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Abstract
Large language models (LLMs) struggle to fol-001
low instructions with complex constraints in002
format, length, etc. Following the conventional003
instruction-tuning practice, previous works004
conduct post-training on complex instruction-005
response pairs generated by feeding complex006
instructions to advanced LLMs. However, even007
advanced LLMs cannot follow complex instruc-008
tions well, thus limiting the quality of generated009
data. In this work, we find that existing datasets010
inherently contain implicit complex constraints011
and propose a novel data generation technique,012
constraint back-translation. Specifically, we013
take the high-quality instruction-response pairs014
in existing datasets and only adopt advanced015
LLMs to add complex constraints already met016
by the responses to the instructions, which natu-017
rally reduces costs and data noise. In the exper-018
iments, we adopt Llama3-70B-Instruct to back-019
translate constraints and create a high-quality020
complex instruction-response dataset, named021
CRAB. We present that post-training on CRAB022
improves multiple backbone LLMs’ complex023
instruction-following ability, evaluated on ex-024
tensive instruction-following benchmarks. We025
further find that constraint back-translation also026
serves as a useful auxiliary training objective027
in post-training. Our code, data, and models028
will be released to facilitate future research.029

1 Introduction030

Large language models (LLMs) have achieved re-031

markable performance in numerous natural lan-032

guage processing tasks (Zhao et al., 2023; OpenAI,033

2024; Yang et al., 2024; Dubey et al., 2024; Team034

et al., 2024). However, they still fall short in fol-035

lowing instructions with complex constraints (Zhou036

et al., 2023; Jiang et al., 2024; Qin et al., 2024),037

such as length constraints shown in Figure 1, which038

limits their effectiveness and usability.039

To enhance the instruction-following ability of040

LLMs, the standard practice is to post-train the tar-041

geted LLM on a large set of instruction-response042

Write a blog on French cuisine

Title: The Allure of French Cuisine: A Journey 
Through Time and Taste
Introduction: French cuisine is often 
synonymous with elegance, sophistication, and 
an unparalleled dedication to the culinary arts.   ... 

Implicit Constraints 

Writing Style

Hierarchical Instruction

Length Constraint

...

 in a formal, informative, and engaging tone ...

... a structured hierarchy, with an introduction, 
four main sections, and a conclusion,...

between 550 and 580 words

Figure 1: Existing datasets inherently include implicit
satisfied complex constraints in the responses.

data pairs. For the complex instruction-following 043

with multiple constraints, existing efforts (Sun 044

et al., 2024; He et al., 2024) synthesize complex 045

datasets by adding multiple constraints to exist- 046

ing instructions and generating responses with ad- 047

vanced LLMs like GPT-4 (OpenAI, 2024). While 048

this data generation pipeline is straightforward and 049

widely adopted, even the most capable LLMs can- 050

not follow complex instructions well (Jiang et al., 051

2024; Qin et al., 2024), which limits the quality 052

of generated data and necessites laborious filtering. 053

The status quo urges the development of automatic 054

data generation methods relying less on existing 055

LLMs’ complex instruction-following abilities. 056

Our key observation is that existing datasets in- 057

herently include implicit complex constraints so 058

that we can reuse the widely-available high-quality 059

instruction-following datasets (Xu et al., 2023; 060

Taori et al., 2023; Mukherjee et al., 2023; Köpf 061

et al., 2024) to synthesize complex instruction- 062

response pairs. As shown in Figure 1, although 063
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the original concise instruction does not explicitly064

specify constraints like writing style or length, the065

response already satisfies some constraints in mul-066

tiple dimensions. Therefore, we can efficiently cre-067

ate high-quality complex instruction-response pairs068

from existing datasets by generating constraints069

from responses and adding them to instructions.070

We dub this data generation method as constraint071

back-translation. It only requires discovering the072

constraints already met by responses rather than fol-073

lowing the complex instructions with multiple con-074

straints, which significantly reduces requirements075

for model capability. As a result, it is both cost-076

effective and capable of producing high-quality077

data with limited noise. We also find that con-078

straint back-translation can serve as a useful aux-079

iliary training objective in post-training, dubbed080

as the reverse training technique. Specifically, we081

use instructions and responses as inputs to train the082

model to output constraints in post-training. The083

intuition is that reverse training may enhance the084

model’s understanding of constraints and improve085

its efficacy (Golovneva et al., 2024).086

We adopt Llama3-70B-Instruct (Dubey et al.,087

2024) to back-translate constraints from a collec-088

tion of existing data, generating a large-scale com-089

plex instruction-following dataset, named CRAB.090

Specifically, we sample a total of 13, 500 instances091

from existing high-quality instruction-following092

datasets (Peng et al., 2023; Es, 2023; Xu et al.,093

2023; Köpf et al., 2024) as the seed data, and094

manually define a scope of common constraints.095

We then use the original instruction, response, and096

constraint scope as inputs to Llama3-70B-Instruct097

to generate the corresponding implicitly satisfied098

constraints. Following previous works (Sun et al.,099

2024; He et al., 2024), we train the LLMs using the100

mixture of CRAB and ShareGPT dataset (Chiang101

et al., 2023), and we jointly adopt standard super-102

vised fine-tuning and reverse-training on CRAB.103

In the experiments, we select the capable open-104

source LLMs Llama3 8B (Dubey et al., 2024) and105

Mistral 7B (Jiang et al., 2023) as backbone mod-106

els and evaluate the complex instruction-following107

abilities of our models against various baselines on108

IFEval (Zhou et al., 2023) and FollowBench (Jiang109

et al., 2024). The results demonstrate that training110

on CRAB significantly enhances LLM performance111

in complex instruction following. We also conduct112

evaluation for general instruction-following abili-113

ties on AlpacaEval (Li et al., 2023b) and find that114

our models achieve even larger improvements to115

previous works focusing on enhancing complex 116

instruction-following abilities like Conifer (Sun 117

et al., 2024). This indicates that constraint back- 118

translation yields higher general data quality than 119

previous techniques relying on the ability of ad- 120

vanced LLMs. Ablation studies further validate 121

the efficacy of our CRAB dataset and reverse train- 122

ing approach. Finally, we discuss the advantages 123

and challenging scenarios for our constraint back- 124

translation method with experiments 125

In summary, our contributions are threefold: (1) 126

We propose constraint back-translation, a cost- 127

effective and high-quality data construction method 128

for complex instruction following. (2) We con- 129

struct CRAB, a high-quality complex instruction- 130

following dataset, and design a reverse training 131

method for developing Llama3CRAB, MistralCRAB 132

models with better complex instruction-following 133

abilities. (3) We conduct extensive experiments 134

to demonstrate the efficacy of CRAB and discuss 135

key design choices and potential improvement op- 136

portunities to inspire future research on following 137

complex instructions with multiple constraints. 138

2 Method 139

This section introduces the construction process of 140

CRAB (§ 2.1) and the training method (§ 2.2). 141

2.1 Constructing CRAB 142

We begin by introducing the notions. Given an in- 143

struction x, which typically defines a specific task, 144

such as “Write a blog on French cuisine”, a set of 145

constraints c, which specify conditions for the re- 146

sponse, such as length restrictions, and a response 147

y that satisfies both the constraints c and the in- 148

struction x, our goal is to construct a high-quality 149

dataset of (x, c, y) triples. We first collect a set of 150

high-quality (x, y) pairs from existing datasets and 151

then apply constraint back-translation to generate 152

the constraints c for each (x, y) pair. The data con- 153

struction process is illustrated in Figure 2, which 154

consists of three steps: data collection, constraint 155

back-translation, and constraint combination. In 156

the data collection process, we collect a comprehen- 157

sive set of high-quality (x, y) pairs from existing 158

datasets. We then back-translate the corresponding 159

c for each (x, y) using Llama3-70B-Instruct and 160

Python scripts automatically. Finally, we perform 161

filtering and a combination of the constraints c to 162

construct CRAB. More details of the data construc- 163

tion process are shown in appendix A. 164
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Alpaca GPT4
Open Assitant

Evol Instruct Orca Chat

Seed Data

Instruction

High-quality output

Please enrich the provided instruction
based on the given output 

with reference to the constraint set.

Query Prompt

Additional Constraints

Generate a story that involves 
two characters, a bear and a fox.

Once upon a time in a magical 
forest, there lived a bear and a 
fox. ...

1. Target a word count of around    
400 words for your reply.

2. The response should be written in 
a whimsical and imaginative tone.

3. Convey the themes of friendship,     
forgiveness, and personal growth.

Filter 

Data Collection Constraint Backtranslation

Training Data

Constraint Combination

StrongLM Python 

Input

Output

style other

Forward and Reverse 
Training

ShareGPT

length

Figure 2: The framework of constructing the proposed alignment training dataset.

Data Collection We first collect a comprehensive165

set of (x, y) as seed data from four existing widely-166

used high-quality supervised fine-tuning datasets,167

including Alpaca GPT4 (Peng et al., 2023), Orca168

Chat (Es, 2023), Evol Instruct (Xu et al., 2023),169

and OpenAssitant (Köpf et al., 2024). For Alpaca170

GPT4 and OpenAssistant, which contain the hu-171

man annotated quality score for each instance, we172

use the instances with the highest quality. More-173

over, to ensure that the responses include diverse174

constraints implicitly, we only consider instances175

where the response exceeds 300 words. We ran-176

domly sample the qualified instances using an177

examples-proportional mixture (Wei et al., 2022),178

resulting in a total of 4, 500 raw instances.179

Constraint Back-translation We adopt the180

Llama3-70B-Instruct LLM and Python scripts to181

back-translate constraints for the seed data. We182

ultimately use Llama3-70B-Instruct to automati-183

cally generate constraints implicitly satisfied by the184

response from instruction-response pairs. To en-185

hance the diversity of generated constraints, we186

manually collect 13 commonly used constraint187

types1 as examples in the prompt for constraint188

generation, which results in over 100 constraint189

types. We then use Llama3-70B-Instruct to re-190

verify whether the response satisfies the gener-191

ated constraints and exclude the constraints that192

are not met. Considering some constraints, e.g.,193

length constraint, cannot be effectively followed194

by LLMs (Sun et al., 2024), leading to noisy back-195

translation, and some constraints can be easily gen-196

1We sample 200 instruction-response pairs from ShareGPT
to observe real-world constraint needs and summarize them.

erated using Python scripts, we choose to adopt 197

Python scripts for 6 types of constraints. Specif- 198

ically, we write and paraphrase several templates 199

for each of these constraints. For example, for 200

a length constraint, one template is “Please gen- 201

erate a response with fewer than <placeholder> 202

words but more than <placeholder> words”. We 203

then use Python scripts to automatically identify 204

the value for this constraint in the response and 205

fill the templates to construct a constraint. For the 206

length constraint, we randomly sample a range that 207

includes the value to fill the template. For keyword 208

and punctuation constraints, we randomly select 209

corresponding items present in the response to fill 210

the templates of constraints. We adopt ROUGE- 211

L (Lin, 2004) with a threshold of 0.6 to exclude 212

similar constraints. Finally, we sample and manu- 213

ally review 50 instruction-response pairs and their 214

generated constraints, finding minimal noise and 215

high compliance between constraints and response. 216

Constraint Combination Finally, we combine 217

individual constraints to form the final constraint c 218

for each instruction. Previous studies have shown 219

that increasing the number of constraints in the 220

training data leads to better model performance (He 221

et al., 2024). Therefore, we enhance each instruc- 222

tion with a combination of multiple constraints. 223

Specifically, we randomly sample 6 to 8 constraints 224

from each instruction’s constraint set generated in 225

the previous step, shuffle their order, and recom- 226

bine them into the final constraint c. Similar to 227

previous work (Sun et al., 2024; Qi et al., 2024), 228

we add 1 to 3 in-context demonstrations for 50% of 229

the data. Finally, we construct CRAB with 13, 500 230
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instances, containing an average of 7.1 constraints.231

2.2 Model Training232

To further enhance LLMs’ understanding of com-233

plex constraints, we propose a reverse training234

method that takes the instruction-response pair235

(x, y) as input to teach LLMs to generate the con-236

straints c. The intuition is that correctly generat-237

ing constraints requires sufficient comprehension238

first. Formally, the reverse training objective is239

to minimize Lr, where Lr = − logPθ(c|x, y) and240

the LLM is parameterized by θ. We also adopt241

the standard supervised fine-tuning (SFT; Ouyang242

et al., 2022), named forward training, to mini-243

mize Lf, where Lf = − logPθ(y|x, c). The fi-244

nal training objective is a combination of Lf and245

Lr: L = αLf + (1 − α)Lr. We set α to 0 dur-246

ing 70% of the training process, and to 1 for the247

remaining time. We train the LLM using a mix-248

ture of ShareGPT (Chiang et al., 2023) and CRAB.249

We adopt Lf when training on ShareGPT (Chiang250

et al., 2023) and adopt L on CRAB. We train a base251

LLM on this data and obtain the SFT version of252

our model. Based on the SFT trained model, we253

continue training using the Direct Preference Op-254

timization objective (DPO; Rafailov et al., 2023).255

Specifically, same as the DPO phrase by Sun et al.256

(2024), we use the high-quality DPO dataset Ul-257

traFeedback (Cui et al., 2023) to conduct further258

training and obtain the DPO version of our model.259

More training details are presented in appendix B.260

3 Experiments261

In this section, we introduce the experimental setup262

(§ 3.1), experimental results (§ 3.2), and further263

analyses on our model (§§ 3.3 to 3.5).264

3.1 Experimental Setup265

Backbone Models We adopt two widely-used266

open-source base models, Mistral 7B (Jiang267

et al., 2023) and Llama 3 8B (Dubey et al.,268

2024), as our backbone models for developing269

Llama3CRAB and MistralCRAB. Specifically, we em-270

ploy Mistral-7B-v0.3 and Meta-Llama-3-8B,271

downloaded from Hugging Face (Wolf et al., 2019).272

During the SFT stage, we adopt a 5×10−6 learning273

rate, 256 batch size, and train the Mistral for 4274

epochs and Llama 3 for 3 epochs. During the DPO275

optimization stage, we adopt 5×10−7 learning rate,276

64 batch size, and 1 training epoch with beta 0.01277

for Mistral and 3 epochs with beta 0.1 for Llama 3.278

Baselines Our baselines include popular open- 279

source and proprietary LLMs, divided into three 280

main categories for comparison: (1) Proprietary 281

LLMs, including GPT-3.5 (OpenAI, 2022) and 282

GPT-4 (OpenAI, 2024). (2) General instruction- 283

tuning LLMs, including Vicuna-V1.5 13B (Chi- 284

ang et al., 2023), trained on the 125k ShareGPT 285

dataset, WizardLM-V1.2 13B (Xu et al., 2023), 286

trained on the 196k Evol-Instruct dataset, Zephyr 287

beta 7B (Tunstall et al., 2023), trained with the 288

UltraFeedback (Cui et al., 2023) dataset using the 289

DPO objective (Rafailov et al., 2023), and Mistral- 290

Instruct 7B v0.3 (Jiang et al., 2023), which achieves 291

leading performance on chat benchmarks based 292

on Mistral 7B (3) Models specifically optimized 293

for complex instruction-following tasks, including 294

Suri-I-ORPO (Pham et al., 2024), which is opti- 295

mized for multi-constraint instruction-following 296

tasks in long-form text generation, and the Conifer 297

series (Sun et al., 2024), which are trained on the 298

data where the constraints, instructions, and re- 299

sponses are all generated using GPT-4. 300

Evaluation Datasets We use two widely-used 301

and challenging complex instruction-following 302

datasets IFEval (Zhou et al., 2023) and Follow- 303

Bench (Jiang et al., 2024) for evaluation. IFE- 304

val consists of 541 instructions that can be auto- 305

matically validated using Python scripts. Each in- 306

struction contains 1 to 3 constraints, primarily fo- 307

cusing on strict lexical and formatting constraints. 308

FollowBench is a fine-grained, multi-constraint 309

instruction-following benchmark and it categorizes 310

the difficulty into five levels (L1 to L5) based on 311

the number of constraints of an instruction, where 312

L1 represents the simplest level with only one con- 313

straint, while L5 is the most difficult, with a com- 314

bination of five constraints. It also includes five 315

constraint categories, including content, situation, 316

style, format, and example, along with a mixed con- 317

straint category that combines various categories 318

of constraints. FollowBench contains a total of 319

820 instructions across more than 50 different NLP 320

tasks, and it is automatically evaluated using ei- 321

ther Python scripts or GPT-4. Please refer to the 322

original paper for more details (Jiang et al., 2024). 323

3.2 Experimental Results 324

The experimental results are presented in Table 1. 325

Our observations are as follows: (1) After train- 326

ing on the CRAB dataset, our models signifi- 327

cantly outperform the corresponding base mod- 328
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Model Backbone IFEval FollowBench (HSR) AVG
[S]P [S]I [L]P [L]I AVG L1 L2 L3 L4 L5 AVG

GPT-3.5* GPT 59.0 68.5 64.0 73.6 66.3 80.3 68.0 68.6 61.1 53.2 66.2 66.3
GPT-4† GPT 76.9 83.6 79.3 85.4 81.3 84.7 76.1 71.3 74.5 62.4 73.8 77.6

Vicuna-v1.5-13B† Llama2 43.1 53.6 46.6 58.0 50.3 71.2 61.3 48.3 38.0 33.1 50.4 50.4
WizardLM-v1.2-13B Llama2 43.6 54.4 48.4 59.1 51.4 61.3 51.6 43.3 37.5 29.9 44.7 48.1
ConiferSFT-13B† Llama2 42.9 53.0 47.5 57.4 50.2 60.5 53.6 48.4 40.7 31.7 47.0 48.6
Zephyr-beta-7B† Mistral 32.0 46.8 44.9 58.0 45.4 57.6 51.9 41.9 41.4 31.4 44.8 45.1
MistralInstruct-7B Mistral 48.6 59.8 53.2 64.3 56.5 57.1 51.5 43.6 41.5 33.2 45.4 50.9
SuriI-ORPO-7B Mistral 47.3 58.0 51.4 62.0 54.7 45.4 41.4 24.2 18.6 15.2 29.0 41.9
ConiferSFT-7B† Mistral 45.8 57.1 50.8 62.0 53.9 54.3 49.5 49.3 40.8 30.5 44.9 49.4
ConiferDPO-7B† Mistral 48.1 59.1 52.3 63.3 55.7 60.3 53.6 48.0 47.1 41.0 50.0 52.9

Llama3-8B Llama3 25.7 36.8 28.1 35.1 31.4 4.8 8.7 8.8 6.0 9.8 7.6 19.5
Llama3CRAB Llama3 39.4 50.2 43.8 54.2 46.9 57.5 44.9 34.9 25.2 20.0 36.5 41.7
Llama3CRAB + DPO Llama3 40.3 52.0 47.7 58.9 49.7 64.6 49.0 41.6 35.8 36.8 45.5 47.6
Mistral-7B Mistral 18.5 30.8 19.6 31.9 25.2 14.3 16.6 8.3 5.8 5.5 10.1 17.7
MistralCRAB Mistral 47.9 57.3 51.6 61.2 54.5 63.9 54.4 40.1 30.4 27.9 43.3 48.9
MistralCRAB + DPO Mistral 49.7 61.5 57.7 68.5 59.3 66.1 53.6 53.4 42.4 31.7 49.4 54.4

Table 1: Experimental results (%) of the LLMs on IFEval and FollowBench. In IFEval, “[S]” and “[L]’ denote strict
and loose accuracy, “P” and “I” indicate the prompt and instruction level. In FollowBench, L1 (simplest) to L5
(hardest) denote different difficulty levels. We highlight the highest and second-highest scores of open-source LLMs
using bold font and underline. † and * means the results are from Sun et al. (2024) and He et al. (2024).

Model LC WinRate WinRate

GPT-3.5-turbo-0613† 22.4 14.1
GPT-4-0613† 30.2 15.8

WizardLM-70B† 17.6 14.4
WizardLM-v1.2-13B† 14.5 12.0
Vicuna-v1.5-13B† 10.5 6.7

Zephyr-beta-7B† 13.2 11.0
ConiferDPO-7B† 17.1 11.3
MistralCRAB 13.3 7.9
MistralCRAB + DPO 18.1 17.6

(vs.) ConiferDPO 60.6 63.5

Table 2: Winning rate (%) of the investigated LLMs
on Alpaca-Eval 2.0 (Li et al., 2023b). “LC” denotes
length-controlled (Dubois et al., 2024). † means the
results are sourced from the original leaderboard.

els and the open-source models trained through329

SFT on general instruction-following datasets. Our330

DPO version of models achieves the best perfor-331

mance among the compared models. It demon-332

strates the effectiveness of our data and training333

approach. (2) Our models surpass Conifer Sun et al.334

(2024), which is specifically trained for complex335

instruction-following, on IFEval. It suggests that336

our model performs better in following lexical and337

format constraints. However, our models slightly338

lag behind Conifer on FollowBench. We provide339

an in-depth discussion on the performance across340

different constraint categories in FollowBench in341

§ 3.5. We observe that the performance decline342

is primarily due to the style constraint, where343

our models significantly underperform in this con-344

straint category compared to Conifer. Nonethe- 345

less, our models achieve significant improvements 346

in real-world scenarios, i.e., the mixed constraint 347

in FollowBench (Jiang et al., 2024), compared to 348

Conifer. (3) Training with the DPO objective con- 349

sistently improves model performance on both eval- 350

uation datasets. In this paper, we focus on con- 351

structing high-quality SFT data by constraint back- 352

translation, we leave the development of DPO data 353

for complex instruction-following as future work. 354

3.3 Analysis on General Instruction Following 355

The complex instruction-following ability not only 356

involves following complex constraints but also 357

encompasses the basic ability to follow instruc- 358

tions themselves, e.g., “Write a blog on French 359

cuisine”, named as general instruction following. 360

In this section, we further evaluate our model’s 361

general instruction-following capability. Given 362

that IFEval and FollowBench primarily focus on 363

evaluating the ability to follow constraints, we 364

adopt another widely-used dataset, AlpacaEval (Li 365

et al., 2023b), which serves as an easy-to-use and 366

high-quality automatic evaluator for instruction- 367

following ability. Specifically, we use AlpacaE- 368

val 2.0, which contains 805 instructions, and use 369

gpt-4-1106-preview as the evaluator to get the 370

final weighted win rate. The evaluation results 371

are presented in Table 2, where the “LC WinRate” 372

represents the length-controlled win rate (Dubois 373

et al., 2024). The default reference model is 374

gpt-4-1106-preview. We can observe that our 375
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Rewrite the following sentence to exactly 3 paragraphs:
"Offences are not the only things that are grasped by the police". 

Add Constraints 

1.  Paragraphs separated by two new lines and without using any commas.               2.  Paragraph 1 must start with the word "Punched". 
3.  The response must contain at least 2 placeholders represented by square brackets, such as [address].

Punched into the system are various reports of [incident type]. 
These reports are not limited to offences alone.

The police grasp a wide range of information. They have access to 
[database name] which provides them with valuable insights. 

Other things that are grasped by the police include [specific data]. 
They use this information to piece together the bigger picture.

The police are responsible for handling a wide range of situations, 
from minor infractions to serious crimes. While it is true that they 
are tasked with enforcing laws and apprehending those who break 

them, their role extends far beyond just dealing with offences.

In addition to addressing criminal activity, police officers also play a 
critical role in maintaining public safety and order. This can involve 

responding to emergency calls, providing support to vulnerable 
individuals, and engaging with the community to build trust and 

foster cooperation.  ...

Engagingness: 2   Understandability: 3   Fluency: 3  Coherence: 3 Engagingness: 4  Understandability: 5   Fluency: 5   Coherence : 5

· Straightforward and lack of depth.
· Text's style is dry.

Some vague and 
missing details 

Figure 3: An example of responses generated with and without constraints by Llama3-70B-Instruct. The evaluator
is gpt-4o-0806. For better visualization, we present only a subset of the responses generated without constraints.
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Figure 4: Full-mark rates (%) of the responses gen-
erated with and without constraints. The evaluator
is gpt-4o-0806, focusing on four widely-used dimen-
sions: Engagingness (Eng.), Understandability (Und.),
Fluency (Flu.), and Coherence (Coh.).

model significantly outperforms the baseline model376

Conifer and even exceeds the performance of the377

70B version of WizardLM. We also conduct a378

head-to-head comparison between our model and379

Conifer. The LC win rate of our model reaches380

60.6, significantly outperforming Conifer, which381

demonstrates that our model possesses a superior382

general instruction-following capability.383

We conduct a further analysis to explore the po-384

tential reasons why our model outperforms Conifer385

in general instruction-following. The primary dif-386

ference between our model and Conifer is the data387

construction process. We utilize constraint back-388

translation, where the response is generated di-389

rectly from the instruction without constraints. In390

contrast, Conifer uses instruction and correspond-391

ing constraints to generate the response. We hy-392

pothesize that a possible reason is that the response393

quality in Conifer is lower than CRAB, that is, gen- 394

erating a response conditioned on both instruction 395

and constraints may result in lower content qual- 396

ity, such as lower coherence, compared to the re- 397

sponse directly generated from instruction without 398

constraints. Intuitively, incorporating constraints 399

may limit the model’s capacity when generating 400

responses. To validate this intuition, we conduct 401

a controlled analytical experiment. Specifically, 402

we sample 100 instructions and their correspond- 403

ing constraints from IFEval and FollowBench. We 404

first use Llama3-70B-Instruct to generate responses 405

based only on the instructions (w/o constraints). 406

Then, we include the additional constraints and 407

generate corresponding responses (w/ constraints). 408

Following previous work on automated evaluation 409

using advanced LLMs (Bai et al., 2024b; Chan 410

et al., 2024), we employ gpt-4o-0806 as the eval- 411

uator, assessing the responses on four dimensions: 412

engagingness, understandability, fluency, and co- 413

herence, with scores ranging from 1 to 5. We report 414

the full-mark (score 5) rate for each dimension. The 415

results are shown in Figure 4. We can observe that 416

responses generated with constraints significantly 417

underperform those generated without constraints, 418

which suggests that involving constraints when gen- 419

eration may reduce the content quality of the final 420

response. We further conduct a case study, illus- 421

trated in Figure 3, showing an example of responses 422

generated with and without constraints. We can 423

find that when involving constraints, the response 424

includes vague terms, such as “[database name]”, 425

and lacks sufficient details and depth. While previ- 426
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Model IFEval FollowBench AVG
AVG L1-L2 L3-L5

MistralCRAB 54.5 59.1 32.8 48.9

(-) Reverse training 52.1 56.2 33.5 47.3
(-) Forward training 53.9 57.1 32.1 48.0
(-) In-Context Demons 53.6 55.8 30.0 47.0

InstBackTSFT 52.7 55.4 29.3 46.2

Table 3: Experimental results (%) of the ablation study.
In-Context Demons denotes in-context demonstrations.

ous work on complex instruction-following mainly427

focuses on enhancing the ability to follow multiple428

constraints, we encourage future work to priori-429

tize response content quality, and constraint back-430

translation can serve as a potential solution. As-431

sessment details of this analysis are in appendix C.432

3.4 Ablation Study433

We conduct an ablation study to analyze the key fac-434

tors influencing model performance. Specifically,435

we investigate three key factors in developing our436

model: reverse training, forward training, i.e., stan-437

dard supervised fine-tuning, and in-context demon-438

strations. We exclude each factor and keep all other439

conditions identical, to the model separately. When440

excluding reverse and forward training, we set the441

loss ratio α in § 2.2 to 1 and 0, respectively. The442

backbone model is Mistral. The results are pre-443

sented in Table 3, where L1-L2 in FollowBench444

represent simpler constraints and L3-L5 denote445

more complex constraints. We can observe that446

removing any of these factors leads to a decline in447

model performance, which demonstrates the effec-448

tiveness of these factors in developing our model.449

For more complex constraints following, adding in-450

context demonstrations during training is effective,451

as excluding in-context demonstrations leads to a452

significant performance drop in L3-L5. The reason453

may be that in-context demonstrations enhance the454

model’s ability to understand multiple in-context455

instructions and complex constraints.456

We further compare with a competitive baseline457

model, InstBackTSFT, which is trained on the data458

generated by instruction back-translation (Li et al.,459

2024). The key difference between instruction and460

constraint back-translation is that the former uses461

advanced LLMs to generate both instructions and462

constraints from responses, while the latter focuses463

on generating constraints from instruction and re-464

sponse pairs. The results are presented in Table 3.465

We can observe that InstBackTSFT significantly un-466
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Figure 5: Experimental results on different categories
of constraints in FollowBench of MistralCRAB and
ConiferSFT.

derperforms compared to MistralCRAB, which sug- 467

gests that instruction back-translation may produce 468

lower-quality data for complex instruction follow- 469

ing. The possible reason is that generating both 470

instructions and constraints simultaneously is more 471

challenging than generating constraints alone. It 472

further demonstrates the efficacy of the constraint 473

back-translation method in creating high-quality 474

training data for complex instruction following. 475

3.5 Analysis on Constraint Category 476

We further investigate our model’s performance 477

across different constraint categories to analyze its 478

strengths and potential limitations. Specifically, 479

we analyze the results on FollowBench, which in- 480

cludes five categories of constraints, including ex- 481

ample, content, situation, style, and format. Please 482

refer to the original paper (Jiang et al., 2024) for 483

the detailed definitions for each constraint cate- 484

gory. FollowBench also includes a mixed category 485

which is designed for simulating real-world sce- 486

narios (Jiang et al., 2024), where various types 487

of constraints are combined to form the final con- 488

straint. We compare our model MistralCRAB with 489

the Conifer model, which is trained on the data gen- 490

erated using the standard pipeline: generating the 491

constraints first and then generating the response 492

based on the instruction and constraints. The re- 493

sults on different constraint categories of Follow- 494

Bench are shown in Figure 5. We can observe that 495

our model significantly outperforms Conifer on the 496

mixed constraint, which represents real-world sce- 497

narios, suggesting that our model is more effective 498

in handling complex instruction-following scenar- 499

ios. However, in the style constraint category, e.g., 500

“Write in the style of Shakespeare”, our model per- 501

forms significantly worse than Conifer. The possi- 502

ble reason is that the style constraints in our dataset 503

CRAB may be not sufficiently diverse. The data for 504
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style constraints requires deliberate construction,505

and the pipeline that generates constraints first and506

then responses is more effective at generating di-507

verse style constraints, but the responses in our seed508

data have limited style diversity. It suggests a limi-509

tation of constraint back-translation, as it relies on510

diverse responses to generate specific categories of511

constraints, such as style constraint. Combining the512

constraint back-translation method with other data513

generation methods to produce higher-quality data514

for those specific constraints can further enhance515

the model’s complex instruction-following ability,516

and we leave this exploration as future work.517

4 Related Work518

4.1 Instruction Following519

Instruction following task involves following user520

intentions to generate helpful responses, which is521

fundamental to modern LLMs (Zhang et al., 2023).522

Ouyang et al. (2022) first propose the practice of523

aligning LLMs to follow human instructions, using524

SFT and RLHF to train models, which is the key525

factor in the success of ChatGPT (OpenAI, 2022).526

Subsequently, numerous studies focus on enhanc-527

ing the instruction-following capabilities of LLMs,528

particularly for open-source models, which can be529

summarized in two main aspects: (1) data-driven530

approaches, which design an automated pipeline531

or use human annotation to produce high-quality532

training data (Xu et al., 2023; Taori et al., 2023;533

Peng et al., 2023; Chiang et al., 2023; Mukherjee534

et al., 2023; Qi et al., 2024; Liu et al., 2024; Li535

et al., 2024; Bai et al., 2024a; Hu et al., 2024).536

(2) new training methods, including novel objec-537

tives (Rafailov et al., 2023; Gallego, 2024; Zhou538

et al., 2024; Hejna and Sadigh, 2024; Meng et al.,539

2024) or training pipelines (Tunstall et al., 2023; Li540

et al., 2024; Yuan et al., 2024; Chen et al., 2024b).541

A more challenging instruction following sce-542

nario is complex constrained instruction following,543

where the responses should further satisfy specific544

constraints, such as length, keyword, and format.545

Previous studies have shown that LLMs struggle546

to follow these instructions (Jiang et al., 2024; Qin547

et al., 2024; Chen et al., 2024a). Recent efforts fo-548

cus on enhancing this ability by constructing high-549

quality training data (Sun et al., 2024; He et al.,550

2024). This process typically involves collecting551

a set of instructions, constructing constraints, and552

then generating responses based on the instructions553

and constraints using advanced LLMs. This work554

introduces constraint back-translation, which 555

generates constraints from instruction-response 556

pairs, reducing data construction costs and noise. 557

4.2 Back-translation 558

Back-translation is first proposed in the field of 559

machine translation (Sennrich, 2015; Hoang et al., 560

2018), which mainly is used for data augmentation. 561

It first trains a model to back-translate the target 562

language into the source language, then uses this 563

model to generate parallel training data from a large 564

amount of monolingual target language data, which 565

sufficiently saves human translation efforts. Con- 566

sidering its simplicity and efficacy, back-translation 567

has also been widely applied to various tasks, such 568

as style transfer (Prabhumoye et al., 2018; To- 569

shevska and Gievska, 2021) and paraphrase gener- 570

ation (Wieting et al., 2017; Mallinson et al., 2017). 571

Recently, several studies have explored apply- 572

ing back-translation to the field of large language 573

models to efficiently generate high-quality data au- 574

tomatically (Li et al., 2023a; Pham et al., 2024; 575

Köksal et al., 2023). Li et al. (2023a) proposed 576

reversing the training objective to automatically 577

generate corresponding instructions for existing un- 578

supervised corpora, while Pham et al. (2024) and 579

Köksal et al. (2023) leveraged the powerful gen- 580

eral capabilities of LLMs to generate instructions 581

from the corpus directly. Although Pham et al. 582

(2024) also generated constraints, it fell within the 583

realm of instruction back-translation and did not 584

involve dedicated optimization or exploration for 585

constraint generation. In this work, we propose 586

constraint back-translation, an effective data gen- 587

eration approach that generates high-quality con- 588

straints based on instruction-response pairs. 589

5 Conclusion 590

In this paper, we aim to enhance large language 591

models’ capability for complex constrained instruc- 592

tion following. We propose a constraint back- 593

translation data generation method, which can re- 594

duce data noise and generation costs, resulting in a 595

high-quality complex instruction-following dataset 596

CRAB. We also propose a reverse training method 597

and develop Llama3CRAB and MistralCRAB based 598

on CRAB. Extensive experiments demonstrate the 599

effectiveness of our data generation and training 600

methods. We further conduct extensive analytical 601

experiments and discuss the key factors, advan- 602

tages, and potential limitations of our model. 603
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Limitations604

As discussed in § 3.5, for certain types of con-605

straints, such as style constraint, the constraints606

generated through constraint back-translation may607

lack sufficient diversity if the original response data608

itself is not diverse enough. We leave further im-609

provements to constraint back-translation as future610

work. Another limitation of our study is that we do611

not use a larger base model due to computational612

constraints. We believe that using a larger base613

model could develop a more advanced LLM in fol-614

lowing complex constraints, but this does not affect615

our overall experimental conclusions.616

Ethical Considerations617

We discuss potential ethical concerns related to618

this work: (1) Intellectual property. Our research619

leverages several widely used SFT datasets, and620

we strictly comply with their licensing terms. We621

will share CRAB under the CC BY-SA 4.0 license2.622

(2) Intended use and Potential risk control. The623

goal of this paper is to introduce CRAB, designed624

to enhance the performance of LLMs on complex625

instruction tasks. CRAB is built using widely avail-626

able public datasets. We trust that the original627

publishers have anonymized and sanitized these628

datasets appropriately. The data construction pro-629

cess does not include additional social bias. Addi-630

tionally, we randomly sampled 100 instances from631

our dataset and found no sensitive information. (3)632

AI assistance. We used GPT-4 to paraphrase some633

sentences and check grammar.634
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Appendices918

A Data Collection919

In this section, we provide a detailed explana-920

tion of our data construction process, divided into921

three parts: the details of constraint construction922

(appendix A.1), the data diversity of CRAB (ap-923

pendix A.2) and the data distribution of CRAB (ap-924

pendix A.3).925

A.1 Details of Constraints Construction926

Table 4 presents the definitions of each constraint927

in our constraint set. It is important to note that928

for the “Situation”, clarifying the subject or object,929

or defining the circumstances under which the in-930

struction applies, we observed that generating this931

constraint independently often results in this addi-932

tional constraint being too similar to the original933

instruction. Therefore, we integrate it directly with934

the original interaction to develop a refined instruc-935

tion. If selected during the combination process,936

instead of being added to the instruction like other937

constraints, it replaces the original instruction.938

Among the constraints calculated using Python939

scripts, two categories are particularly unique: (1)940

Number-related categories: such as Length and941

Words Per Sentence, where we used NLTK (Loper942

and Bird, 2002) for calculation. (2) Keyword: We943

applied the lightweight, unsupervised keyword ex-944

traction method Yake (Campos et al., 2020) to ex-945

tract the top 3 most significant keywords from the946

output text. Table 9 provides an example generated947

after the constraint back-translation process.948

A.2 Dataset Diversity949

We adopted 4 widely used post-training datasets950

for constructing our CRAB dataset: Alpaca GPT-951

4, Open Assistant, Evol-Instruct, and Orca Chat.952

These datasets are of high quality and contain di-953

verse data instances for generating rich constraints.954

The “Rate” column in Table 4 shows the distri-955

bution of constraint types in the CRAB dataset.956

Moreover, for constraints generated by the LLM,957

since we provided 13 types of constraints as ex-958

amples in the prompt, we analyzed the keywords959

of each generated constraint and extracted the top960

10 keywords for each major category, presenting961

them as subcategories in Figure 7. The “situation”962

category was not included in the analysis because963

it is task-specific, making clustering difficult.964

12%
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 6
 7
 8
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15%39%
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Figure 6: Proportion (%) of data in the CRAB by the
number of constraints and the source dataset.

A.3 Dataset Distrubution 965

Figure 6 shows the distribution of 13, 500 instances 966

in the CRAB. The left chart categorizes data by the 967

number of constraints after combination, while the 968

right chart categorizes data by the source dataset. 969

To enhance data diversity during the combination 970

stage, we randomly introduced 25% of data with 971

a constraint count outside the 6–8 range, with the 972

maximum number of constraints being 14. 973

B Model Training 974

For model training, we utilize the repository ‘The 975

Alignment Handbook’ (Tunstall et al., 2023) to 976

train Mistral 7B based models, and use OpenIn- 977

struct (Ivison et al., 2023) to train LLaMA 3 8B 978

based models. The implementation of the ratio α 979

between reverse training and forward training is 980

achieved by segregating the dataset into two parts, 981

since the model may memorize the data during the 982

forward process. 983

All experiments in the paper are done using 8 984

NVIDIA A100 80GB GPUs. We adopt DeepSpeed 985

ZeRO stage 2 for SFT and DPO training. The 986

training of Mistral took approximately 48 GPU 987

hours in total, while the training of LLaMA3 took 988

around 72 GPU hours. 989

In the SFT stage, we set the learning rate to 990

5× 10−6, with a per-device batch size of 4 and 8 991

gradient accumulation steps. The warm-up ratio is 992

set to 0.1. The Mistral-7B experiments are trained 993

for 4 epochs with a maximum sequence length 994

of 2048, while the LLaMA 3 8B experiments are 995

trained for 3 epochs with a maximum sequence 996

length of 4096. For DPO training, the learning 997

rate is set to 5 × 10−7, with a per-device batch 998

size of 4, 2 gradient accumulation steps, and a 999

maximum sequence length of 2048. The beta value 1000

for Mistral 7B experiments is set to 0.01, trained 1001

for 1 epoch with a cosine learning rate schedule, 1002

while for LLaMA 3 8B, the beta is 0.1, trained 1003

for 3 epochs with a linear learning rate scheduler 1004
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following the setting in Ivison et al. (2023).1005

C Details on the impact of constraints on1006

output quality1007

To explore the impact of constraints on output qual-1008

ity, we sampled 100 instruction pairs from Follow-1009

Bench and IFEval, with each pair consisting of a in-1010

struction without constraints and its corresponding1011

multi-constraint version (with over 3 constraints).1012

Since IFEval does not provide instruction with-1013

out constraints, we randomly selected 50 instances1014

and manually removed the constraints. For Fol-1015

lowBench, we selected level 0 instructions along1016

with their corresponding level 5 counterparts. To1017

ensure a fair comparison, we only retained instruc-1018

tion pairs where the core meaning of the instruction1019

pairs remained consistent, such that the output gen-1020

erated from the complex instructions would still1021

satisfy the simple versions.1022

We evaluate the quality of model output along1023

the following four dimensions.1024

• Engagingness: Evaluate how captivating and1025

interesting the text is, based on its ability to1026

hold attention and evoke interest.1027

Components: Interest (ability to sustain at-1028

tention), Appeal (suitability for the audience),1029

and Emotional/Intellectual Impact.1030

• Understandability: Evaluate the clarity and1031

ease with which the text can be understood by1032

the target audience.1033

Components: Simplicity (absence of unnec-1034

essary complexity), Accessibility (use of lan-1035

guage suitable for the audience), and Clarity.1036

• Fluency: Evaluate the smoothness of the1037

writing, focusing on grammar, sentence struc-1038

ture, and the natural flow of language.1039

Components: Grammar (correct use of lan-1040

guage rules), Sentence Structure (variety and1041

complexity), and Naturalness (how easily the1042

text flows).1043

• Coherence: Evaluate the logical flow and1044

consistency of ideas, ensuring the text’s struc-1045

ture is logical and ideas are connected.1046

Components: Logical Flow (clear progres-1047

sion of ideas), Transitions (smooth movement1048

between topics or sentences), and Consis-1049

tency (absence of contradictions or disjointed1050

thoughts).1051

D More Results 1052

In this section, we present additional experimen- 1053

tal results, divided into five parts: full results on 1054

Followbench (appendix D.1), a fairer comparison 1055

where Conifer is replaced with the same backbone 1056

as ours (appendix D.2), our experimental results on 1057

LLaMA3.2-3B (appendix D.3), the performance of 1058

general tasks (appendix D.4), a discussion about 1059

the effect of the effect of syntactic constraints (ap- 1060

pendix D.5) and a discussion about reverse training 1061

(appendix D.6). 1062

D.1 SSR results on Followbench 1063

We report FollowBench results under the Hard Sat- 1064

isfaction Rate (HSR) metric in Table 1. Table 5 1065

presents results on FollowBench under Soft Satis- 1066

faction Rate (SSR) metric. We also conducted a 1067

comparison with the ShareGPT version, which is 1068

trained exclusively on the ShareGPT dataset. 1069

D.2 Different Backbone Comparison 1070

Since Sun et al. (2024) did not specify the model 1071

version of Conifer, we reproduced Conifer on 1072

Mistral-7B-v0.3, which is the backbone used 1073

in MistralCRAB, and the results are presented in 1074

Table 6. All conclusions remain consistent with 1075

those stated in the main text. 1076

D.3 More Backbone Models 1077

To verify the scalability and applicability of 1078

our approach, we conducted experiments using 1079

LLaMA3.2-3B (Dubey et al., 2024) as the back- 1080

bone, with all training hyperparameters consistent 1081

with those of LLaMA3-8B. As shown in Table 6, 1082

CRAB significantly improves the model’s perfor- 1083

mance on complex instruction-following tasks. 1084

D.4 Results on General Benchmarks 1085

We evaluated our model on a general benchmark. 1086

We select several widely-used benchmarks for 1087

assessing general capabilities: MMLU (Hendrycks 1088

et al., 2021), GSM8k (Cobbe et al., 2021), 1089

MathQA (Amini et al., 2019) and Commonsense 1090

Reasoning (including HellaSwag (Zellers et al., 1091

2019), SIQA (Sap et al., 2019), ARC easy and 1092

challenge (Clark et al., 2018)). As shown in 1093

Table 7, our models improve the average perfor- 1094

mance of the original Mistral model. Especially 1095

on commonsense reasoning tasks (ARC challenge, 1096

ARC easy, HellaSwag, SIQA), MistralCRAB + 1097

DPO achieved an average improvement of 4.25%, 1098
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Constraint Category Description Generator Rate

Situation Adding conditions, clarifying the subject or object, or defining the cir-
cumstances under which the instruction applies.

LLM 36.9

Writing Style Specify the style requirements for the response to align with the intended
message and audience.

LLM 81.3

Semantic Elements Clearly articulate the main theme, focus, meaning, or underlying concept
of the response.

LLM 99.5

Morphological Outline specific prohibitions, such as avoiding certain words or phrases
and refraining from specific formatting styles.

LLM 99.7

Multi-lingual Specify the language(s). LLM 94.8

Literary Devices Identify any particular literary devices to be employed. LLM 91.7

Grammatical Structure Specify the grammatical structure. LLM 99.1

Hierarchical Instruc-
tions

Establish a response hierarchy, defining the prioritization and structuring
of tasks within the output.

LLM 83.1

Output Format Depending on the required format of the output—such as Python, tables,
JSON, HTML, LaTeX—impose relevant format constraints.

LLM 15.2

Paragraphs Constraints Clearly specify the required number of paragraphs or sections in the text.
Additionally, indicate any specific spacing or separators needed—such
as blank lines, horizontal rules, or special symbols to enhance readability
and visual appeal.

LLM 71.3

Specific Sentence Specify a particular phrase to be included either at the beginning or end
of the text, clearly indicating its exact placement.

LLM 70.1

Header Format Specify the formatting style for titles or keywords within the Output,
such as using bold, italics, or CAPITAL LETTERS.

LLM 9.5

Item Listing Details Clearly specify the formatting for individual entries within the text.
Direct the use of specific symbols for listing—such as bullet points (•),
numbers (1., 2., 3., etc.), or hyphens (-).

LLM 67.7

Length Constraint Determine the word count of the output text to establish length con-
straints.

Python 47.6

Word Constraint Determine the number of words in each sentence to set word constraints. Python 15.1

Sentence Constraint Determine the number of sentences in each paragraph to establish sen-
tence constraints.

Python 20.6

Character Constraint Determine the number of characters in each word. Python 21.4

Keyword Constraint Determine the keywords in the output text to make the constraints more
detailed.

Python 45.1

Punctuation Limitation Specify which punctuation marks cannot be used in the output text. Python 21.6

Table 4: Constraint types defined during the back-translation process. The Rate (%) indicates the proportion of
instances in the entire dataset that generated constraints of this category.

14



Model Backbone IFEval FollowBench (SSR) AVG
[S]P [S]I [L]P [L]I AVG L1 L2 L3 L4 L5 AVG

Llama3-ShareGPT* Llama3 23.7 26.4 33.8 37.1 30.3 44.0 40.0 39.6 33.3 33.6 38.1 34.2
Llama3CRAB Llama3 39.4 50.2 43.8 54.2 46.9 57.5 52.4 51.2 47.0 45.6 50.7 48.8
Llama3CRAB + DPO Llama3 40.3 52.0 47.7 58.9 49.7 64.6 55.8 54.7 52.4 54.0 56.3 53.0

Mistral-ShareGPT† Mistral 37.5 49.3 43.4 54.9 46.3 55.7 56.6 53.6 53.4 49.7 53.8 50.0
MistralCRAB Mistral 47.9 57.3 51.6 61.2 54.5 63.9 60.6 55.1 50.4 49.4 55.9 55.2
MistralCRAB + DPO Mistral 49.7 61.5 57.7 68.5 59.4 66.1 59.2 59.8 55.3 51.2 58.3 58.8

Table 5: Full results (%) on IFEval and FollowBench, where † and * indicate that the results are sourced from Sun
et al. (2024) and Dong et al. (2024), respectively.

Model Backbone IFEval FollowBench (HSR) AVG
[S]P [S]I [L]P [L]I AVG L1 L2 L3 L4 L5 AVG

ConiferSFT-7B† Mistral 45.8 57.1 50.8 62.0 53.9 54.3 49.5 49.3 40.8 30.5 44.9 49.4
ConiferSFT-7B-v0.3 Mistral 45.8 57.0 49.7 60.8 53.3 60.6 52.2 46.7 38.8 26.5 45.0 49.1
ConiferDPO-7B† Mistral 48.1 59.1 52.3 63.3 55.7 60.3 53.6 48.0 47.1 41.0 50.0 52.9
ConiferDPO-7B-v0.3 Mistral 46.4 57.2 54.9 64.6 55.8 60.1 52.5 46.6 45.7 38.6 48.7 52.2

MistralCRAB + DPO Mistral 49.7 61.5 57.7 68.5 59.4 66.1 59.2 59.8 55.3 51.2 58.3 58.8

Llama3.2 3B Llama3.2 15.0 26.3 15.5 26.7 20.9 12.7 14.7 14.9 18.2 11.8 14.5 17.7
Llama3.2CRAB Llama3.2 34.9 44.6 38.1 48.1 41.4 51.7 36.4 29.1 19.7 14.3 30.2 35.8

Table 6: Experimental results (%) of the original Conifer paper, our reproduced results on Mistral 7B v0.3 (the
backbone used in MistralCRAB) and the results of Llama3.2 as the backbone for IFEval and FollowBench. Here, †
indicates that the results are from Sun et al. (2024).

Model MMLU GSM8k MathQA ARC challenge ARC easy Hellaswag SIQA AVG

Mistral-7B-v0.3 62.3 37.2 35.4 48.8 79.5 60.9 46.0 52.9
MistralCRAB 59.8 46.6 34.4 47.4 77.5 62.5 47.7 53.7
MistralCRAB + DPO 61.0 34.0 35.7 53.2 79.8 68.1 51.0 54.6

Table 7: Experimental results (%) on general benchmarks.

Model IFEval FollowBench (HSR) AVG
[S]P [S]I [L]P [L]I AVG L1 L2 L3 L4 L5 AVG

MistralCRAB (w/o syntactic constraints) 44.2 54.2 47.5 57.9 50.9 55.6 50.1 33.9 25.1 17.8 36.5 43.7

MistralCRAB (mixing throughout the process) 46.0 56.4 49.9 60.1 53.1 60.6 49.1 36.5 29.4 15.6 38.2 45.7
MistralCRAB (keeping them separate) 47.9 57.3 51.6 61.2 54.5 63.9 54.4 40.1 30.4 27.9 43.3 48.9

Table 8: Experimental results (%) of different mixing strategies and the effect of syntactic constraints.

showing that enhanced instruction-following1099

boosts reasoning performance.1100

D.5 Discussion about the effect of syntactic1101

constraints1102

Syntactic constraints, such as dependency relations,1103

are common in benchmarks and user queries. In-1104

cluding them in our dataset improves the model’s1105

instruction-following ability, as evidenced by the1106

performance drop when these constraints are re-1107

moved, as shown in Table 8.1108

D.6 Discussion about Reverse Training 1109

Intuitively, reverse training enhances the model’s 1110

understanding of constraints by requiring it to gen- 1111

erate them, as this process inherently demands a 1112

deeper comprehension. We chose to keep forward 1113

and reverse data separately following Berglund 1114

et al. (2023), which separates data in their “both” 1115

setting. We also experimented with mixing both 1116

types of training throughout the process, and the 1117

results shown in Table 8 indicate that keeping them 1118

separate leads to better model performance. A pos- 1119

sible reason may be that mixing the forward and 1120

reverse training may lead to overfitting easily. 1121
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Instruction
What is an easy J Perm PLL algorithm that wouldn’t be too complicated for a beginner at speed solving?
Output

One easy J Perm PLL algorithm that is not too complicated for a beginner at speed solving is the
following:

R’ U R’ U’ J R U’ R’ U’ J’ U2 R U

This algorithm only has 10 moves and does not require any complicated finger tricks. Here is a
breakdown of the algorithm:

1. R’ U R’ U’ - This is a common setup move for J Perm PLL algorithms. It sets up the J shape in the
corner of the cube.
2. J R U’ R’ U’ - This is the J Perm algorithm itself. It swaps the two adjacent edges and the two
adjacent corners in the J shape.
3. J’ U2 R U - This is the inverse of the setup move and completes the PLL algorithm.

Remember to practice this algorithm slowly at first, and then gradually increase your speed. With
enough practice, you should be able to execute this algorithm quickly and efficiently.

Additional Constraints
Situation: What is a simple, 10-move or fewer J Perm PLL algorithm for speed solving that

a beginner can learn and execute efficiently, without requiring advanced finger tricks or complex
sequences?

Length Constraint: Submit an response that contains at least 160 words.
Word Per Sentence: Restrict each sentence to 25 words maximum.
Characters Per Word: Each word in the response must consist of at least 15 characters.
Keyword Constraint: In your reply, include the terms c̈omplicated finger tricks,̈ P̈erm PLL,̈ P̈erm

PLL algorithmẗo emphasize the critical components and provide clarity.
Punctuation Limitation: Avoid using question marks in your response.
Desired Writing Style: The response should be written in a clear and concise manner, with a tone

that is informative and helpful, suitable for a beginner in speed solving.
Semantic Elements: The main theme of the response should focus on providing a simple J Perm

PLL algorithm for beginners, highlighting its ease of use and simplicity.
Morphological Constraints: Avoid using overly technical jargon or complex mathematical notation,

and refrain from using formatting styles that may confuse the reader.
Multi-lingual Constraints: The response should be written in English.
Specific Literary Devices: Use a step-by-step breakdown of the algorithm to enhance clarity and

facilitate understanding.
Specific Grammatical Structure: The response should be written primarily in simple sentences,

with occasional use of compound sentences to provide additional explanations.
Hierarchical Instructions: The response should prioritize explaining the algorithm, followed by a

breakdown of the algorithm, and finally providing practice tips.
Paragraphs Constraints: The response should consist of three paragraphs, with a blank line

separating each paragraph.
Specific Sentence: The response should start with a sentence that introduces the algorithm, and end

with a sentence that encourages practice.
Item Listing Details: The breakdown of the algorithm should use numbers (1., 2., 3., etc.) to list the

steps, with a hyphen and a space before each step description.

Table 9: An example from OpenAssistant of CRAB after constraint back-translation and before combination.
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Figure 7: The Top-10 subcategories for 12 major constraint types (excluding "situation") generated by the LLM
after constraint back-translation, as the "situation" type is closely tied to the input and lacks clustering tendencies.
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