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Abstract

3D Gaussian Splatting (3DGS) has already become the emerging research focus in
the fields of 3D scene reconstruction and novel view synthesis. Given that training
a 3DGS requires a significant amount of time and computational cost, it is crucial
to protect the copyright, integrity, and privacy of such 3D assets. Steganography, as
a crucial technique for encrypted transmission and copyright protection, has been
extensively studied. However, it still lacks profound exploration targeted at 3DGS.
Unlike its predecessor NeRF, 3DGS possesses two distinct features: 1) explicit 3D
representation; and 2) real-time rendering speeds. These characteristics result in
the 3DGS point cloud files being public and transparent, with each Gaussian point
having a clear physical significance. Therefore, ensuring the security and fidelity
of the original 3D scene while embedding information into the 3DGS point cloud
files is an extremely challenging task. To solve the above-mentioned issue, we first
propose a steganography framework for 3DGS, dubbed GS-Hider, which can embed
3D scenes and images into original GS point clouds in an invisible manner and
accurately extract the hidden messages. Specifically, we design a coupled secured
feature attribute to replace the original 3DGS’s spherical harmonics coefficients
and then use a scene decoder and a message decoder to disentangle the original
RGB scene and the hidden message. Extensive experiments demonstrated that
the proposed GS-Hider can effectively conceal multimodal messages without
compromising rendering quality and possesses exceptional security, robustness,
capacity, and flexibility. Our project is available at: https://xuanyuzhang21.
github.io/project/gshider/.

1 Introduction

As a frontier in computer vision and graphics, 3D scene reconstruction and novel view synthesis are
crucial in fields such as movie production, game engines, virtual reality, and autonomous driving.
Specifically, thanks to its high fidelity and fast rendering speeds, 3D Gaussian Splatting (3DGS) [21]
has become a mainstream approach for 3D rendering. Considering that rendering a 3DGS is
extremely costly, protecting the copyright and privacy of 3D assets should be a priority. As a widely
studied technique in copyright protection, digital watermarking, and encrypted communication,
steganography aims to hide messages like audio, images, and bits into digital content in an invisible
manner. In its reveal process, it is only possible for the receivers with pre-defined revealing operations
to reconstruct secret information from the container. Therefore, a natural idea arises: Can we design
a steganography method tailored for 3DGS to protect the copyright and privacy of 3D scenes?
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Figure 1: Application scenario of the proposed GS-Hider. The 3DGS trainer (Alice) requires the
training views of the original and hidden scenes to train our GS-Hider, comprising a 3DGS point
cloud file, a scene and message decoder. Then, Alice will upload the 3DGS point cloud file and the
scene decoder online. 3DGS users (Bob) can render the original 3D scene, while only the trainer is
authorized to extract the hidden 3D scene, realizing copyright protection or secret communication.

Previous research on 3D steganography has already attracted significant attention. Classical 3D
steganography methods [38, 40, 55] often use Fourier and wavelet transforms to embed messages
into explicit 3D representations such as meshes and point clouds. During extraction, the receiver must
obtain the complete 3D representation. Considering that sometimes only a few views of a 3D scene
are publicly available online, the 3D-to-2D watermarking mechanism [60] is designed via a deep
encoder-decoder framework, enabling to extract the copyright embedded in the mesh from any 2D
perspective. Recently, steganography methods for implicit representations, such as NeRF [35], have
emerged. These methods modify the weights of the NeRF [24] or replace the color representation of
the NeRF [33], ensuring that each rendered view contains hidden copyright information.

However, the methods mentioned above do not effectively apply to 3DGS due to its unique properties.
First, since 3DGS is an explicit 3D representation where the attribute of each point has clear physical
meanings, we cannot treat it as an implicit representation like NeRF, where the message can be
directly and seamlessly embedded into the model weights via optimization [24]. This approach
could disrupt the fidelity of the rendered RGB views and compromise the integrity of the embedded
message. Meanwhile, it is difficult for a single message decoder to faithfully memorize large-capacity
hidden messages, such as an entire 3D scene. Second, since 3DGS is a real-time renderable 3D
representation, users might upload the entire 3DGS point cloud file online and allow others to render
it. Thus, the various attributes of the 3DGS are transparent and public, making it difficult to effectively
conceal information by simply adding an attribute. Such approaches could lead to significant security
concerns. Third, similar to image steganography [64, 19], we aspire for 3DGS steganography to
conceal versatile messages (such as 3D scenes, and images) and to explore the capacity limits.
Hiding multiple messages allows various users to extract distinct information from the same 3D scene,
thereby enhancing the adaptability and engagement of the transmission process. The application
scenario of the proposed GS-Hider is presented in Fig. 1.

To solve the above challenges in security, fidelity, and functionality, we propose an effective and
flexible steganography framework, dubbed GS-Hider. It aims to embed 3D scenes or images into
the original scene, and accurately extract the hidden message via meticulously designed modules.
Specifically, it replaces the original 3DGS’s spherical harmonics coefficients with a coupled secured
feature attribute. Subsequently, a scene decoder and a private message decoder are used to decouple
the scene and hidden view from the coupled features in parallel. In a nutshell, the contributions and
advantages of our GS-Hider can be summarized as follows.

❑ (1) We present the first attempt to design a 3DGS steganography framework GS-Hider. It allows
to hiding of messages into a 3D scene in an invisible manner, as well as the exact extraction from the
container 3DGS point cloud files. This technology has a broad range of applications in copyright
protection of 3D asserts, encrypted communication, and compression of 3DGS.

❑ (2) Our GS-Hider exhibits robust security and high fidelity. We ensure the security of GS-
Hider by rendering a coupled scene and message feature, supported by a private message decoder.
Meanwhile, our method minimally alters the structure of the original 3DGS, while using two parallel
decoders that ensure the recovery of original scenes hidden messages do not interfere with each other.

❑ (3) Our GS-Hider exhibits large capacity and strong versatility. For the first time, we have
realized the ability to hide multiple 3D scenes into a single 3D scene, and at the same time, our
GS-Hider can hide a single image into a specific viewpoint of a 3D scene.
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❑ (4) We conducted extensive experiments on the 3DGS dataset to demonstrate the security, robust-
ness, fidelity, and flexibility of our method.

2 Related Works

2.1 3D Representation

The Neural Radiance Fields (NeRF) [35] marked a significant leap in novel view synthesis and multi-
view reconstruction. Efforts have focused on improving reconstruction quality [2, 3, 51, 4], enhancing
computational efficiency [50, 37, 48, 15, 43, 11], and developing dynamic scene representations [42,
14, 6, 29, 12]. In recent advancements, 3D Gaussian Splatting (3DGS) [21] has emerged as a powerful
method for reconstructing and representing 3D scenes using millions of 3D Gaussians. Compared
to previous implicit representations such as NeRF, 3DGS offers significant improvements in both
training and rendering efficiency. To further enhance the rendering performance of 3DGS, Mip-
Splatting [62] achieves high-quality alias-free rendering at arbitrary resolutions by incorporating
2D and 3D filtering. Additionally, Scaffold-GS [30] introduces structured neural anchors, further
enhancing the rendering quality of 3DGS from different viewpoints. The superior performance of
3DGS has expanded its applicability to a wide range of fields [54, 46], including SLAM [20, 34], 4D
reconstruction [25, 31, 53, 57], and 3D content generation [49, 58].

2.2 3D Steganography

Steganography has been evolving over the decades [41, 7]. Thanks to advancements in deep learning,
many deep steganography efforts aim to invisibly embed messages into containers and accurately
extract them, including 2D images [64, 67, 1, 56, 61], videos [36, 65, 32], audio [26, 27, 8, 44]
and generation models [52, 13]. Traditional 3D steganography approaches focus on watermarking
explicit 3D representation such as mesh [38, 40, 55] via perturbing these vertices or transforming
to the frequency domain. Meanwhile, Yoo et al. [60] aims to extract copyright from each 2D
perspective, even when the complete 3D mesh is unavailable. Recently, watermarking implicit neural
representations like NeRF have attracted increasing attention [33, 18, 24, 16, 28, 39, 68, 9, 47, 17].
For example, StegaNeRF [24] embedded images or audio into the 3D scene via fine-tuning the NeRF
weights. CopyRNeRF [33] built a watermarked color representation and introduced a distortion-
resistant rendering strategy to ensure robust message extraction. WaterRF [18] introduced a deferred
back-propagation technology with patch loss and resorted to discrete wavelet transform to enhance
the fidelity and robustness of NeRF steganography. However, steganography for novel explicit
representations 3DGS has not yet been explored.

3 Methods

3.1 Preliminaries

As shown in Fig. 2, 3DGS is an innovative and state-of-the-art approach in the field of novel
view synthesis. Distinguished from implicit representation methods such as NeRF [35], which
utilize volume rendering, 3DGS leverages the splatting technique [59] to generate images, achieving
remarkable real-time rendering speed. Specifically, 3DGS represents the scene through a set of
anisotropic Gaussians, defined with its center position µ ∈ R3, covariance Σ ∈ R3×3 which can
be decomposed into scaling factor s ∈ R3 and rotation factor q ∈ R4, color defined by spherical
harmonic (SH) coefficients h ∈ R3×(k+1)2 (where k represents the order of spherical harmonics),
and opacity α ∈ R1. Then, the 3D Gaussian can be queried as follows:

G(x) = e−
1
2 (x−µ)⊤Σ−1(x−µ), (1)

where x represents the position of the query point. Subsequently, an efficient 3D to 2D Gaussian
mapping [69] is employed to project the Gaussian onto the image plane:

µ̂ = PWµ, Σ̂ = JWΣW⊤J⊤, (2)

where µ̂ and Σ̂ separately represent the 2D mean position and covariance of the projected 3D
Gaussian. P, W and J denote the projective transformation, viewing transformation, and Jacobian
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Figure 2: Comparison of original 3DGS and two intuitive approaches of 3DGS steganography, namely
adding an SH coefficient, and optimizing 3DGS and a message decoder.

of the affine approximation of P, respectively. The color of the pixel on the image plane, denoted by
p = (u, v), uses a typical neural point-based rendering [22, 23]. Let C ∈ RH×W×3 represent the
color of the rendered image where H and W represent the height and width of images, the rendering
process is outlined as follows:

C[p] =

N∑
i=1

ciσi

i−1∏
j=1

(1− σj), σi = αi e
− 1

2 (p−µ̂)⊤Σ̂−1(p−µ̂), (3)

where N represents the number of sample Gaussians that overlap the pixel p. ci ∈ R3 and αi ∈ R1

denote the color calculated from hi and opacity of the i-th Gaussian, respectively.

3.2 Task Settings and Some Intuitive Approaches

Task Settings: Due to the slow rendering speeds of the implicit representation in NeRF, users often
only access a few discrete rendered viewpoints online, rather than obtaining the entire NeRF weights.
Consequently, NeRF trainers typically need to embed messages within the model weights and ensure
that the same image or bit can be extracted from each rendered 2D viewpoint [24, 33, 18]. However,
for 3DGS steganography, due to its real-time rendering capabilities, the trained point cloud files may
be directly uploaded online. Therefore, our task setting is hiding messages during fitting the
original 3D scene to create a container 3DGS, and then extracting embedded messages from it.
The difference between ours and the NeRF steganography setup is that: 1) Our extraction requires
getting the entire 3DGS point cloud file. 2) Rather than just seeking to extract messages from the
rendered 2D view, we focus more on the hiding and extraction in the intrinsic 3DGS point cloud files.
Particularly, depending on different purposes, our hidden message can be divided into:

❑ Encryption Communication: Hiding 3D scenes in an original 3D scene. We use the original 3D
scene to protect secret 3D scenes from malicious theft and extraction by stealers. (Sec. 3.3, Sec. 4.6)

❑ Copyright Protection: Hiding an image in a fixed view of the original 3D scene. By comparing a
pre-added copyright image with the decoded one, the ownership of the 3DGS is verified. (Sec. 4.6)

In this section, we treat the hidden message as a single 3D scene for clarity. To achieve this task, we
first review existing or some potential solutions.

Original 3DGS: As shown in Fig. 2 (a), the original 3DGS renders RGB views from learned Gaussian
points via a rendering pipeline, including projection, adaptive density control, and Gaussian rasterizer.
The learnable attributes of i-th 3D Gaussian are represented as Θi={µi, qi, si, αi,hi}. Here, hi

denotes the SH coefficients which are transformed to ci and represent the RGB color.

3DGS+SH: To embed messages within a 3DGS, as plotted in Fig. 2 (b), an intuitive idea is to
introduce another SH coefficient h′

i to fit the hidden 3D scenes, namely learnable parameters
Θi={µi, qi, si, αi,hi,h

′
i}. While this approach may achieve moderate fidelity for both the original

and the hidden 3D scenes, it compromises security significantly. This is because stealers can easily
detect the newly added h′

i in the publicly available point cloud files and simply remove it.

3DGS+Decoder: Similar to StegaNeRF [24], another intuitive approach is to add a decoder Dm to
forcibly ensure that the output RGB original views can reveal the corresponding views of the hidden
scene. Thus, the learnable parameters are Θi = {µi qi, si, αi,hi} and Dm. However, considering
that each Gaussian point has a specific physical significance, jointly optimizing the decoder could
potentially compromise the optimization of the 3DGS, decreasing the fidelity of the original scene.
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Figure 3: Overview framework of the proposed GS-Hider. It uses a coupled secured feature attribute
f i and the rendering pipeline to fuse hidden and original information, obtaining a rendered coupled
feature Fcoup. Then, the scene and message decoder is adopted to decouple the rendered RGB scenes
and hidden messages.

3.3 The Proposed 3DGS Steganography Framework GS-Hider

Motivation: As depicted in Sec. 3.2, simply adding attributes or treating the 3DGS as a black box and
jointly optimizing it with a decoder fails to meet the requirements for 3DGS steganography in security
and fidelity. Thus, we aspire to have a coupling and decoupling process between the hidden and
original information that are no longer presented independently. Inspired by the “Encoder+Decoder”
structure in classical image steganography framework [1, 67] and combined with the characteristics
of 3DGS, we find that the rendering and training process of 3DGS can be regarded as the “Encoder”
for 3D scene fusion, and we can resort to additional deep networks as the “Decoder” to disentangle
the original and hidden scene. Furthermore, exploring 3DGS attributes that can securely represent
both the original and hidden scenes is challenging. As we have demonstrated in Sec. 3.2, merely
adding a SH coefficient is unsafe. Inspired by [66, 25], we find that rendering a high-dimensional
feature map, as opposed to merely rendering an RGB image, can contain more information and
provide greater confidentiality. Thus, we design a coupled secured feature attribute, a coupled feature
rendering pipeline, and two parallel decoders to construct our GS-Hider.

Defining Coupled Secured Feature Attribute: Different from hi in Fig. 2 (a), which has a fixed
physical meaning, we define a more flexible attribute f i ∈ RM to replace hi ∈ R48 as shown in
Fig. 3, where feature dimension M is arbitrary and adjustable. For i-th Gaussian, except for the center
position µi ∈ R3, scaling factor si ∈ R3, rotation factor qi ∈ R4 and opacity σi ∈ R1, the coupled
secured feature attribute f i ∈ RM serves to represent the color and textures of both the original 3D
scene and the embedded message simultaneously. Defining f i has two significant benefits. 1) : It
can effectively fuse the original scene and hidden scene via adaptive learning without the need to
introduce a separate encoder or additional parameters. 2) : It is a safe and unified representation,
which is impossible for stealers to distinguish which part of the feature represents the original 3D
scene and which part represents the message scene.

Constructing Coupled Feature Rendering Pipeline: Furthermore, we develop a coupled feature
rendering pipeline shown in Fig. 3. Similar to the original 3DGS, we follow the 3D Gaussian
initialization via initial set of sparse points from SfM [45] and use the same projection strategy [69] to
map the 3D Gaussians to the image plane in a given camera view. Unlike directly rendering an image,
we do not need to convert hi into color component ci. Instead, inspired by Eq. 3, we use a coupled
feature Gaussian rasterizer to directly render f i∈RM into the coupled feature Fcoup∈RH×W×M .

Fcoup[p] =

N∑
i=1

f iσi

i−1∏
j=1

(1− σj), (4)

where N denotes the number of Gaussians that overlap the pixel p=(u, v). Specifically, the coupled
feature rasterizer uses the tile-based rasterization technique, dividing the screen into 16×16 tiles, with
each thread handling a single pixel. Different from the integration of ci ∈ R3 in Eq. 3, the feature
map Fcoup is directly rendered in a higher dimension M with greater information capacity. Finally,
the coupled feature Gaussian rasterizer enables us to effectively blend the original scene and hidden
message via the attribute f i, ensuring the hidden information remains confidential and high-fidelity.

Disentangling Original and Message Scene: As plotted in Fig. 3, after obtaining the rendered
coupled feature Fcoup∈RH×W×M , we introduce the scene decoder Ds to produce the rendered view
of the original scene Ipred∈RH×W×3, and design the message decoder Dm to extract the hidden
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Table 1: Comparison of the PSNR(dB) performance of the original and hidden message scenes. We
also report the average storage size of 3DGS point cloud files and the weights of decoders (if any).
We are not directly comparing with 3DGS. In fact, 3DGS is the ideal upper limit of our performance.

Method Type Size (MB) Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai Average
3DGS Scene 796.406 25.246 21.520 27.410 26.550 22.490 30.632 28.700 30.317 31.980 27.205

3DGS+SH
Scene

804.541
23.365 18.998 24.897 22.818 21.479 29.311 26.893 28.150 26.286 24.689

Message 23.548 25.080 28.450 24.067 20.619 22.231 20.997 22.758 21.340 23.232

3DGS+Decoder
Scene

891.874
23.914 19.877 24.284 24.134 21.200 27.502 26.561 26.013 27.674 24.573

Message 20.611 20.540 25.287 19.933 19.848 21.668 20.670 22.367 20.318 21.249

GS-Hider
Scene

411.356
24.018 20.109 26.753 24.573 21.503 28.865 27.445 29.447 29.643 25.817

Message 28.219 26.389 32.348 25.161 20.276 22.885 20.792 26.690 23.846 25.179

message scene Mpred∈RH×W×3 as follows.

Ipred = Ds(Fcoup), Mpred = Dm(Fcoup). (5)

To be concise and ensure real-time rendering, both Ds and Dm consist solely of five stacked layers of
convolution followed by ReLU activation functions. During deployment, Ds will be public with the
trained 3DGS point cloud file, while Dm will be kept private as a special protocol, available only to
users who are authorized to extract hidden information from the rendered feature Fcoup. In a nutshell,
we use the attribute f i and rendering pipeline to couple the original and hidden information, and
employ two decoders for disentangling the original and hidden scenes.

3.4 Training Details

To train our method, a training set of original scenes {I(n)gt }Tn=1 and hidden scenes {M(n)
gt }Tn=1

that correspond one-to-one in view are required, where T denotes the number of training views.
The learnable parameters of our GS-Hider are Θi = {µi, qi, si, αi,f i}, Ds, and Dm. Finally, the
training objective of our GS-Hider is defined as:

ℓrgb = (1− γ) · ℓ1(Ipred, Igt) + γ · ℓSSIM (Ipred, Igt), (6)

ℓmes = (1− β) · ℓ1(Mpred,Mgt) + β · ℓSSIM (Mpred,Mgt), (7)

where γ and β respectively denote the balancing weight of ℓ1 loss and SSIM loss. Finally, our total
loss is ℓtotal = ℓrgb+λℓmes, where λ is used to trade off the optimization between the original scene
and the message scene. Similar to 3DGS, during the optimization process, we employ an adaptive
density control strategy to facilitate the splitting and merging of Gaussian points.

4 Experiments

4.1 Experimental Setup

We conduct experiments on 9 original scenes taken from the public Mip-NeRF360 dataset [2]. The
correspondence between the hidden and original scene are listed in Tab. 7. λ is set to 0.5 when hiding
3D scenes and set to 0.1 when hiding a single image. β and γ in Eq. 6 and Eq. 7 are respectively
set to 0.2. The feature dimension M is set to 16. We conduct all our experiments on a NVIDIA
RTX 4090 Server. Additionally, we modify the original CUDA rasterizer to support the rendering of
feature maps of arbitrary dimensions.

Table 2: Rendering time (s) of our proposed GS-Hider.
Method Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai Average

GS-Hider 0.0226 0.0145 0.0191 0.0218 0.0218 0.0254 0.0252 0.0255 0.0241 0.0222

4.2 Property Study #1: Fidelity

Considering that we are the first to implement 3DGS steganography, we compare the fidelity of
our method with the original 3DGS and some intuitive approaches in Sec. 3.2. As shown in Tab. 1,
compared to “3DGS+SH” and “3DGS+Decoder”, our method achieves 25.817dB and 25.179 dB

6



3D
G

S+
SH

3D
G

S+
D

ec
od

er
G

S-
H

id
er

 (O
ur

s)

Figure 4: Comparison visualization results of our proposed GS-Hider and other potential methods.
The first row of each group: original scene, the second row of each group: hidden scene.

on PSNR for original and hidden scenes, far surpassing other intuitive methods. Compared to the
original 3DGS, our method utilizes less storage space (half of the storage size) and incurs only a
minimal decrease in rendering performance, while simultaneously possessing the capacity to conceal
an entire 3D scene. Note that the performance of the original 3DGS is indeed the upper bound of our
method. As plotted in Fig. 4, it is evident that methods like “3DGS+Decoder” or “3DGS+SH” suffer
from overlap artifacts between the recovered hidden and original scenes, resulting in limited fidelity
and security. However, our method can distinctly reconstruct the two scenes without interference.
To analyze on rendering speed of our GS-Hider, We test our GS-Hider on 9 public scenes using a
NVIDIA RTX 4090 Server. The resolution of each scene is consistent with the experimental settings
of the original 3DGS. The rendering time of the original scene via our GS-Hider is listed in Tab. 2. It
can be observed that our method can achieve a rendering speed of 45 fps, which is much greater than
the real-time rendering requirement of 30 fps. This proves the practicality and efficient rendering
capabilities of our GS-Hider.

4.3 Property Study #2: Security

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve
GS-Hider(Ours)
3DGS+Decoder
3DGS+SH
Reference

Figure 5: ROC curve of different methods un-
der StegExpose. The closer the curve is to the
reference, the method is better in security.

First, we claim that our coupled feature represen-
tation Fcoup is secure. This is because it is a high-
dimensional, complex, and chaotic feature, and
only through our specific message decoder Dm

can the hidden message Mpred be extracted from
Fcoup. Fig. 6 visualizes three random channels of
Fcoup∈RH×W×M and its corresponding original
scene. It can be noticed that the geometric and tex-
ture of the feature map are almost consistent with
the original scene, and no traces of the hidden in-
formation scene can be detected from it. It suggests
that the coupled feature field hides messages more
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Figure 6: Visualization of the rendered coupled feature map Fcoup and the rendering view of the
original scene. It can be observed that only the information of the original scene is retained in the
feature map, while it is difficult to detect the trace of hidden message scene.

Table 3: Robustness analysis under different pruning methods. PSNRS , SSIMS and LPIPS are used
to evaluate the fidelity of the original scene, and PSNRM and SSIMM are for the hidden scene.

(a) Comparison of sequential pruning ratio.

Ratio PSNRS SSIMS LPIPS↓ PSNRM SSIMM

5% 25.804 0.783 0.245 25.179 0.780
10% 25.804 0.783 0.245 25.179 0.780
15% 25.804 0.783 0.245 25.179 0.780
25% 25.771 0.782 0.332 25.167 0.780

(b) Comparison of random pruning ratio.

Ratio PSNRS SSIMS LPIPS↓ PSNRM SSIMM

5% 25.397 0.773 0.257 24.923 0.774
10% 24.518 0.740 0.280 24.673 0.767
15% 24.041 0.727 0.292 24.371 0.760
25% 23.004 0.697 0.319 23.661 0.741

Table 4: Ablation studies on some key hyper-parameters of the proposed GS-Hider.
(a) Ablation of the balancing weight λ.

λ PSNRS SSIMS LPIPS↓ PSNRM SSIMM

0.25 26.156 0.793 0.231 19.837 0.638
0.5 25.817 0.783 0.246 25.179 0.780
1.0 24.932 0.724 0.291 28.802 0.847

(b) Ablation of feature dimension M .

M PSNRS SSIMS LPIPS↓ PSNRM SSIMM

8 25.617 0.775 0.259 25.102 0.765
16 25.817 0.783 0.246 25.179 0.780
32 25.314 0.741 0.277 24.547 0.746

(c) Ablation of the number of Conv layers.

Conv PSNRS SSIMS LPIPS↓ PSNRM SSIMM

3 25.850 0.777 0.252 24.306 0.711
5 25.817 0.783 0.246 25.179 0.780
7 25.712 0.762 0.279 25.103 0.752

to the edges of the object and some imperceptible regions in the artifacts. Furthermore, to verify
the security of our GS-Hider, we perform anti-steganography detection via StegExpose [5] on the
rendered images of different methods. Note that the detection set is built by mixing rendered images
of the original scene and the ground truth with equal proportions. We vary the detection thresholds in
a wide range in StegExpose [5] and draw the ROC curve in Fig. 5. The ideal case represents that the
detector has a 50% probability of detecting rendered images from an equally mixed detection test,
the same as a random guess. Evidently, the security of our GS-Hider exhibits a significant advantage
compared to all competitive methods.

4.4 Property Study #3: Robustness

To evaluate the robustness of GS-Hider, we have subjected the Gaussians to degradation using both
sequential pruning and random pruning methods. Sequential pruning refers to pruning in ascending
order of Gaussian’s opacity, specifically removing Gaussians with lower opacity first. Random
pruning, on the other hand, involves randomly pruning a proportion of Gaussians. Quantitative
metrics are shown in Tab. 3. Sequential pruning has minimal impact on the performance of our model,
and random pruning also shows minimal effect on the watermarked images. The results indicate that
our method effectively withstands the degradation process.

4.5 Ablation Studies

Ablation studies on key hyper-parameters of our GS-Hider are presented in Tab. 4. For the parameter
λ, we observe that when λ=1, the GS-Hider could reconstruct the hidden scene with higher fidelity,
making it more suitable for encrypted communication. Conversely, when λ=0.5, the GS-Hider
was better at balancing the recovery of both the hidden and original 3D scenes. Regarding the
feature channel M of Fcoup, we find that the optimal fidelity for both the original and hidden
scenes is achieved when M was set to 16. Although the performance with M=8 is close to that
of M=16, lower-dimensional features may result in hidden messages being more easily leaked,
compromising security. Regarding the structure of the decoders Dm and Ds, we test various numbers
of "Conv+ReLU" layers. Ultimately, we find that a configuration with five convolution layers allowed
the GS-Hider to best balance the reconstruction accuracy of both the original and hidden scenes.
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Table 5: PSNR (dB) comparisons between GS-Hider and 3DGS+Decoder on single image hiding.
Method Type Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai Average
3DGS Scene 25.246 21.520 27.410 26.550 22.490 30.632 28.700 30.317 31.980 27.205

3DGS+Decoder
Scene 18.320 15.224 20.901 21.884 17.435 23.878 23.322 21.174 22.481 20.513

Message 37.210 35.564 36.228 36.548 35.844 36.924 38.833 39.261 36.157 36.952
GS-Hider Scene 24.140 20.660 26.971 25.569 22.077 30.274 28.267 29.844 30.115 26.440
(Image) Message 39.900 43.363 39.923 39.828 39.795 39.857 42.290 47.300 50.530 42.532
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Figure 7: Rendering views and recovered copyright image of our GS-Hider and 3DGS+Decoder. The
fifth column of each row represents the rendering view that hides a single image.

4.6 Further Applications

Hiding an image into a single scene: Embedding an image is a specific case of hiding a 3D scene.
For a hidden image Mimg∈RH×W×3, we treat it as a fixed viewpoint in the training set {M(n)

gt }Tn=1.
During the fitting of the original scene, we encourage the rendering result of the hidden message at
this specific viewpoint to be close to Mimg in each iteration, without constraining other views, which
makes the Dm focus on hiding a single image and achieving better fidelity.

To validate the effect of our method for hiding images, we embed an image (“Boat.png”) into a
specific viewpoint of the original 3D scene. Tab. 5 reports the PSNR (dB) of the original 3D scene
with the accuracy of the decoded copyright image. It is evident that “3DGS+Decoder” struggles
to maintain the fidelity of the original scene when embedding an image. However, our method
achieves a copyright image reconstruction performance of 42.532 dB, with only a minor decrease of
0.765 dB in PSNR compared to the original 3DGS. Furthermore, we present the rendered views and
recovered hidden copyright image in Fig. 7. Our GS-Hider can accurately reconstruct two different
copyright images while causing almost no degradation to the original scene’s rendering quality, which
proves our method’s potential for copyright protection of 3D assets. Note that we show the rendered
view of the original scene with an image embedded in the fifth column of each row. Obviously,
3DGS+Decoder is completely overfitted to the hidden image (GT) at the specific viewpoint, but our
method is immune to the influence of the hidden message.

Hiding multiple scenes into a single scene: To embed L hidden scenes into the original 3D scene,
we need to modify the last convolution layer of Dm to L × 3. Then, we jointly optimize L secret
scenes and the original scene according to Eq. 7 and 6, which ensures each hidden scene, as well as
the original scene, closely approximates the ground truth. To verify the effectiveness of our method
for multiple 3D scene hiding, we conceal two groups of hidden scenes into two original scenes. As
plotted in Fig. 8, our method can store diverse results of 3D editing [10] within the original 3D scene,
reducing the bandwidth load for transmission and presenting different content to different users.
Additionally, the GS-Hider is capable of hiding two completely different scenes without interference,
maintaining high fidelity.

5 Conclusion

We propose a high-fidelity, secure, large-capacity, and versatile 3DGS steganography framework, GS-
Hider. By utilizing a coupled secured feature representation with dual-decoder decoding, our method
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Original Scene Original Scene Original SceneHidden Scene #1 Hidden Scene #2 Hidden Scene #1 Hidden Scene #2 Hidden Scene #1 Hidden Scene #2

Figure 8: Rendering views of the original 3D scenes, hidden scenes #1, and hidden scenes #2.

can conceal an image, one or multiple 3D scenes in a single 3D scene. To the best of our knowledge,
GS-Hider is the first attempt to study 3D Gaussian splatting steganography, which can be applied
for encrypted transmission, 3D compression, and copyright protection in 3D asserts. In the future,
we will continue to enhance the fidelity and rendering speed of GS-Hider and expand its application
scenarios, striving to advance security, transparency, and authenticity in the 3D community.
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Appendix

A Can our GS-Hider decode copyright from arbitrary 2D RGB viewpoint?

Although this paper focuses on hiding and extracting messages from 3DGS point cloud files, our
GS-Hider can also extract copyright from any 2D RGB perspective. In some cases, we may not
have direct access to the complete 3DGS point cloud file or the rendering pipeline, but can only
extract the copyright of the 3DGS from some sparse publicly available 2D views. Thus, similar to the
task settings of [24, 33], we design a rendering-resistant traceable watermarking strategy (RTWS)
inspired by box-free watermarking approach [63], which allows for the decoding of the copyright
from any rendered 2D view by fine-tuning the GS-Hider and a newly added watermark decoder
Dw. Specifically, as plotted in Fig. 9, we first use a pre-trained watermark encoder Ew to embed a
shared copyright watermark Wcop into the training set of the original scenes {I(n)gt }Tn=1, obtaining

watermarked view set {I′(n)gt }Tn=1. Subsequently, we mix {I′(n)gt }Tn=1 and {I(n)gt }Tn=1 in a 50% ratio
and use this combined dataset to fine-tune the GS-Hider. To minimize the impact on the original
rendering quality, we only alter the coupled feature attribute f i of the GS-Hider, without changing the
positions or shape of each Gaussian point. Finally, we fine-tune the watermark decoder Dw via the
training pairs {Ipred, Igt}, constraining it such that when Ipred is input, the decoder outputs Wcop,
and conversely outputs a black image (W0) when Igt is input.

ℓcop = ||Dw(Ipred)−Wcop||22 + ||Dw(Igt)−W0||22. (8)
By adding watermarks and fine-tuning GS-Hider, we alter the training data domain, thereby causing
the rendered images Ipred to exhibit domain discrepancies compared to natural images Igt. By
fine-tuning the Dw, we enable it to detect this domain gap and decode exact copyrights. The network
structure of Ew and Dw are similar to [64]. Note that the proposed RTWS in this section is not
only applicable to GS-Hider, but also to original 3DGS, and even other 3D representations such
as NeRF.

Table 6: Copyright Extraction Accuracy of
Arbitrary 2D Viewpoints.

Method PSNRS PSNRM PSNRW

GS-Hider (Image) 26.440 42.532 –
GS-Hider (Image) + RTWS 25.915 40.513 39.927

To validate the effect of our GS-Hider for extract-
ing copyright from RGB viewpoint, we use the pro-
posed rendering-resistant traceable watermarking strat-
egy (RTWS) to finetune our GS-Hider and a newly
added watermark decoder Dw. For simplicity, we
choose the pre-trained GS-Hider that has embedded
a single image. Tab. 6 reports the PSNR values of the
original scene (PSNRS), hidden message (PSNRM ), and the watermarked image extracted from RGB
viewpoint (PSNRW ). It can be observed that our method is capable of extracting precise copyright
watermark images from a 2D view with 39.927dB PSNR via Dw, without sacrificing the fidelity of
the hidden message and the original scene.
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Figure 9: Workflow of the proposed rendering-resistant watermarking strategy.

B Dataset Construction

To make the training view set of the hidden scene and the original scene correspond to each other, we
use the trained 3DGS point cloud files and render them according to the viewpoints in the training
set of the original scene to get the training view set of the hidden scene. To ensure that there are as
many illegal views as possible in the training views of the hidden scene, we set the correspondence
between the hidden and original scenes as listed in Tab. 7.
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Table 7: Correspondence between hidden and original scenes. Since for most scenes, “playroom” and
“bicycle” have fewer illegal views, they are repeated several times.

Original Scene Bicycle Bonsai Room Flowers Treehill Garden Stump Counter Kitchen
Hidden Scene Playroom Counter Garden Playroom Bicycle Playroom Playroom Bicycle Bonsai

C Limitations and Future Works

We present the two main limitations of our GS-Hider and provide some potential improvements
in the future works. 1) Compromised rendering quality: Since the feature attribute f i does not
consider view-dependency compared to spherical harmonics, and we need to hide the secret scene
while representing the original scene, our rendering quality is somewhat inferior to the original
3DGS. In fact, we inevitably need to make a trade-off between rendering quality and steganography
capacity. However, our GS-Hider is a universal framework that can be integrated with the latest 3DGS
variants, such as Mip-splatting [62], to enhance rendering performance. Meanwhile, the current scene
and message decoder designs are relatively simple. Integrating more efficient neural rendering and
decoding designs (such as Scaffold-GS [30]) can also help improve the overall rendering quality
of the framework. 2) Decreased rendering speed: Due to the rasterization of high-dimensional
features and network decoding, although we can still achieve real-time rendering, the rendering speed
has decreased compared to the original 3DGS. However, we can easily improve rendering speed by
pruning Gaussian points, reducing the dimension of feature attributes, and decreasing the number of
convolution layers or feature kernels.

D Discussions

D.1 Can the Wrong Decoder Extract the Correct Hidden Scene?

To further verify the security of our GS-Hider, we randomly initialize the message decoder Dm and
use it to decode the rendered coupled feature. As shown in Fig. 10, we find that using the wrong
message decoder was completely unable to reconstruct the hidden scene, which further proves that it
is difficult for unauthorized users to accurately decode our hidden scene.
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Figure 10: Rendering results produced by the randomly initialized message decoder.

D.2 Does the Decoder Memorize the Hidden Scene?

To verify whether our GS-Hider simply memorizes the hidden scene via the decoder, we conduct
experiments of hiding two hidden scenes, as detailed in Sec. 4.6. This proves that our decoder is not
storing or memorizing the secret information. Meanwhile, our message decoder is very lightweight
with only 5 convolution layers. It only contains 0.465 M parameters, which is far from enough to
memorize complex 3D scenes. In fact, the geometrical and structural information is mainly embedded
in the coupled feature, and the role of the decoder is merely to extract and decouple the secret
information, not to memorize the scene watermark. To show the role of our decoder, we further input
the rendered coupled feature from another scene like ’playroom’ to the message decoder that is trained
to hide the scene ’bicycle’. The results are presented in Fig. 11. We find that the rendered scene
retains most of the geometric structure of the ’playroom’ scene, with only some colors resembling

16



those of the ’bicycle’ scene. This indicates that our decoder itself cannot memorize secret information.

Figure 11: Visualization of the decoded scene when we input coupled features from other scenes
(‘playroom’) to the message decoder of ‘bicycle’.

D.3 Why does the coupled feature attribute work?

First, the hidden scene information is concealed in the spatial high-frequency details of the coupled
feature and some visually insensitive areas (such as artifacts, noise, and edges). The invisible hidden
information in the coupled feature map will be amplified and decoupled by the message decoder,
eventually forming an RGB hidden scene. We visualize the intermediate feature of the message
decoder in Fig. 12 to illustrate this process. Second, the secret information is hidden in some
redundant feature channels of the coupled feature field Fcoup. To prove this, we randomly set some
channels in Fcoup to 0, and eventually find that the hidden decoder can not reconstruct the complete
secret scene, as presented in Fig. 13. This indicates that multiple feature channels are coupled and
interact with each other, collectively storing the hidden information.

Feature map 1st Conv 2rd Conv 3rd Conv 4th Conv Hidden Scene 

Figure 12: Visualization of intermediate feature maps in the message decoder. We present the
14th-16th channels of the feature map. Zoom in for best view.

Figure 13: Visualization of the decoded hidden scene when some channels of the coupled feature
Fcoup is randomly set to 0. Obviously, without some channels, the hidden scene cannot be fully
decoded correctly.

E Additional Quantitative Results

E.1 Additional Metrics

To verify the performance change of coupled secured feature attributes compared to spherical
harmonic coefficients, we do not hide the message but only optimize the 3DGS attributes and scene
decoder to fit the original scene. The PSNR, SSIM, and LPIPS of the rendered original scene are
listed in Tab. 8. It can be found that without hiding any message, our method only has a PSNR
reduction of 0.68 dB compared to the original 3DGS (listed in Tab. 1), which shows that our rendering
performance is comparable to 3DGS. Meanwhile, as plotted in Table 1, our storage size is only about
half of that of 3DGS. By increasing the feature dimension M and the complexity of the decoder
network, our rendering performance can be further improved and approach 3DGS. Finally, due to
space limitations, we only put our PSNR results in Tab. 1. We also supplement all metrics of our
GS-Hider on single 3D scene hiding in Tab. 9.

E.2 Comparison with Recent Steganography Method StegaNeRF

To compare with the recent steganography method, we have tried our best to migrate the pipeline
and decoding network of StegaNeRF [24] to the 3DGS steganography task. Specifically, we feed the
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Table 8: Rendering performance of the proposed GS-Hider without hiding messages.

Metrics Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai Average
PSNR 24.377 20.897 26.954 25.565 21.952 30.190 28.053 29.588 31.147 26.525
SSIM 0.735 0.583 0.855 0.731 0.625 0.918 0.899 0.921 0.937 0.800
LPIPS 0.254 0.347 0.118 0.259 0.361 0.209 0.202 0.129 0.191 0.230

Table 9: All Metrics of the proposed GS-Hider on the single 3D scene hiding. Note that PSNRS ,
SSIMS , and LPIPSS respectively are used to evaluate the fidelity of the original scene, while PSNRM ,
SSIMM , LPIPSM are for the fidelity of the hidden message.

Metrics Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai Average
PSNRS 24.018 20.109 26.752 24.572 21.502 28.864 27.445 29.446 29.643 25.817
SSIMS 0.721 0.539 0.850 0.676 0.608 0.910 0.894 0.911 0.931 0.782
LPIPSS 0.268 0.347 0.126 0.313 0.377 0.223 0.212 0.141 0.202 0.246
PSNRM 28.218 26.388 32.348 25.161 20.275 22.885 20.792 26.690 23.845 25.178
SSIMM 0.913 0.908 0.944 0.850 0.464 0.691 0.585 0.874 0.788 0.780
LPIPSM 0.210 0.245 0.137 0.287 0.487 0.350 0.497 0.208 0.328 0.306

Table 10: Comparison between the proposed GS-
Hider and 3DGS+StegaNeRF.

Methods PSNRS SSIMS LPIPSS PSNRM SSIMM LPIPSM

3DGS+StegaNeRF 26.22 0.81 0.25 19.64 0.67 0.46
GS-Hider 25.82 0.78 0.25 25.18 0.78 0.31

Table 11: Rendering quality of the extension to
Mip-3GDS, namely Mip-GSHider.

Methods PSNRS SSIMS LPIPSS PSNRM SSIMM LPIPSM

Mip-Splatting 27.79 0.83 0.20 - - -
Mip-GSHider 26.25 0.79 0.24 25.26 0.76 0.34

output of 3DGS to the decoding network of StegaNerf and let it approximate the hidden 3D scene.
The results are reported on Tab. 10. We find that GS-Hider is much better than 3DGS+StegaNeRF in
terms of the reconstruction quality of hidden scenes, achieving 5.54dB improvement. This proves that
our GS-Hider can effectively avoid the mutual interference between information hiding and scene
rendering.

E.3 Extension to Mip-3DGS

To verify the generalizability of our framework, we realize a variant of GS-Hider based on Mip-
splatting. Specifically, we retain the 3D smooth filter and 2D mip filter from Mip-splatting, only
replacing the color attributes with high-dimensional features to fit the GS-Hider framework. Then, we
conducted experiments on 3D scenes hiding on the mipnerf-360 dataset. The results are reported in
Tab. 10. We also present some visualization results in Fig. 14. This demonstrates that our GS-Hider
is a universal steganography framework, not limited to specific 3DGS methods.
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Figure 14: Visualization result of the original and hidden scene rendered by our MIP-GSHider.

F Additional Visualization Results

We present more visualization results in Fig. 15 and Fig. 16 to demonstrate our effectiveness on 3D
scene hiding and single image hiding. Moreover, we constructed an HTML file “./gshider/index.html”
in the supplementary material to display some continuous 3D scenes.
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Rendering View Recovered Image

Figure 15: Rendering performance of the original scene and the recovered image produced by our
GS-Hider. The fifth column of each row denotes the rendering view that hides a single image.
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Figure 16: Rendering performance of the proposed GS-Hider on the original and hidden scene.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work performed by the authors in
Sec. C.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All the theorems, formulas in the paper are numbered and cross-referenced.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper in Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The paper does not provide open access to the data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary to understand the
results in Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports information about the statistical significance of the experi-
ments, e.g. reconstruction accuracy in Sec. 4.2, security analysis in Sec. 4.3, and robustness
analysis in Sec. 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources in Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed in Sec. C.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legal to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models
that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited, and the license and terms of use explicitly are mentioned and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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