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ABSTRACT

Quantifying responsiveness of pain to opioid administration is a clinically impor-
tant, yet technically challenging problem. Pain is a subjective phenomenon that
is difficult to assess by means other than infrequent and low-resolution patient
self-reporting. We tackle this problem using a continuous-time state space mod-
eling approach that incorporates mechanistic models of opioid effect site concen-
tration as well as information from covariates using black-box models iteratively
trained to predict the distributions of partially observed variables. We evaluated
our method in simulation, and applied it in a real-world observational study of
21,652 surgical cases, where our method is able to recapitulate the known po-
tencies of different opioids, and stratify patients by pain and opioid use related
outcomes.

1 INTRODUCTION

Pain is an inherently subjective phenomenon, affected not only by physiological condition but also
psychosocial factors (Lumley et al., 2011). For most practical purposes, pain can only be assessed
through patient self-report, which yields infrequent, irregular, and low-resolution measurements
(Williamson & Hoggart, 2005). Yet the assessment and management of pain is of critical impor-
tance to public health. Opioids are essential medicines for pain management, but growing rates of
opioid dependence have led to a crisis (Rummans et al., 2018; Chisholm-Burns et al., 2019) that has
expanded greatly over the past decades and is now responsible for over 80,000 deaths per year in the
United States (Abuse, 2024). Tools to identify patients for whom opioids may be less effective for
pain relief and that may have greater risk for dependence are greatly needed.

While reliance upon opioids for pain management has come under scrutiny (Hah et al., 2017), in-
adequately managed acute pain often becomes chronic and unresponsive to treatment (Glare et al.,
2019), and non-opioid interventions do not provide the same degree of pain relief (Munir et al.,
2007). Significant variability exists in responsiveness to opioid therapy due to difficult to assess
factors such as individual variation in opioid receptor expression (Smith, 2008). We seek to quan-
tify opioid responsiveness from observational data, to allow more objective and consistent clinical
decision making.

Despite the myriad challenges posed both by the complexities of the underlying system and the
available data, we propose a principled continuous-time state-space method for modeling the re-
sponsiveness of post-surgical pain to opioid therapy. We leverage known opioid pharmacokinetics
and pharmacodynamics (Shafer et al., 1990; Shafer, 2014; Lamminsalo et al., 2019), as well as
domain knowledge of the dependency structure between patient history and postoperative pain tra-
jectories (Liu et al., 2023a), and provide a generalizable framework for training black-box models
to predict latent state dynamics, enhancing our state space models with information from covariates.

We evaluated our method and its sensitivity to model misspecification in simulation, and applied it
to real-world observational data from the first 24 hours after 21,652 surgical cases. Our method,
with only an average of 16 pain observations across 24 hours per patient, is able to recapitulate
known differences in potency between different opioids (Nielsen et al., 2016), and stratifies patients
by outcomes associated with opioid responsiveness (Glare et al., 2019).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 RELATED WORK

The task of quantifying response to intervention is often approached as a problem of causal inference
(Pearl et al., 2016; Imbens & Rubin, 2015) and estimating individual treatment effects (Louizos
et al., 2017). One of the most common approaches for estimating both average and individual
treatment effects is by rebalancing covariates through back-door adjustment (Shalit et al., 2017).

However, achieving and verifying adequate covariate balance (Markoulidakis et al., 2021), as well
as other conditions necessary for back-door adjustment, becomes increasingly challenging for time-
varying exposures. For example, the overlap assumption (also referred to as positivity), which states
that all covariate values have a nonzero probability of assignment to all exposure values, seems in-
creasingly unlikely to hold as the dimensionality of covariates and exposures increases (D’Amour
et al., 2021). In our specific problem of estimating opioid responsiveness, not all known con-
founders which influence pain and opioid administration, such as psychosocial factors, are observed.
Nonetheless, others including Liu et al. (2023b) and Bica et al. (2020) have taken this approach by
learning time-evolving covariate-balanced representations, and report good performance in terms of
counterfactual prediction error within their modeling assumptions.

Zou et al. (2024) note that when modeling time-evolving systems, black-box models such as neural
ODEs (Chen et al., 2018; Kidger, 2022) achieve better predictive performance than theory-based
mechanistic models, but are more susceptible to confounding. A wide range of gray-box modeling
(also referred to as hybrid model) approaches attempt to combine mechanistic and deep learning
components (Wang & Fox, 2023; Hussain et al., 2021; Qian et al., 2021). Zou et al. (2024) provide a
gray-box modeling framework which maintains the dependency relationships between states defined
by a mechanistic model, and encodes knowledge about the expected direction of effect. Without
constraints, a data-driven black-box model can simply cancel out a theory-informed model; Takeishi
& Kalousis (2023) provide a regularization-based solution to this problem when fitting gray-box
models.

Our approach is overall heavily constrained: we specify our state space models in parametric form,
constrain our learned parameters by specifying the expected direction of effect, but incorporate
information from covariates by using black-box model predictions of posterior distributions of pa-
rameters as priors.

3 METHODS

3.1 PROBLEM FORMULATION

For patient j ∈ {1, ..., N}, let yj = [yj(tj1), ..., yj(tjnj
)] such that yj(tji) : R 7→ {0, 1, ..., 10}

denotes their reported pain score at irregular observation times tji ; let tj0 < tj1 < ... < tjnj

without loss of generality.

Let uj(t) : R 7→ Rm be their vector of opioid effect site concentrations over time, for m different
opioids. We estimate uj(t) using existing pharmacokinetic/pharmacodynamic models parameter-
ized by indvidual age, weight, height, and sex, as well as the timing and dosage of opioid boluses
administered (Shafer et al., 1990; Lamminsalo et al., 2019). We used the open-source PK/PD simu-
lation software Stanpump to estimate opioid effect site concentrations (ESC) based on these models
(Shafer, 2014).

We define the following generative continuous-time state-space model for yj: let xj(t) : R 7→ R be
a patient’s latent pain state at time t, with initial marginal distribution:

xj(tj0) ∼ N (µ0, σ
2
0) (1)

Let xj = [xj(tj0), xj(tj1), ..., xj(tjnj
)] be their collection of latent states at initial time tj0 and

times where y is observed.

Let aj = [aj1 , ..., ajm ] ∈ Rm
≥0 be their vector of non-negative opioid response coefficients.

Let σ2 be the variance of state noise over a time interval of length 1, and let Bt be a Wiener process
with variance 1 over a time interval of length 1.
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Figure 1: Pain scores: yj and opioid effect site concentrations: uj(t) over time for an example
patient.

The evolution of xj(t) is then defined by the following stochastic differential equation (Kloeden
et al., 1992):

dxj(t) = −aj · uj(t)dt+ σdBt (2)

Each yj(ti) is then an ordered categorical random variable, also referred to as an ordinal random
variable, with a total of k = 11 ordered categories y1 = 0, y2 = 1, ..., yk = 10, and cumulative
distribution function conditioned on x(ti) defined by:

P (yj(t) ≤ yk | xj(t)) =
1

1 + exj(t)−βk
(3)

Observations of yj and uj(t) for one example patient are illustrated in Figure 1.

Finally, let cj ∈ Rl be a vector of covariates informative of initial state xj(tj0) as well as opioid
responsiveness aj. This is premised upon existing evidence that preoperative data is predictive of
postoperative pain trajectory (Liu et al., 2023a) and is likely informative of opioid responsiveness.
The dependencies between variables in our model are illustrated in Figure 2.

Our task is to rank patients by their opioid responsiveness parameter aj , given yj,uj(t), cj for
each patient. We evaluated the performance of our method in simulation, where ground truth for
aj is known. We also applied this method to observational data from 21,652 surgical patients at a
quaternary care academic medical center in the United States, and examine associations between
estimated a and postoperative outcomes associated with opioid responsiveness (Glare et al., 2019).

3.2 CONTINUOUS-TIME STATE SPACE MODELING WITH ORDINAL OBSERVATIONS

Typically, expectation-maximization procedures are used to fit state space models (McLachlan & Kr-
ishnan, 2007). When dynamics are linear and observations are Gaussian, Kalman filtering and fixed-
interval smoothing can be used to estimate the posterior expectation E[xj | aj,yj,uj(t)] (Shumway
et al., 2000). However, because our observations yj are non-Gaussian, there is no convenient ana-
lytic solution to the posterior.

Markov Chain Monte Carlo (MCMC) methods can be used instead to sample from the posterior
distribution of aj,xj | yj,uj(t). We can first derive a proposal function for a Metropolis-Hastings
sampling scheme, which is proportional to the likelihood function of the distribution we are trying
to sample, then use the No-U-Turn Sampler (NUTS) to efficiently sample from a Markov chain with
an equivalent limiting distribution (Hoffman et al., 2014; Carpenter et al., 2017).
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Figure 2: Dependency structure of our state space model. Variables which are observed are repre-
sented by squares, whereas variables which are unobserved are represented by circles.

Let q(aj ,xj) be our proposal function such that:

q(aj ,xj) ∝ L (aj ,xj | yj ,uj(t)) (4)

From Bayes’ rule and the conditional independence properties of our model structure, we obtain
(see Appendix A for a more thorough derivation):

L (aj ,xj | yj ,uj(t)) =
L(yj | xj)L (xj | aj ,uj(t))L(aj)L (uj(t))

L (yj ,uj(t))
(5)

Factoring out all constants, with flat priors over a, we have our proposal function:

q(aj ,xj) = L (xj(tj0))

nj∏
i=1

L (yj(tji) | xj(tji))

nj∏
i=1

L
(
xj(tji) | xj(tji−1

),aj ,uj(t)
)

(6)

We obtain L (yj(tji) | xj(tji)) from Equation 3, and L (xj(tj0)) from Equation 1.

We can then solve Equation 2 over each time interval [tji−1
, tji ]. Our conditional state transition

distributions over each interval give us L
(
x(tji) | x(tji−1

),aj ,uj(t)
)

and are given by:

xj(tji) | xj(tji−1
),aj ,uj(t) ∼ N

(
xj(tji−1

)−
∫ tji

tji−1

aj · uj(t)dt, σ
√

tji − tji−1

)
(7)

Note that so long as we have analytic conditional state transition distributions, we only need to
consider xj(t) at tj0 , tj1 , ..., tjnj

which greatly reduces the number of variables which must be
sampled compared to a discretized system.

Figure 3 illustrates the posterior distribution of xj ,aj | yj ,uj(t) sampled using NUTS for the
example patient in Figure 1. Point estimates for aj are obtained for each patient by computing the
mode of a kernel density estimate fitted to the samples (Sheather & Jones, 1991).

3.3 BLACK-BOX PREDICTION OF COVARIATE-INFORMED PRIORS

Now we wish to sample aj ,xj | yj ,uj(t), cj . From Bayes’ rule and the conditional independence
properties of our model, we obtain (see Appendix B for a more thorough derivation):

q(aj ,xj , cj) = L (xj(tj0) | cj)L(aj | cj)
nj∏
i=1

L (y(tji) | x(tji))
nj∏
i=1

L
(
x(tji) | x(tji−1

),aj ,uj(t)
)

(8)
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Figure 3: Posterior distributions of latent pain state: xj | yj ,uj(t) and opioid responsiveness:
aj | yj ,uj(t) for the example patient shown in Figure 1. Shaded areas indicate 95% confidence
intervals for xj . Responsiveness coefficients can be interpreted as log-odds of reduction in pain
score per ng /mL of opioid effect site concentration per minute of exposure.

We now need models for L (xj(tj0) | cj) and L (aj | cj), which we refer to as our covariate-
informed priors. These can be black-box predictors; let f, g be models with parameters θf and
θg .

L (xj(tj0) | cj) ≈ L (x̂j(tj0) | cj , θf ) = f(cj , θf ) (9)

L (aj | cj) ≈ L (âj | cj , θg) = g(cj , θg) (10)

Our training objective is to minimize the total Kullback-Leibler divergence between our covariate-
informed priors and our posterior distributions, across all patients.

θ∗f = argmin
θf

N∑
j

DKL ((xj(tj0) | yj ,uj(t), cj) , (x̂j(tj0) | cj , θf )) (11)

θ∗g = argmin
θg

N∑
j

DKL ((aj | yj ,uj(t), cj) , (âj | cj , θg)) (12)

For computational convenience, we approximate the posterior distributions of xj(tj0) as Gaussian,
and aj as log-Gaussian with variance constant with respect to cj , which reduces the minimization
of KL-divergence to least-squares on the posterior means of each patient (see Appendix C).

However, xj(tj0) and aj are not directly observed, and so we cannot simply perform super-
vised learning. Instead, we devise an expectation-maximization algorithm (Dempster et al., 1977;
McLachlan & Krishnan, 2007):

In the first E-step, we begin with flat priors on aj , and xj(tj0) independent of cj , using Equation 6
to sample from the posterior distributions of xj(tj0) and aj . In each M-step, we then update θf and
θg using Equation 11 and 12 with the previous E-step’s sample estimates. In subsequent E-steps,
using the previous M-step’s learned values of θf , θg , we then update the posterior distributions of
xj(tj0),aj | yj ,uj(t), cj , θf , θg using Equation 8. On iteration T , this is equivalent to:

θ
(T+1)
f = argmin

θf

N∑
j

DKL

((
x̂j(tj0) | yj ,uj(t), cj , θ

(T )
f

)
, (x̂j(tj0) | cj , θf )

)
(13)
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θ(T+1)
g = argmin

θg

N∑
j

DKL

((
âj | yj ,uj(t), cj , θ

(T )
g

)
, (âj | cj , θg)

)
(14)

We repeat this procedure until a pre-specified number of iterations has been reached, or the total
data log-likelihood is no longer increasing.

3.4 SIMULATION STUDY

We generated simulated data as numerical realizations of Equation 2 for varying values of σ. Co-
variates c were generated as realizations of independent Gaussian random variables such that a
prespecified proportion r2 of the variance in xj0 and a were explained by their sum.

Wherever possible, parameters were chosen to match distributions found in our observational
dataset, including the frequency of observations and opioid administration, as well as patient de-
mographics (further details in Appendix D). yj was observed according to Equation 3 with expo-
nentially distributed intervals between observations.

We applied the same data exclusion criteria to our simulated data as in our observational study; we
rejected data for which model identification was impossible, such as patients with only 0 or 10 pain
scores, or patients who did not receive opioids.

We considered cases in which varying fractions of variance r2 in xj(tj0) and aj are explained by cj ,
comparing performance metrics with and without covariate-informed priors as an ablation study. We
compute concordance probability (also referred to as c-index, and equal to AUC when one variable
is binary) between true aj and sampled posterior mode, as well as Kendall’s rank correlation (τ )
in order to assess the quality of our estimated rankings. Confidence intervals for our performance
metrics were computed using bootstrap.

3.5 REAL-WORLD APPLICATION ON OBSERVATIONAL DATA

We applied our method to electronic health record data from 21,652 adult surgical patients at a
quaternary care academic medical center in the United States, computing responsiveness of post-
operative pain to fentanyl, hydromorphone, and oxycodone. Our protocol was approved by the
Institutional Review Board with a waiver of informed consent. Covariates in this dataset consisted
of routinely collected preoperative data, including patient demographics, surgical service of their
scheduled procedure, surgery urgency (elective, urgent, emergent), preoperative pain score, opioid
naivety, and other elements of patient medical and surgical history. We included only patients who
had at least 10 pain score observations in the first 24 hours after surgery, and were administered
hydromorphone or oxycodone at least once after surgery. Carry-over from intraoperative opioid
administration was factored into our PK/PD calculations; fentanyl was only administered intraoper-
atively or immediately after surgery in the PACU.

Patients were stratified into high and low responsiveness cohorts for hydromorphone and oxycodone
based on whether their estimated responsiveness was greater or less than the median in our study
cohort; the distribution of postoperative outcomes was evaluated within these cohorts.

4 RESULTS

4.1 SIMULATION STUDY

Table 1 gives performance of our continuous-time state space modeling method on simulated data
for different values of σ, the magnitude of noise in the state evolution equation, without informative
covariates c. Higher is better for both concordance probability (C-index) and Kendall’s rank correla-
tion (τ ). The general trend observed is that the system becomes less identifiable as the magnitude of
noise in the state evolution equation increases. Without informative covariates, sample size does not
impact the performance of our model, only the width of the confidence bounds of our performance
metrics, as each patient’s parameters are estimated independently of the others.

Table 2 gives performance of our method on simulated data for varying values of r2, the percentage
of variance in xj0 and aj explained by cj , and compares performance with flat priors (without c),
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Table 1: Parameters and performance metrics with 95% confidence intervals for simulation study

N σ C-index Kendall’s τ

1000 0.1 .785 (.771, .798) .569 (.543, .595)
1000 0.2 .718 (.701, .735) .437 (.405, .470)
1000 0.3 .670 (.651, .688) .340 (.302, .377)
1000 0.4 .653 (.633, .673) .306 (.267, .344)
1000 0.5 .634 (.614, .653) .267 (.230, .303)
1000 0.6 .607 (.587, .626) .214 (.175, .253)
1000 0.7 .599 (.579, .619) .198 (.158, .238)
1000 0.8 .597 (.577, .616) .195 (.154, .237)

and with covariate-informed priors (with c). We find that while covariates that provide information
about the distribution of the initial state xj0 may improve the performance of our method when
c is informative of a, when c is not informative of a, there is no performance gain when c is
not informative of a. Only covariates that can predict a improve our ability to identify opioid
responsiveness; the more informative c is of a, the greater the increase in performance. We also find
that the performance increase from using covariate-informed priors is slightly greater for lower σ.
This is likely because if the overall system is more identifiable, then the black box predictors will be
trained on more accurate labels, thus increasing the amount of information that they provide.

Table 2: Parameters and performance metrics with 95% confidence intervals for simulation and
ablation study

with c without c
N r2x0

r2a σ C-index Kendall’s τ C-index Kendall’s τ

2000 1 1 0.1 .851 (.845, .858) .703 (.690, .716) .777 (.768, .786) .555 (.535, .573)
2000 1 1 0.2 .788 (.780, .797) .577 (.558, .595) .716 (.704, .727) .432 (.409, .454)
2000 1 1 0.3 .739 (.728, .750) .478 (.454, .499) .675 (.662, .687) .349 (.325, .374)
2000 0 1 0.3 .729 (.716, .741) .458 (.433, .480) .673 (.660, .685) .345 (.318, .370)
2000 1 0 0.3 .683 (.670, .695) .366 (.341, .391) .680 (.668, .693) .361 (.334, .386)
2000 0.5 0.5 0.3 .699 (.686, .712) .398 (.373, .424) .674 (.661, .687) .348 (.323, .372)
2000 0.5 0 0.3 .692 (.679, .705) .384 (.358, .410) .669 (.655, .682) .338 (.311, .363)
2000 0 0.5 0.3 .671 (.657, .683) .341 (.314, .367) .671 (.658, .684) .341 (.313, .369)
2000 0.3 0.3 0.3 .689 (.677, .702) .378 (.351, .404) .673 (.659, .685) .346 (.319, .373)
2000 0.2 0.2 0.3 .677 (.665, .690) .355 (.327, .380) .663 (.650, .676) .325 (.298, .351)

4.2 REAL-WORLD APPLICATION ON OBSERVATIONAL DATA

Our observational cohort consisted of 21,652 adult non-cardiac surgical cases with general anes-
thesia. On average, there were 16.3 pain score observations, 2.2 instances of postoperative hydro-
morphone administration, and 2.6 instances of postoperative oxycodone administration per patient.
Further demographics and study cohort characteristics are reported in Table 4.

Figure 4 shows the distribution of estimated opioid responsiveness parameters for fentanyl, hydro-
morphone, and oxycodone across our study cohort. The ratios between these values appear compara-
ble to literature equianalgesic dose ratios between fentanyl, hydromorphone, and oxycodone (Pereira
et al., 2001). The ratio between our median estimated fentanyl and hydromorphone responsiveness
parameters is 4.9, whereas the literature ratio of equivalent dosages is 7.5; moreover, fentanyl is
known to have a shorter duration of action compared to hydromorphone, and our estimated respon-
siveness is per duration of exposure. The ratio between our median estimated hydromorphone and
oxycodone responsiveness is 12.8, whereas the literature reports ratios between 2.0 and 2.7.

Table 3 gives distributions of postoperative outcomes for patients whose estimated hydromorphone
and oxycodone responsiveness fell into the top half (high responsiveness) or bottom half of the

7
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Figure 4: Study cohort distribution of responsiveness for fentanyl, hydromorphone, and oxycodone.

study cohort. We find that high responsiveness of postoperative pain to both hydromorphone and
oxycodone is associated with better overall outcomes, including lower postoperative pain, lower total
opioid usage in hospital, lower rates of postoperative opioid prescriptions, lower rates of chronic pain
diagnosis, lower rates of readmission, and shorter hospital stays.

Table 3: Postoperative outcomes for patients stratified by opioid responsiveness.

Outcome Hydromorphone Oxycodone
Low High Low High

N 7,685 7,684 8,119 8,118

Max Pain in PACU 7 (5, 9) 6 (5, 8) 7 (5, 9) 5 (3, 7)
Max Pain 24h Postop 8 (7, 10) 7 (6, 9) 8 (7, 10) 7 (6, 8)
Max Pain in Hospital 9 (8, 10) 8 (6, 9) 9 (8, 10) 7 (6, 9)

Total MME in PACU 6.7 (3.4, 11.7) 4.2 (3.4, 6.7) 6.7 (3.4, 11.7) 3.4 (0.0, 6.7)
Total MME 24h Postop 24.2 (15.1, 36.7) 12.0 (6.7, 20.9) 35.3 (20.0, 36.7) 10.0 (5.9, 14.9)
Total MME in Hospital excl. PACU 33.4 (14.2, 83.8) 11.7 (2.5, 30.0) 41.7 (21.3, 89.8) 10.0 (5.0, 22.5)

30-day Opioid Rx 43.9% 32.9% 45.2% 32.9%
90-day Opioid Rx 46.3% 34.5% 47.5% 34.5%
180-day Opioid Rx 47.4% 35.6% 48.6% 35.8%

3-month Chronic Pain Dx 0.83% 0.68% 0.71% 0.62%
12-month Chronic Pain Dx 3.19% 2.58% 3.11% 2.22%

30-day Readmission 12.02% 8.49% 11.37% 9.13%
Hospital Length of Stay (hrs) 74.4 (34.9, 143.0) 52.5 (30.2, 99.6) 74.2 (36.6, 138.1) 52.1 (29.6, 99.9)

5 DISCUSSION

We present a method for estimating responsiveness of postsurgical pain to opioid therapy using ob-
servations of patient-reported pain scores over time, medication records, and preoperative covariates.
We evaluated some of the performance characteristics of this method in simulation, and applied it
to observational data from real patients. Our method was able to recapitulate the known relative
potency of different opioids, and was able to stratify patients by postoperative outcomes related to
pain and opioid usage based on their estimated responsiveness to hydromorphone and oxycodone.
Moreover, our model-estimated responsiveness is interpretable in terms of physical quantities: for
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each opioid, we have the log-odds of reduction in observed pain score per minute of exposure to a
given effect site concentration.

Another strength of this method is that it is uncertainty-aware; rather than simply producing a point
estimate of responsiveness for each patient, we estimate a posterior distribution. The uncertainty
in the distribution of a patient’s latent pain state increases with the duration of the interval between
observations. Patients with sparse data will have posteriors with greater variance. Our method is
also able to take into account information from covariates that purely mechanistic models cannot,
without explicitly specifying the relationship between those variables and the dynamical system,
while preserving causal relationships and mechanistic structures between variables.

While our model was designed with the specific application of estimating postoperative opioid
responsiveness in mind, and consequently is able to leverage known opioid PK/PD and depen-
dency structures, our general concept of using black-box models to augment state space models
with covariate-informed priors is potentially applicable to other gray-box modeling problems, data
modalities, and network structures.

5.1 LIMITATIONS

While using MCMC to estimate posterior distributions affords us flexibility in the types of observa-
tions we are able to use in our state space models and makes it easy to incorporate priors, a conse-
quence of this approach is a relatively long run time. In our dataset, on a 16-core AMD 5955WX
CPU, it takes about 2 seconds per patient to run one E-step, which equates to about 72 hours to
analyze our dataset of over 20,000 patients. Overall, these computations remain tractable because
we are sampling a relatively small number of parameters; however, that also means that GPU-based
MCMC implementations do not provide any performance increase. Moreover, because our E-step
is not analytic and contains sampling noise, our EM procedure is not guaranteed to converge.

Furthermore, we assume that opioid responsiveness is time-invariant. However, this is not neces-
sarily true even within the 24 hour time window which we consider, as tolerance can develop on
the order of hours (Dumas & Pollack, 2008), and there are also other mechanisms of sensitization
that could modulate opioid responsiveness over time (Woolf, 2011). This could contribute to the
discrepancy we observe between our estimated hydromorphone and oxycodone responsiveness and
literature-reported ratios of equivalent doses, as oxycodone tends to be administered later in periop-
erative care than hydromorphone and fentanyl.

Finally, we have a single set of intercepts β for our observations generated by Equation 3. In order
for us to compare responsiveness of pain to opioid administration between patients, it is necessary
that their pain states evolve in a common latent space. We treat the 0-10 numerical pain scale as
fixed across all patients, even though in reality, different patients may report different scores after
experiencing the same degree of painful stimulus. However, violation of this assumption is not
necessarily fatal, so long as we shift our interpretation of estimated opioid responsiveness to a kind
of average odds ratio across the different levels of the pain scale (Harrell, 2020).

REPRODUCIBILITY STATEMENT

An anonymous archive containing source code for all methods and for running experiments with
simulated data has been included with this submission. Access to clinical data used in this paper is
subject to a data use agreement with the institution where data was collected. Once this data use
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this study.
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A METROPOLIS-HASTING PROPOSAL FUNCTION

L (aj ,xj | yj ,uj(t)) =
L (yj | aj ,xj ,uj(t))L (aj ,xj ,uj(t))

L (yj ,uj(t))
(15)

From Figure 2, we have that yj is conditionally independent of aj and uj(t), given xj .

L (yj | aj ,xj ,uj(t)) = L (yj | xj) =

nj∏
i=1

L (yj(tji) | xj(tji)) (16)

L (aj ,xj ,uj(t)) = L (xj | aj ,uj(t))L (aj ,uj(t)) (17)

We also have that xj0 , aj , and uj(t) are independent.

L (aj ,uj(t)) = L(aj)L (uj(t)) (18)

L (xj | aj ,uj(t)) = L(xj0)

nj∏
i=1

L
(
xj(tji) | xj(tji−1),aj ,uj(t)

)
(19)

Finally, we factor out L(aj), L(uj(t), and L (yj ,uj(t)) as constants. This gives us Equation 6.

B METROPOLIS-HASTING PROPOSAL FUNCTION WITH
COVARIATE-INFORMED PRIORS

L (aj ,xj | yj ,uj(t), cj) =
L (yj | aj ,xj ,uj(t), cj)L (aj ,xj ,uj(t), cj)

L (yj ,uj(t), cj)
(20)

yj is conditionally independent of aj , uj(t), and cj , given xj .

L (yj | aj ,xj ,uj(t), cj) = L (yj | xj) =

nj∏
i=1

L (yj(tji) | xj(tji)) (21)

L (aj ,xj ,uj(t), cj) = L (xj | aj ,uj(t), cj)L (aj ,uj(t), cj) (22)

We have that uj(t) is independent of cj and aj , and xj0 and aj are conditionally independent given
cj .

L (aj ,uj(t), cj) = L (aj | cj)L (uj(t))L(cj) (23)

L (xj | aj ,uj(t), cj) = L(xj0 | cj)
nj∏
i=1

L
(
xj(tji) | xj(tji−1

),aj ,uj(t)
)

(24)

Finally, we factor out L(cj), L(uj(t), and L (yj ,uj(t), cj) as constants. This gives us Equation 8.

C MINIMIZATION OF KL DIVERGENCE

The KL divergence between two Gaussian distributions P ∼ N (µp, σ
2
p), Q ∼ N (µq, σ

2
q ) is given

by (Soch, 2020):

DKL(P | Q) =
1

2

(
(µp − µq)

2

σ2
q

+
σ2
p

σ2
q

− ln
σ2
p

σ2
q

− 1

)
(25)
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For patient j, let Pj ∼ N (µpj
, σ2

pj
) denote their posterior distribution, and Qj ∼ N (µqj , σ

2
qj )

denote their covariate-informed prior. Our objective is to minimize total KL divergence:
N∑
j

DKL(Pj | Qj) (26)

If σ2
q is constant across patients, then total KL divergence is minimized by minimizing the total

squared error
∑N

j (µpj − µqj )
2.

We see also that total KL-divergence is minimized at the following value of σ2
q :

σ2
q =

1

N

N∑
j

(µpj
− µqj )

2 + σ2
pj
) (27)

D SIMULATION PARAMETERS

Each simulated patient had age, height, weight, and sex sampled independently from the following
distributions. These variables were used to parameterize their PK/PD simulations.

age ∼ N (54.9, 17.5) years (28)
height ∼ N (66.6, 4.3) in (29)

weight ∼ N (88.1, 20.9) kg (30)
P (sex = Male) = 0.47 (31)
P (sex = Female) = 0.53 (32)

Intervals between observation times were exponentially distributed, with a mean of 10 observations
per 24 hours.

∆tji = tji − tji−1
∼ exponential(10/1440) (33)

Intervals between opioid administration times were also exponentially distributed, with a mean of
2 instances of opioid administration per 24 hours. 500 mcg of hydromorphone, a standard bolus,
were administered at these intervals in simulation, reducing opioid responsiveness to a scalar in our
simulation studies, as only hydromorphone was considered.

Simulated patients with fewer than 10 pain score observations and 2 instances of opioid adminis-
tration in the first 24 hours were excluded from analysis, and a new patient randomly sampled and
simulated.

Covariates for each patient were sampled from the standard multivariate Gaussian distribution.

Let Id be the d-dimensional identity matrix:
cj = [cj1 , ..., cjd ] ∼ N (0, Id) (34)

Given r2x, we have the following conditional distribution for xj0 | cj :

xj0 | cj ∼ N

(√
5r2x
d

d∑
i=1

cji , 5(1− r2x)

)
(35)

For all values of r2x, the marginal distribution of xj0 is:
xj0 ∼ N (0, 5) (36)

Given r2a, we have the following conditional distribution for logaj | cj :

logaj | cj ∼ N

(
−5 +

√
2.25r2a

d

d∑
i=1

cji , 2.25(1− r2a))

)
(37)

For all values of r2a, the marginal distribution of aj is:
logaj ∼ N (−5, 2.25) (38)
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Table 4: Baseline statistics of study cohort

Statistic

Total number of patients 21,652 (100%)
Demographics

Age (years) 56.9 (16.5)
Sex

Male 10,377 (47.9%)
Female 11,275 (52.1%)

Race
White 17,809 (82.3%)
Black 1,103 (5.1%)
Asian 582 (2.7%)
Hispanic 83 (0.4%)
Other 2,075 (9.6%)

Clinical Characteristics
ASA Status

I 1,534 (7.1%)
II 12,104 (55.9%)
III 7,663 (35.4%)
IV 347 (16.%)

BMI (kg/m2) 29.2 (7.2)
Ambulatory Surgery 1,224 (5.7%)
Inpatient Surgery 20,428 (94.3%)

Surgical Service
Orthopedic Surgery 6,835 (31.6%)
General Surgery 3,774 (17.4%)
Urology 2,503 (11.6%)
Neurosurgery 1,606 (7.4%)
Gynecology 1,350 (6.2%)

Procedural Severity Score
Morbidity 36.3 (17.6)
Mortality 55.8 (33.9)

30-day Mortality 95 (0.4%)
30-day Readmission 2,303 (10.6%)
Surgical duration (hrs) 1.6 (1.0, 2.6)
PACU length of stay (hrs) 1.9 (1.4, 2.5)
Inpatient hospital length of stay (days) 2.4 (1.4, 5.2)
Elixhauser comorbidity index 2 (0, 8)
Opioid naivety 17,024 (78.6%)
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