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ABSTRACT

The remarkable performance of modern deep learning methods depends critically
on the optimization of their hyperparameters. One major challenge is that eval-
uating a single hyperparameter configuration on large datasets could nowadays
easily exceed hours or days. For efficient sampling and fast evaluation, some
previous works presented effective computing resource allocation schemes and
built a Bayesian surrogate model to sample candidate hyperparameters. However,
the model itself is not related to budgets which are set manually. To deal with this
problem, a new Gaussian Process model involved in budgets is proposed. Further,
for this model, an optimal design is constructed by the equivalence theorem to
replace random search as an initial sampling strategy in the search space. Experi-
ments demonstrate that the new model has the best performance among competing
methods. Moreover, comparisons between different initial designs with the same
model show the advantage of the proposed optimal design.

1 INTRODUCTION

In recent years, deep learning systems have reached remarkable performance on several important
tasks and receive more and more attention (Lake et al., 2015; Silver et al., 2016; Wu et al., 2016).
Decades of machine learning (ML) research ranging from learning strategies (Rumelhart et al., 1986;
Bengio et al., 2013) to new architectures (LeCun et al., 1995; He et al., 2016) bring this huge success.
Among these successful machine learning systems, almost all of them contain hyperparameters
such as learning rates, batch sizes, or even model architectures that should be tuned carefully for
performance. Nowadays, ML research has developed a new field, named automated machine learning
(AutoML), which aims to automate the ML procedure by spending machine compute time instead of
human research time. The most basic task in AutoML is to automatically set these hyperparameters
to optimize performance.

The hyperparameter optimization problem can be formulated as:

x∗ = argmin
x∈X

f(x),

where x represents a hyperparameter configuration, X is a given search space of hyperparameters,
and f is the target function.

Among many HPO algorithms for solving the optimization problem (Feurer & Hutter, 2019), Bayesian
Optimization (BO) becomes a popular approach due to its sample efficiency (Snoek et al., 2012;
Thornton et al., 2013; Snoek et al., 2015; Feurer et al., 2015). For a more detailed introduction to BO,
we refer to the excellent tutorials by Brochu et al. (2010); Shahriari et al. (2015).

For improving the BO methods with a given search space, we have the following four aspects.

• Changing the initial design (Jones et al., 1998; Konen et al., 2011; Brockhoff et al., 2015;
Zhang et al., 2019);
• Changing the surrogate model (Rasmussen, 2003; Hutter et al., 2011; Bergstra et al., 2011;

Springenberg et al., 2016);
• Changing the acquisition function (Srinivas et al., 2010; Hennig & Schuler, 2012; Hernández-

Lobato et al., 2014; Wang & Jegelka, 2017; Ru et al., 2018);
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• Using the multi-fidelity methods (Thornton et al., 2013; Karnin et al., 2013; Jamieson &
Talwalkar, 2016; Li et al., 2017; Falkner et al., 2018).

For multi-fidelity methods, it involves high-fidelity data obtained by more computing resources and
low-fidelity data with less resources. For expensive high-fidelity models, however, even performing
the number of simulations needed for fitting a surrogate may be too expensive. Inexpensive but less
accurate low-fidelity models are often also available. Multi-fidelity models combine them in order to
achieve accuracy at a reasonable cost.

In this paper we are concerned with multiple fidelities due to the practical applicability. In this
situation, it is possible to define substantially cheaper versions of the objective function of interest,
and the performance of low-fidelity roughly correlates with the performance of the full objective
function. In the literature, many previous works are mainly based on the Successive Halving (SH)
algorithm (Jamieson & Talwalkar, 2016). SH is proposed to identify the best configuration among
K configurations. It evaluates all hyperparameter configurations, throws the worst half, doubles the
budgets and repeats until one configuration left. This method uses a manually given budget for each
iteration which is not desired in AutoML. Therefore, we propose a more proper surrogate model
involved budgets, the corresponding acquisition function and initial design for this model. The main
contribution of our work is as follows.

• A more accurate model for multi-fidelity data is presented. We add budgets as a factor into
the model to measure the uncertainty caused by using low-fidelity data.

• The corresponding acquisition function is proposed. This function guides the next sampling
strategy. Thus, the budget-related function will give the next dual sample, the configuration
to be evaluated and the budgets it needs. This procedure helps to set budgets automatically.

• The optimal initial design for the model is constructed. This design aims to give a more
accurate estimator of the model with the same number of initial samples. It helps to obtain a
better performance or quick convergence.

• A theorem for judge whether a design is optimal.

• Simulation studies illustrate that the proposed new model with the corresponding optimal
design outperforms other competing methods.

2 GAUSSIAN PROCESS WITH BUDGETS

The validation performance of machine learning algorithms can be modeled as a function f : X → R,
where X is the search space of their hyperparameters. The HPO problem is then defined as finding
x∗ = argminx∈X f(x). In the literature, researchers always assume that the true performance f(x)
cannot be observed directly. Instead, we observe y(x) = f(x) + ε, where ε is a noise and follows
N (0, σ2

noise) (Falkner et al., 2018). However, the difference between the observation and the true
performance is not only caused by the noise, but also due to the used budgets. Consequently, it
is natural to consider the model which involves budgets, y(x, b) = f(x) + ε(b), where ε(b) ∼
N (0, 1/b). This model makes y(x, b) tend to f(x) as b → ∞. The most popular surrogate model
of f(x) is the Gaussian Process (GP) model. They are flexible, meaning that they can fit a wide
variety of surfaces, from very simple to highly complex. Then, we can use a set of collected data
{y(x1, b1), y(x2, b2), . . . , y(xn, bn)} to predict f(x). For multi-fidelity cases, implementing high-
accuracy training for the complex neural network with huge data can be costly. It is not proper to
simply measure the uncertainty caused by budgets with a normal distribution since it is a major error
term. For this purpose, we add another GP model to fit the error term,

y(x, b) = g(x) + h(x, b), (1)

where g(x) and h(x, b) are realizations of two mutually independent Gaussian stochastic processes
{G(x), x ∈ X} and {H(x, b), (x, b) ∈ X × (0,∞)}. Further, we assume that E(G(x)) = f>1 (x)β1
and E(H(x, b)) = f>2 (b)β2, where β1 and β2 are unknown parameters, f1 and f2 are known
regression functions and limb→∞ f2(b) = 0. This model is also used in Tuo et al. (2014) for
computer experiments. Different from theirs, for HPO problems, the covariance matrices are assumed
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as follows,

Cov(G(x1), G(x2)) = σ2Kθ1(x1, x2)

Cov(H(x1, b1), H(x2, b2)) = τ2Kθ2(x1, x2) exp

(
− 1

2

(b1 − b2)

h2

)
,

(2)

whereKθ1 andKθ2 are kernel functions and {σ, τ, θ1, θ2, h > 0} is a set of parameters for describing
the correlation. Note that the second formulation of the covariance matrix in Tuo et al. (2014) is
according to the simplest GP, the Brownian motion (Durrett, 2019). For computer experiments, when
b increases, var(H(x, b)) needs to decrease to zero monotonically. However, in our cases, we just
need to measure the correlation between two configurations with this RBF kernel. The limiting case
h→ 0 is used in Ru et al. (2019) and showed its practicality. For the choice of the kernel function K,
the Gaussian correlation family as the most common kernel is adopted,

Kθi(x1, x2) = exp

{
−

p∑
j=1

θij(x1j − x2j)2
}
, (3)

where (·)ij denotes the j-th entry of (·)i.
For this Gaussian Process with Budget model (GPB), we can use a standard Bayesian optimization
procedure that is a sequential design strategy for finding the best hyperparameter configuration x. In
hyperparameter optimization problems, the validation performance f : X → R of hyperparameters
x ∈ X is our goal of minimization. In most cases, f(x) does not admit an analytic form, which
is approximated by the GPB model. The key difference between ours and other models such as
Gaussian processes, random forests, or tree-structured Parzen estimator approach (Bergstra et al.,
2011) is that we consider the budgets into the model and set the value of budgets automatically in
iterations. Based on the data collected on the fly Dn = {(x1, b1, y1), . . . , (xn, bn, yn)}, we sample
next configuration (xn+1, bn+1) according to the acquisition function. The standard algorithmic
procedure of BO is stated as follows.

1. Assume an initial surrogate model that is the GPB model in this work and take randomly
initial samples (xi, bi, yi) to estimate the model.

2. Compute an acquisition function a : (X ,B)→ R which is the expected improvement (EI)
in this work based on the current model.

3. Sample a batch of hyperparameter configurations and corresponding budgets based on the
acquisition function.

4. Evaluate the configurations with corresponding budgets and refit the model.
5. Repeat Steps 2-4 until the stop condition is met.

In the literature of BO, acquisition functions (Step 2) (Wang & Jegelka, 2017) and batch sampling
methods (Step 3) (González et al., 2016) are well studied, but how to choose proper initial samples
for speeding up convergence (Step 1) remains largely open. Jones et al. (1998); Konen et al. (2011);
Brockhoff et al. (2015); Zhang et al. (2019) used model-free initial designs Latin hypercube design
or orthogonal array to improve the performance while we construct an optimal initial design for the
particular GPB model in this work.

3 OPTIMAL INITIAL DESIGN

In this section we introduce some common criteria first to show the basic effect of optimal designs,
minimizing the variance of estimating the key parameters β1, β2. This property can give a more
accurate estimation for the GPB model after initialization to accelerate the convergence of the iteration.
For this particular GPB model, we propose an equivalence theorem of the optimality and derive
algorithms for constructing the optimal design.

3.1 SOME COMMON CRITERIA

We talk about trace criteria under the normal linear model first, then we will show that these criteria
can also be used in other models by using the Fisher information matrix. See Appendix B for more
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criteria. Now we consider the following normal linear model,

y =

p∑
j=1

xjβj + ε, where ε ∼ N(0, σ2). (4)

Trace criterion Trace criterion is chosen when our experiment aims to minimize the total variance
of the least squares estimates β̂: varβ̂1 + varβ̂2 + . . .+ varβ̂p, because Cov(β̂) = σ2(X>X)−1 and
varβ̂1 + varβ̂2 + . . .+ varβ̂p = σ2trace[(X>X)−1].

Φ`-Optimality Now we apply the Φ`-optimality introduced by Kiefer (1974) to the Fisher informa-
tion matrix M . Here Φ`(M) = (trM `)1/`, ` ≥ 0. With different choices of `, various criteria occur.
As mentioned before, the most common examples of optimality criteria are

Φ0(M) = det(M) (D−optimality),

Φ1(M) = tr(M) (A−optimality),

Φ∞(M) = the maximum eigenvalue of M (E−optimality).

3.2 APPROXIMATE DESIGN

The optimization of discretized variables is more difficult than continuous variables. Hence, we
derive the theory of the optimal approximate designs first. According to the approximate results, we
propose algorithms for constructing the exact optimal design.

Now we review approximate designs defined as discrete probability measures with finite support
points. The support points x1, . . . , xN of a design ξ indicate the hyperparameter configurations where
observations are taken, and the corresponding weights ω1, . . . , ωN represent the probability weights
at these support points. This approximate design ξ is denoted by {S, ω} where S = {x1, . . . , xN}
and ω = {ω1, . . . , ωN}. See Kiefer (1974) for more details. By direct calculation, we have that
the Fisher information M(Fξ) = F>ξ Φ−1Fξ, where the i-th row of Fξ is (ωif1(xi)

>, ωif2(bi)
>)

for i = 1, 2, . . . , N and the (i, j)-th entry of Φ is σ2Kθ1(xi, xj) + τ2Kθ2(xi, xj) max(bi, bj)
−h for

i, j = 1, 2, . . . , N . We apply the Φ`-optimality to this Fisher information and obtain the optimization
problem as follows,

Definition 1 An approximate design ξ is locally Φ`-optimal if ξ = arg max Φ`(M(Fξ)).

3.3 THEORETICAL RESULT

Theorem 1 uses the Fréchet derivative d(x, ξ) = limε→0+ ε
−1 {log Φ`[M((1 − ε)ξ + εδx)] −

log Φ`(M(ξ))}, where δx is the Dirac measure on a single point x introduced by Silvey (2013) to
derive an equivalence theorem for the GPB model.

Theorem 1 An approximate design ξ is locally Φ`-optimal w.r.t. the objective function Φ`(M(ξ)) if
and only if the Fréchet derivative holds that

d(x, ξ) ,
tr((F>ξ Ψ−1Fξ)

`−1(F>δxΨ−1Fξ + F>ξ Ψ−1Fδx))

tr(F>ξ Ψ−1Fξ)`
− 2 ≤ 0

for all x ∈ X .

The brief proof is given in Appendix A. Theorem 1 helps us to judge whether a design is Φ`-optimal.
Note that when the fis are linear or quadratic functions, the optimization of d(x, ξ) w.r.t. x is linear
programming or quadratic programming respectively. Hence the maximum of d(x, ξ) can be obtained
easily.

Further, in practice, we cannot use this approximate optimal design to run real experiments. At this
time, Theorem 1 is used as a criterion to find a new point x in the iterated construction algorithm.
This construction will be discussed in the next section in detail.
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3.4 ALGORITHMS FOR CONSTRUCTING EXACT OPTIMAL DESIGNS

This section proposes two algorithms for constructing exact optimal designs instead of turning an
optimal approximate design into an exact design such as rounding procedure (Pukelsheim & Rieder,
1992).

According to Theorem 1, if a design ξ is not optimal, we can find a configuration x such that
d(x, ξ) > 0. It reveals that we should move the current design along the direction of δx. This
intuitiveness inspires the first algorithm described in Algorithm 1.

Algorithm 1 Iterated Construction
input Maximum iteration I; Sample size N ; Number of factors p.
output The exact Φ`-optimal design X∗.

1: Initialize the design with a Latin hypercube N × p matrix X(0).
2: for s = 0, 1, . . . , I do
3: x = arg max d(x,X(s)).
4: if d(x,X(s)) ≤ 0 then
5: break;
6: end if
7: X(s+1) = X(s)∪x\X(s)

i , whereX(s)
i is the i-th row ofX(s) and i = arg maxj Φ`(M(X(s)∪

x\X(s)
j )).

8: end for
9: Output the optimal design X∗ = X(s).

In each iteration, we find a best alternative configuration x according to Theorem 1 to replace
the worst one among N configurations of the current design. Theorem 1 also gives a termination
condition d(x,X(s)) > 0.

Compared with general initialization, random search or grid search, this optimal design guarantees to
have models with minimum variance. However, it may explore the space insufficiently.

For this purpose, we introduce Latin hypercube design (LHD) (McKay et al., 1979). It is a kind
of uniform designs since it guarantees that it is uniform on each one-dimensional projection. Let
A = (aij) be anN×p Latin hypercube matrix in which each column is a permutation on {1, . . . , N}
and all the columns are obtained independently. An ordinary Latin hypercube design D0 = (dij)
of N runs in p factors is generated through dij = (aij−uij)/N, for i = 1, . . . , N, j = 1, . . . , p,
where the uij are independent random variables following U [0, 1], dij is the value of factor j on
the ith run, and the uij and the aij are mutually independent. When D0 is projected onto any one
dimension, precisely one point falls within one of the N equally spaced intervals of (0, 1] given by
(0, 1

N ], ( 1
N ,

2
N ], . . . , (n−1N , 1]. Its uniformity leads to exploring the space in a more balanced manner.

Consequently, we consider a Φ`-optimal LHD, i.e., the optimal design among all LHDs. For the
construction of LHD, threshold algorithm is used because the main step of the construction is
permutation, which can be viewed as integer programming.

Algorithm 2 is a kind of simulated annealing. The number of iterations works as the role of
temperature. These two algorithms have the same terminate conditions, maxx d(x,X(s)) ≤ 0, i.e.,
one contribution of Theorem 1. The other one is to guide the decision of next iterated design reflected
in Line 7 of Algorithm 1 and Line 10 of Algorithm 2.

4 EXPERIMENTAL RESULTS

In this section, we compare different initial designs for the GBP model in synthetic experiments
with several classic optimization functions. For more applications, auto data augment and neural
architecture search (NAS) are applied.
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Algorithm 2 Threshold Acceptance
input Maximum iteration I; Sample size N ; Number of factors p.
output The exact Φ`-optimal LHD X∗.

1: Initialize the design with a Latin hypercube N × p matrix X(0).
2: for s = 0, 1, . . . , I do
3: if maxx d(x,X(s)) ≤ 0 then
4: X∗ = X(s);
5: break;
6: end if
7: Pick one column randomly.
8: Exchange its two rows randomly.
9: Obtain a new LHD X(s+1).

10: if maxx d(x,X∗)−maxx d(x,X(s+1)) > −1/s then
11: X∗ = X(s+1);
12: end if
13: end for
14: Output the optimal design X∗.

4.1 SYNTHETIC EXPERIMENTS

Consider the objective function with effect of budgets:

f(x, h) =

[
sin(20x)

1 + x
+ 3x3 cos(5x) + 10(x− 0.5)2 − 0.6

]
/2 +

1

b
sin(15π(x+ 0.1))/5.

In the GPB model, the space of kernel parameters are set to θ1, θ2 ∈ [40, 1000], τ2/σ2 ∈ [0.03, 0.07].
Using the BO method and the proposed GPB model with different initial designs, we can see the
effect of this step. For all designs, the sample size is set to be six. Let IC denote the design obtained
by Algorithm 1 and TA by Algorithm 2. We compare them with random initial and LHD in two
aspects. The result is given in Table 1. Standard deviation (Std.) of β̂ is to measure the robustness of
model estimation. IC has the best performance as its construction while TA is the second best since
it is constrained in LHD. For integral loss, we can see that optimal LHD obtained by Algorithm 2
outperforms other designs since its uniformity from LHD and optimality from Φ`.

Table 1: The performance of different initial designs with N = 6. The integral loss is defined by the
absolute difference between the true model with different b and the estimated model.

Initial design Std. of β̂ integral loss, b=1 integral loss, b=2/3 integral loss, b=0.5
Random 4.598 0.297 ± 0.121 0.285 ± 0.116 0.417 ± 0.388

IC 3.184 0.305 ± 0.051 0.306 ± 0.055 0.297 ± 0.065
TA 3.525 0.256 ± 0.064 0.238 ± 0.052 0.227 ± 0.029

For more objective functions listed in Table 5 in Appendix C, Table 2 shows that the proposed initial
designs have much more robust estimation than Random Search does.

Table 2: The performance of different initial designs with different number of initial points.
rosenbrock sixhumpcamp

Initial points 10 20 10 20
Random 0.4963 0.4700 0.5769 0.4326

IC 0.3918 0.3276 0.3789 0.3372
TA 0.3583 0.3570 0.4526 0.2983

4.2 DATA AUGMENTATION

Data augmentation (DA) is an effective technique to generate more samples from data by rotating,
inverting or other operations for improving the accuracy of image classifiers. However, most

6



Under review as a conference paper at ICLR 2021

implementations are manually designed with a few exceptions. Cubuk et al. (2018) proposed a simple
procedure called AutoAugment to automatically search for improved data augmentation policies.
Unfortunately, it is very time-consuming, e.g., it takes 5000 GPU hours in searching procedure for
CIFAR100 (Krizhevsky et al., 2009). More recently, Ho et al. (2019) and Lim et al. (2019) designed
more efficient algorithms for this particular task.

In their search space, a policy consists of 5 sub-policies with each sub-policy consisting of two
image operations to be applied in sequence. Additionally, each operation is also associated with
two hyperparameters: (1) the probability of applying the operation, and (2) the magnitude of the
operation. In total, there are 16 operations in the search space. Each operation also comes with a
default range of magnitudes. These settings are described in Cubuk et al. (2018). For this problem,
we need to tune two hyperparameters of each sub-policy and choose the best five sub-policies to form
a policy. This is a natural HPO problem.

We search the data augmentation policy in the image classification tasks of CIFAR-10 and CIFAR-100
and follow the setting in AutoAugment (Cubuk et al., 2018) to search for the best policy on a smaller
data set, which consists of 4, 000 randomly chosen examples, to save time for training child models
during the augmentation search process. For the child model architecture, we use WideResNet-28-10
(28 layers - widening factor of 10) (Zagoruyko & Komodakis, 2016). The augmentation policy is
combined with standard data pre-processing: on one image, we normalize the data in the following
order, use the horizontal flips with 50% probability, zero-padding and random crops, augmentation
policy, and finally Cutout with 16× 16 pixels (DeVries & Taylor, 2017). Experiments use 4 parallel
workers for 4 iterations with 20, 10, 10, 10 configurations respectively. BO is run with budgets of 50
epochs for each configuration. The GPB model is run with alternative budgets of 1, 10, 20, 30, 40, 50
epochs. For each sub-task, we use a SGD optimizer with a weight decay of 0.0005, momentum of
0.9, learning rate of 0.1. We use the found policies to train final models on CIFAR-10, CIFAR-100
with 200 epochs.

Table 3: The performance of different initial designs and the comparison with the GP model in DA.
Initial design cifar10 acc cifar10 budget cifar100 acc cifar100 budget

Random (GPB) 96.97 ± 0.127 1811.0 ± 143.380 81.07 ± 0.277 1750 ± 4.0
IC (GPB) 97.25 ± 0.076 1821.7 ± 131.556 81.23 ± 0.115 1994.5 ± 79.5
TA (GPB) 97.17 ± 0.134 1755.3 ± 183.603 81.17 ± 0.065 1769 ± 24

Random (GP) 96.84 ± 0.233 2500 80.52 ± 0.105 2500

Table 3 shows that for the proposed GPB model, we have competing results with much less budgets.
The reason for uncertainty of budgets is that our model samples the value of budgets automatically
while BO always use the maximum budgets for evaluation. For comparing accuracy, IC is the best on
CIFAR-100 and TA is the second best, but the advantage is very weak. It is because for these public
data, the training of neural network is often time-consuming and offsets most impact of the initial
designs.

4.3 NEURAL ARCHITECTURE SEARCH

One crucial aspect of the deep learning development is novel neural architectures. Designing
architectures manually is a time-consuming and error-prone process. Because of this, there is a
growing interest in automated neural architecture search (NAS). Elsken et al. (2019) provided an
overview of existing work in this field of research. We use the search space of DARTS (Liu et al., 2019)
as an example to illustrate HPO methods on NAS. Particularly, their goal is to search for a cell as a
basic unit. In each cell, there areN nodes forming a fixed directed acyclic graph (DAG). Each edge of
the DAG represents an operation, such as skip-connection, convolution, max pooling, etc., weighted by
the architecture parameter α. For the search procedure, the training loss and validation loss are denoted
by Ltrain and Lval respectively. Then the architecture parameters are learned with the following
bi-level optimization problem: minα Lval(ω

∗(α), α), s.t. ω∗(α) = arg minω Ltrain(ω, α).
Here, α are hyperparameters in the HPO framework. For evaluating α, we need to optimize its
network parameters ω. It is usually time-consuming. We search the neural architectures in the image
classification tasks of CIFAR10 and follow the settings of DARTS (Liu et al., 2019). The architecture
parameter α determines two kinds of basic units: normal cell and reduction cell. We search the
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network architecture in the image classification tasks of CIFAR-10 and CIFAR-100 on a smaller data
set, which consists of 4, 000 randomly chosen examples, to save time for training child models during
the network architecture search process.

Table 4: The performance of different initial designs and the comparison with the GP model in NAS.
Initial design cifar10 acc cifar10 budget cifar100 acc cifar100 budget

Random (GPB) 96.56 ± 1.685 1834 ± 119.2 79.625 ± 0.435 1840.5 ± 5.5
IC (GPB) 97.22 ± 0.258 1790.333 ± 98.324 82.655 ± 0.015 1970 ± 26
TA (GPB) 97.67 ± 0.385 1681.523 ± 134.523 82.920 ± 0.150 1793.5 ± 9.5

Random (GP) 96.99 ± 0.307 2500 81.755 ± 0.195 2500

Experiments use 4 parallel workers for 4 iterations with 20, 10, 10, 10 configurations respectively.
BO is run with budgets of 50 epochs for each configuration. The GPB model is run with alternative
budgets of 1, 10, 20, 30, 40, 50 epochs. For a sampled architecture parameter, we fix it in the training
process of updating model parameters. A SGD optimizer is used with learning rate of 0.025,
momentum of 0.9, weight decay of 0.0003, and a cosine learning decay with an annealing cycle.
We use the found network architecture cell to build a 20-layer network and to train final models
on CIFAR-10, CIFAR-100 with 200 epochs. Table 4 shows the similar results as Table 3 but more
significantly, especially on CIFAR100.

The weakness of DARTS is that it has many skip-connect operations which is not preferred. Zela
et al. (2020); Liang et al. (2019) reduced the number of skip-connect operations by early stopping.
However, this issue disappears in the proposed method naturally which is depicted in Figure 1,
because DARTS changes architecture parameters and network parameters in turn while we do not
change the architecture during the training of network.

Figure 1: The architectures of normal cell (above) and reduction cell (bottom) learned by GPB on
CIFAR10.

5 CONCLUSIONS

This work has proposed a new model called GPB to involve budgets in the model. This helps to
automatically set the evaluation resources for each hyperparameter configuration and take the variance
caused by different budgets into account. Further, for this particular model, an optimal design is
constructed for estimating the model more accurately. The construction algorithm is derived by the
equivalence theorem (i.e., Theorem 1) which can also be used to judge whether a design is optimal.
Simulation studies support our theoretical results that optimal initial designs constructed by our
algorithms can improve the model robustness and speed up the convergence. In the end, we apply
the method to two popular machine learning problems, NAS and DA, and have the same conclusion
as synthetic experiments. Note that the optimal designs proposed here rely on the particular model.
Zhang et al. (2019) used orthogonal array and range analysis without assuming a model to make the
initialization efficient. However it is quite simple and not compared to other uniform designs. How to
construct an optimal model-free design is still an open problem that we leave for future work.
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APPENDICES

A PROOF OF THEOREM 1

The approximate design ξ is a minimizer if and only if the Fréchet derivative

d(x, ξ) = lim
ε→0+

ε−1{log Φ`[M((1− ε)Fξ + εFδx)]− log Φ`(M(Fξ))}

is non-positive for any x ∈ X , where δx denotes a one-point design on x. To get the Fréchet
derivative, we can calculate the Gâteaux derivative of log(Φ`(M(·))) at ξ in the direction δx, i.e.,
G(ξ, δx) = limε→0+ ε

−1[log Φ`(M(Fξ + εFδx)) − log Φ`(M(Fξ))]. Note that log Φ`(M(·)) =

log[tr(M(·)`)]1/` = `−1 log tr(M(·)`). The key calculation is as follows,

tr(M(Fξ + εFδx)`) = tr(((Fξ + εFδx)>Ψ−1(Fξ + εFδx))`)

= tr((F>ξ Ψ−1Fξ + εF>δxΨ−1Fξ + εF>ξ Ψ−1Fδx)`) + o(ε)

= tr((F>ξ Ψ−1Fξ)
` + `ε(F>ξ Ψ−1Fξ)

`−1(F>δxΨ−1Fξ + F>ξ Ψ−1Fδx)) + o(ε)

= tr(M(ξ)` + `ε(F>ξ Ψ−1Fξ)
`−1(F>δxΨ−1Fξ + F>ξ Ψ−1Fδx)) + o(ε).

11

https://openreview.net/forum?id=H1gDNyrKDS
https://openreview.net/forum?id=H1gDNyrKDS


Under review as a conference paper at ICLR 2021

Then, the molecule of the Gâteaux derivative is that

log
Φ`(M(ξ + εδx))

Φ`(M(ξ))
= `−1 log

tr(M(ξ + εδx)`)

tr(M(ξ)`)

= `−1 log

(
1 + `ε

tr((F>ξ Ψ−1Fξ)
`−1(F>δxΨ−1Fξ + F>ξ Ψ−1Fδx))

tr(F>ξ Ψ−1Fξ)`

)
+ o(ε)

= ε
tr((F>ξ Ψ−1Fξ)

`−1(F>δxΨ−1Fξ + F>ξ Ψ−1Fδx))

tr(F>ξ Ψ−1Fξ)`
+ o(ε).

By the definition of the Gâteaux derivative, it follows that

G(ξ, δx) =
tr((F>ξ Ψ−1Fξ)

`−1(F>δxΨ−1Fξ + F>ξ Ψ−1Fδx))

tr(F>ξ Ψ−1Fξ)`
. (5)

The Fréchet derivative can be rewritten as

d(x, ξ) = lim
ε→0+

ε−1{log Φ`[M(Fξ + ε(Fδx − Fξ))]− log Φ`(M(Fξ))}.

Replace Fδx by Fδx − Fξ in Equation (5), it is obtained that

d(x, ξ) =
tr((F>ξ Ψ−1Fξ)

`−1(F>δxΨ−1Fξ + F>ξ Ψ−1Fδx))

tr(F>ξ Ψ−1Fξ)`
− 2.

�

B MORE OPTIMAL CRITERIA

A-Optimality A-optimality is used when the experiment aims to estimate more than one linear
function of the parameters , e.g., K>β̂, because Cov(K>β̂) = σ2K>(X>X)−1K. Then we
minimize σ2trace[K>(X>X)−1K] = σ2trace[(X>X)−1KK>] = σ2[(X>X)−1A] with A =
KK>, i.e., A can be any p× p symmetric non-negative definite matrix.

C-Optimality C-optimality is chosen when estimating one particular linear function of the parame-
ters is of our interest, c>β, this criterion is a special case of A-optimality criterion. It is also called lin-
ear optimality. So we aim to minimize var(c>β̂) = σ2c>(X>X)−1c = σ2trace[c>(X>X)−1c] =
σ2trace[(X>X)−1cc>].

D-Optimality D-optimality is used to minimize the confidence ellipsoid of the estimate β̂,
det Cov(β̂)=σ2det(X>X)−1=σ2|X>X|−1=σ2Πjλ

−1
j , where the λj are eigenvalues of X>X .

E-Optimality E-optimality is used when we are interested in estimating a normalized linear function
of the parameters. It can be considered a special case of C-optimality. So we may want to minimize
max var(c>β̂) for any c, such that, ‖c‖ = 1. By leaving σ2 out we have max‖c‖=1 var(c>β̂) =

max‖c‖=1 c
>(X>X)−1c = max eigenvalue of (X>X)−1.

Non-Linear Models For non-linear models, we can apply the optimality to the Fisher information
matrix of β̂. The Cramér-Rao bound states that the inverse of the Fisher information is a lower bound
on the variance of any unbiased estimator of β. Thus, when the model is not linear, we can maximize
the Fisher information in different ways to achieve different optimality.

C MORE OBJECTIVE FUNCTIONS

Table 5 presents the objective functions used in Table 2. The search space is that x1 ∈ [−2, 2],
x2 ∈ [−2, 2], b ∈ {104, 103, 102, 101, 100, 10−1, 10−2, 10−3, 10−4, 10−5}.
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Table 5: objective functions for simulation experiments.
objective function

sixhumpcamp f(x) = (4− 2.1x21 +
x4
1

3 )x21 + x1x2 + (−4 + 4x22)x22 + b · N (0, 1)
rosenbrock f(x) = 100(x2 − x21)2 + (x1 − 1)2 + b · N (0, 1)
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