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Abstract

The burgeoning interest in developing Large Language Models (LLMs) with
up to trillion parameters has been met with concerns regarding resource
efficiency and practical expense, particularly given the immense cost of
experimentation. This scenario underscores the importance of exploring
the potential of Small Language Models (SLMs) as a resource-efficient
alternative. In this context, we introduce MiniCPM, specifically the 1.2B and
2.4B non-embedding parameter variants, not only excel in their respective
categories but also demonstrate capabilities on par with 7B-13B LLMs.
While focusing on SLMs, our approach exhibits scalability in both model
and data dimensions for future LLM research. Regarding model scaling, we
employ extensive model wind tunnel experiments for stable and optimal
scaling. For data scaling, we introduce a Warmup-Stable-Decay (WSD)
learning rate scheduler (LRS), conducive to continuous training and domain
adaptation. We present an in-depth analysis of the intriguing training
dynamics that occurred in the WSD LRS. With WSD LRS, we are now able
to efficiently study data-model scaling law without extensive retraining
experiments on both axes of model and data, from which we derive the
much higher compute optimal data-model ratio than Chinchilla Optimal.
Additionally, we introduce MiniCPM family, including MiniCPM-DPO,
MiniCPM-MoE and MiniCPM-128K, whose excellent performance further
cementing MiniCPM’s foundation in diverse SLM applications. MiniCPM
models are available publicly 1.

1 Introduction

Following the revelation of the scaling law (Kaplan et al., 2020), there has been a vigorous
pursuit in the field of Large Language Models (LLMs) (Hoffmann et al., 2022; Bai et al., 2023;
Gemini et al., 2023; Chowdhery et al., 2023; Achiam et al., 2023), encompassing models with
up to an astonishing number of parameters in the trillions (Fedus et al., 2022). These models
have emerged as a pivotal driving force in the evolution of artificial intelligence.

Nonetheless, the training of such large-scale models is both financially burdensome and
operationally inefficient. On one hand, the empirical understanding of the mechanisms
underpinning the training of LLMs remains elusive. Given the significant economic and
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environmental costs, experiments on LLMs are prohibitively expensive for most researchers
and corporations. On the other hand, the deployment of these colossal models in everyday
scenarios, such as on personal computers or smartphones, is either inefficient or unfeasible.
Both aspects underscore the imperative to refocus efforts on comprehensively exploring
smaller, yet potent, language models (SLMs). These models on the one hand provide efficient
solutions to practical deployment, on the other hand, if trained with scalable strategies, they
can potentially guide the development of future larger models.

Recently, a resurgence of interest has been observed in the domain of SLMs, evidenced by
the advent of a series of innovative models such as the Phi series (Gunasekar et al., 2023; Li
et al., 2023b; Javaheripi & Bubeck, 2023), TinyLlama (Zhang et al., 2024a), MobileLLM (Liu
et al., 2024), and Gemma (Banks & Warkentin, 2024), among others. While these models have
significantly contributed to the expansion and diversification of the SLM landscape, there
remain two pivotal areas where these models have yet to fully satisfy prevailing interests:
(1) the development of comprehensive abilities akin to those exhibited by LLMs; and (2) the
formulation of transparent and scalable training methodologies that could further propel
the evolution of both SLMs and LLMs.

In this paper, we introduce MiniCPM, a series of SLMs, which primarily builds on two
models, endowed with 2.4B and 1.2B non-embedding parameters respectively, and they
rank preeminently in their respective 2B and 1B scale categories. MiniCPM also exhibits
comparable capabilities to those of 7B∼13B language models, such as Llama2-7B (Touvron
et al., 2023), Mistral-7B (Jiang et al., 2023), Gemma-7B (Banks & Warkentin, 2024), and
Llama-13B (Touvron et al., 2023), etc. Notwithstanding their small model sizes, our training
methodology is meticulously designed to facilitate seamless scaling of both model scale
and data horizons. This is exemplified through our model wind tunnel experiments that
encompass comprehensive hyper-parameter optimization (Section 3), and the deployment
of a WSD (Warmup-Stable-Decay) learning rate scheduler (Section 4). The latter is tailored
for continuous training with an un-predefined pre-training token number and makes the
reusing of model intermediate checkpoints highly feasible. A detailed analysis of the training
dynamics of MiniCPM is presented, suggesting that the WSD scheduler demonstrates the
intriguing loss landscape of model pre-training. With the WSD scheduler, we are now also
capable of studying the data-model scaling law with linear effort on the model axis and a
negligible effort on the data axis, while the traditional ones need quadratic effort considering
the scaling along both model and data axes. The result of the scaling law indicates a much
higher data size/model size ratio compared with Chinchilla Optimal (Hoffmann et al.,
2022).

Moreover, we introduce the MiniCPM family, including MiniCPM-DPO, MiniCPM-128K,
and MiniCPM-MoE. We conduct evaluations of the MiniCPM family against established
benchmarks and illuminate their impressive capabilities as SLMs: (1) The foundation models
surpass Mistral-7B, and LLama-13B. (2) The DPO model surpasses zephyr-7B (Tunstall et al.,
2023) on MTBench (Zheng et al., 2024) (3) The 2.4B MiniCPM-128K model demonstrates
performance either surpassing or matching that of models like Yarn-Mistral-7B-128K (Peng
et al., 2023) and ChatGLM3-6B-128K (Du et al., 2021). (4) The MiniCPM-MoE, with 4B
activated parameters, is on par with Llama2-34B (Touvron et al., 2023).

In summary, MiniCPM propounds a new stage in the development of small language
models, exemplifying the latent potential within SLMs and advocating for a more scientific
and sustainable approach toward scaling up LLMs.

2 Related Work

Small Language Models. “Small Language Models” (SLMs) is an evolving concept that has
undergone significant transformations over time. Presently, SLMs are generally construed as
models that are smaller in scale compared to the well-known LLMs, typically not exceeding
7 billion parameters. These models are distinguished by their capacity for deployment
on end-user devices, such as personal computers and smartphones, even in the absence
of a GPU. Notable examples within the current landscape of SLMs include the Phi series
(Gunasekar et al., 2023; Li et al., 2023b; Javaheripi & Bubeck, 2023), TinyLlama (Zhang
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et al., 2024a), MobileLLM (Liu et al., 2024), and Gemma (Banks & Warkentin, 2024), etc.
A variety of methodologies have been explored to augment the ef�cacy of SLMs. These
include the incorporation of high-quality data (Gunasekar et al., 2023; Li et al., 2023b;
Javaheripi & Bubeck, 2023), the application of structure pruning techniques (Xia et al., 2023),
and the recon�guration of model architectures (Liu et al., 2024), among others. MiniCPM
enhances the capabilities of SLMs through a meticulous amalgamation of hyper-parameter
optimization, strategic training methodologies, architectural design, and high-quality data.

Scalable Pre-training Strategies. Since the discovery of scaling law (Kaplan et al., 2020; Rae
et al., 2021; Aghajanyan et al., 2023), scienti�cally and predictably (Achiam et al., 2023; Hu
et al., 2023; Du et al., 2024) scaling up the LLMs has been pursued from diverse perspectives,
especially for the pre-training stage. In terms of training stability, the Tensor Program
series (Yang et al., 2022; 2023) is introduced to ensure optimal hyper-parameter consistency
across varying model scales, a technique employed in training CerebrasGPT (Dey et al.,
2023). Furthermore, Wortsman et al. (2023) suggest leveraging smaller models to anticipate
and mitigate instabilities in larger model training. From the training data standpoint,
various data-centric strategies have been advocated (Xie et al., 2024; Shi et al., 2023; Ye
et al., 2024). In the realm of training methodologies, prior research has delved into diverse
learning rate schedulers (LRS) (Howard & Ruder, 2018; Raffel et al., 2020; Hundt et al., 2019),
with the Cosine LRS (Loshchilov & Hutter, 2016) emerging as the predominant choice in
LLMs. Kaplan et al. (2020) and Hoffmann et al. (2022) have meticulously examined the
hyper-parameters of Cosine LRS, thereby laying a foundational groundwork for subsequent
pre-training works. Of these, DeepSeek (Bi et al., 2024) bears the closest resemblance to our
proposed WSD LRS. Concerning batch size scheduling, Smith et al. (2017) advocates for
incrementing batch size as an alternative to diminishing learning rate, a strategy recently
adopted by Yi-9B (Young et al., 2024).

3 Model Wind Tunnel Experiments

Although we target at training SLMs that can be quickly deployed onto end devices, we
envision that many aspects of model training are universal across scales. Extensive experi-
ments should be conducted through an SLM to explore the limit of SLM before transferring
the experience into LLMs. These experiments take the spirit of wind tunnel testing in
developing an aircraft, thus we name it Model Wind Tunnel Experiments (MWTE). In this
paper, the MWTE contains three parts: (1) Hyper-parameters; (2) Optimal Batch-size Scaling;
and (3) Optimal Learning Rate Stability.

3.1 Scaling Hyper-parameters Invariant LM

Hyper-parameters have a signi�cant impact on the performance of a model. However,
adjusting hyper-parameters for each model in traditional training is not feasible for LLMs.
Even for SLM like MiniCPM, extensive experiments on hyper-parameters search take a lot
of resources. Tensor Program (Yang et al., 2022; 2023) proposes a framework to stabilize the
hyper-parameters for models with different scales. The main part of the Tensor Program
is the width scaling (Yang et al., 2022) and the depth scaling (Yang et al., 2023). The
former technique supports CerebrasGPT (Dey et al., 2023) to predict the loss of LLMs more
accurately. In MiniCPM, we use both two scaling techniques. The speci�c scaling operations
are listed in Table 3. We do not apply the attention softmax scaling techniques proposed
in (Yang et al., 2022) (See Table 3 of their �rst version). Despite Yang et al. (2023) observing
that depth scaling for a network with block depth larger than two is not satisfying, we �nd
the resulting optimal learning rate is stable empirically. Details of the hyper-parameters and
Tensor Program Operations are in Appendix A.1.

3.2 Optimal Batch Size

Batch size determines the balance between the convergence speed of the model and the
consumption of computational resources. If the batch size is too large, it will result in a
signi�cant amount of data and computation costs. On the other hand, if the batch size
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is too small, it will require a large number of training steps and may result in a limited
decrease in the loss function. We follow Kaplan et al. (2020) to determine the batchsize from
expected loss, with a slight modi�cation from their setting (see Appendix A.2). We conduct
experiments on 0.009B, 0.03B, and 0.17B models, respectively, toward this goal. Each model
size is trained on 6 batch sizes with a global learning rate of 0.01 and cosine learning rate
scheduler. We observe the trend of the optimal batch size with loss on the C4 (Raffel et al.,
2019) dataset (red line in the Figure 1).

Figure 1: We demonstrate the loss curve of three size models
trained using different batch sizes. Each vertical line formed
by points with a gradient color represents a training curve.
Lighter colors denote higher loss.

Figure 2: The connected op-
timal batch sizes.

As shown in Figure 1, we plot the batch size in the x-axis, and token consumption in the
y-axis, the color of the points represents a loss. Thus a vertical line formed by the color
points denotes a training curve. we use parabolas to �t the equal-loss points and connect
the minima of the parabolas with red lines. The lines demonstrate the optimal batch size
shifts large as the loss decreases. We then connect the three lines (see Figure 2) and �nd that
the lines connect each other well into a linear relationship in the log space, from which we

obtain the following relationship between batch size bsand C4 Loss L: bs= 1.21� 109

L6.24 . We
note that it might seem strange that the batch size should be estimated from a rough loss
prediction that we can only have after training. We provide our comment in Appendix A.2.

3.3 Optimal Learning Rate

Due to our use of Tensor Program (Yang et al., 2022; 2023), we anticipate that the learning
rate, will not undergo signi�cant changes during model scaling. To verify this, we conduct
six sets of learning rate experiments at 0.04B, 0.1B, 0.3B, and 0.5B. In Figure 3, we �nd that
although the model size has increased by ten times, the optimal base learning rate 2 does not
show a noticeable shift and remains around 0.01. We further conduct a simple validation on
a scale of 2.1B and con�rm that a learning rate of 0.01 indeed achieves the lowest loss.

Figure 3: Loss vs Learning Rate. After ap-
plying for the Tensor Program, the learn-
ing rate shift becomes minimal.

Figure 4: Cosine Learning Rate Scheduler
with different periods. The Y-axis is the
loss on the C4 corpus.

2The actual learning rate of 2-D tensors will be scaled according to Tensor Program.
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4 WSD Learning Rate Scheduler

4.1 Analysing Cosine LRS

The learning rate scheduler (LRS), which adjusts the learning rate used in different stages
of training, is crucial for model performance. The current commonly used learning rate
strategy is the Cosine LRS (Kaplan et al., 2020; Hoffmann et al., 2022; Rae et al., 2021; Touvron
et al., 2023; Bai et al., 2023; Almazrouei et al., 2023), which gradually decreases the learning
rate following a cosine curve after it reaches its maximum after the warmup stage.

A key hyper-parameter in the Cosine LRS is the step T at which Cosine decreases to the
minimum for the �rst time. Typically, T is set to the total training step S for training with a
prede�ned training step. Generally, it is believed that the learning rate should be high to
enable suf�cient exploration. For example, Kaplan et al. (2020) demonstrate that the loss
decreases when the summed learning rate over the entire training increases (see Figure 22
in their paper). This indicates setting T < S is not optimal. On the other hand, Hoffmann
et al. (2022) make a key observation that setting T > S results in dropped performance
while setting S = T results in improved training ef�ciency, con�rming that the learning
rate shouldn't be kept high throughout the training. To reproduce these observations,
we conduct experiments on the 0.036B model. We try Cosine(T) and CosineLoop(T) LRS,
following the formula shown in Appendix B.1. The result can be seen in Figure 4. We can see
that when the training step is S = 20N, 40N, 60N, 80N, the lowest loss is always achieved
by the Cosine(T) where T = S. Both T < S and T > S are not optimal.

We hypothesize that the Cosine LR performs exceptionally well when T = S because of the
following two reasons: (1) Cosine LRS with T = S has a longer duration of high learning
ratetraining compared to T < S and other LRS such as Linear LRS. This high learning rate
might help the model �nd a better global optimum. (2) Cosine LRS with T = S has a more
thorough learning rate decay phase compared to Cosine LRS with T > S and Constant LRS.
This learning rate decay may involve unique training dynamics that enable the model to
�nd a better local optimum.

4.2 WSD LRS

In light of the above perspective, we propose to explicitly divide the training stage into the
high learning rate stage and learning rate decay stage. We name it as the Warmup-Stable-
Decay (WSD) LRS. Especially, the WSD LRS contains three stages: the warmup stage (whose
end step is denoted by W), the stable training stage (whose end step is denoted by T), and
the remaining decay stage. The function form of WSD is:

WSD(T; s) =

8
<

:

s
W h, s < W
h, W < s < T
f (s � T)h, T < s < S

(1)

where 0 < f (s � T) � 1 is a decreasing function about s, h is the maximum learning rate.
Typically, as long as the warmup stage is enough, it affects little performance, therefore, we
omit W in the subsequent discussion. With an abuse of notation, we will denote WSD with
a clear stop point

4.3 Experiments

Next, we present several experimental �ndings of WSD LRS.

Loss Decreases Dramatically in Decay Stage. We try WSD LRS on 0.036B models. As
shown in Figure 5, in the decay stage, as the learning rate begins to decrease, the loss
experiences a signi�cant rapid decline and quickly decreases to be equal to or lower than
the Cosine LRS at stepT = S. At the same time, we can reuse the model before decay and
continue training with the previous high learning rate. After more steps of training S0, we
can also perform annealing to achieve the same loss as the Cosine LRS atCosine(S0). This
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Figure 5: Model training loss has a sudden
decrease in the decay stage of WSD LRS.

Figure 6: Continous training a 0.036B model
can match the performance of 0.17B model
with an acceptable increase in training com-
pute.

veri�es our assumption that the training stage can be explicitly split into the stable training
and decay stages.

10% Steps are Enough. From the two-stage training perspective, shortening the decay stage
will greatly bene�t the fast test of different model checkpoints of stable training. Therefore,
we conduct experiments that start from the same stable training checkpoints and have
different decay steps. Also shown in Figure 5, among all three stable training checkpoints in
40N, 60N, and 80N training data, having a decay of 10% of the total tokens is suf�cient to
achieve the best results, while a decay of 2.5% of total tokens falls short. Therefore, in the
subsequent training experiments, we use a decay of about 10% to ensure full convergence.

Effective Data Scaling with WSD LRS. With WSD LRS, we can continuously train the LM
to extreme convergence. To further demonstrate the potential of training a �xed-sized model
to convergence, we compare continuously training a 0.036B LM with a 0.17B model with
40N data. In Figure 6, the green lines represent 0.036B models trained with different stable
training tokens. Despite the last point of the 0.036B series being trained with many more
tokens than Chinchilla Optimal (Hoffmann et al., 2022), it still has space for performance
improvement.

To �nd the limit of continuously training this �xed-sized LM, we estimate how the model's
optimal performance changes with its computation during continuous training. By optimal
performance, we mean the loss of training token D is achieved by WSD(D, 0.1D). With a
series of D, the losses will form the optimal loss envelope. Due to uncertainty about the
function form of the loss envelope, we try two �tting formulas: (1) exponential: L(C) =
ae� bC + L0 and (2) power-law: L(C) = bC� a + L0. The �tting results for both functions
are in Appendix B.2. We �nd that the power-law form �ts better (similar to the Cosine
LRS (Kaplan et al., 2020)). In Figure 6, the �tted curve is shown in green dotted lines. To
intuitively estimate and comprehend the effect of continuous training such a �xed-sized
model, we also trained a 0.17B model with WSD(40N, 4N ), which is shown in pink in
Figure 6. We can see that a 0.036B model can match the performance of a 0.17B model
with an acceptable increase (� 4 times) in training compute while saving a lot of inference
computation (Sardana & Frankle, 2023) (saving � 5 times per inference call), indicating a
better inference-compute-optimal setting (Sardana & Frankle, 2023).

Note

To deepen our understanding of WSD scheduler, we provide a detailed analysis
of the model training dynamics in Appendix D. The WSD scheduler also helps
us estimating the scaling law better and more ef�ciently, which can be found in
Appendix E.
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5 Two Stage Pre-training Strategy

Typically, the training of instruction following LLMs contains the pre-training stage and
the supervised �ne-tuning (SFT) stage (Zhang et al., 2023; Wei et al., 2021). In the pre-
training stage, the data is composed of large-scale unlabeled data, while in the SFT stage,
high-quality labeled data becomes the optimization target. In light of the pronounced loss
decrease observed during the decay stage of the WSD LRS, we postulate that the integration
of high-quality labeled data in this phase presents dual advantages:

• Introducing this data during the annealing phase, in addition to the SFT stage,
fosters a more comprehensive model learning. Speci�cally, it facilitates a more
pronounced loss reduction in relation to the SFT data distribution, rather than the
pre-training data distribution. This approach is more congruent with actual user
scenarios.

• In contrast to a uniform distribution of high-quality data throughout the entire
pre-training process, this method enhances training by concentrating on data and
sustaining continuous pre-training. If we do not predetermine a training step, we
will repeat a small dataset throughout an ongoing pre-training process, which could
lead to negative effects.

Based on these two hypotheses, we propose the following training strategy: during the pre-
training phase, only use large-scale coarse-quality pre-training data, which is abundant and
can support continuous training when provided with more computational resources. During
the annealing phase, we use diverse and high-quality knowledge and ability-oriented SFT
data, mixed into the pre-training data.

To validate the advantages of our training strategy, we conduct comparison experiments
using (A) MiniCPM-2.4B's intermediate checkpoint in the stable stage; and (B) MiniCPM-
1.2B's last checkpoints in the stable stage. Speci�cally, we compare the following:

1. A-1: 2.4B model, decay using only pre-training data, followed by 4B token SFT.

2. A-2: 2.4B model, decay using the aforementioned high-quality data unlabeled data
and SFT data mixed into pre-training data, also followed by 4B token SFT.

3. B-1: 1.2B model, decay using only pre-training data, followed by 6B token SFT.

4. B-2: 1.2B model, decay using only pre-training data, followed by 12B token SFT.

5. B-3: 1.2B model, annealing using the aforementioned high-quality data + SFT data
mixed into pre-training data, also followed by 6B token SFT.

The results of the experiments are shown in Table 1. We can see that, despite the A-2 and
A-1 have undergone the same SFT distribution, adding SFT data to the decay stage pushes
the boundary . Comparison between B-2 and B-3 demonstrate that the de�ciency of only
SFT is not due to the insuf�cient training tokens in SFT stage.

C-Eval CMMLU MMLU GSM8K MATH HumanEval MBPP

A-1 40.0 41.5 44.6 27.7 5.1 27.7 24.4
A-2 52.6 51.1 50.9 42.3 5.4 30.4 30.3

B-1 40.9 41.5 47.9 34.2 7.9 43.9 30.5
B-2 41.2 42.0 47.9 34.4 7.3 43.9 29.8
B-3 49.1 46.8 49.6 31.8 10.5 44.5 32.8

Table 1: The ablation study of different training strategies.

The results indicate that the bene�ts of introducing high-quality data at the beginning of the
decay stage are much higher than simply adding it during the SFT phase. Therefore, we
recommend that specialization and enhancement of model capabilities should start from
the decay phase.
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6 Model

In this section, we begin to introduce the MiniCPM model that aggregates the aforemen-
tioned observations and techniques. Due to page limitation, the model architecture details
are in Appendix F.

Figure 7: Data mixture of different training stages. The stable stage is shown on the left and
the decay stage is shown on the right.

6.1 Training Stages

The overall training of the MiniCPM base model includes three stages: stable training stage,
decay stage, SFT stage (Zhang et al., 2023; Wei et al., 2021). Throughout the stages, we use
Adam Optimizer (Kingma & Ba, 2014).

Stable Training Stage. We utilize around 1T data (see Section 7 for data distribution), with
the majority of the data sourced from open datasets. We use the optimal con�guration
discovered during the model wind tunnel experiments, WSD LRS, with a batch size of 3.93
million and a max learning rate of 0.01.

Decay Stage. We use a mixture of the pretraining data and high-quality SFT data. For
the speci�c annealing form of the WSD scheduler, we employ exponential annealing, i.e.
f (s � T) = 0.5(s� S)/ T, in which T is set to be 5000 steps (20B tokens).

SFT Stage.We �nd it still necessary to conduct a separate SFT phase. We utilize SFT data
similar to the annealing phase excluding pre-training data and train with approximately 6
billion tokens. The learning rate for SFT is aligned with the one at the end of annealing, and
a WSD Scheduler with exponential decay is also employed.

6.2 Training Data Distribution

We introduce our training data distribution in Figure 7. In the �gure, CommonCrawl Chn
in a Chinese Corpus is derived from CommonCrawl raw corpus and goes through thorough
cleaning. Dolma (Soldaini et al., 2024), C4 (Raffel et al., 2019), and Pile (Gao et al., 2020;
Biderman et al., 2022) are English corpora. They are deduplicated inner corpus and across
corpus using MinHash algorithms (Broder, 1997). The Code Pre-train data contains the
stack (Kocetkov et al., 2022) and StarCoder Li et al. (2023a), with inner deduplication and
cross deduplication. In the decay stage, the data mixture contains more diverse data and
proprietary data, including UltraChat (Ding et al., 2023), SlimOrca (Lian et al., 2023a;b),
OssInstruct (Wei et al., 2023), EvolInstruct (Xu et al., 2023). The data with the suf�x SFT is
our proprietary data including LeetCode questions, Kindergarten through 12th grade (K12)
textbooks and questions, etc.

8



Published as a conference paper at COLM 2024

Figure 8: Loss curve on C4 dataset for MiniCPM-1.2B (Left) and MiniCPM-2.4B (Right). The
orange segment at the tail of the loss curve represents the remaining decay process, which
is not utilized in the released version of MiniCPM.

Model C-Eval CMMLU MMLU HumanEval MBPP GSM8K MATH

Llama2-7B 32.42 31.11 44.32 12.20 27.17 13.57 1.80
Qwen-7B 58.96 60.35 57.65 17.07 42.15 41.24 5.34
Deepseek-7B 42.82 44.45 47.82 20.12 41.45 15.85 1.53
Mistral-7B 46.12 42.96 62.69 27.44 45.20 33.13 5.00
Gemma-7B 42.57 44.20 60.83 38.41 50.12 47.31 6.18

Llama2-13B 37.32 37.06 54.71 17.07 32.55 21.15 2.25
MPT-30B 29.34 32.09 46.56 21.95 35.36 10.31 1.56
Falcon-40B 40.29 41.57 53.53 24.39 36.53 22.44 1.92

TinyLlama-1.1B 25.02 24.03 24.3 6.71 19.91 2.27 0.74
Qwen-1.8B 49.81 45.32 43.37 7.93 17.8 19.26 2.42
Qwen1.5-1.8B 55.00 50.85 43.81 5.49 24.82 26.16 3.25
Gemini Nano-3B - - - - 27.20 22.80 -
StableLM-Zephyr-3B 30.34 30.89 45.90 35.37 31.85 52.54 12.12
Phi-2(2B) 23.37 24.18 52.66 47.56 55.04 57.16 3.50
Gemma-2B 29.26 28.56 38.49 24.39 29.74 16.83 3.34

MiniCPM-1.2B 49.14 46.81 49.63 44.51 32.75 31.77 10.60
MiniCPM-2.4B 51.13 51.07 53.46 50.00 47.31 53.83 10.24

Model BBH ARC-e ARC-c HellaSwag Avg Avg en Avg chn

Llama2-7B 33.23 75.25† 42.75 75.62† 35.40 36.21 31.77
Qwen-7B 37.75 83.42 64.76 75.32† 49.46 47.19 59.66
Deepseek-7B 33.38 74.58† 42.15† 75.45† 39.96 39.15 43.64
Mistral-7B 41.06 83.92 70.73 80.43† 48.97 49.96 44.54
Gemma-7B 39.19 89.35 76.79 79.47 52.22 54.18 43.39

Llama2-13B 37.92 78.87† 58.19 79.23† 41.48 42.44 37.19
MPT-30B 38.22 78.66† 46.08† 79.72† 38.17 39.82 30.72
Falcon-40B 36.24 81.94† 57.68 83.26† 43.62 44.21 40.93

TinyLlama-1.1B 28.78 60.77† 28.15† 58.33† 25.36 25.55 24.53
Qwen-1.8B 29.07 63.97† 43.69 59.28† 34.72 31.87 47.57
Qwen1.5-1.8B 28.82 64.86 45.56 59.39 37.09 33.57 52.93
Gemini Nano-3B 42.40 - - - - - -
StableLM-Zephyr-3B 37.68 73.78 55.38 71.87† 43.46 46.32 30.62
Phi-2(2B) 43.39 86.11 71.25 73.07† 48.84 54.42 23.78
Gemma-2B 30.93 74.33 40.70 69.51 35.10 36.47 28.91

MiniCPM-1.2B 34.70 80.93 66.81 54.72 45.67 45.16 47.98
MiniCPM-2.4B 36.87 85.44 68.00 68.25 52.33 52.60 51.10

Table 2: Benchmark Score of MiniCPM-2.4B and MiniCPM-1.2B (both without RLHF). The
two tables are continuous horizontally. Avg is over all dataset in the table, Avg chn is the
average of C-Eval and CMMLU while Avg en is the average of remaining datasets. † means
the result is tested using PPL metrics (See Appendix G. Bold numbers represent the best
score among the SLMs. Results of Gemini Nano-3B are borrowed from Gemini et al. (2023).
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6.3 Training Loss

The overall training loss on the C4 dataset is shown in Figure 8. We can see that as expected
in the preliminary experiments, the loss decreases sharply in the decay stage. Since we use
the exponential decay, the loss still drops after the learning rate drops below 10% of the max
learning rate. However, since we continue to SFT the model after the decay stage, we do
not utilize the �nal checkpoints. The checkpoints we �netune from are shown in the last
checkpoint of dark green segment. The �rst drop in MiniCPM-1.2B is the result of enlarging
batch size, which might have a similar effect as decreasing learning rate (Smith et al., 2017).

6.4 Evaluation

The overall evaluation utilizes our open-source tool UltraEval 3. UltraEval is an open-source
framework for assessing the capabilities of foundation models. It provides a lightweight and
user-friendly evaluation system, supporting performance assessment for mainstream large
models, and catering to the rapid evaluation needs of model training teams. The underlying
inference and acceleration use the open-source framework vLLM (Kwon et al., 2023), and
the dataset includes commonly used datasets: MMLU (Hendrycks et al., 2020) for English
knowledge, CMMLU (Li et al., 2024) and C-Eval (Huang et al., 2024) for Chinese knowledge,
HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) for coding, GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021) for mathematics, and HellaSwag (Zellers
et al., 2019), ARC-e (Clark et al., 2018), ARC-c (Clark et al., 2018) for commonsense reasoning,
and BBH (Suzgun et al., 2022) for logic reasoning. More evaluation details can be found in
Appendix G.

The overall evaluation results are in Table 7. Overall, on the mentioned datasets, we have
several observations. (1) On average, MiniCPM-2.4B ranks the highest among all the SLMs.
(2) MiniCPM-2.4B performs similarly to Mistral-7B-v0.1 in English but signi�cantly out-
performs Mistral-7B-v0.1 in Chinese. (3) MiniCPM-2.4B outperforms Llama2-13B except
in MMLU, BBH, and HellaSwag, while MiniCPM-1.2B outperforms Llama2-7B except
in HellaSwag. (4)Generally, BBH is harder for SLMs than LLMs compared to another
knowledge-oriented dataset, demonstrating that reasoning ability might be more depen-
dent on model size than knowledge. (5) Among SLMs, Phi-2 performance is on par with
MiniCPM on academic-oriented datasets. This might be because their training data mostly
involves textbook-style data that emphasize educational and academic scenarios. Since our
pre-training data covers more distribution, we think MiniCPM is better at knowledge and
ability coverage, which can be seen in Appendix K.

7 Conclusion

This paper introduces MiniCPM, comprising two SLMs with 2.4 B and 1.2 B non-embedding
parameters, respectively. These models demonstrate superior performance compared to
their larger counterparts. Our training methodologies are scalable both in terms of model
and data size, offering potential applicability in the development of LLMs. The introduction
of our WSD scheduler is notable for promoting continuous training, exhibiting compelling
training dynamics, and enabling ef�cient study of scaling law. We further introduce the
MiniCPM family, including DPO, long context, and MoE versions. Future directions include
in-depth analysis of the loss decrease in the decay stage, and enhancing the capability of
MiniCPM by scaling in both model size and data size.

3https://ultraeval.openbmb.cn/home
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Author Contributions

All authors contribute substantially to the MiniCPM project. Shengding Hu lead and
participated in all aspects of the projects. This included the scaling experiments (conducted
alongside Yuge Tu), babysitting the training of MiniCPM base models, and contributing
to various other parts of the research. Shengding Hu wrote the paper. Chaoqun He was
responsible for evaluating MiniCPM, while Ganqu Cui handled the RLHF training. Xiang
Long, Zhi Zheng, Xinrong Zhang and Shengding Hu extended the context window to
128K. The MoE research was conducted by Yewei Fang and Zhi Zheng. Weilin Zhao and
Kaihuo Zhang contributed to the training and inference infrastructure. The open-sourcing of
MiniCPM was prepared by Yuxiang Huang and Shengding Hu. Shengding Hu, along with
Chenyang Zhao, also provided analysis on the WSD scheduler's training dynamics. Zheng
Leng Thai developed the tokenizer. The development of MiniCPM-V was carried out by
Chongyi Wang and Yuan Yao. The training corpus of MiniCPM was prepared by Jie Zhou, Jie
Cai, Shengding Hu, Zhi Zheng, and Zhongwu Zhai. The paper was proofread by Xingrong
Zhang and Chaoqun He. Insightful instructions on training MiniCPM were provided by
Xu Han, Ning Ding, and Zhiyuan Liu. Finally, Zhiyuan Liu, Maosong Sun, Guoyang Zeng,
Chao Jia, and Dahai Li offered essential resources for the training of MiniCPM.

Limitations

Although we have proposed a thorough study of the scaling law with SLMs, this paper
does not extend to training an LLM to validate the scaling law. The application of WSD
LRS on LLMs has not been fully explored to date. However, we remain optimistic about its
potential advantages.
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A Additional Results in Model Wind Tunnel Experiments

A.1 mP hyper-parameter search

We conduct an extensive Bayesian search over a set of prede�ned parametric spaces. For ef�-
ciency, we search for the N = 0.009B model. In our pilot experiments, we con�rm that when
hyper-parameter optimization is conducted using datasets scaled at magnitudes of 10N
and 20N, there is a consistency observed in the ef�cacy of hyper-parameters. Therefore, we
train the models with jD j = 10N = 0.09B tokens. Meanwhile, we also try QK-Norm (Henry
et al., 2020) and independent weight decay (Loshchilov & Hutter, 2017) as well to stabilize
the learning rate. The overall results are shown in Figure 9. After applying the QK-norm,
we observe a signi�cant decrease in the learning rate sensitivity similar to Wortsman et al.
(2023). However, as the MiniCPM project itself is an SLM, we do not require low learning
rate sensitivity as long as we �nd the best learning rate with TensorProgram (Yang et al.,
2022; 2023). Therefore, we do not introduce QK-norm and independent weight decay
in later experiments of MiniCPM. In Figure 9, we identify the best hyper-parameters for
scaledepth= 1.4,scaleemb= 12, init std = 0.1, and lr = 0.01.

Figure 9: Grid search over the mP parameterization spaces.

Name Speci�c Operation

Embedding Output Scaling Multiply the output of the embedding by scaleemb
Residual Connection Scaling Scale the output tensor of a block before adding

to each residual connection in each layer by
scaledepth/

p
num layers

Initialization of Tensors Set the initialization standard deviation of each two-
dimensional tensor parameter to init std/

p
dm/ dbase,

and set other parameters' initialization to 0.1
Learning Rate Scaling of Tensors Adjust the learning rate of each two-dimensional

tensor parameter to 1/ (dm/ dbase) times the learning
rate of other parts (or the overall learning rate)

LM Head Scaling Adjust the output logits to 1 / (dm/ dbase) times the
original value

Table 3: List of operations used when applying tensor program techniques.
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A.2 Comment on Optimal Batchsize

In Kaplan et al. (2020), OpenAI studies the relationship between the loss function and
the number of tokens. In their experiments, they assume that consuming more steps is
equivalent to consuming more time. Under this assumption, OpenAI de�nes a critical
batch size that achieves a certain loss without consuming too many steps or tokens. This
rationale is valid if the experiments are provided with unlimited GPUs (at least within
the scope of the experiments). Since GPUs are unlimited, enlarging batch size will not
increase the single-step duration but will decrease the total number of steps. However, in
our experiment, since we have a �xed resource (number of GPUs), we observe that doubling
the batch size almost equals doubling the single-step time. Therefore, enlarging batch size
to decrease total training steps has minimal effect on the total training time. In light of
this observation, we drop the goal of “not consuming too many steps” and turn towards
minimizing the token quantity to achieve the lowest loss, instead.

The observation regarding the estimation of optimal batch size in relation to loss resem-
bles the ”Chicken-and-egg” paradox. Practically, there's often a preliminary estimate of
the achievable loss for a given model size, informed by prior knowledge of preliminary
experiments. However, there is potential for the development of more re�ned estimation
procedures in the future.

The optimal batch size and optimal learning rate are likely to be not independent. To
overcome this correlation, we do a preliminary study on the learning rate �rst, then choose
an optimal learning rate to do a batch size experiment, and use batch size scaling to do the
learning rate again. This is a bit like the Coordinate Descent optimization method. However,
more rigorous methods are welcomed in future work.

A.3 Model Architecture in Model Wind Tunnel Experiments

We list the model con�guration used in the model wind tunnel experiments in Table 4.
The “shape” of the model, i.e., model width compared to model depth is kept as similar as
possible to avoid any potential performance variation.

Name N (B) dm d f f dh nh L

9M 0.009 320 800 64 5 8
30M 0.036 512 1280 64 8 12
70M 0.066 640 1600 64 10 14
0.1B 0.109 768 1920 64 12 16
0.17B 0.166 896 2240 64 14 18
0.2B 0.241 1024 2560 64 16 20
0.5B 0.499 1344 3360 64 21 24

Table 4: Model con�gurations and training con�gurations of the models in the scaling curve.
N(B) represents the number of non-embedding parameters of the models, measured in
billions.

B Additional Illustration on WSD LRS

B.1 Learning Rate Paradigm for Different LRSs

In this paper, we describe three kinds of LRSs, Cosine(T), CosineLoop(T), and WSD(T, D).
Cosine and Cosine Loop take the form of the following:

An illustrative learning rate diagram for WSD and Cosine Scheduler is shown in Figure 10.
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Cosine(T; s) =
8
<

:

s
W h, s < W
0.9hcos(p s

T ) + 0.1h, W < s < T
0.1h, s > T

CosineLoop(T; s) =
� s

W h, s < W
0.9hcos(p s

T ) + 0.1h, W < s

Figure 10: Illustrative comparison be-
tween Cosine LRS and WSD LRS. The
WSD LRS with different end steps share
the same stable training stage.

Figure 11: We use two different function
forms to �t the data scaling law achieved
by WSD LRS and choose power law as
the best �t.

B.2 Fitting the Data Scaling Law

In this section, we describe the �tted data scaling law for continue training with WSD LRS.
Each point in Figure 11 is the end of the decay stage in WSD LRS with a different end step.
We try two function forms: exponential and polynomial. The �tted result shows that the
polynomial scaling law is still the best for continue training.

B.3 Individual Figure for Model-Data Scaling Law

For each task and model, the scaling law L(N, D) 's �tness with real loss values along the
data axis is plotted in Figure 12.

B.4 Analysis of Llama2's Data-to-Model Ratio

As mentioned in Section E, we analyze Llama2's Data-to-Model Ratio based on their training
loss curve. The extracted loss is plotted on the left of Figure 13. We convert the x-axis to
computation Flops to compare the computed optimal regime on the right part of the Figure.

C MiniCPM's Vocabulary

Despite being small in parameter size, MiniCPM targets modeling diverse data distribution,
excelling in English and Chinese. Therefore, our vocabulary is relatively large. For the 2.4B
model, we use a tokenizer consisting of 122,753 tokens (denoted by MiniCPMTokenizer-
120K). This vocabulary is constructed from extensive and diverse language data, utilizing
the sentencepiece library 4 for Byte Pair Encoding (BPE) (Sennrich et al., 2016), and includes
special symbols like traditional Chinese characters, rare characters, emojis, and special
symbols such as Greek letters, Cyrillic letters, etc.

For the SLM, the embedding parameters will take up a lot of parameter space if the vocabu-
lary is large. Therefore, for our 1.2B model, we use a smaller vocab MiniCPMTokenizer-70K.
Compared to the MiniCPMTokenizer-120K tokenizer, we have re-trained the tokenization

4https://github.com/google/sentencepiece
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Figure 12: The �tted scaling law plotted along the data amount axis for each model and
each task. The �tted result is satisfying except for the last checkpoints of the 0.11B and 0.25B
model.

Figure 13: We extract the training loss data from Llama2 paper (left part) and estimate the

compute optimal
Dopt
Nopt

in their paper using the right part. The straight lines are plotted to

estimate the optimal loss envelope assuming using WSD Scheduler.
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Figure 14: Max Difference of Checkpoints.

on the same documents, while setting the max number of vocabs to 64,000. For the special
characters, we only add the traditional Chinese characters, emojis, and special symbols, but
leave out the rare characters in Chinese.

We conduct evaluations on 300,000 documents in Chinese, English, code, and academic
papers that are not in the training set of the Tokenizer. The MiniCPM-120K tokenizer
achieves the highest compression ratio (Bytes/Tokens).

Baichuan2 ChatGLM2 Llama2 MiniCPM-120K MiniCPM-70K

Vocab Size 125,696 64,794 32,000 122,753 73,440

Compression Rate (Bytes/Tokens)

Chinese 3.64 3.54 1.87 3.73 3.56
English 4.12 4.02 3.78 4.14 4.02
Code 2.71 2.71 2.74 2.81 2.76
Paper 2.74 2.88 2.97 2.93 2.88

Average 3.30 3.29 2.84 3.40 3.31

Table 5: Compression ratio comparison.

D Analysis of the Decay Stage

In this section, we provide a brief analysis of the loss drop in the decay stage, examining
it through the prisms of checkpoint updates and gradient information. We calculate the

maximum weight element update maxi j (W
(t+ 1)
i j � W(t)

i j ) across all weight matrices in the
MiniCPM-2.4B (Introduced in Section F). As depicted in Figure 14, the updates exhibit a
robust correlation with the learning rate's magnitude. Notwithstanding the illustration of
the two submodules (gate proj and q proj module of the 25th layer), this pattern is prevalent
across every layer and submodule within the network. This observation may not be trivial:
the model checkpoints experience signi�cant updates preceding the learning rate's decay,
yet the loss exhibits minimal reduction. Conversely, during the decay stage, despite less
pronounced weight alterations, there is an accelerated decrease in loss.

Further examination of the gradient data is undertaken by training a 0.2B model, meticu-
lously recording every step gradient information, and evaluating the differences between
consecutive steps, thereby providing an approximation of second-order gradient infor-
mation. We treat the gradient at step t as a �attened vector g(t) , and the parameter (also
�attened as a vector x(t) ) update between step t and t + 1 is v(t) = x(t+ 1) � x(t) . The
gradient norm take the L2 norm of the gradient kg(t)k, gradient inner product is g(t+ 1) � g(t) ,

the cosine of the gradient's angle is given by g(t+ 1) �g(t)

kg(t+ 1) kkg(t) k
. Imaging the optimization process

as a trajectory over a high-dimension manifold, �rst order directional derivative along the
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trajectory is computed as D1 = g(t+ 1) �v(t)

kv(t) k
, and the second order directional derivative is

D2 = (g(t+ 1) � g(t) )�v(t)

kv(t) k2 . D1, D2 enables an approximate estimation of the loss curvature on the

trajectory, K = jD2j

(1+ D2
1)

3
2

. The results of these statistics over time are shown in Figure 15. We

can see that the gradient norm diminishes during the decay phase, and upon commence-
ment of this stage, the cosine between gradients predominantly assumes positive values,
suggesting that in the decay phase, model parameters undergo consistent changes across
steps. Concerning directional derivatives, it is remarkable that the �rst-order directional
derivative diminishes exponentially with each step, aligning closely with the learning rate,
while the second-order directional derivative exhibits a slight increase in magnitude. The
curvature of the loss function also increases by a magnitude, indicating the proximity to a lo-
cal optimum. These �ndings potentially offer a deeper insight into the shape of optimization
space, a subject reserved for future exploration.

Figure 15: Gradient statistics over the training of a 0.2B model using WSD LRS. The expo-
nential decay stage begins at 8000 steps.

E Measuring the Scaling Law with WSD LRS

Scaling laws serve as a fundamental guiding principle in the development of LLMs. Al-
though these scaling laws exhibit variability in speci�c coef�cients due to diverse con�gura-
tions across model series, the compute optimal data-to-model ratio remains a meaningful
metric across different scaling law functions, which “marginalizes“ out the speci�c value
of loss. Regarding this ratio, Kaplan et al. (2020) posit that a tenfold increase in model
scale should equate to a singlefold increase in data scale. Conversely, Hoffmann et al.
(2022) argue for the same scaling rate between model size and data size. What's more,
current models such as LLama 2 (Touvron et al., 2023), train much more data than what
Hoffmann et al. (2022) claims, still yielding considerable performance gain. Indicating a
higher data-to-model ratio.

This unaddressed uncertainty stems from the challenges inherent in training multiple
models of varying sizes and data sizes in traditional scaling experiments. Previously, if the
average cost of training one model size on one data size isC, then conducting the scaling
experiments with m model sizes and m data sizes takes approximately O(m2)C.

In this section, we introduce the utilization of the WSD scheduler as an effective approach
to explore the scaling law with linear cost ( O(mC)). Since the WSD scheduler has the
advantage of arriving at the optimal loss of Cosine LRS after decaying from stable stage
checkpoints of any step, we are now able to precisely measure the optimal scaling properties
without re-training the models from scratch to different amounts of tokens, thus making the
scaling law measurement much more ef�cient along the data axis.
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We measure the scaling law along the data and model axes by training SLMs of 6 sizes
ranging from 0.04B to 2B, each with 6 decayed models starting from the checkpoint of 10 N
to 60N data during the stable training stage ( N is the respective model size). The �nal loss
is evaluated on �ve held-out evaluation datasets. To potentially compare the loss when the
model uses different tokenizers, we take the average of loss by a number of bytes instead of
a number of tokens, following Achiam et al. (2023). The �nal loss of each pair of data size
and model size is shown in the blue lines in Figure 12.

Then we �t the losses with model size N and data size D following Hoffmann et al. (2022)
using scipy curvefit function:

L(N, D) = CN N � a + CD D � b + L0 (2)

The �tted curve along the data axis for each dataset and each checkpoint are shown in
orange lines in Figure 12. Then we have the optimal model size Nopt, dataset sizeDopt,
given a �xed amount of compute C = 6ND (Rae et al., 2021) as:

Nopt

Dopt
= K2

�
C
6

� h

, (3)

where K = ( aCN
bCD

)
1

a+ b , and h = b� a
a+ b . The derivation of Nopt closely follows Hoffmann et al.

(2022) by substituting D with C
6N in Equation 2, and minimize L(N ) given C. A similar way

is adopted for Dopt. From Equation 3, when a = b, Nopt/ Dopt is a constant, supporting
Hoffmann et al. (2022)'s claim, and when a < b, we should emphasize more on parameter
scaling (Kaplan et al., 2020), and vise versa.

In our experiments, the �tted relationship between loss and N, D is shown in the contour
plot of equal loss in Figure 17. The equation of �tted scaling law is shown in the �rst text box
in each subplot. We can see that in all evaluation corpora, we have b < a. More speci�cally,
on average, we havea = 0.29,b = 0.23,K2 = 0.01,h = � 0.10 (Note that N is under 109, D
is under 109, and C is under 1018). Sincea is slightly larger than b, this result shows that
as the computation scale, we should slightly emphasize more on data scaling than model
scaling, which aligns with Hoffmann et al. (2022).

As for the concrete data-to-model ratio
Dopt
Nopt

, we notice that there is a huge gap in compute

optimal regime between ours and Hoffmann et al. (2022) despite that the trend of
Dopt
Nopt

' with

compute C is aligned between ours and theirs. Speci�cally, the data size should be 192 times
larger than the model size on average, as opposed to 20 times in Hoffmann et al. (2022). We
note that this aligns with the observation in Section 4.3 and Figure 6.

With respect to the large deviation from Chinchilla Optimal
Nopt
Dopt

, we notice that their scaling

experiment was conducted in a not very recent con�guration. To compare with more recent
con�guration such as Llama2 (Touvron et al., 2023), we extract the training loss data from

Llama2 paper (left part) in Appendix Figure 13 and estimate the compute optimal
Dopt
Nopt

in

their paper using the right part of Figure 13. Since they use Cosine LRS, the loss is not
optimal in the middle of the training, depicted by the concave curve during training in
the right �gure of Figure 13. We �ll the concave part with a straight line to estimate the
optimal loss envelope if they had used the WSD LRS. After that, the compute model size
should roughly be the regime in which a model's loss curve is about to intersect with a
larger model's loss curve. With this intuition, the 13B model is about to intersect with the
34B model at 105 EFlops (1018 Flops), and the 34B model is about to intersect with the 70B

model at 5 � 105 EFlops. Therefore, we estimate the
Dopt
Nopt

to be roughly 5� 105

6� 342 � 105

6� 132 , which

is 70 � 100. Therefore, under this approximate comparison, their data-model ratio is closer
to ours. And our con�guration can absorb more data into a smaller model compared to
previous ones. However, we note that the above estimates are only a rough one.
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Figure 16: The result of scaling experiments with WSD Scheduler (above) and the �tted
scaling curve (below). The x-axis is the computation Flops C = 6ND, each color of the
line represents the same model with different computation Flops. We can see that smaller
models are better than larger models when the Flops are small and worse when the Flops
are large. Thus models of different sizes will intersect with each other in the plot around the
compute optimal regime.

A larger data-to-model ratio means that we can absorb more data into a smaller model than
we previously thought, which is more ef�cient for inference and deployment. We hope WSD
LRS will help more researchers explore L(N, D) with less effort and make the relationship
clearer in LLMs.

F Model Details

Vocabulary. We use two tokenizers of 122,753 vocabulary size for MiniCPM-2.4B and
73,440 vocabulary for MiniCPM-1.2B. A small vocabulary for 1.2B favors ef�ciency without
harming much performance. Details of the tokenizers are in Appendix C. Including the
embedding parameters increases total parameters by 0.3B and 0.2B respectively.

Shared Input-output Layer. For SLM, the embedding takes up a large parameter space. To
make the model parameters smaller, we use the Embedding Sharing techniques for both
MiniCPM-2.4B and MiniCPM-1.2B.
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