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ABSTRACT

Pretrained language models (LMs) are not very good at robustly capturing factual
knowledge. This has led to the development of a number of knowledge integra-
tion (KI) methods which aim to incorporate external knowledge into pretrained
LMs. Even though KI methods show some performance gains over vanilla LMs,
the efficacy and limitations of these methods are not well-understood. For in-
stance, it is unclear how and what kind of knowledge is effectively integrated into
LMs and if such integration may lead to catastrophic forgetting of already learned
knowledge. In this paper, we revisit the KI process in an information-theoretic
view and show that KI could be interpreted using a graph convolution operation.
We propose a simple probe model called Graph Convolution Simulator (GCS)
for interpreting knowledge-enhanced LMs and exposing what kind of knowledge
is integrated into these models. We conduct experiments to verify that our GCS
model can indeed be used to correctly interpret the KI process, and we use it to
analyze two typical knowledge-enhanced LMs: K-Adapter and ERNIE. We find
that only a small amount of factual knowledge is captured in these models during
integration. While K-Adapter is better at integrating simple relational knowledge,
complex relational knowledge is integrated better in ERNIE. We further find that
while K-Adapter struggles to integrate time-related knowledge, it successfully in-
tegrates knowledge of unpopular entities and relations. Our analysis also show
some challenges in KI. In particular, we find simply increasing the size of the KI
corpus may not lead to better KI and more fundamental advances may be needed.

1 INTRODUCTION

Pretrained language models (LMs) have achieved state-of-the-art performance across various natural
language processing (NLP) tasks. Previous works have shown that linguistic knowledge is captured
quite well by LMs and it plays a vital role in their success (Liu et al., 2019a; Jawahar et al., 2019).
However, factual knowledge is sparse and is expressed in varied ways in text. Thus, LMs are much
worse in capturing factual knowledge about the world (Petroni et al., 2019; Wang et al., 2021b). This
has led to the development of a variety of knowledge integration (KI) methods which aim to integrate
external knowledge into LMs (Colon-Hernandez et al., 2021; Wang et al., 2021a; Zhang et al., 2019).
Even though knowledge-enhanced LMs perform better on knowledge-related tasks, we lack a deep
understanding about the inner workings of these models. Better downstream performance indicates
that some new knowledge has been integrated, but how much knowledge has been successfully
integrated, which type of knowledge is integrated is not well-understood.

To understand what knowledge is learned in LMs, many model-agnostic methods have been pro-
posed. Previous works have focused on designing simple classifiers as probe models (Hewitt &
Manning, 2019; Ribeiro et al., 2016). To get more reliable interpretation, information-theoretic ap-
proaches have also been introduced (Guan et al., 2019; Pimentel et al., 2020; Hou & Sachan, 2021).
However, factual knowledge is typically organized as large-scale sparse knowledge graphs (KGs).
Previous interpretation methods while being suitable for small linguistic graphs, cannot provide rea-
sonable interpretations for large sparse KGs. Prompting is yet another way to understand what fac-
tual knowledge do these models learn. Prompts can be designed to let LMs solve fill-in-the-blanks
problems, and the prompt performance can be interpreted as a probe (Petroni et al., 2019; Shin et al.,
2020; Zhong et al., 2021). However, these methods rely on manually constructed templates which
is very time-consuming.
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There are two other common challenges to understand KI. First, there are a large number of ap-
proaches for KI. KI in LMs can be implemented by matching sentences to entities or triples in
knowledge graphs – called entity-wise integration (Peters et al., 2019; Zhang et al., 2019) and triple-
wise integration (Liu et al., 2020; Wang et al., 2021a). There are several modeling choices (Colon-
Hernandez et al., 2021) for KI, including proposing some modifications to the Transformer archi-
tecture (Peters et al., 2019; Zhang et al., 2019; Liu et al., 2020), verbalizing knowledge triples and
using data augmentation for finetuning (Agarwal et al., 2021), and designing objective functions that
predict the factual knowledge (Yao et al., 2019; Wang et al., 2021a). How to design a general method
to understand KI in both entity-wise and triple-wise manner is challenging. Furthermore, KI is typ-
ically implemented in a continual learning setup (Parisi et al., 2019) – KI is usually a secondary
pretraining or finetuning step (Lu et al., 2021). As new knowledge is integrated, old knowledge
could be catastrophically forgotten (CF; Kirkpatrick et al., 2016). KI could also lead to a situation
called catastrophic remembering (CR; Kaushik et al., 2021), where the old knowledge may prevent
the integration of new knowledge. Our understanding of these issues is limited.

In this paper, we first revisit the KI process (§2). We formulate KI in an information-theoretic view
(§2.1), and construct a transformation to approximate general KI process (§2.2). Then, we prove
that the KI process can be simulated by graph convolution operations (§2.3). Second, we introduce
how to analyze KI, CR, and CF. Specifically, we prove that the KI process can be interpreted by
graph attention mechanism (§3.1). Based on that, we propose Graph Convolution Simulator (GCS)
model to simulate and interpret the KI process (§3.2), and introduce the way to analyze its inter-
pretation results (§3.3). We show that our designed probe model GCS can correctly simulate and
interpret the KI process for two popular knowledge-enhanced LMs: K-Adapter (Wang et al., 2021a)
and ERNIE (Zhang et al., 2019). We find that K-Adapter integrates simple relational knowledge
(i.e., entities are leaf nodes in KGs) well, while ERNIE is better at integrating complex relational
knowledge (i.e., entities are center nodes in KGs). In our qualitative study, we find that K-Adapter
does not learn temporal knowledge at all. We further break down our analysis of KI in terms of type
of relations and the popularity of entities. We find that catastrophic remembering often happens
to simple relational knowledge (i.e. simple relational knowledge is harder to edit), while complex
relational knowledge is often catastrophically forgotten. We also find that catastrophic forgetting
easily happens to popular entities, while catastrophic remembering often happens when the entities
are not very common. Finally, we investigate the correlation between the size of the KI corpus and
KI quality. We find that there is no apparent positive relationship between them, suggesting that
merely building larger KI datasets may not be enough and we may need to make more fundamental
advances to build better knowledge-enhanced language models.

2 SIMULATING KNOWLEDGE INTEGRATION

In this section, we revisit KI in an information-theoretic view, and prove that KI can be simulated
by graph convolutions. Specifically, we first formulate the KI process. We use MI to measure
the knowledge learned in LMs, and use the change of MI to define KI, catastrophic remembering
(CR), and catastrophic forgetting (CF). Then, based on the definition, we construct a multistep
transformation to approximate the KI process with arbitrary accuracy. We show that KI can only
happen in certain steps of on the transformation, which are graph convolutions.

2.1 KNOWLEDGE INTEGRATION DEFINITION

Before presenting a formal definition of KI based on MI, we introduce some basic concepts.

Knowledge graphs. We assume that factual knowledge can be formulated as a knowledge graph
G = (V, E), where nodes vi ∈ V represent entities, and edges in E represent relations between them.
Let Nvi denote the set of neighbors of node vi, and ti denote the entity label corresponding to the
node vi. Further, let xi = LM(ti) denote the entity (label) representations of ti given by a LM1. Let
X ∈ R|V|×d denote a matrix formed by stacking all entity representations xi ∈ Rd. In this paper,
we only consider nodes and relations in the KG and ignore other kinds of KG information such as
edge weights, edge directions and multi-edges (multi-relations).

1We represent each entity as the average of its word(-piece) embeddings given by the LM as Hewitt &
Manning (2019) and Hou & Sachan (2021).
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Information-theoretic probe. We follow theoretical settings of Hou & Sachan (2021) that measures
the knowledge captured in LMs by MI. We assume that the local graph structure G(vi) contains all
the factual information regarding vi. In this work, we consider factual knowledge in the form of
triples (vi, r, vj). Since a triple only contains entities within one-hop, it suffices to set G(vi) = Nvi .
Factual knowledge that has been successfully integrated should be reflected in entity representations.
Let x be a random variable that takes values ranging over all possible entity representations of a
LM2, and g be a random variable that ranges over all possible corresponding local structures G(vi).
Intuitively, MI(x; g) measures the amount of information in g that is contained in x.

Definition 1 (Knowledge Integration). Given G, let entity representation matrices given by a LM
before and after KI be X and H . Corresponding random variables are g, x, and h. We formulate KI
process f(x,g) = h as the change of MI: MI(x; g)→ MI(h; g), i.e., knowledge of g is integrated
into x to get h. If MI(h; g) ≈ MI(x; g), it means that CR happens, i.e., there is a failure to integrate
new knowledge. If CF happens, we have MI(h; x) ≈ 0.

x gh

1 2 3 4 5

Figure 1: Venn diagram for
MI visualization. x, h, and
g are random variables.

The definition can be intuitively visualized by Figure 1. The MI change
can be represented by regions 1 and 4 in the Venn diagram. Ideally, if
we have MI(h; g) −MI(x; g) ≈ MI(g; g) −MI(x; g), i.e., the region
5 is small, we say most knowledge is successfully integrated. If little
new knowledge has been integrated, the region 4 is very small. Then,
we say that CR has happened. If CF happens, most knowledge in x is
forgotten in h after KI, and region 1 is large. Successful KI happens
when much new knowledge is integrated (i.e., MI(h; g) is large) and
little old knowledge is forgotten (i.e., MI(h; x) is large).

2.2 APPROXIMATED TRANSFORMATION CONSTRUCTION

In this subsection, we show that we can construct a transformation to approximate the KI process
with arbitrary accuracy. We begin by introducing the concept of Graph Fourier transforms.

Graph Fourier transformation. Graph Fourier transform (GFT) can be used to transform the
entity representation matrix X in the Euclidean space to the graph spectral domain (i.e., KG space
). Specifically, let A ∈ R|V|×|V| be the symmetric adjacency matrix corresponding to G. Let
Ln = I −D−1/2AD−1/2 denote the normalized Laplacian matrix for G, where D denotes the
degree matrix of G. We do the eigendecomposition for Ln as Ln = UΛUT , where U is the
matrix of eigenvectors ordered by eigenvalues and Λ = diag(λ1, λ2, ..., λN ) is the diagonal matrix
of eigenvalues. Based on the GFT (Sandryhaila & Moura, 2014), formally, the transformation of X
to the KG space can be written as GFT(X) = UTX, and its inverse transformation can be written
as RGFT(GFT(X)) = UGFT(X) = X .

It is intractable to directly simulate the KI process (with simple probe models), i.e., integrating
knowledge information from g into x to get h (Definition 1), since g is graph data that are not in the
Euclidean space. Fortunately, with the help of GFT, we can transform x and h into the KG space,
and design transformation there to simulate the KI process. Below theorem provides a feasible way
to construct a transformation that can simulate the KI process with arbitrary accuracy.

Theorem 2 (Transformation Existence). Denote the graph Fourier transformation and its inverse
transformation in terms of G as GFT(·) and RGFT(·). Given a LM and its knowledge-enhanced
version, suppose that MI(h; g)−MI(x; g) > 0, and there exists a mapping that satisfies f(x,g) =
h. Then, for any ε > 0, there exists a neural network NN(·) such that

|f(x,g)− RGFT(NN(GFT(x)))| < ε. (1)

The proof can be found in Appendix B. Theorem 2 shows that there exists an approximated transfor-
mation composed of GFT and a neural network that can simulate the KI process (i.e., f(x,g) = h)
with arbitrary accuracy. In practice, the mapping f(x,g) is realized by complex KI training pro-
cess on large LMs with new datasets, objectives, or even new LM parameters. Here, we can use
a simple transformation RGFT(NN(GFT(x))) to generally approximate and simulate the com-
plex KI process. However, KGs are normally very large, and computing the eigendecomposition of

2Here, the set of entity representations X ∈ R|V|×d can be regarded as empirical samples from x.
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the Laplacian matrix for GFT is prohibitively expensive. Besides, the transformation is not inter-
pretable, which can not be used as a probe model directly. Thus, we take a deeper look into this
transformation. We first show that it can be further simplified as graph convolutions.

2.3 KNOWLEDGE INTEGRATION SIMULATION WITH GRAPH CONVOLUTIONS

In this subsection, we introduce details of the transformation in Theorem 2. We prove that even if
there are multiple steps of the transformation, MI change only happens in certain steps. We show
that these steps are equivalent to graph convolutions.

Graph convolutions. Convolution operations on graphs are often used to model relational infor-
mation of KGs, where entities aggregate information from their neighbors and pass the informa-
tion along based on the graph structure. Graph convolutions can be implemented by filters gΘ in
the graph spectral domain (i.e., KG space). As the GFT of the convolution of gΘ and X is the
pointwise product of their GFT (Bracewell & Bracewell, 1986), the convolution can be written as
gΘ ?X = RGFT(gΘ ·GFT(X)) (Bruna et al., 2014).

In the below proposition, we show that the multistep transformation for KI simulation (Theorem 2)
can be simplified as graph convolutions.
Proposition 3 (Graph Convolutions for Simulation). Suppose MI(x; g) < MI(h; g), MI(h; x) <
MI(x; x), and the mapping f(x,g) = h can be well approximated by the transformation
RGFT(NN(GFT(x))) where the neural network NN(·) has n layers. We can only use n linear
functions in the neural network (i.e., graph convolutions) to well simulate the MI change.

Proposition 3 indicates that if some new knowledge is integrated and some old knowledge is forgot-
ten during KI, we can only use n linear functions instead of the whole transformation in Theorem 2
to simulate the MI change (i.e., formulated KI process). These linear functions in the KG space are
actually graph convolution operations. And thus, we can circumvent the expensive eigendecompo-
sition in GFT with fast and well-approximated graph filters (Defferrard et al., 2016; Kipf & Welling,
2017). The formal proof is in Appendix C. Figure 2 briefly illustrates the overall idea.

RGFTGFT Linear func�on Nonlinear 
ac�va�on

Informa�on gain/loss

Graph 
convolu�on

Bijec�ve 
func�on

Bijec�ve 
func�on
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Representa�on H
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Figure 2: Illustration of the KI simulation. Black dashed arrows show the approx-
imated transformation in Theorem 2. Red arrows show the simplified simulation
with graph convolutions in Proposition 3.

The black dashed
transformation pro-
posed in Theorem 2
can simulate KI with
arbitrary accuracy.
Even if the transfor-
mation is simple, it is
still not very efficient
with large KGs and
not interpretable. The
red solid lines repre-
sent the simulation
of KI using graph
convolutions (Proposition 3), which are much more fast and interpretable.

According to the invariance property of MI (Kraskov et al., 2004), the introduction of bijective
functions does not introduce any new information – MI remains unchanged upon the introduction
of bijective functions. We know that GFT and RGFT are both bijective (Appendix C.1). We show
that nonlinear activation functions in a neural network (e.g., sigmoid(·)) are bijective as well (proof
in Appendix C.1). Thus, the MI change in the KI process can only happen in the linear function
(proof in Appendix C.2). Based on the convolution theorem (Bracewell & Bracewell, 1986), linear
functions in graph space are graph convolutions (Sandryhaila & Moura, 2014; Bruna et al., 2014;
Kipf & Welling, 2017) (Appendix C.3). Thus, we can simply use graph convolution operations
instead to simulate the KI process.

3 INTERPRETING KNOWLEDGE INTEGRATION

In the last section, we showed that KI can be simulated by graph convolutions. In this section,
we introduce the mechanism to interpret the KI process. Specifically, we first illustrate that the
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graph attention mechanism can be used to interpret graph convolutions. Then, we introduce an
implementation of the probe model proposed in our work: Graph Convolution Simulator (GCS), as
well as a method to analyze our interpretation results.

3.1 KNOWLEDGE INTEGRATION WITH GRAPH ATTENTION

Following Proposition 3, we can select powerful graph filters to simulate and interpret the KI pro-
cess. Velickovic et al. (2018) and Thekumparampil et al. (2018) introduce the attention mechanism
to graph filters, where the contribution of each edge to the convolution can be shown explicitly.
Graph attention makes filters more powerful and convolutions more interpretable (Fu et al., 2020).
Proposition 4 (Graph Attention for Interpretation). Suppose MI(x; g) < MI(h; g), MI(h; x) <
MI(x; x), and the KI process MI(x; g) → MI(h; g) can be well simulated by n graph convolution
operations. Then, we can use the attention coefficients on edges and self-loops to interpret the KI,
CR, and CF.

The formal proof can be found in Appendix D. Note that we have n graph convolutions, and they
function differently (Bruna et al., 2014). In a multi-layer graph convolution network, the k-th graph
convolution step aggregates information from k-hop neighbors3. In this work, we consider integra-
tion of knowledge in the form of knowledge triples. Knowledge triples link entities within 1-hop.
Thus, in practice, we set n = 1 for simplicity in our work. According to Fu et al. (2020), graph
attention can also be seen as edge denoising. This provides an alternative explanation of our GCS
probe from the denoising view. More details can be found in Appendix D.

3.2 GCS ARCHITECTURE.

Based on Proposition 3 and Proposition 4, we design GCS with two bijective functions and one
graph convolution function in between. To implement a bijective function in practice, we show that
special MLP layers can be bijective if the weight matrix is a square matrix (plus a small noise).
The formal description and the proof are in Appendix E. We design our GCS model with one graph
convolutional layer and two bijective MLP layers as:

GCSθ1(·) = MLPn(GC(MLPn(·),G)), (2)

where MLPn(·) is the bijective MLP layer and GC(·,G) is the graph convolutional layer on the KG
G which is used to simulate and interpret the KI process. Given an entity vi and its set of neighbors
Nvi , we can write the graph convolutional layer as:

GC(xi) = σ

 ∑
vj∈Nvi∪{vi}

ai,jW
V xj

 , where ai,j = softmax
(

(WQxi) · (WKxj)√
dk · t

)
. (3)

Here, xi is the entity representation of vi before knowledge integration, the activation function σ(·)
is ELU(·) function, and W V is a weight matrix. ai,j is the attention coefficient on the edge that
connects vi and vj . WQ and WK are two parameter matrices in the graph attention. dk is the
dimension of vector WKxj , and softmax(·) is the edge-wise softmax function with respect to node
vi. Temperature t is a hyperparameter that controls the attention distribution to be hard or soft. As
the multiplicative attention mechanism (Vaswani et al., 2017) is broadly used in LMs, we also select
multiplicative attention in the graph attention. We optimize GCS by letting its outputs be as close
to h as possible. This can be achieved by using a reconstruction loss minimization or maximizing
MI between the outputs of GCS and h. We use MI maximization in our implementation. More
implementation details can be found in Appendix H.

3.3 ANALYZING INTERPRETATION RESULTS IN PRACTICE

We implement the GCS model in Equation 2 and use attention coefficients in Equation 3 for all
relations and entities in the KG for interpretation. Then we analyze these interpretation results to
get conclusions for the KI process.

3Note that the number of graph convolutional layers decides the receptive field of entities. n layers represent
that each entity can get information from its n-hop neighbors.
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As introduced in §3.1, large edge attention coefficients mean that the triples corresponding to the
edge are integrated well. To understand CR and CF, we add self-loops on entities in the KG, and
use attention coefficients on the self-loops to show how much of the original information is remem-
bered/forgotten for entities. In particular, large self-loop attention coefficients mean that the original
entity information is kept well. Thus, we introduce thresholds to analyze our interpretation results
as follows4. We simply regard triples with attention coefficients ai,j > 0.1 on edges as integrated
triples. Entities with attention coefficients 0.4 < ai,i < 0.6 on self-loops as well-learned entities.
Entities with ai,i < 0.1 on self-loops means CF has happened, where much new factual knowledge
information is integrated and original entity information is forgotten. Correspondingly, ai,i > 0.9
means CR has happened. For interpretation, attention coefficients on edges are used for triple-wise
integration, and those on self-loops are for entity-wise integration.

4 EXPERIMENTS

We first introduce two knowledge-enhanced LMs considered in this work: K-Adapter (Wang et al.,
2021a) and ERNIE (Zhang et al., 2019). KG is integrated in a triple-wise manner in K-Adapter, and
entity-wise manner in ERNIE.

Then, we move on to our experiments. First, we verify our GCS model. We prove that GCS can
correctly interpret how much KG information is integrated, as well as which set of entities and
triples are integrated. After that, we use GCS to interpret the KI process for K-Adapter and ERNIE.
We present the interpretation results and find that both K-Adapter and ERNIE have only integrated
few triples, but they integrate many entities. Finally, we use our probe to understand which kinds
of knowledge is integrated well in these models. In order to do this, we stratify knowledge in terms
of various relation type and find that K-Adapter and ERNIE integrate different kinds of factual
knowledge to different extents.

4.1 KNOWLEDGE-ENHANCED MODELS

Below, we describe the two knowledge-enhanced LMs considered in this work:

K-Adapter. K-Adapter takes RoBERTa (Liu et al., 2019b) as the backbone model and inserts three
new layers into RoBERTa to learn new knowledge. The final output is concatenated with the output
of RoBERTa5. During the integration, parameters of RoBERTa are frozen, only parameters of the
newly inserted layers are updated. K-Adapter uses the T-REx-rc (ElSahar et al., 2018) dataset for
KI, which has an alignment of natural sentences with knowledge triples in Wikidata. For the KI
objective, K-Adapter decides whether certain relations exist or not, and classifies relation labels
given the aligned sentence. As knowledge is integrated in newly inserted layers, the model no longer
needs to use the T-REx-rc dataset for inference, and it can be finetuned like any other pretrained LMs
on downstream tasks.

ERNIE. ERNIE integrates factual knowledge into BERT (Devlin et al., 2019) directly without in-
troducing extra parameters. The Wikipedia corpus and Wikidata knowledge triples are selected for
integration. As there is no provided alignment between natural sentences and knowledge entities,
ERNIE uses TAGME (Ferragina & Scaiella, 2010) to extract entity mentions in sentences and aligns
them with corresponding entities in KGs. A new objective is designed for KI in addition to the stan-
dard MLM and NSP objectives: alignments in the input text are randomly masked, and the model
is asked to select aligned entities from KGs. Different from K-Adapter that stores factual knowl-
edge in newly introduced parameters, when ERNIE finds the aligned entity, its embedding obtained
from Bordes et al. (2013) is integrated into the output representations. Thus, during inference, the
KG and its embeddings are still required to be fed into ERNIE.

4.2 GCS VERIFICATION

We design a set of experiments to verify that GCS can indeed correctly interpret the KI process.
We first verify that GCS can correctly interpret how much knowledge is integrated using synthetic

4Note that users may choose different thresholds. We heuristically set these thresholds for our analysis.
5Note that here we only consider factual knowledge, thus, the linguistic Adapter is not used.
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experiments (§4.2.1). Then, we verify that GCS can correctly interpret which type of knowledge is
integrated based on the KI dataset (§4.2.2) and downstream task performance (§4.2.3).

4.2.1 SYNTHETIC EXPERIMENT

Setting. We create a synthetic KI scenario where different amounts of knowledge is integrated
into the LM. Specifically, we first use DeepWalk (Perozzi et al., 2014) to obtain entity embeddings
(i.e., KG embeddings) in the KG used for KI. We regard entity embeddings as the entity repre-
sentations of knowledge-enhanced LMs, and we add Gaussian noise with different noise ratios on
entity embeddings and regard it as the entity representations of vanilla LMs. Then, we simulate
the KI processes from vanilla LMs (noisy entity embeddings) to knowledge-enhanced LMs (entity
embeddings). Large noise ratio means much information of KG is integrated.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of noise on the input KGE

0.2

0.0

0.2

0.4

0.6

Cosine similarity
CS - ERNIE
CS - K-Adapter
Euclidean similarity
ES - ERNIE
ES - K-Adapter

Linear classifier - AUC
LC - ERNIE
LC - K-Adapter
GCS - integration score
GCS - ERNIE
GCS - K-Adapter

Figure 3: Interpretation results of how much
knowledge is integrated based on different meth-
ods. Solid lines are results of synthetic KI pro-
cesses. Dotted lines and dashed lines show results
of K-Adapter and ERNIE.

Baselines. We select several baselines for compari-
son. Representation analysis: we calculate the sim-
ilarity (e.g., Cosine, Euclidean) between two con-
nected entities to estimate how much knowledge
about the corresponding triple is contained in the
LM. Finally, the similarity gap between vanilla LMs
and knowledge-enhanced LMs can be used to in-
terpret how much knowledge is integrated. Linear
probe: we design a linear classifier to do link predic-
tion in the KG based on entity representations. The
performance (i.e., AUC score) can be used to show
how much knowledge is contained in the LM, and its
gap shows how much knowledge is integrated. As
for GCS, we use the mean value of self-loop atten-
tion coefficients to show how much knowledge is in-
tegrated: large values mean that little knowledge is
integrated. For the convenience of observation, we
report one minus its mean value as the integration score. Implementation details are in Appendix F.

Results. Figure 3 shows the interpretation results. Solid lines show the results of synthetic KI pro-
cesses. We find that GCS and representation analysis methods provide correct results: the similarity
gap/score increases as the noise ratio increases. However, linear classifier probe can only differenti-
ate whether new knowledge is integrated or not, and fails to tell how much knowledge is integrated
(its curve is not very monotone.). In practice, dotted lines and dashed lines show interpretation re-
sults of K-Adapter and ERNIE. We find that only GCS provides reasonable results: they integrate
little knowledge (equivalent to noise ratio ≈ 5%). All baselines fail in interpretation: K-Adapter
and ERNIE do not integrate any factual knowledge, or they even forget learned factual knowledge.

4.2.2 VERIFICATION USING THE KI DATASET

Setting. This experiment is composed of three steps. First, we use GCS to interpret the KI pro-
cess in K-Adapter and ERNIE, and identify triples and entities that are integrated successfully.
Second, we retrain BERT/RoBERTa to get K-Adapter (dropped)/ERNIE (dropped) only using the
triples/entities that are identified as successfully integrated. Third, we finetune K-Adapter/ERNIE
and their dropped versions on downstream tasks. If GCS correctly interpreted the KI process, the
performance of their dropped versions on downstream tasks should be roughly the same as that of
K-Adapter/ERNIE.

As introduced in §4.1, K-Adapter and ERNIE integrate knowledge by aligned natural sentences in-
stead of using triples/entities directly. Thus, after we get the interpretation results, i.e., triples with
edge attention coefficients larger than 0.1 or entities with self-loop attention coefficients smaller than
0.9, we only keep data aligned with the integrated knowledge. Specifically, we drop sentences for
K-Adapter and entity embeddings (obtained by Bordes et al. (2013)) for ERNIE. Then, we finetune
them on two downstream tasks (entity typing) that K-Adapter and ERNIE outperform RoBERTa and
BERT most significantly: OpenEntity (Choi et al., 2018) and FIGER (Ling et al., 2015). Implemen-
tation details of reproduction and GCS can be found in Appendix G and Appendix H.
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Table 1: Performance of K-Adapter, ERNIE, and their dropped versions on
entity typing on the OpenEntity and FIGER datasets.

Model OpenEntity FIGER
P R F1-Micro P R F1-Micro

RoBERTa 76,98 73.42 75.16 65.26 88.72 75.20
K-Adapter 76.63 75.26 75.94 67.50 88.79 76.69

K-Adapter (dropped) 75.95 ↓ 75.95 ↑ 75.95 ↑ 67.29 ↓ 88.88 ↑ 76.59 ↓ (6.71%)
BERT 79.68 65.70 72.02 75.59 62.32 68.32
ERNIE 78.24 68.75 73.19 77.39 65.81 71.13

ERNIE (dropped) 78.11 ↓ 71.43 ↑ 74.62 ↑ 77.38 ↓ 64.90 ↓ 70.60 ↓ (18.86%)

Results. We only keep
10.09% natural sentences
that aligned with success-
fully integrated triples for
K-Adapter (dropped), and
61.72% entity embed-
dings (obtained by Bordes
et al. (2013)) for ERNIE
(dropped). More details
are in Appendix I. From Table 1, we can find that even if we drop large amount of KI data in
this way, the performance of K-Adapter (dropped) and ERNIE (dropped) on entity typing task is
roughly the same as original (reproduced) versions, and they are obviously better than that of BERT
and RoBERTa. We further verify GCS by introducing a random dropping strategy as comparison
on the OpenEntity dataset. Detailed results can be found in Appendix J.

4.2.3 VERIFICATION WITH A DOWNSTREAM TASK

Settings. In this experiment, we combine the interpretation results of GCS with a downstream task.
Specifically, we align entities in the KI dataset and the OpenEntity dataset based on their Wikidata Q
identifier6. For the entity typing task (OpenEntity dataset), we drop the finetuning test data samples
that aligs with the integrated knowledge and non-integrated entities (called drop-IE test set and drop-
UE test set), and test K-Adapter and ERNIE on the two dropped test sets. If GCS correctly interpret
the KI process, knowledge-enhanced LMs should perform better on the drop-UE test set and worse
on the drop-IE test set.

Table 2: Performance change of K-Adapter and ERNIE on
the OpenEntity dataset with different test sets.

Model (Test set) OpenEntity
Left test set P R F1-Micro

K-Adapter (drop-IE) 37.44% − 0.33 − 0.37 − 0.35
K-Adapter (drop-UE) 64.46% − 0.18 + 1.12 + 0.47

ERNIE (drop-IE) 27.28% − 18.20 − 25.14 − 22.67
ERNIE (drop-UE) 66.87% − 0.31 + 3.08 + 1.57

Results. Table 2 presents detailed results.
We can find that for K-Adapter, the gap
is not very obvious. We hypothesize that
this may be because of the differences in
the finetuning objective and the KI objec-
tive, and because the knowledge integrated
in K-Adapter may change during finetun-
ing. As for ERNIE, the gaps are signifi-
cant. The performance (F1-Micro) on the test set (drop-IE) is 20 F1 points worse than that on the
complete test set. These results also verify that GCS can correctly interpret which set of knowledge
is integrated.

4.3 GCS FINDINGS

After verifying GCS with three groups of experiments, we analyze the interpretation results. From
a macro view, we find that both K-Adapter and ERNIE integrate few knowledge triples (≈ 20% −
30%) and some knowledge entities (≈ 60%− 70%). Detailed results can be found in Appendix K.
From a micro view, we classify knowledge based on relation types (in terms of their topology type
and Wiki data type) and analyze how K-Adapter and ERNIE integrate them respectively.

KI analysis for K-Adapter and ERNIE in terms of relation topology. We classify relations into
three types based on their topology features. Specifically, relations that connect two leaf nodes
(entities) in the KG are 1 − 1 relations, and relations that connect two center nodes (entities) in
the KG are N − M relations. Others are N − 1 relations. For the analysis results in terms of
different types of relations, we report the percentage of successfully integrated triples and entities
for K-Adapter and ERNIE. Besides, we also present the percentage of catastrophic remembered
(CR) entities and catastrophic forgotten entities (CF).

Table 3 presents specific results. We find that for K-Adapter, triples with N −M relations are not
captured well. However, K-Adapter integrates triples with 1 − 1 relations well. This phenomenon
is common for Transformer encoders, where knowledge with complex structure cannot be captured
well (Petroni et al., 2019). ERNIE shows different behaviors. We find that entities connected with
1 − 1 and N −M relations are captured well. But for entities connected to N − 1 relations, they

6https://www.wikidata.org/wiki/Q43649390
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Table 3: Analysis of KI interpretation results for K-Adapter and ERNIE in terms of different types of relations
(topology feature). The percentages of integrated triples/entities, as well as of CR and CF entities for each type
of relations are presented.

Statistics
Model K-Adapter (Wang et al., 2021a) on T-REx-rc

1− 1 relation N − 1 relation N −M relation Total

# of triples 21,690 813,674 1,729,644 2,565,008
Integrated triple percentage 58.89% 38.39% 24.00% 28.86%

# of connected entities 21,690 406,837 352,748 781,275
CR entity percentage 41.11% 31.72% 26.02% 29.41%
CF entity percentage 26.40% 30.29% 40.89% 34.97%

Statistics
Model ERNIE (Zhang et al., 2019) on Wikidata

1− 1 relation N − 1 relation N −M relation Total

# of connected entities 1,799 529,186 2,744,549 3,275,534
Integrated entity percentage 70.65% 42.86% 73.33% 68.39%

CR entity percentage 29.41% 56.07% 26.67% 38.28%
CF entity percentage 23.18% 8.65% 37.10% 32.49%

are not integrated well. Since ERNIE relies on KG embedding to learn structure knowledge, KI is
highly consistent with the quality of the KG embedding provided in Bordes et al. (2013). Regarding
CR and CF, we find that for both K-Adapter and ERNIE, CR happens more often to entities in simple
structures (i.e., connected to 1 − 1 or 1 − N relations), while CF is more common for entities in
complex structures (i.e., connected to N −M relations).

Table 4: The interpretation of KI for K-Adapter in terms of relations.
We list 6 relations and classify them into three types based on the Wiki
Count and Wiki data type. The ratio of integrated knowledge triples are
reported.

Relation label T-REx-rc
Wiki Count Wiki data type Integrated triple percentage

Place of birth (LF) 2,850,424 Wikibase item 10.95%
Part of (LF) 4,164,470 Wikibase item 17.25%

Date of death (TR) 2,637,358 Time <0.01%
Date of birth (TR) 5,294,649 Time <0.01%

Located in the administrative 10,776,120 Wikibase item 6.13%territorial entity (HF)
Country (HF) 14,174,811 Wikibase item 0.12%

Total - - 10.09%

KI analysis for K-Adapter and
ERNIE in terms of relation’s
Wiki features. We select six
relations aligned with roughly
the same number of sentences
in the T-REx-rc dataset (see Ap-
pendix L for statistics) and cat-
egorize them into three groups
based on the Wiki Count and Wiki
data type7: low-frequency (LF)
relations, time-related (TR) rela-
tions, and high-frequency (HF)
relations. From Table 4, we can find that even if LF relations has roughly the same Wiki Count
as TR relations. However, since the Wiki data type of the latter set is “Time”, triples with those rela-
tions cannot be integrated by K-Adapter. We speculate that this is because Transformer encoders do
not capture information about time well (Dhingra et al., 2021; Zhou et al., 2021). When comparing
LF relations and HF relations, we find that if relations have small Wiki Count, knowledge triples are
easier to be captured during KI.

Above experiments show that interpretation results of GCS are consistent with existing analysis
works, which also verify GCS indirectly. Besides, we design a case study experiment in Ap-
pendix M, where we find that CR often happens to rare entities (small Google Ngrams), while CF of-
ten happens to popular entities (large Google Ngrams). Moreover, we study the correlation between
the edge attention coefficient and the number of aligned sentences for K-Adapter in Appendix N,
and find that the Pearson Correlation Coefficient is -0.0055. It implies that simply increasing the KI
dataset may not help LMs integrate unlearn knowledge.

5 LIMITATIONS AND FUTURE WORK

In this paper, we illustrate that the graph attention can be used to interpret the KI process for
knowledge-enhanced LMs, and thus propose a Graph Convolutional Simulator (GCS) that is capable
of correctly interpreting existing knowledge-enhanced LMs. In our experiments, we verify GCS and
use it to obtain interesting findings. There are some limitations of our work. We simplify the KG
without considering edge direction, labels, multi-edges, entity descriptions, and timestamps. These
can be considered by future works. Besides, GCS only provides a way to interpret the knowledge
integration. Once we have an understanding of the KI process, improving the integration quality still
remains challenging.

7https://www.wikidata.org/wiki/Wikidata:Database reports/List of properties/all
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REPRODUCIBILITY STATEMENT

We will publish the code, as well as the interpretation results after the review process. The design
of GCS can be found in §3. The implementation details about the KI for K-Adapter and ERNIE can
be found in Appendix G. And details about GCS can be found in Appendix H.

ETHICS STATEMENT

While our probe models are not tuned for any specific real-world application, our methods could be
used in sensitive contexts such as legal or health-care settings; and it is essential that any work that
builds on our approaches undertake extensive quality-assurance and robustness testing before using
it in their setting.
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A NOTATIONS

Table 5: Notations and their descriptions

Notation Description

G The knowledge graph for KI
V The set of entities/nodes of KG
E The set of relations/edges of KG
vi The entity/node indexed as i in the KG
ti The entity text attached on vi

LM(·) The language model, where the input is entity text, and the output is its representation
Nvi The set of neighbors (entities/nodes) connected to vi
G(vi) The local graph structure in terms of vi

x The random variable of the entity representation
xi The entity representations of vi
g The random variable of the local graph structure

MI(·; ·) The mutual information between two random variables
A The adjacency matrix of KG
|V| The number of entities/nodes in KG
R The set of real numbers
I The identity matrix
D The degree matrix of KG
Ln The normalized Laplacian matrix

diag(·) The diagonalization operation
U The matrix of eigenvectors
Λ The diagonal matrix of eigenvalues
λi The i-th eigenvalue
X The set of entity representations in terms of V
C The dimension of entity representations; The number of channels

GFT(·) The graph Fourier transformation
RGFT(·) The inverse graph Fourier transformation

gΘ The graph filter parameterized by parameter Θ
H The entity representations given by a knowledge-enhanced LM
h The random variable of the entity representation given by a knowledge-enhanced LM
f(·) The mapping that can transform x to h
ε The error of the approximation

sigmoid(x) The Sigmoid function sigmoid(·) = 1
1+e−x

n The number of layers of the neural network for apporximation
W The weight matrix
x The input vector
b The bias
λ′0 The minimum eigenvalue of the weight matrix W

MLPn(·) The bijective MLP function
GC(·, ·) The graph convolution function
GCSθ1 The GCS model parameterized by θ1

L The objective of the optimization
Z The output of GCS, i.e., set of output entity representations
z The random variable of the output of GCS

sup The supremum value
T A class of functions
F Any class of functions
Ω The domain of a function
Tθ2 A class of functions parameterized by θ2, i.e., neural networks
P The probability distribution

P|V| The empirical distribution with |V| samples
NNσ(·|θ′) The neural network with activation function σ(·) and parameterized by θ′
|U | The norm of matrix U
An The normalized adjacency matrix
X̂ The ground-truth entity representations/node features
X̂∗ The variable matrix

Tr(·) The trace of a matrix
ε1, ε2 The error bound of entity representations/node features and adjacency matrix
γ The Lagrangian multiplier
p(t) The characteristic polynomial for weight matrix W

det(·) The determinant of a matrix
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B PROOF OF THEOREM 2

Proof. As aforementioned, the graph Fourier transformation GFT(·) and its inverse transformation
RGFT(·) in terms of the KG G can be written as

GFT(X) = UTX

RGFT(GFT(X)) = UGFT(X) = UUTX = X.

The second equation can be derived since U is the set of eigenvectors of the normalized Laplacian
matrix in terms of G, which is orthogonal.

According to the universal approximation theorem (Cybenko, 1992), in general, we can use one-
layer neural networks (arbitrary width) with the sigmoid activation function to fit any functions.
Ohn & Kim (2019) bound the approximation with both the width and depth, and supports more
activation functions. Based on the conclusion of Ohn & Kim (2019), we know that given a mapping
f ′(·), for any ε′ > 0, there exists a neural network parameterized by θ′ s.t.

|f ′(·)−NNσ(·|θ′)| < ε′.

Note that there are some constraints about the input and the model architecture, i.e., width and depth.
We leave out those details for simplicity. More details can be found in Ohn & Kim (2019).

Since h is obtained by integrating g into x, we can simplify the mapping in the graph space
by researching on the transformation from GFT(x) to GFT(h)8. Assume the mapping satisfies
f ′(GFT(x)) = GFT(h). Then we have

|f ′(GFT(x))−NNσ(GFT(x)|θ′)| < ε′.

Consider that we have f(x,g) = h = RGFT(f ′(GFT(x))). If we assign ε′ = ε
|U | > 0, we have

|U | · |f ′(GFT(x))−NNσ(GFT(x)|θ′)| < ε.

Since we know that

U · f ′(GFT(x)) = RGFT(f ′(GFT(x))) = h = f(x,g),

we have

|f(x,g)− RGFT(NN(GFT(x)))| < |U | · |f ′(GFT(x))−NNσ(GFT(x)|θ′)| < ε,

where NN(·) is parameterized by θ′ with activation function σ as NNσ(·|θ′). And without loss of
generality, we assume it is composed of n layers.

C GRAPH CONVOLUTIONS FOR KI SIMULATION (PROOF)

Proof. The basic idea of this proof can be found in Figure 2. We first simply prove that the graph
Fourier transformation is bijective. Similarly, the nonlinear activation function can be proved bijec-
tive. Then, we show that information gain and loss can only happen in the linear function in graph
space. After that, we briefly illustrate that linear function in graph space is graph convolution oper-
ation. Finally, we prove that graph attention works as edge denoising, and we can use it to interpret
the KI.

8In next proof, we illustrate that the linear transformation in the graph space is graph convolution, which
integrates the graph information into entities. Thus, in the graph space, we do not need to regard g as an input.
More formally description can be found in Chen et al. (2019); Keriven & Peyré (2019).
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C.1 STEP 1

GFT(·), RGFT(·), and sigmoid(·) are bijective. Given two entity representations xi, xj and the
matrix of eigenvectors of the KG as U , suppose that GFT(xi) = GFT(xj). Then, we have

UTxi = UTxj .

Since UT are set of eigenvectors and are by definition nonzero, we have

xi = xj .

If xi = xj , it is easy to get GFT(xi) = GFT(xj). Thus, graph Fourier transformation is bijective.

As for the nonlinear activation function, since we consider neural networks composed of MLP lay-
ers, the activation function is sigmoid(·) function. It is easy to find that its inverse function is
f(y) = ln(1− 1

y ). Similarly, we can prove that it is bijective as well.

C.2 STEP 2

Information gain and loss can only happen in the linear function in graph space. Based on the
invariance of MI (Kraskov et al., 2004), we have

MI(x,g) = MI(GFT(x),g),

MI(x,g) = MI(RGFT(x),g),

MI(x,g) = MI(sigmoid(x),g).

(4)

Since we know that
MI(h,g)−MI(x,g) > 0,

and the neural network can well approximate the mapping, we have

MI(h,g)−MI(x,g) ≈ MI(RGFT(NN(GFT(x))),g)−MI(x,g)

= MI(NN(GFT(x)),g)−MI(GFT(x),g) > 0.

If we write NN(·) with n MLP layers as n× σ(Linear(·)), we have

MI(n× σ(Linear(GFT(x)),g)−MI(GFT(x),g) > 0.

Recursively with equations 4, it is easy to get that MI only changes in the Linear(·) functions.

C.3 STEP 3

The linear function in the KG space (i.e., graph spectral domain) is the graph convolution
operation. Even if many existing works (Sandryhaila & Moura, 2014; Bruna et al., 2014; Kipf &
Welling, 2017) have provided clear descriptions, we simply re-illustrate it under the multi-channel
setting. Consider the graph filter in Bruna et al. (2014) as an exmaple.

For a linear function f(x) = W×x, its weight matrix W ∈ RF×C is parameterized by Θ ∈ RF×C .
If the parameters are not shared for all nodes, the input X ∈ R|V|×C can be rescaled in R|V|×C×1,
and the weight matrix is W ∈ R|V|×F×C parameterized by Θ ∈ RF×C×|V|. The output of this
linear function is mapped in R|V|×F .

Consider the signal in graph convolution, i.e., all x in X ∈ R|V|×C . Since parameters are not
shared (Bruna et al., 2014), for one graph filter, the parameters in gΘ is in RC×|V|×|V| that is pa-
rameterized by Θ ∈ RC×|V| with simple diagonalization. If we have F different graph filters for
the convolution, gΘ is in RF×C×|V|×|V| that is parameterized by Θ ∈ RF×C×|V|. Here, the graph
Fourier transformation of X is GFT(X) ∈ R|V|×C , which can be rescaled in R1×|V|×C×1 with
simple diagonalization. The output is in RF×|V|×|V|×1. Note that since the parameters in the graph
filter is diagonalized, we can rescale the output in R|V|×F .

If we regard the weight matrix W as the parameters in the graph filter gΘ, the input matrix X as the
signal, obviously, the linear function in the graph space is the graph convolution operation.
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D GRAPH ATTENTION FOR KI INTERPRETATION (PROOF)

Proof. Graph attention works as edge denoising9. Graph attention works as a better graph convo-
lution filter, since it can adaptively learn the optimal convolution weights (i.e., attention coefficients).
Consider a graph signal denoising problem that we aim to extract the ground-truth node features X̂
and edge weights Ân from a graph G = (V, E ,An) with noise in both node features X and edge
weights An. Here, An is the normalized adjacency matrix An = D−1/2AD−1/2. To this end, we
formulate the optimization problem under the assumption that the ground-truth node features X̂ are
smooth w.r.t the ground-truth adjacency matrix Ân and the noise in the graph can be upper-bounded:

X̂∗, Â∗n = argmin
X̂,Ân

Tr
(
X̂L̂TnX̂

)
s.t. ‖X̂ −X‖22 ≤ ε1,
‖Ân −An‖22 ≤ ε2,

(5)

where L̂ = I− Â, ε1, ε2 ∈ R, are the level of noise in node features and edge weights, respectively.
Tr(·) indicates the trace of a matrix. By Lagrange multipliers methods, we can obtain the solution
as following:

X̂∗ =
γ

1 + γ

(
I − 1

1 + γ
Â∗n

)
, (6)

Â∗n = An +
√
ε2
X̂∗X̂∗>

‖X̂‖22
, (7)

where γ > 0 is the Lagrangian multiplier. Note that the attention coefficients of GAT (Velickovic
et al., 2018) and AGNN (Thekumparampil et al., 2018) are obtained by (without less of generality,
we show the results in the first-layer) equation 8 and equation 9, respectively:

ai,j = softmax
(

leakyReLU
(
a> [WXi‖WXj ]

)
j∈Ni∪{i}

)
, (8)

ai,j = softmax

([
β

H>i Hj

‖Hi‖‖Hj‖

]
j∈Ni∪{i}

)
, (9)

where H = ReLU(XW ), a, W in equation 8, and β, W in equation 9 are learnable parame-
ters. The attention coefficents of GAT and AGNN are then used as the weights of aggregating the
neighbohood information of nodes. As we can see that equation 7, equation 8, and equation 9 are
in a form of measuring the similarity between paired node features. Similar to the denoised edge
weights obtained in equation 7, the attention coefficents (i.e. the aggregation weights) between a
node and its neighborhoods are proportional to the similarity of their node embeddings. Therefore,
the attention coefficients of GAT and AGNN can be regarded as the results of denoised weights on
the existing edges in a graph, i.e., the graph attentions are implicitly denoising the edge weights.

In general case, graph attention functions as denoising edge weights. The input is noisy representa-
tions and the output is the groundtruth. Attention coefficients show how much distortion is corrected
during the convolution operation. For example, if the input representations are also groundtruth,
there is no need to fetch information from neighbors to get output. And edge weights will be re-
duced to 0, i.e., attention coefficients on edges are calculated as 0. If the input representations are
very noisy, i.e., much noise are removed, attention coefficients on edges should be large to restore
the groundtruth signal. Therefore, in the KI scenario, we can use attention coefficients in graph
attention in graph convolution layer to interpret the KI process such as how much triple information
is integrated. As for the CR and CF, equally, we can use the attention coefficients on the self-loop
edges for interpretation, such as how much original information is remembered/forgotten.

9The detailed proof can be found in Fu et al. (2020).
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E MLP CAN BE BIJECTIVE (PROOF)

Theorem 5. Give an MLP layer denoted as MLP(x) = sigmoid(Wx + b). If W is a square
matrix, there exist a constant λ′0 > 0 that for any 0 < ε < λ′0, the function below is bijective:

MLPn(x) = sigmoid((W − εI)x + b). (10)

Proof. We first prove that two bijective function compositions are still bijective. Then, we prove
that adding a small noise on MLP weight matrix can make it bijective.

Give two function f1(·) and f2(·). Suppose they are injective and suppose f1(f2(x)) = f1(f2(y)).
Since we know that f1(·) is injective, we have f2(x) = f2(y). Similarly, since f2(·) is injective, we
have x = y. Thus f1(f2(·)) is injective. Suppose f1(·) and f2(·) are surjective and z ∈ C. Since
we know that f1(·) is surjective, there exists a set of y ∈ B with f1(y) = z. Similarly, since f2(·)
is surjective, there exists a set of x ∈ A with f2(x) = y. Then, we have z = f1(f2(x)) and so z is
onto f1(f2(·)). Thus, f1(f2(·)) is surjective. Therefore, if f1(·) and f2(·) are bijective, f1(f2(·)) is
also bijective.

To prove that the special MLP is bijective, consider an MLP function as

MLP(x) = σ(Wx + b),

where W ∈ RC×C is the weight matrix and b ∈ RC is the bias. Let

p(t) =

C∏
i=1

(λ′i − t)

be the characteristic polynomial for weight matrix W . Here λ′i are eigenvalues of matrix W . With-
out loss of generality, let |λ′0| = mini |λ′i|. Then, we know that for any constant 0 < ε < |λ′0|, we
have

det(W − εI) = p(ε) 6= 0.

Thus, if the perturbation ε is small enough, the perturbed matrix W ′ = W −εI is nonsingular. Con-
sider the fact that the nonlinear activation function σ(·) is sigmoid(·) function, which is bijective.
Therefore, the special MLP function MLPn(·) is bijective. And there is no information loss.

F IMPLEMENTATION DETAILS OF THE SIMULATION EXPERIMENT

DeepWalk. We implement DeepWalk to get KG embeddings. The hyperparameters are set as the
same as its default values10: the number of walks is set as 10, and the walk length is set as 40. The
dimension of embeddings is set as 128. Note that since knowledge triples only contain neighbors
within one-hop, we select the window size as 1.

Noisy KG embeddings. We add Gaussian noisy on the KG embeddings with different ratios. For
example, if we add 10% ratio of noise, it can be written as

10% noisy KGE = 0.9 ∗ KGE + 0.1 ∗ noise.

Similarity. The Cosine similarity is implemented as

1− Cosine distance(, ),

and the Euclidean similarity is implemented as

1− Euclidean distance(, ).

Linear probe. We design a linear classifier to do link prediction for the KG. Note that we cannot
implement the linear classifier on the large and sparse KG to do link prediction directly. To get
meaningful results, we do negative sampling with sample number as 5. Then, we select to report the
AUC (Area Under the Curve) score since other metrics cannot be differentiable under this condition.

10https://github.com/phanein/deepwalk
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We randomly split the edge set of the KG into two even sets for training and test. To reduce variance,
we repeat the experiment for 10 times.

GCS. We train our GCS model with input as noisy KGE and output as KGE. Note that here noisy
KGE and KGE are in the same space, and the task is simpler compared to practical KI interpretation.
Thus, we set the epoch number as 10, and use the reconstruction loss (i.e., mean absolute error) for
efficiency. Other hyperparameters are set as the same as introduced in Appendix H.

G IMPLEMENTATION DETAILS OF LMS

KI. To ensure that the experiment settings are fair, we set hyperparameters as the default values.
For K-Adapter, the code and hyperparameters for KI that we use are from the official projects11

published by the authors (Wang et al., 2021a). The only two differences are that: we use PyTorch
float 32 instead of float 16 since BERT and RoBERTa that we use are float32, and we use 4 NVIDIA
Tesla V100 GPUs for KI training. For ERNIE, things are the same. All hyperparameters for KI
are set as their default values12. Similarly, float 16 of PyTorch is changed to float 32, and we do
the integration with 4 NVIDIA Tesla V100 GPUs. Note that the dataset that ERNIE used for KI
is Wikipedia, since the code is to fetch latest version of it, the data that we use could be slightly
different. Therefore, for both ERNIE and K-Adapter, to ensure the fairness, we reproduce their KI,
and report the results of reproduced models instead of results provided in their papers.

Finetuning. As for the downstream tasks, all the hyperparameters are consistent with the official
project: either they are given in the project or in the README. In the same way, float 32 and 4
NVIDIA Tesla V100 GPUs are chosen to make sure that the comparison is fair. Note that for K-
Adapter and ERNIE, the best performance for different datasets is achieved in different settings.
For example, the best performance for K-Adapter on the OpenEntity dataset is achieved with single
GPU, but on the TACRED dataset is achieved with four GPUs. Since we focus on the relative
performance instead of the best one, we run finetuning on 4 NVIDIA Tesla V100 GPUs for all
downstream tasks and all LMs (as well as BERT and RoBERTa).

Table 6: Statistics of T-REx-rc and Wikidata

Datasets
Statistics # of entities # of triples # of aligned sentences # of entities (optimization) # of triples (optimization)

T-REx-rc 781,275 1,282,504 5,565,478 - -
Wikidata 3,275,534 12,849,311 - 1,344,393 3,240,272

The datasets that K-Adapter and ERNIE use are T-REx-rc and Wikidata, some statistics of them are
given in Table 6.

H IMPLEMENTATION DETAILS OF GCS

In this section, we introduce details of implementing GCS. In practice, GCS is composed of 3 layers:
bijective MLP layer, graph convolutional layer, and another bijective MLP layer. As for bijective
MLP layers, since weight matrices in them are square matrices, the dimension would remain un-
changed: 1024 for K-Adapter and 768 for ERNIE. The nonlinear activation functions are set as
ELU(·) function, which is also bijective. The learning rate is set as 1e−3, and the dropout rate of
the first two MLP layers is 0.2.

Regarding the graph attention, to make sure interpretation results are stable, we apply multi-head
attention mechanism, where the number of attention head is set as 8. Entity representations are first
embedded into a space with the dimension as 64. Then, the embedded representations are used to
calculate the attention coefficients. Note that since the purpose is to interpret and analyze the KI
process, we do not split datasets for KI. Considering that GCS model is very simple for large KGs,
overfitting is unlikely to happen. Thus, we optimize GCS for the whole datasets. Specifically, for
K-Adapter, the whole KG is used for optimization, and results are used for interpretation. And

11https://github.com/microsoft/K-Adapter
12https://github.com/thunlp/ERNIE
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for ERNIE, since the KG is very large, we sample a small subgraph with 1, 344, 393 entities and
3, 240, 272 triples for optimization (see Table 6), and then implement the optimized GCS on the
whole KG for interpretation.

The objective function of training GCS can be reconstruction loss minimization or MI maximization.
In this paper, except the Simulation Experiment, we all select MI maximization as the objective. For
reconstruction loss minimization, we use the mean absolute error (MAE) between our GCS outputs
and entity representations of the knowledge-enhanced LMs. Regarding the MI maximization, we
define the objective function by maximizing the MI as

L = −MI(GCSθ1(x); h). (11)

We optimize MI equation 11 by maximizing the compression lemma lower bound (Banerjee, 2006)
as in Belghazi et al. (2018). The inputs of GCS are X , and let the output be denoted by Z. We can
regard Z and H as empirical samples of random variables z and h. Thus, we have:

MI(z; h) ≥ sup
T∈F

EPzh [T ]− log(EPz⊗Ph
[eT ]). (12)

Here, F can be any class of functions T : Ω → R satisfying certain integrability constraints (Belg-
hazi et al., 2018). Pzh represents the joint distribution of z and h, and Pz⊗Ph represents the product
of their marginal distributions. In practice, we let F = {Tθ2} be the set of functions parameterized
by a neural network, and optimize it by stochastic gradient descent. Then, the objective function can
be rephrased as

max
θ1,θ2

(
EP|V|z,h

[Tθ2 ]− log
(
EP|V|z ⊗P

|V|
h

[eTθ2 ]
))
, where z = GCSθ1(x). (13)

In equation 13, P|V|z represents the empirical distribution of z, i.e., Z. If the KG is very large, we
can optimize the network by sampling a small subgraph of the KG. In practice, we simply add two
MLPs layers to GCS for MI maximization. The added two MLP layers may not be bijective, where
the dimension would be first reduced to 64, then to 1 for MI maximization. The nonlinear activation
functions are all set as ELU(·) function, which is also bijective.

For interpretation, we use the attention coefficients on edges and self-loops to analyze the KI in terms
of triples and entities. Different from Schlichtkrull et al. (2020) that specially designs a discrete
function to mask edges that are not important, we simply introduce a temperature hyperparameter t
and set it as t = 0.1 to make the attention coefficient distribution hard13. Thus, knowledge can be
well clustered into learned and unlearned.

I ADDITIONAL STATISTICS FOR INTEGRATION EXPERIMENT

Table 7: Drop statistics for the Integration Experiment.

Datasets
Statistics Percentage of integrated entities Percentage of integrated triples # of aligned sentences/entity embeddings (integrated knowledge)

T-REx-rc - 28.86% 561,687 out of 5,565,478
Wikidata 61.72% - 2,240,260 out of 3,275,534

J ADDITIONAL RESULTS FOR GCS VERIFICATION

We gradually drop out sentences aligned to knowledge triples whose attention coefficients are small
for KI. For comparison, we randomly drop same number of sentences named the random strategy.
We can see that dropping out KI datasets based on the interpretation results of GCS significantly out-
performs the random strategy. It further supports that GCS can effectively interpret the KI situation
for the K-Adapter.
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Figure 4: Detailed results of K-Adapter on the OpenEntity dataset, where we use different number of sentences
to integrate knowledge into K-Adapter. For GCS, we integrate knowledge for K-Adapter using sentences
aligned with triples whose attention coefficients are larger than {0.0, 0.01, 0.1, 0.9, 1.0}, where the corre-
sponding number of sentences are {5565478, 1091152, 561687, 127728, 0}. Same number of sentences are
chosen randomly for comparison as the random strategy.
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Figure 5: The attention coefficient distributions of edges and self-loops for K-Adapter and ERNIE. The his-
togram shows the empirical distributions (i.e., frequency), and the blue curves are the Gaussian kernel density
estimate. The black dashed vertical lines indicate the average values.
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K KNOWLEDGE INTEGRATION OVERVIEW

Figure 5 presents the empirical distributions of attention coefficients for K-Adapter and ERNIE. The
above two subfigures show distributions on edges, interpreting the KI from triples. While the bottom
two subfigures show distributions of self-loops, illustrating the KI from entities. We can find that
most knowledge triples are not integrated well for both K-Adapter and ERNIE (i.e., ai,j < 0.1),
while K-Adapter performs slightly better. When it comes to entity-wise integration, in general,
entity knowledge is also not integrated well. We find that both CR (i.e., ai,i > 0.9) and CF (i.e.,
ai,i < 0.1) happens for many entities, especially for ERNIE. K-Adapter outperforms ERNIE since
some entities are integrated well (i.e., 0.4 < ai,i < 0.6).

L ADDITIONAL STATISTICS FOR TABLE 4

Table 8: The number of aligned sentences for relations.

Relation label
Statistics # of triples

Place of birth 134,976
Part of 134,999

Date of death 135,190
Date of birth 135,169

Located in the administrative territorial entity 135,055
Country 135,147

Total 5,565,478

M ADDITIONAL EXPERIMENT: CASE STUDY

Table 9: The interpretation of KI, CR, and CF for K-Adapter in terms of relations and entities. We list 3 typical
relations: CR happens to most connected entities; CF happens to most connected entities; and KI, CR, CF
happens equally to connected entities. And we list 5 correspondingly aligned sentences. The Google Ngram of
entities are reported to show the popularity of entities.

Relation label
Ratio of triples

connected to CR
entities

Ratio of triples
connected to CF

entities

Ratio of triples
connected to WL

entities

# of aligned
sentences

KI of Entities Examples(Google Ngrams)

Copyright license 85.09% 14.61% 0.16% 4,400

CR, (4.95, 2.47)×10−7 This article incorporates public domain material from the United States Geological Survey
document ”Wasson Rock” (content from the Geographic Names Information System).

Office held by head of government 0.46% 99.54% 0.00% 14,315

CF, (0.91, 1.33)×10−2 Seven people served as governor of Colorado Territory over eight terms, appointed by the
President of the United States.

Opposite of 26.30% 41.87% 28.62% 11,577
CR, (1.18, 1.77)×10−4 It is well covered with deciduous and evergreen forests.

CF, (3.67, 5.60)×10−2 The prison’s north wing is filled with left-wing rebels while the south wing is filled with
right-wing government supporters and paramilitaries.

WL, (6.83, 2.46)×10−4 Wildlife of Iran includes its flora and fauna and their natural habitats.

Knowledge of different entities (sorted by their popularity) has different CR and CF ratios
(case study). Table 9 reports the KI for K-Adapter in terms of entities. We select three relations
{“Copyright license”, “Office held by head of government”, “Opposite of ”}. CR happens to most
connected entities for relation “Copyright license”. CF happens to most connected entities for re-
lation “Office held by head of government”. Some connected entities are learned well for relation
“Opposite of ”. We list 5 aligned sentences for the three relations, and report the Google Ngrams
(year 2019)14 of entities to show their popularity. We find that CF often happens to entities with
large Google Ngrams such as “left” and “President”. And CR often happens to entities with small
Google Ngrams. Well-learned entities are also not very popular.

13Note that the principle of hyperparameter selection is to maximize the MI, i.e., objective function. Users
may select appropriate hyperparameters depending on the situation.

14https://books.google.com/ngrams

23

https://books.google.com/ngrams


Under review as a conference paper at ICLR 2022

N ADDITIONAL EXPERIMENT: CORRELATION
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Pearson Correlation Coefficient: -0.0055

Figure 6: The correlation between the attention coefficient of the knowledge triple and its aligned sentence
number. There is no correlation between them.

Can we improve the KI quality by simply increasing the size of our dataset? Above results
analyze KI in LMs in different ways. However, there is a key question: can we simply improve
the quality of KI by increasing the amount of our aligned training corpora? We try to answer this
question in Figure 6 which plots correlation between the attention coefficients and the number of
aligned sentences for knowledge triples in the dataset. We find that the Pearson correlation between
the two is −0.0055. There is no positive correlation between the two variables. This implies there
is no apparent positive relationship between the KI quality and the size of the KI dataset. It suggests
that simply increasing the size of the aligned dataset alone may not improve KI, but, we might need
more fundamental advances to push the state-of-the-art in KI forward.
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