit a smoking-gun “double-bang”
signature of astrophysical neutrinos.

Events are simulated, and all OMs detecting at least one photon hit are included in the overall
training dataset. We extract five million PATDs from both v, CC and v NC interactions, as their
signals are quite similar. Additionally, 7.5 million PATDs are sourced from v,, CC events, and 3.25
million PATDs from v, CC interactions, totaling approximately 20 million PATDs for the training
dataset. An additional 4.5 million distributions are reserved for the test dataset, mixed roughly
equally from each interaction type. The majority of OMs registering light detect only a few photon
hits. For an illustration of this distribution, see the bottom panel in Figure[3] Notably, photon yields
from interactions increase significantly at higher energies. The simulated events span a wide range
of energies to encompass all types of PATDs that may occur in neutrino telescopes.

As previously mentioned, each PATD in the datasets is pre-processed into a fixed-length vector by
binning photon hits over time. A total of 6400 bins, each 1 ns wide, represent the first 6.4 us
of hits—a readout time frame consistent with IceCube’s OMs (Aartsen et al., 2017). The choice
of binning and time window can be adapted to suit the specifications of other neutrino telescopes.
Any remaining hits are accumulated in a final overflow bin. The hit counts in each bin are then
log-normalized, as they can be extremely large for high-energy neutrino interactions.

4 PROPOSED METHODS

In this section, we provide a more detailed definition of the objective function for this problem. As
previously discussed, the conceptual goal of om2vec is to learn how to encode a PATD into a repre-
sentation vector and subsequently decode this representation back into its corresponding probability
density function. Mathematically, the reconstruction loss is defined as

Nbins
Lreeol8) = = log P(al6) = Y [~ og(As(0)) + \i(0) 1)
i=1
where:
n; = observed count in bin ¢ (true PDF)
Ai(0) = expected count in bin 7 (predicted PDF)
Npins = total number of bins, or input length
6 = model parameters

Given the predicted PDF from the network (after softmax), and the normalized true PDF from the
input PATD, this loss function takes the negative logarithm of the summed Poisson likelihoods,
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representing the probability of registering the observed number of hits in each bin, based on the
predicted hit counts.

The total training loss combines reconstruction loss and a KL divergence regularization loss on the
latent space. This regularization term is needed to ensure that the learned latent space aligns with
the prior normal distribution. It is also scaled by a 3 factor that follows a cyclic cosine function
during training, peaking at a hyperparameter value set at 1075, A batch size of 1024 is used during
training.

5 RESULTS

In this section, we present the performance and efficiency results of om2vec across several bench-
marks. In several cases, we also compare to the more traditional AGMM method for encoding
PATDs. The AGMM operates by fitting multiple asymmetric Gaussians defined by the equation

_M <
AG(t | W, 0, 7”) = # * eXp( t2702 2), T=H
V2rxo(r+1) (t—p)

exp(— 1L ), otherwise

where p and o are the mean and standard deviation and r is the asymmetry parameter, as introduced
in (Huennefeld et al [2021)). Each asymmetric Gaussian is assigned a weighting factor, w, and then
summed. Consequently, each component of the mixture model introduces four parameters: y, o, r,
and w. The mixture model is initially fit using k-means clustering to obtain the starting parameters,
followed by solving a bounded-constrained optimization problem that minimizes the negative log-
likelihood. However, the fit is only performed when the number of photon hits (the length of x) is
greater than the number of Gaussian components. Otherwise, the true photon hit times are stored.

5.1 TIMING DISTRIBUTION REPRODUCIBILITY
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Figure 3: JS distance between the true input PATD and the reconstructed PATD across different
methods, plotted as a function of the number of detected photons in the input PATD. Greater values
of the JS distance implies a worse fit. In the AGMM methods, the sudden jump is caused by the
fit only being performed when the number of photon hits is greater than the number of Gaussian
components. The lower panel illustrates the percentage of PATDs in each number of photons bin,
relative to the total dataset.
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We now evaluate the ability of om2vec to retain information in its latent representation by mea-
suring how accurately it can reconstruct the input PATD. We train three separate models, each with
a different latent dimension size (32, 64, and 128). For comparison, we also present results from
our AGMM implementation, using the same total number of parameters (8, 16, and 32 components,
with 4 parameters per component).

To assess the reconstruction capability, we employ the Jensen-Shannon (JS) distance (Lin} (1991}
Nielsen, 2019), which is derived from the KL divergence and is defined as follows:

P+Q
2

1 P
)+ 5 ore@] T,

Dys(P|Q) = \/;DKL(P \

given the distributions P and @), and where D is the KL divergence. The JS distance provides a
similarity score between 0 and 1, where O indicates identical distributions and 1 indicates maximum
difference. In Figure [3] we present the median JS distance curves for both om2vec and AGMM
approaches, across the three different latent dimension sizes. We plot the JS distance as a function
of the number of photons recorded in the PATD, scaling up to a thousand photons. While some
PATDs observe significantly more photons from the highest-energy events, the statistics are sparse
(i.e., there are few PATDs) at those higher photon counts.
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Figure 4: Failure percentage (> 0.99 JS distance) as a function of the number of photons on the
input PATD. om2vec is always at 0% in this figure.

Notable characteristics of these curves include well-reconstructed distributions on the left, where
the number of photons is low enough for the representations to “memorize” the distribution. This
is followed by a sharp upward trend, peaking in a regime where there are too many photons for
memorization, but insufficient statistics to generate a well-formed PATD. We then observe the JS
distance decreasing as the number of photons increases, allowing for enough statistical information
to effectively reconstruct the PATD. We also observe that increasing the latent dimension size for
om2vec noticeably enhances the performance of representation learning, a trend not reflected in the
AGMM method. Further insights into this phenomenon can be gained by examining the failure rate
in Figure[d] where we define “failures” as PATDs reconstructed with a JS distance greater than 0.99.
Notably, the VAE is never above this threshold for all PATDs. In contrast, a substantial percentage of
PATDs from the AGMM method are mis-reconstructed due to optimization failures, with this failure
rate increasing as more parameters and components are added.
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Figure 5: An example PATD of a “double-bang” signature, characterized by two distinct peaks.
om2vec is able to reconstruct both peaks, while the AGMM is noticeably less accurate.

In order to give a more intuitive sense of the performance of om2vec, we examine individual PATDs
and their reconstructed probability density functions. This is especially interesting for exotic cases
such as the “double-bang” signature produced by v, interactions, as mentioned earlier. Figure [3]
illustrates an example of this type of PATD, distinguished by its two distinct peaks. It is evident
that om2vec reconstructs the bimodal structure of the timing distribution with greater precision
than the AGMM method, despite the overall JS distance difference between the two methods being
minor. As this is an extremely large PATD (~100,000 photons), this is likely due to the dominant
statistics contained in the first peak. However, from a physics perspective, retaining information
about both peaks is crucial for downstream tasks that attempt to isolate v, interactions, a smoking-
gun indication of astrophysical neutrinos.

Table 1: Average JS distance and forward-pass FLOPs for the different om2vec models tested.
MODEL JSD FLOPs

Fully-connected 0.3545  2.899 x 107
Transformers (1 block) 0.2340  1.299 x 10°
Transformers (3 blocks) 0.2177 1.882 x 10°

We further evaluated three different model architectures, all employing 64 latent parameters, to as-
sess their impact on the average JS distance. As a baseline case, we trained a model using only
fully-connected layers. The other two architectures incorporated transformers, as it is described
in Section 2] with varying numbers of encoder and decoder blocks. A summary of the results is
provided in Table [T We note that the default architecture used in previous experiments features
three encoder-decoder blocks and is highlighted in bold. Comparing the fully connected model to
the transformer-based architectures, we observe a substantial improvement in reconstruction perfor-
mance when incorporating transformer layers. However, this enhancement comes at a considerable
computational cost, with the number of FLOPs required for a forward pass increasing by approxi-
mately two orders of magnitude. Furthermore, adding additional transformer encoder-decoder layers
yields a slight further improvement in reconstruction performance.

5.2 RECONSTRUCTION WITH REPRESENTATIONS V.S. FULL INFORMATION

We now evaluate whether downstream physics analysis tasks suffer any performance loss when
using the latent representations. One of the most critical downstream analysis tasks is angular re-
construction, i.e. predicting the direction of the incoming particle based on the photons recorded
across the OMs. We test three different separately trained ML models for angular reconstruction on
track-like events.

* SSCNN (Full): a sparse submanifold convolutional neural network (SSCNN) that uti-
lizes full timing information in a 4D CNN, as described in Yu et al.[(2023).

* SSCNN (om2vec): another 3D (reducing the timing dimension) SSCNN that leverages
the latent representations from om2vec.
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Figure 6: Angular resolution as a function of the true neutrino energy. The models trained using the
latent representations from om2vec are able to perform just as well when compared to using the
full timing information.

e CNN (om2vec): a traditional 2D ResNet CNN, where each neutrino event is encoded
into a 2D image representation. These image representations are created by pixelizing the
detector geometry along the strings and the OMs per string, then concatenating the latent
representation and spatial position information at each pixel for the feature dimension.

In the methods employing om2vec, we first pre-process the events using the trained 64-parameter
om2vec model, to generate latent representations for the subsequent SSCNN and CNN networks.
In Figure [6] we show the neutrino angular resolution (the angular difference between the true and
predicted neutrino direction), as a function of the true neutrino energy. We find that the SSCNN
models using the full timing information and the latent representations perform similarly, though as
expected, the full 4D model is able to achieve a slightly better resolution. Notably, SSCNN sacrifices
some performance to remain computationally feasible on higher-dimensional sparse data (Graham
& van der Maaten, [2017). Thus, we observe that the dense CNN approach with latent representations
performs just as well or slightly better than the SSCNN with full-timing information, depending on
the true neutrino energy. This CNN approach is made possible by the fixed-length latent representa-
tions. Importantly, we note that this new flexibility allows for the easy adaptation of more powerful
models, such as vision transformers (Dosovitskiy et al.,2021), for angular reconstruction.

5.3 RUNTIME EFFICIENCY

In terms of forward pass encoding runtime, om2vec proves to be an efficient method, particularly
when compared to classical approaches like the AGMM. Table [2| presents the average per-PATD
runtime for various encoding methods alongside their latent dimensionalities. om2vec also signifi-
cantly benefits from GPU acceleration, unlike the AGMM. Even when running on a CPU, om2vec
is an order of magnitude faster. This is particularly important when running in resource-constrained
environments such as IceCube’s lab at the South Pole. With GPU acceleration, this speed advan-
tage increases to two orders of magnitude. It is also worth noting that PATDs can be batched and
processed in parallel on the GPU, which would further speedup the average runtime. Additionally,
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Table 2: Average per-PATD runtime of encoding methods.
METHOD CPU RUNTIME (s) GPU RUNTIME (s)

AGMM (dim=32)  0.142 -
AGMM (dim=64)  0.557 -
AGMM (dim=128) 1.408 -
om2vec (dim=32)  0.0207 0.00184

om2vec (dim=64)  0.0204 0.00185
om2vec (dim=128) 0.0330 0.00193

om2vec scales well with increasing latent dimensionality, allowing users to expand the latent space
with minimal runtime impact.

We also observe runtime improvements when running angular reconstruction algorithms on events
using om2vec-represented PATDs instead of full-timing information. SSCNN (Full) took ap-
proximately 8.5s to process 20,000 events. In contrast, SSCNN (om2vec) took only 2.1s for the
same number of events, representing a significant speedup. All GPU runtime tests were conducted
on an NVIDIA A100 80GB.

6 CONCLUSIONS AND FUTURE DIRECTIONS

This work introduces om2vec, a novel approach utilizing transformer-based VAEs to efficiently
represent neutrino telescope events. Our method addresses the significant challenges posed by the
large size, high dimensionality, and variance of data in neutrino telescopes. By learning compact
and descriptive latent representations, om2vec offers several advantages for downstream analysis
tasks.

We have demonstrated that these learned latent representations not only preserve critical information
from the original PATDs but also provide enhanced flexibility and substantial computational benefits.
Our experiments show that models trained on these latent representations can achieve comparable
performance to those using full-timing information in crucial tasks such as angular reconstruction.
The enhanced efficiency and adaptability of om2vec encoding for neutrino telescope events paves
the way for more sophisticated ML algorithms to be applied to neutrino telescope events. In particu-
lar, employing image-based algorithms in neutrino telescopes becomes straightforward by encoding
the data using om2vec.

Another future direction could involve exploring data throughput rate reduction through latent repre-
sentations. In existing active telescopes like IceCube, OM readouts are restricted by data throughput
rate limits imposed by various physical and networking factors. Considering that high-energy events
can result in tens of thousands of photons hits on a single OM, utilizing latent representations could
decrease the throughput rate, enabling experiments such as IceCube to store higher-resolution timing
information than is currently feasible.

By bridging the gap between the complex, high-dimensional data of neutrino telescopes and efficient
ML techniques, om2vec represents an important step forward in our ability to sharpen our view of
the neutrino sky. As our telescopes grow larger and data rates increase, our capability to efficiently
process events will play an increasingly crucial role in pushing the boundaries of neutrino astronomy.

Availability: Source code, datasets, and pre-trained checkpoints for om2vec on Prometheus
events is made available on GitHub. Additionally, as an immediate next step, om2vec is being
integrated into GraphNeT (Sggaard et al., |2023), an open-source deep learning pipeline widely
utilized by various collaborations in the neutrino telescope community.
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