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Abstract

We propose to learn to distinguish reversible from irreversible actions for better
informed decision-making in Reinforcement Learning (RL). From theoretical
considerations, we show that approximate reversibility can be learned through a
simple surrogate task: ranking randomly sampled trajectory events in chronological
order. Intuitively, pairs of events that are always observed in the same order are
likely to be separated by an irreversible sequence of actions. Conveniently, learning
the temporal order of events can be done in a fully self-supervised way, which we
use to estimate the reversibility of actions from experience, without any priors. We
propose two different strategies that incorporate reversibility in RL agents, one
strategy for exploration (RAE) and one strategy for control (RAC). We demonstrate
the potential of reversibility-aware agents in several environments, including the
challenging Sokoban game. In synthetic tasks, we show that we can learn control
policies that never fail and reduce to zero the side-effects of interactions, even
without access to the reward function.

1 Introduction

We address the problem of estimating if and how easily actions can be reversed in the Reinforcement
Learning (RL) context. Irreversible outcomes are often not to be taken lightly when making decisions.
As humans, we spend more time evaluating the outcomes of our actions when we know they are
irreversible [29]. As such, irreversibility can be positive (i.e. takes risk away for good) or negative (i.e.
leads to later regret). Also, decision-makers are more likely to anticipate regret for hard-to-reverse
decisions [50]. All in all, irreversibility seems to be a good prior to exploit for more principled
decision-making. In this work, we explore the option of using irreversibility to guide decision-making
and confirm the following assertion: by estimating and factoring reversibility in the action selection
process, safer behaviors emerge in environments with intrinsic risk factors. In addition to this, we
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show that exploiting reversibility leads to more efficient exploration in environments with undesirable
irreversible behaviors, including the famously difficult Sokoban puzzle game.

However, estimating the reversibility of actions is no easy feat. It seemingly requires a combination
of planning and causal reasoning in large dimensional spaces. We instead opt for another, simpler
approach (see Fig. 1): we propose to learn in which direction time flows between two observations,
directly from the agents’ experience, and then consider irreversible the transitions that are assigned a
temporal direction with high confidence. In fine, we reduce reversibility to a simple classification
task that consists in predicting the temporal order of events.

Our contributions are the following: 1) we formalize the link between reversibility and precedence es-
timation, and show that reversibility can be approximated via temporal order, 2) we propose a practical
algorithm to learn temporal order in a self-supervised way, through simple binary classification using
sampled pairs of observations from trajectories, 3) we propose two novel exploration and control strate-
gies that incorporate reversibility, and study their practical use for directed exploration and safe RL,
illustrating their relative merits in synthetic as well as more involved tasks such as Sokoban puzzles.

2 Related Work
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shortcoming of their approach is that they need

to collect explicit state-action pairs and their reversal actions, which makes it hard to scale to large
environments. Several works [40, 5, 4] use reachability as a curiosity bonus for exploration: if the
current state has a large estimated distance to previous states, it means that it is novel and the agent
should be rewarded. Reachability and reversibility are related, in the sense that irreversible actions
lead to states from which previous states are unreachable. Nevertheless, their motivations and ours
diverge, and we learn reversibility through a less involved task than that of learning reachability.
Nair et al. [33] learn to reverse trajectories that start from a goal state so as to generate realistic
trajectories that reach similar goals. In contrast, we use reversibility to direct exploration and/or
control, not for generating learning data. Closest to our work, Rahaman et al. [37] propose to learn
a potential function of the states that increases with time, which can detect irreversibility to some
extent. A drawback of the approach is that the potential function is learned using trajectories sampled
from a random policy, which is a problem for many tasks where a random agent might fail to cover
interesting parts of the state space. In comparison, our method does not use a potential function and
learns jointly with the RL agent, which makes it a viable candidate for more complex tasks.

Safe exploration. Safe exploration aims at making sure that the actions of RL agents do not lead to
negative or unrecoverable effects that would outweigh the long-term value of exploration [2]. Notably,
previous works developed distinct approaches to avoid irreversible behavior: by incremental updates
to safe policies [23, 18], which requires knowing such a policy in advance; by restricting policy
search to ergodic policies [32] (i.e. that can always come back to any state visited), which is costly;
by active exploration [28], where the learner can ask for rollouts instead of exploring potentially
unsafe areas of the state space itself; and by computing regions of attraction [9] (the part of the state
space where a controller can bring the system back to an equilibrium point), which requires prior
knowledge of the environment dynamics.



Self-supervision from the arrow of time. Self-supervision has become a central component
of modern machine learning algorithms, be it for computer vision, natural language or signal
processing. In particular, using temporal consistency as a source of self-supervision is now ubiquitous,
be it to learn representations for downstream tasks [19, 38, 12], or to learn to detect temporal
inconsistencies [47]. The closest analogies to our work are methods that specifically estimate some
aspects of the arrow of time as self-supervision. Most are to be found in the video processing literature,
and self-supervised tasks include predicting which way the time flows [35, 47], verifying the temporal
order of a subset of frames [30], predicting which video clip has the wrong temporal order among a
subset [17] as well as reordering shuffled frames or clips from the video [16, 14, 48]. Bai et al. [6]
notably propose to combine several of these pretext tasks along with data augmentation for video
classification. Using time as a means of supervision was also explored for image sequencing [8],
audio [11] or EEG processing [39]. In RL, self-supervision also gained momentum in recent
years [22, 44, 49], with temporal information being featured [1]. Notably, several works [3, 13,21, 43]
leverage temporal consistency to learn useful representations, effectively learning to discriminate
between observations that are temporally close and observations that are temporally distant. In
comparison to all these works, we estimate the arrow of time through temporal order prediction with
the explicit goal of finding irreversible transitions or actions.

3 Reversibility

Degree of Reversibility. We start by introducing formally the notion of reversibility. Intuitively, an
action is reversible if it can be undone, meaning that there is a sequence of actions that can bring us
back to the original state.

Definition 1. Given a state s, we call degree of reversibility within K steps of an action a
b (8,a) =Suppx(s € Teptitr k41 | St = 8,00 = a),
™
and the degree of reversibility of an action is defined as

QS(Sa a) = Supp‘n’(s € Tt+1:00 | St = §,at = CL),
T

with T = {s;}i=1...7 ~ T corresponding to a trajectory, and Ty.;: the subset of the trajectory between
the timesteps t and t' (excluded). We omit their dependency on T for the sake of conciseness. Given s €
S, the action a is reversible if and only if ¢(s,a) = 1, and said irreversible if and only if ¢(s,a) = 0.

In deterministic environments, an action is either reversible or irreversible: given a state-action couple
(s,a) and the unique resulting state s, ¢x (s, a) is equal to 1 if there is a sequence of less than K
actions which brings the agent from s’ to s, and is otherwise equal to zero. In stochastic environments,
a given sequence of actions can only reverse a transition up to some probability, hence the need for
the notion of degree of reversibility.

Policy-Dependent Reversibility. In practice, it is useful to quantify the degree of reversibility of

an action as the agent acts according to a fixed policy 7, for which we extend the notions introduced
above. We simply write :

Or, i (8,0) = pr(s € Teprier k41 | St = 8,00 = a) and (s, a) = pr(s € Tep1i00 | 8t = 5,0t = a).
It immediately follows that ¢k (s, a) = sup,. ¢ k (s, a) and ¢(s,a) = sup, ¢ (s,a).

4 Reversibility Estimation via Classification

Quantifying the exact degree of reversibility of actions is generally hard. In this section, we show
that reversibility can be approximated efficiently using simple binary classification.

4.1 Precedence Estimation

Supposing that a trajectory contains the states s and s’, we want to be able to establish precedence,
that is predicting whether s or s’ comes first on average. It is a binary classification problem, which



consists in estimating the quantity Eg,—; s, =& [1t/>t] . Accordingly, we introduce the precedence
estimator which, using a set of trajectories, learns to predict which state of an arbitrary pair is most
likely to come first.

Definition 2. Given a fixed policy 7, we define the finite-horizon precedence estimator between two
states as follows:

L/)W,T(‘S: S/) =Err Est:s,st/:s' [1t'>t] .
t,t'<T

Conceptually, given two states s and s’, the precedence estimator gives an approximate probability of
s’ being visited after s, given that both s and s’ are observed in a trajectory. The indices are sampled
uniformly within the specified horizon 7" € N, so that this quantity is well-defined even for infinite
trajectories. Additional properties of 1, regarding transitivity for instance, can be found in Appx. A.2.

Remark 1. The quantity 1 (s, s') is only defined for pairs of states which can be found in the
same trajectory, and is otherwise irrelevant. In what follows, we implicitly impose this condition
when considering state pairs.

Theorem 1. For every policy m and s,s" € S, Y 1(s,s") converges when T goes to infinity. We
refer to the limit as the precedence estimator, wriften (s, s').

The proof of this theorem is developed in Appendix A.3. This result is key to ground theoretically
the notion of empirical reversibility ¢, which we introduce in the next definition. It simply consists in
extending the notion of precedence to a state-action pair.

Definition 3. We finally define the empirical reversibility using the precedence estimator:

éﬂ(s7 (l) = Es/~P(s,a) [1/}77(3/’ 5)] .

In a nutshell, given that we start in s and take the action a, the empirical reversibility ¢, (s, a)
measures the probability that we go back to s, starting from a state s’ that follows (s, a). We now
show that our empirical reversibility is linked with the notion of reversibility defined in the previous
section, and can behave as a useful proxy.

4.2 Estimating Reversibility from Precedence

We present here our main theoretical result which relates reversibility and empirical reversibility:

Theorem 2. Given a policy T, a state s and an action a, we have: ¢ (s,a) > w

The full proof of the theorem is given in Appendix A.3.

This result theoretically justifies the name of empirical reversibility. From a practical perspective, it
provides a way of using ¢ to detect actions which are irreversible or hardly reversible: ¢, (s,a) < 1
implies ¢, (s, a) < 1 and thus provides a sufficient condition to detect actions with low degrees of
reversibility. This result gives a way to detect actions that are irreversible given a specific policy
followed by the agent. Nevertheless, we are generally interested in knowing if these actions are
irreversible for any policy, meaning ¢ (s, a) < 1 with the definition of Section 3. The next proposition
makes an explicit connection between ¢, and ¢, under the assumption that the policy 7 is stochastic.

Proposition 1. We suppose that we are given a state s, an action a such that a is reversible in K
steps, and a policy . Under the assumption that 7 is stochastic enough, meaning that there exists

o~

5 Moreover, we

p > 0 such that for every state and action s, a, 7(a | s) > p, we have: ¢ (s,a) >
have for all K € N: ¢, (s,a) > §¢K(s,a).

The proof is given in Appendix A.4. As before, this proposition gives a practical way of detecting
irreversible moves. If for example ¢, (s,a) < p*/2 for some k € N, we can be sure that action a is
not reversible in k steps. The quantity p can be understood as a minimal probability of taking any
action in any state. This condition is not very restrictive: e-greedy strategies for example satisfy this
hypothesis with p = @.

In practice, it can also be useful to limit the maximum number of time steps between two sampled
states. That is why we also define the windowed precedence estimator as follows:
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Figure 2: The proposed self-supervised procedure for precedence estimation.

Definition 4. Given a fixed policy w, we define the windowed precedence estimator between two

states as follows:
wﬂ',T,U)(Sa 8/) = ETNﬂ'Est:s,st/:s' |:1t/>t] N

t,t'<T
|t—t'|<w

Intuitively, compared to previous precedence estimators, x ., is restricted to short-term dynamics,
which is a desirable property in tasks where distinguishing the far future from the present is either
trivial or impossible.

5 Reversibility-Aware Reinforcement Learning

Leveraging the theoretically-grounded bridge between precedence and reversibility established in the
previous section, we now explain how reversibility can be learned from the agent’s experience and
used in a practical setting.

Learning to rank events chronologically. Learning which observation comes first in a trajectory
is achieved by binary supervised classification, from pairs of observations sampled uniformly in
a sliding window on observed trajectories. This can be done fully offline, i.e. using a previously
collected dataset of trajectories for instance, or fully online, i.e. jointly with the learning of the RL
agent; but also anywhere on the spectrum by leveraging variable amounts of offline and online data.

This procedure is not without caveats. In particular, we want to avoid overfitting to the particularities
of the behavior of the agent, so that we can learn meaningful, generalizable statistics about the order
of events in the task at hand. Indeed, if an agent always visits the state s, before s;, the classifier
will probably assign a close-to-one probability that s, precedes s;. This might not be accurate with
other agents equipped with different policies, unless transitioning from s; to s, is hard due to the
dynamics of the environment, which is in fact exactly the cases we want to uncover. We make
several assumptions about the agents we apply our method to: 1) agents are learning and thus, have a
policy that changes through interactions in the environment, 2) agents have an incentive not to be too
deterministic. For this second assumption, we typically use an entropic regularization in the chosen
RL loss, which is a common design choice in modern RL methods. These assumptions, when put
together, alleviate the risk of overfitting to the idiosyncrasies of a single, non-representative policy.

We illustrate the precedence classification procedure in Fig. 2. A temporally-ordered pair of observa-
tions, distant of no more than w timesteps, is sampled from a trajectory and uniformly shuffled. The
result of the shuffling operation is memorized and used as a target for the binary classification task. A
Siamese network creates separate embeddings for the pair of observations, which are concatenated
and fed to a separate feed-forward network, whose output is passed through a sigmoid to obtain a
probability of precedence. This probability is updated via negative log-likelihood against the result of
the shuffle, so that it matches the actual temporal order.

Then, a transition (and its implicit sequence of actions) represented by a starting observation = and
a resulting observation z’ is deemed irreversible if the estimated precedence probability ¢ (x, )
is superior to a chosen threshold 5. Note that we do not have to take into account the temporal
proximity of these two observations here, which is a by-product of sampling observations uniformly
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Figure 3: Our proposed methods for reversibility-aware RL. (a): RAE encourages reversible behavior
via auxiliary rewards. (b): RAC avoids irreversible behavior by rejecting actions whose estimated
reversibility is inferior to a threshold.

in a window in trajectories. Also, depending on the threshold (3, we cover a wide range of scenarios,
from pure irreversibility (5 close to 1) to soft irreversibility (8 > 0.5, the bigger (3, the harder the
transition is to reverse). This is useful because different tasks call for different levels of tolerance
for irreversible behavior: while a robot getting stuck and leading to an early experiment failure is to
be avoided when possible, tasks involving human safety might call for absolute zero tolerance for
irreversible decision-making. We elaborate on these aspects in Sec. 6.

Reversibility-Aware Exploration and Control. We propose two different algorithms based on
reversibility estimation: Reversibility-Aware Exploration (RAE) and Reversibility-Aware Control
(RAC). We give a high-level representation of how the two methods operate in Fig. 3.

In a nutshell, RAE consists in using the estimated reversibility of a pair of consecutive observations
to create an auxiliary reward function. In our experiments, the reward function is a piecewise linear
function of the estimated reversibility and a fixed threshold, as in Fig. 3: it grants the agent a negative
reward if the transition is deemed too hard to reverse. The agent optimizes the sum of the extrinsic
and auxiliary rewards. Note that the specific function we use penalizes irreversible transitions but
could encourage such transitions instead, if the task calls for it.

RAC can be seen as the action-conditioned counterpart of RAE. From a single observation, RAC
estimates the degree of reversibility of all available actions, and “takes control” if the action sampled
from the policy is not reversible enough (i.e. has a reversibility inferior to a threshold ). “Taking
control” can have many forms. In practice, we opt for rejection sampling: we sample from the policy
until an action that is reversible enough is sampled. This strategy has the advantage of avoiding
irreversible actions entirely, while trading-off pure reversibility for performance when possible. RAC
is more involved than RAE, since the action-conditioned reversibility is learned from the supervision
of a standard, also learned precedence estimator. Nevertheless, our experiments show that it is
possible to learn both estimators jointly, at the cost of little overhead.

We now discuss the relative merits of the two methods. In terms of applications, we argue that
RAE is more suitable for directed exploration, as it only encourages reversible behavior. As a result,
irreversible behavior is permitted if the benefits (i.e. rewards) outweigh the costs (i.e. irreversibility
penalties). In contrast, RAC shines in safety-first, real-world scenarios, where irreversible behavior is
to be banned entirely. With an optimal precedence estimator and task-dependent threshold, RAC will
indeed hijack all irreversible sampled actions. RAC can be especially effective when pre-trained on
offline trajectories: it is then possible to generate fully-reversible, safe behavior from the very first
online interaction in the environment. We explore these possibilities experimentally in Sec. 6.2.

Both algorithms can be used online or offline with small modifications to their overall logic. The
pseudo-code for the online version of RAE and RAC can be found in Appendix B.2.

The self-supervised precedence classification task could have applications beyond estimating the
reversibility of actions: it could be used as a means of getting additional learning signal or repre-
sentational priors for the RL algorithm. Nevertheless, we opt for a clear separation between the
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Figure 4: (a): Training curves of a PPO+RAE agent in reward-free Cartpole. Blue: episode length.
Red: intrinsic reward. A 95% confidence interval over 10 random seeds is shown. (b): The x and y
axes are the coordinates of the end of the pole relatively to the cart position. The color denotes the
online reversibility estimation between two consecutive states (logit scale). (¢): The representation of
three random trajectories according to ¢ (angle of the pole) and %. Arrows are colored according to
the learned reversibility of the transitions they correspond to.

reversibility and the RL components so that we can precisely attribute improvements to the former,
and leave aforementioned studies for future work.

6 Experiments

The following experiments aim at demonstrating that the estimated precedence 1 is a good proxy
for reversibility, and at illustrating how beneficial reversibility can be in various practical cases. We
benchmark RAE and RAC on a diverse set of environments, with various types of observations
(tabular, pixel-based), using neural networks for function approximation. See Appendix C for details.

6.1 Reward-Free Reinforcement Learning

We illustrate the ability of RAE to learn sensible policies without access to rewards. We use the
classic pole balancing task Cartpole [7], using the OpenAl Gym [10] implementation. In the usual
setting, the agent gets a reward of 1 at every time step, such that the total undiscounted episode reward
is equal to the episode length, and incentivizes the agent to learn a policy that stabilizes the pole.
Here, instead, we remove this reward signal and give a PPO agent [42] an intrinsic reward based
on the estimated reversibility, which is learned online from agent trajectories. The reward function
penalizes irreversibility, as shown in Fig. 3. Note that creating insightful rewards is quite difficult: too
frequent negative rewards could lead the agent to try and terminate the episode as soon as possible.

We display our results in Fig. 4. Fig. 4a confirms the claim that RAE can be used to learn meaningful
rewards. Looking at the intrinsic reward, we discern three phases. Initially, both the policy and the
reversibility classifier are untrained (and intrinsic rewards are 0). In the second phase, the classifier is
fully trained but the agent still explores randomly (intrinsic rewards become negative). Finally, the
agent adapts its behavior to avoid penalties (intrinsic rewards go to 0, and the length of trajectories
increases). Our reward-free agent reaches the score of 200, which is the highest possible score.

To further assess the quality of the learned reversibility, we freeze the classifier after 300k timesteps
and display its predicted probabilities according to the relative coordinates of the end of the pole
(Fig. 4b) and the dynamics of the angle of the pole 6 (Fig. 4c). In both cases, the empirical reversibility
matches our intuition: the reversibility should decrease as the angle or angular momentum increase,
since these coincide with an increasing difficulty to go back to the equilibrium.

6.2 Learning Reversible Policies

In this section, we investigate how RAE can be used to learn reversible policies. When we train
an agent to achieve a goal, we usually want it to achieve that goal following implicit safety con-
straints. Handcrafting such safety constraints would be time-consuming, difficult to scale for complex
problems, and might lead to reward hacking; so a reasonable proxy consists in limiting irreversible
side-effects in the environment [27].



(a) Initial state (b) A trajectory (c) PPO (500k)  (d) PPO+RAE (500k)

Figure 5: (a): The Turf environment. The agent can walk on grass, but the grass then turns brown.
(b): An illustrative trajectory where the agent stepped on grass pixels. (¢): State visitation heatmap
for PPO. (d): State visitation heatmap for PPO+RAE. It coincides with the stone path (red).

109 |

0.9

0.8

=S —== irrev
IMPALA 07
IMPALA+RAE
0.6
I O A . 0.2 0.4 0.6 0.8 1.0 1]
e —— Timesteps 1e8 0 20 40 60 8 100 120
Timesteps

Figure 6: (a): Non-trivial reversibility: pushing the box against the wall can be reversed by pushing
it to the left, going around, pushing it down and going back to start. A minimum of 17 moves is
required to go back to the starting state. (b): Performances of IMPALA and IMPALA+RAE on 1k
levels of Sokoban (5 seeds average). (c¢): Evolution of the estimated reversibility along one episode.

To quantify side-effects, we propose Turf, a new synthetic environment. As depicted in Fig. 5a,5b,
the agent (blue) is rewarded when reaching the goal (pink). Stepping on grass (green) will spoil it,
causing it to turn brown. Stepping on the stone path (grey) does not induce any side-effect.

In Fig. 5c,5d, we compare the behaviors of a trained PPO agent with and without RAE. The baseline
agent is indifferent to the path to the goal, while the agent benefitting from RAE learns to follow the
road, avoiding irreversible consequences.

6.3 Sokoban

Sokoban is a popular puzzle game where a warehouse keeper (controlled by the player) must move
boxes around and place them in dedicated places. Each level is unique and involves planning, since
there are many ways to get stuck. For instance, pushing a box against a wall is often un-undoable,
and prevents the completion of the level unless actually required to place the box on a specific
target. Sokoban is a challenge to current model-free RL algorithms, as advanced agents require
millions of interactions to reliably solve a fraction of levels [46, 20]. One of the reasons for this is
tied to exploration: since agents learn from scratch, there is a long preliminary phase where they
act randomly in order to explore the different levels. During this phase, the agent will lock itself
in unrecoverable states many times, and further exploration is wasted. It is worth recalling that
contrary to human players, the agent does not have the option to reset the game when stuck. In these
regards, Sokoban is a great testbed for reversibility-aware approaches, as we expect them to make
the exploration phase more efficient, by incorporating the prior that irreversible transitions are to be
avoided if possible, and by providing tools to identify such transitions.

We benchmark performance on a set of 1k levels. Results are displayed in Fig. 6. Equipping an
IMPALA agent [15] with RAE leads to a visible performance increase, and the resulting agent
consistently solves all levels from the set. We take a closer look at the reversibility estimates and show
that they match the ground truth with high accuracy, despite the high imbalance of the distribution
(i.e. few irreversible transitions, see Fig. 6¢) and complex reversibility estim ation (see Fig. 6a).
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axes are the coordinates of the end of the pole relatively to the cart position. The color indicates the
estimated reversibility values.

6.4 Safe Control

In this section, we put an emphasis on RAC, which is particularly suited for safety related tasks.

Cartpole+. We use the standard Cartpole environment, except that we change the maximum
number of steps from 200 to 50k to study long-term policy stability. We name this new environment
Cartpole+. It is substantially more difficult than the initial setting. We learn reversibility offline, using
trajectories collected from a random policy. Fig. 7a shows that a random policy augmented with RAC
achieves seemingly infinite scores. For the sake of comparison, we indicate that a DQN [31] and
the state-of-the-art M-DQN [45] achieve a maximum score of respectively 1152 and 2801 under a
standard training procedure, described in Appendix C.5. This can be surprising, since RAC was only
trained on random thus short trajectories (mean length of 20). We illustrate the predictions of our
learned estimator in Fig. 7b,7c. When the pole leans to the left (x < 0), we can see that moving the
cart to the left is perceived as more reversible than moving it to the right. This is key to the good
performance of RAC and perfectly on par with our understanding of physics: when the pole is leaning
in a direction, agents must move the cart in the same direction to stabilize it.

Turf. We now illustrate how RAC can be used for safe online
learning: the implicitly safe constraints provided by RAC
prevent policies from deviating from safe trajectories. This
ensures for example that agents stay in recoverable zones  ©'°
during exploration.
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We learn the reversibility estimator offline, using the trajectories
of a random policy. We reject actions whose reversibility is 0 tfmeste‘; < (162) 8
deemed inferior to 5 = 0.2, and train a PPO agent with RAC.

As displayed in Fig. 8, PPO with RAC learns to reach the goal

without causing any irreversible side-effect (i.e. stepping on Figure 8: PPO and RAC (solid
grass) during the whole training process. lines) vs PPO (dashed lines).
At the cost of slower learning
(brown), our approach prevents
the agent from producing a single
irreversible side-effect (green)
during the learning phase. Curves
are averaged over 10 runs.

The threshold 3 is a very important parameter of the algo-
rithm. Too low a threshold could lead to overlooking some
irreversible actions, while a high threshold could prevent the
agent from learning the new task at hand. We discuss this
performance/safety trade-off in more details in Appendix. C.7.

7 Conclusion

In this work, we formalized the link between the reversibility of transitions and their temporal order,
which inspired a self-supervised procedure to learn the reversibility of actions from experience. In
combination with two novel reversibility-aware exploration strategies, RAE for directed exploration
and RAC for directed control, we showed the empirical benefits of our approach in various scenarios,
ranging from safe RL to risk-averse exploration. Notably, we demonstrated increased performance in
procedurally-generated Sokoban puzzles, which we tied to more efficient exploration.



Broader impact and ethical considerations. The presented work aims at estimating and con-
trolling potentially irreversible behaviors in RL agents. We think it has interesting applications in
safety-first scenarios, where irreversible behavior or side-effects are to be avoided. The societal
implication of these effects would be safer interactions with RL-powered components (e.g. robots,
virtual assistants, recommender systems) which, though rare today, could become the norm. We
argue that further research and applications should verify that the induced reversible behavior holds
in almost all situations and does not lead to unintended effects. Our method could be deflected from
its goal and used to identify and encourage actions with irreversible effects. In this case, a counter
measure consists in using our method to flag and replace irreversible actions. Hence, while the
method provides information that could be used to deal irreversible harm, we argue that it provides
equal capabilities for detection and prevention.
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