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ABSTRACT

Privacy attacks, particularly membership inference attacks (MIAs), are widely
used to assess the privacy of generative models for tabular synthetic data, includ-
ing those with Differential Privacy (DP) guarantees. These attacks often exploit
outliers, which are especially vulnerable due to their position at the boundaries of
the data domain (e.g., at the minimum and maximum values). However, the role of
data domain extraction in generative models and its impact on privacy attacks have
been overlooked. In this paper, we examine three strategies for defining the data
domain: assuming it is externally provided (ideally from public data), extracting
it directly from the input data, and extracting it with DP mechanisms. While com-
mon in popular implementations and libraries, we show that the second approach
breaks end-to-end DP guarantees and leaves models vulnerable. While using a
provided domain (if representative) is preferable, extracting it with DP can also
defend against popular MIAs, even at high privacy budgets.

1 INTRODUCTION

Differentially Private (DP) synthetic tabular data promises to support the safe release of sensitive
data by training generative machine learning models while limiting individual-level information
leakage. This approach is gaining significant traction (Jordon et al., 2022; Hu et al., 2024; De Cristo-
faro, 2024) and is increasingly being deployed in real-world applications, from public releases of
census data (NASEM, 2020; ONS, 2023; Hod & Canetti, 2024) to data sharing in financial and
healthcare contexts (UK ICO, 2023b; Microsoft, 2022). Synthetic data has also attracted inter-
est from regulators (UK ICO, 2023a;b; FCA, 2024), who are shifting focus from assessing the
anonymity of released datasets (A29WP, 2014) to evaluating generative models (EDPB, 2024).

In this context, membership inference attacks (MIAs) (Shokri et al., 2017; Hayes et al., 2019),
are used as a measuring stick for privacy leakage. MIAs are typically evaluated using a privacy
game that entails identifying (or crafting) a vulnerable record, training a generative model with it
and without it, generating synthetic data, and having the adversary distinguish whether or not that
record was used to train the model. In this game, outliers located at the boundaries of the data
domain (e.g., at each column’s min or max values) are particularly vulnerable (Stadler et al., 2022;
Annamalai et al., 2024). However, adding/removing outliers can significantly impact the training
of DP generative models, especially the initial pre-processing steps (e.g., scaling, normalization,
discretization, encoding, etc.) common in DP synthetic tabular data algorithms. This presents a
unique challenge for tabular data, unlike, e.g., for images or text, where input pixels and tokens have
clearly defined domains (e.g., [0, 255] or ASCII characters).

Nonetheless, many implementations and libraries for DP synthetic tabular data have overlooked
this issue, as they directly extract data domain from the input data (Zhang et al., 2017; Ping et al.,
2017; Vietri et al., 2020; McKenna et al., 2021; Qian et al., 2023; Mahiou et al., 2022; Du & Li,
2024). In this paper, we examine how different strategies for extracting the data domain affect the
privacy of DP generative models for tabular synthetic data. Specifically, we compare a publicly
available data domain to extracting the domain directly from the input data—denoted, respectively,
as provided and extracted domain. We do so both with and without DP and for two generative
models, PrivBayes (Zhang et al., 2017) and MST (McKenna et al., 2021). Since both models require
discretized data, we adapt and assess four DP discretization strategies: uniform, quantile, k-means,
and PrivTree (Zhang et al., 2016). For the MIA, we use the GroundHog attack (Stadler et al., 2022).
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In short, our experiments show that:

• Extracting the data domain directly from the input data, which is the common practice, breaks
the end-to-end DP guarantees of generative models and exposes outliers to MIAs.

• Assuming that a representative data domain is provided and extracting it with DP (up to ε =
100) successfully protects outliers from specific MIAs. In particular, adopting a DP domain
extraction strategy could address many previously identified DP vulnerabilities in open-source
implementations and libraries.

• The GroundHog attack (Stadler et al., 2022) may be more effective at detecting issues with data
domain extraction than with vulnerabilities of the generative models themselves.

From Domain Extraction to Discretization. In separate work (Ganev et al., 2025b), we examine
the broader question of discretization in end-to-end DP generative models, primarily focusing on
utility. In contrast, this paper focuses specifically on data domain extraction strategies and their
privacy implications, which is closely related to Research Question 4 in (Ganev et al., 2025b).

2 EXPERIMENTAL FRAMEWORK

As mentioned, we aim to evaluate the impact of the domain extraction strategy on privacy leak-
age in (end-to-end) DP generative models using an MIA. We experiment with three strategies: 1)
assuming a provided data domain set to the full dataset’s range, regardless of the target record’s
inclusion/exclusion, 2) extracting it directly from the input data (without DP), as done in numerous
publicly available implementations and libraries (Zhang et al., 2017; Ping et al., 2017; Vietri et al.,
2020; McKenna et al., 2021; Qian et al., 2023; Mahiou et al., 2022; Du & Li, 2024), or 3) extracting
the data domain with DP (Desfontaines, 2020).

MIA Instantiation. To evaluate the privacy of the resulting synthetic data, we use Ground-
Hog (Stadler et al., 2022), one of the most widely used MIAs for synthetic tabular data, on the
Wine dataset (Dua & Graff, 2017). First, we select a vulnerable record as the target, picking the data
point furthest from all others in the training set (Meeus et al., 2023) and ensuring it lies outside their
domain. Then, we train two sets of 200 shadow models: one trained on the full dataset, including
the target record, and the other excluding it. To do so, for each model, we extract the domain, dis-
cretize the data, and train the generative model. We generate synthetic datasets and extract statistical
features (minimum, maximum, mean, median, and standard deviation, corresponding to the naive
feature set Fnaive in (Stadler et al., 2022)) from each column of the synthetic datasets. Half of these
datasets are used to train a classifier, and the adversary’s success in distinguishing between the two
scenarios is measured using Area Under the Curve (AUC), reported on the remaining data.

Settings. We choose PrivBayes (Zhang et al., 2017) and MST (McKenna et al., 2021) as our DP
generative models, using ε = 1 for pre-processing (split evenly between domain extraction, when
applicable, and discretization) and ε = 1 for the model (with δ = 1e−5 for MST). We use 20 bins
for all discretization strategies and the default hyperparameters for both models. The selected target
record represents a worst-case scenario, consistent with prior work (Stadler et al., 2022; Annamalai
et al., 2024), given two columns with values significantly larger than for the remaining records (289
and 440 vs. 146.5 and 366.5). Due to space limitations, we defer additional details, including the DP
data extraction method, discretization strategies, DP generative models, and dataset, to Appendix A.

3 EXPERIMENTAL EVALUATION

Figure 1 provides an overview of our experiments, quantifying the impact of the three domain ex-
traction strategies on privacy leakage as measured by GroundHog (Stadler et al., 2022)’s success
with four discretizers and two generative models.

Direct Domain Extraction. Regardless of discretization, extracting the domain directly from the
input data (bars with horizontal lines) without a proper privacy mechanism breaks the end-to-end
DP guarantees, providing highly informative features. This enables the adversary to achieve near-
perfect accuracy in all cases, rendering the synthetic data non-private regardless of the discretizer
or generative model. This performance is equivalent to that of using the default domain extrac-
tion/discretization strategy (grey bars), i.e., uniform discretization with direct domain extraction.

Provided Domain/DP Domain Extraction. By contrast, using methods that respect the end-to-end
DP pipeline, i.e., either assuming a provided domain (bars with crosses) or extracting the domain
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Figure 1: Privacy leakage with provided and extracted domain (w/ and w/o DP) for the four DP discretizers
(ε = 1) and two DP generative models (ε = 1) on a target record outside the domain of the remaining data.

with DP (bars with circles), substantially reduces the adversary’s success rate. With only one excep-
tion (when using the k-means discretizer with provided domain), the attack success rate is no better
than random guessing. This has several important implications, as discussed next.

First, extracting the domain in a DP-compliant way is sufficient to protect against Ground-
Hog (Stadler et al., 2022)’s adversary. Their success drops significantly even in settings that could
be considered non-private, i.e., (discretizer, generator)-ε values of (1, 100), (100, 1), (100, 100), and
even (1, 1,000), as shown in Figure 2 and 3a (see Appendix B). The attack becomes effective at
higher discretizer ε values, i.e., (1,000, 1) and (1,000, 1,000) (see Figure 3b and 3c); also, recall that
it achieves nearly 100% success when the domain is directly extracted from the data. This suggests
that the effectiveness of the GroundHog attack may primarily be due to domain extraction rather
than inherent vulnerabilities in the model.1 To further validate this, we run additional experiments
on a target record that is farther away from the others but still within their domain (see Figure 4 in
Appendix B) and observe that the attack’s success remains close to random across all ε values.

Second, adopting a DP domain extraction strategy could help address privacy vulnerabilities iden-
tified by prior research (Annamalai et al., 2024; Ganev et al., 2025a) in popular model implemen-
tations and libraries (Ping et al., 2017; Qian et al., 2023) that directly extract the domain from the
input data. In other words, incorporating such techniques could make DP generative model imple-
mentations more robust and better align them with end-to-end DP guarantees.

Finally, while extracting the domain in a DP way slightly reduces, on average, the adversary’s suc-
cess compared to using a provided data domain, this may come at the cost of utility. Therefore,
practitioners should prefer using a trusted, provided data domain when available (e.g., codebooks for
census data), rather than spending additional privacy budget to extract it. However, further research
is needed to explore these trade-offs and investigate enhanced methods for DP domain extraction.

4 CONCLUSION

This paper focused on an important yet overlooked issue in implementations of DP generative mod-
els: how to extract data domain We show that extracting the data domain directly from the input,
which is unfortunately common in the wild (Ping et al., 2017; Qian et al., 2023), breaks DP guar-
antees and leaves models vulnerable. We also find that, while using a provided domain (e.g., from
public data) is preferable, extracting it with DP can also defend against MIAs, even at large ε values.

Overall, we are confident that our research will shed light on the importance of the integrity of end-
to-end DP pipelines when developing and releasing DP generative models. Our work also highlights
the need for further analysis of membership inference attacks against DP generative models, e.g.,
understanding the extent to which the privacy leakage they exploit may be due to issues like domain
extraction rather than inherent vulnerabilities in the models.

1These results are specific to GroundHog (Stadler et al., 2022). Studying the impact of DP domain extraction on other MIAs
as well as other models besides PrivBayes and MST, is left to future work.

3



Accepted to the Synthetic Data × Data Access Problem workshop (SynthData), part of ICLR 2025

REFERENCES

A29WP. Opinion on anonymisation techniques. https://ec.europa.eu/justice/article-29/
documentation/opinion-recommendation/files/2014/wp216 en.pdf, 2014.

Meenatchi Sundaram Muthu Selva Annamalai, Georgi Ganev, and Emiliano De Cristofaro. “What
do you want from theory alone?” Experimenting with Tight Auditing of Differentially Private
Synthetic Data Generation. In USENIX Security, 2024.

Emiliano De Cristofaro. Synthetic Data: Methods, Use Cases, and Risks. IEEE S&P Magazine,
2024.

Damien Desfontaines. Lowering the cost of anonymization. PhD thesis, ETH Zurich, 2020.

Yuntao Du and Ninghui Li. Towards Principled Assessment of Tabular Data Synthesis Algorithms.
arXiv:2402.06806, 2024.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository. https://archive.ics.uci.edu/dataset/
186/wine+quality, 2017.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In EuroCrypt, 2006a.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In TCC, 2006b.

EDPB. Opinion 28/2024 on certain data protection aspects related to the processing of per-
sonal data in the context of AI models. https://www.edpb.europa.eu/system/files/2024-12/
edpb opinion 202428 ai-models en.pdf, 2024.

FCA. Using Synthetic Data in Financial Services. https://www.fca.org.uk/publication/corporate/
report-using-synthetic-data-in-financial-services.pdf, 2024.

Georgi Ganev, Meenatchi Sundaram Muthu Selva Annamalai, and Emiliano De Cristofaro. The Elu-
sive Pursuit of Reproducing PATE-GAN: Benchmarking, Auditing, Debugging. TMLR, 2025a.

Georgi Ganev, Meenatchi Sundaram Muthu Selva Annamalai, Sofiane Mahiou, and Emiliano
De Cristofaro. The Importance of Being Discrete: Measuring the Impact of Discretization in
End-to-End Differentially Private Synthetic Data. arXiv:2504.06923, 2025b.

Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally utility-maximizing pri-
vacy mechanisms. In STOC, 2009.

Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. LOGAN: Membership
Inference Attacks against Generative Models. In PoPETs, 2019.

Shlomi Hod and Ran Canetti. Differentially Private Release of Israel’s National Registry of Live
Births. arXiv:2405.00267, 2024.

Naoise Holohan, Stefano Braghin, Pól Mac Aonghusa, and Killian Levacher. Diffprivlib: the IBM
differential privacy library. https://github.com/IBM/differential-privacy-library, 2019.

Yuzheng Hu, Fan Wu, Qinbin Li, Yunhui Long, Gonzalo Munilla Garrido, Chang Ge, Bolin Ding,
David Forsyth, Bo Li, and Dawn Song. SoK: Privacy-Preserving Data Synthesis. In IEEE S&P,
2024.

James Jordon, Lukasz Szpruch, Florimond Houssiau, Mirko Bottarelli, Giovanni Cherubin,
Carsten Maple, Samuel N Cohen, and Adrian Weller. Synthetic Data–what, why and how?
arXiv:2205.03257, 2022.

Sofiane Mahiou, Kai Xu, and Georgi Ganev. dpart: Differentially Private Autoregressive Tabular, a
General Framework for Synthetic Data Generation. TPDP, 2022.

Ryan McKenna, Daniel Sheldon, and Gerome Miklau. Graphical-model based estimation and infer-
ence for differential privacy. In ICML, 2019.

4

https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://archive.ics.uci.edu/dataset/186/wine+quality
https://archive.ics.uci.edu/dataset/186/wine+quality
https://www.edpb.europa.eu/system/files/2024-12/edpb_opinion_202428_ai-models_en.pdf
https://www.edpb.europa.eu/system/files/2024-12/edpb_opinion_202428_ai-models_en.pdf
https://www.fca.org.uk/publication/corporate/report-using-synthetic-data-in-financial-services.pdf
https://www.fca.org.uk/publication/corporate/report-using-synthetic-data-in-financial-services.pdf
https://github.com/IBM/differential-privacy-library


Accepted to the Synthetic Data × Data Access Problem workshop (SynthData), part of ICLR 2025

Ryan McKenna, Gerome Miklau, and Daniel Sheldon. Winning the NIST Contest: A scalable and
general approach to differentially private synthetic data. JPC, 2021.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In FOCS, 2007.

Matthieu Meeus, Florent Guepin, Ana-Maria Cretu, and Yves-Alexandre de Montjoye. Achilles’
Heels: vulnerable record identification in synthetic data publishing. arXiv:2306.10308, 2023.

Microsoft. IOM and Microsoft release first-ever differentially private synthetic dataset to counter
human trafficking. https://www.microsoft.com/en-us/research/blog/iom-and-microsoft-release-
first-ever-differentially-private-synthetic-dataset-to-counter-human-trafficking/, 2022.

NASEM. 2020 Census Data Products: Data Needs and Privacy Considerations: Proceedings of a
Workshop. The National Academies Press, 2020.

ONS. Synthesising the linked 2011 Census and deaths dataset while preserving its confiden-
tiality. https://datasciencecampus.ons.gov.uk/synthesising-the-linked-2011-census-and-deaths-
dataset-while-preserving-its-confidentiality/, 2023.

OpenDP. SmartNoise SDK: Tools for Differential Privacy on Tabular Data. https://github.com/
opendp/smartnoise-sdk, 2021.

Haoyue Ping, Julia Stoyanovich, and Bill Howe. DataSynthesizer: Privacy-Preserving Synthetic
Datasets. In SSDBM, 2017.

Zhaozhi Qian, Rob Davis, and Mihaela Van Der Schaar. Synthcity: a benchmark framework for
diverse use cases of tabular synthetic data. In NeurIPS Datasets and Benchmarks Track, 2023.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership Inference At-
tacks against Machine Learning Models. In IEEE S&P, 2017.

Adam Smith. Privacy-preserving statistical estimation with optimal convergence rates. In STOC,
2011.

Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. Synthetic Data – Anonymization
Groundhog Day. In USENIX Security, 2022.

Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and Hongxia Jin. Differentially private k-means
clustering. In CODASPY, 2016.

UK ICO. Privacy-enhancing technologies (PETs). https://ico.org.uk/media/for-organisations/uk-
gdpr-guidance-and-resources/data-sharing/privacy-enhancing-technologies-1-0.pdf, 2023a.

UK ICO. Synthetic data to test the effectiveness of a vulnerable person’s detection system in
financial services. https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/data-
sharing/privacy-enhancing-technologies/case-studies/synthetic-data-to-test-the-effectiveness-
of-a-vulnerable-persons-detection-system-in-financial-services/, 2023b.

Giuseppe Vietri, Grace Tian, Mark Bun, Thomas Steinke, and Steven Wu. New oracle-efficient
algorithms for private synthetic data release. In ICML, 2020.

Jun Zhang, Xiaokui Xiao, and Xing Xie. Privtree: A differentially private algorithm for hierarchical
decompositions. In SIGMOD, 2016.

Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xiaokui Xiao.
Privbayes: Private data release via bayesian networks. ACM TODS, 2017.

5

https://www.microsoft.com/en-us/research/blog/iom-and-microsoft-release-first-ever-differentially-private-synthetic-dataset-to-counter-human-trafficking/
https://www.microsoft.com/en-us/research/blog/iom-and-microsoft-release-first-ever-differentially-private-synthetic-dataset-to-counter-human-trafficking/
https://datasciencecampus.ons.gov.uk/synthesising-the-linked-2011-census-and-deaths-dataset-while-preserving-its-confidentiality/
https://datasciencecampus.ons.gov.uk/synthesising-the-linked-2011-census-and-deaths-dataset-while-preserving-its-confidentiality/
https://github.com/opendp/smartnoise-sdk
https://github.com/opendp/smartnoise-sdk
https://ico.org.uk/media/for-organisations/uk-gdpr-guidance-and-resources/data-sharing/privacy-enhancing-technologies-1-0.pdf
https://ico.org.uk/media/for-organisations/uk-gdpr-guidance-and-resources/data-sharing/privacy-enhancing-technologies-1-0.pdf
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/data-sharing/privacy-enhancing-technologies/case-studies/synthetic-data-to-test-the-effectiveness-of-a-vulnerable-persons-detection-system-in-financial-services/
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/data-sharing/privacy-enhancing-technologies/case-studies/synthetic-data-to-test-the-effectiveness-of-a-vulnerable-persons-detection-system-in-financial-services/
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/data-sharing/privacy-enhancing-technologies/case-studies/synthetic-data-to-test-the-effectiveness-of-a-vulnerable-persons-detection-system-in-financial-services/


Accepted to the Synthetic Data × Data Access Problem workshop (SynthData), part of ICLR 2025

A MORE DETAILS ON THE EXPERIMENTAL FRAMEWORK

We now provide details of the experimental framework introduced in Section 2, specifically, DP data
extraction methods, DP discretization strategies, DP generative models, and dataset.

DP Domain Extraction. To estimate the domain of numerical data given a privacy budget, ε,
we implement the algorithm by Desfontaines (2020), also included in the popular OpenDP li-
brary (OpenDP, 2021). It derives bounds using a noisy histogram over an exponential range
[−2m, 2m] (with m typically set to 32), determined by iteratively reducing a threshold until at least
one bin exceeds it, using the highest and lowest bin edges above the threshold as the domain bounds.

DP Discretizers. We use the following four methods to make the four discretizers satisfy DP (note
that the data domain, privacy budget, and number of bins b are provided as input to all discretizers).
For the DP implementation, we use primitives of two well-known open-source libraries, namely,
Harvard’s OpenDP (OpenDP, 2021) and IBM’s Diffprivlib (Holohan et al., 2019).

• Uniform divides the data domain into b intervals of equal width. It does not consume any
privacy budget and relies solely on the provided data domain to determine bin edges.

• Quantile distributes data such that each bin contains approximately an equal fraction of data
points, specifically 1/b. The privacy budget ε is split evenly across a given number of bins,
with each quantile calculated using ε/b. We use the method proposed by Smith (2011), which
samples quantile values from a discrete distribution. Each qi is computed as (xi+1 − xi) ·
exp(−ε|i− αn|), where xi is the value at index i in the sorted dataset, α is the target quantile.

• K-means employs a standard k-means clustering algorithm to group the data into clusters and
then splits them into non-overlapping intervals. It is based on (Su et al., 2016), which adds
Geometric noise (Ghosh et al., 2009) to the counts of the nearest neighbors for cluster centers
and Laplace to the sum of values per dimension. However, some clusters may occasionally be
empty, resulting in fewer than b bins.

• PrivTree (Zhang et al., 2016) is a tree-based method that recursively splits the data domain
into subdomains. It ensures DP by adding Laplace noise (Dwork et al., 2006b) to the count at
each step. Subdomains are further split if the noisy count exceeds a threshold, τ ; otherwise,
they form leaves, with bin edges corresponding to the domains of all leaves. The threshold
parameter τ is set to 1/b, making b an upper limit for the actual number of bins produced.

DP Generative Models. The two DP generative models we use, PrivBayes (Zhang et al., 2017)
and MST (McKenna et al., 2021), rely on the select–measure–generate paradigm (McKenna et al.,
2021), as they: 1) select a collection of (low-dimensional) marginals, 2) measure them privately with
a noise-addition mechanism, and 3) generate synthetic data consistent with the measurements.

PrivBayes (Zhang et al., 2017) uses a Bayesian network to select k-degree marginals by optimiz-
ing the mutual information between them, using the Exponential mechanism (Dwork et al., 2006a).
Then, propagating though the network, the model relies on the Laplace mechanism (Dwork et al.,
2006b) to measure noisy counts and translate them to conditional marginals, which could later be
sampled to generate synthetic data. MST (McKenna et al., 2021) forms a maximum spanning tree
(an undirected graph) of the underlying correlation graph by selecting all one-way marginals and
a collection of two-way marginals. These marginals are noisily measured via the Gaussian mech-
anism (McSherry & Talwar, 2007). Finally, to create new data, the measurements are processed
through Private-PGM (McKenna et al., 2019).

Wine Dataset (Dua & Graff, 2017). As mentioned, our experiments are run on the Wine dataset,
which consists of 4,898 wine samples, each described by 11 continuous physicochemical attributes,
with the goal of modeling wine quality.

B ADDITIONAL PLOTS

In Figure 2 and 3, we present additional results related to running the GroundHog attack (Stadler
et al., 2022) on PrivBayes and MST – specifically, with a target record outside the domain of the
remaining data with ε = 1/100 and 1/1, 000, respectively. Figure 4 also shows results with a target
record inside the domain with ε = 1, 100 and 1, 000. We discuss these results in Section 3.

6



Accepted to the Synthetic Data × Data Access Problem workshop (SynthData), part of ICLR 2025

de
fau

lt

un
ifo

rm

qu
an

tile

k-m
ea

ns

Pri
vTr

ee
0.0

0.2

0.4

0.6

0.8

1.0
M

IA
 A

UC
dp-synthpop

de
fau

lt

un
ifo

rm

qu
an

tile

k-m
ea

ns

Pri
vTr

ee

PrivBayes

de
fau

lt

un
ifo

rm

qu
an

tile

k-m
ea

ns

Pri
vTr

ee

MST

default
 
 

uniform -- Dom provided
uniform -- Dom extracted
uniform -- Dom DP extracted

quantile -- Dom provided
quantile -- Dom extracted
quantile -- Dom DP extracted

k-means -- Dom provided
k-means -- Dom extracted
k-means -- Dom DP extracted

PrivTree -- Dom provided
PrivTree -- Dom extracted
PrivTree -- Dom DP extracted

de
fau

lt

un
ifo

rm

qu
an

tile

k-m
ea

ns

Pri
vTr

ee
0.0

0.2

0.4

0.6

0.8

1.0

M
IA

 A
UC

PrivBayes

de
fau

lt

un
ifo

rm

qu
an

tile

k-m
ea

ns

Pri
vTr

ee

MST

(a) Discretizer (ε = 1),
Generator (ε = 100)

de
fau

lt

un
ifo

rm

qu
an

tile

k-m
ea

ns

Pri
vTr

ee
0.0

0.2

0.4

0.6

0.8

1.0

M
IA

 A
UC

PrivBayes

de
fau

lt

un
ifo

rm

qu
an

tile

k-m
ea

ns

Pri
vTr

ee

MST

(b) Discretizer (ε = 100),
Generator (ε = 1)
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(c) Discretizer (ε = 100),
Generator (ε = 100)

Figure 2: Privacy leakage with provided domain and extracted domain (w/ and w/o DP) of the four DP
discretizers (ε = 1 or 100) and two DP generative models (ε = 1 or 100) on a target record outside the domain
of the remaining data.
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uniform -- Dom provided
uniform -- Dom extracted
uniform -- Dom DP extracted

quantile -- Dom provided
quantile -- Dom extracted
quantile -- Dom DP extracted

k-means -- Dom provided
k-means -- Dom extracted
k-means -- Dom DP extracted

PrivTree -- Dom provided
PrivTree -- Dom extracted
PrivTree -- Dom DP extracted
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(a) Discretizer (ε = 1),
Generator (ε = 1, 000)
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(b) Discretizer (ε = 1, 000),
Generator (ε = 1)
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(c) Discretizer (ε = 1, 000),
Generator (ε = 1, 000)

Figure 3: Privacy leakage with provided domain and extracted domain (w/ and w/o DP) of the four DP
discretizers (ε = 1 or 1, 000) and two DP generative models (ε = 1 or 1, 000) on a target record outside the
domain of the remaining data.
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uniform -- Dom DP extracted

quantile -- Dom provided
quantile -- Dom extracted
quantile -- Dom DP extracted

k-means -- Dom provided
k-means -- Dom extracted
k-means -- Dom DP extracted

PrivTree -- Dom provided
PrivTree -- Dom extracted
PrivTree -- Dom DP extracted
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(a) Discretizer (ε = 1),
Generator (ε = 1)
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(b) Discretizer (ε = 100),
Generator (ε = 100)
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(c) Discretizer (ε = 1, 000),
Generator (ε = 1, 000)

Figure 4: Privacy leakage with provided domain and extracted domain (w/ and w/o DP) of the four DP
discretizers (ε = 1, 100 or 1, 000) and two DP generative models (ε = 1, 100 or 1, 000) on a target record
inside the domain of the remaining data.
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