Compress then Serve:
Serving Thousands of LoRA Adapters with Little Overhead

Rickard Briiel Gabrielsson' Jiacheng Zhu' Onkar Bhardwaj? Leshem Choshen'!? Kristjan Greenewald 2
Mikhail Yurochkin? Justin Solomon '

Abstract

Fine-tuning large language models (LLMs) with
low-rank adaptations (LoRAs) has become com-
mon practice, often yielding numerous copies of
the same LLM differing only in their LoRA up-
dates. This paradigm presents challenges for sys-
tems that serve real-time responses to queries that
each involve a different LoRA. Prior works op-
timize the design of such systems but still re-
quire continuous loading and offloading of Lo-
RAs, as it is infeasible to store thousands of Lo-
RAs in GPU memory. To mitigate this issue,
we investigate the efficacy of compression when
serving LoRAs. We propose a method for the
joint compression of LoRAs into a shared basis
paired with LoRA-specific scaling matrices. We
extend our algorithm to learn clusters of LoRAs
that are amenable to joint compression, allowing
it to scale gracefully to large LoRA collections.
Our experiments with up to 1000 LoRAs demon-
strate that compressed LoRAs preserve perfor-
mance while offering major throughput gains in
realistic serving scenarios with over a thousand
LoRAs, maintaining 80% of the throughput of
serving a single LoRA.

1. Introduction

The myriad uses for foundation models (FMs) have led to
a proliferation of specialized models, each fine-tuned to
perform a downstream task. To avoid fine-tuning founda-
tion models with billions of parameters, parameter-efficient
fine-tuning (PEFT) algorithms were proposed. An es-
pecially successful PEFT method is low-rank adaptation
(LoRA) (Hu et al., 2021), which learns low-rank addi-
tive changes to neural network matrices. Because of the

“Equal contribution 'MIT CSAIL >MIT-IBM Watson AI Lab.
Correspondence to: Rickard Briiel Gabrielsson <brg@mit.edu>.

Proceedings of the 42™¢ International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

200 ——
e N I R
180(9~ ¢
8 ¢
v

2160 £ 4 4
g b
5
=140
2 ¢
%’120 e Joint Compression
£ e VLLM multi-LoRA

100 No LoRAs (3

4 8 16 32 64 128 256 512 1024
Unique LoRAs served

Figure 1: Throughput gains when serving 1000s of com-
pressed LoRAs with vLLM.

low-rank parameterization, these matrices (called adapter
weights) contain orders of magnitude fewer parameters
than the base model. Still, LoRA can achieve performance
on par with full fine-tuning (Hu et al., 2021).

LoRA’s popularity has triggered a growing need to serve
large collections of LoRA adapters at scale. Proprietary
and open-source LLM providers offer fine-tuning services
(OpenAl, 2024; TogetherAl, 2024; Predibase, 2024) with
user bases likely in the thousands or even hundreds of
thousands. As each user wants to use their own fine-
tuned version of the LLM, serving a dedicated fine-tuned
LLM per user becomes infeasible. To this end, S-LoRA
(Sheng et al., 2023) proposes a system where only the base
LLM is placed on an inference server and individual LoRA
adapters are switched as needed at inference time. S-LoRA
optimizes the system’s inner workings via custom CUDA
kernels and memory management to increase throughput
when serving multiple LoRAs. Multi-LoRA system design
has also been adopted in vLLM (Kwon et al., 2023), a state-
of-the-art LLM serving engine. Despite optimized system
designs, serving LoRAs still has a fundamental limitation:
when the number of adapters is large, they need to be con-
stantly loaded and offloaded from GPU memory to accom-
modate incoming requests, degrading throughput.

The problem of accommodating multiple LoRA adapters
is also apparent when placing LLMs on edge devices,

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

where smaller LLMs are fine-tuned for various tasks, and
the adapters are swapped depending on the task at hand
(Gunter et al., 2024). In this setting, the number of adapters
is smaller, e.g., a few dozen (Gunter et al., 2024), but the
memory constraints are also more stringent.

In this work, we consider the problem of compressing a
collection of LoRAs. We have two key objectives: (1)
preserving the performance of the original LoRAs and (2)
improving the throughput of serving many LoRAs. We
formulate LoORA compression as a reconstruction problem,
where the goal is to approximate the original adapters via
collections of matrices of a smaller size. We compress Lo-
RAs jointly by finding a shared basis and LoRA-specific
scaling matrices and propose a joint diagonalization-based
algorithm (JD). To improve reconstruction error for large
numbers of LoRAs while keeping the number of parame-
ters in check, we propose a clustering approach where each
cluster is compressed independently using the joint diago-
nalization algorithm. Our clustering algorithm is based on
alternating between optimizing the cluster assignments and
the per-cluster reconstruction error.

Figure 1 showcases the benefits of joint compression.
When serving up to 64 unique LoRAs, we use JD with-
out clustering and for 128 or more, we pick the number of
clusters to match the performance of compressed and origi-
nal LoRAs. In each case, the GPU memory footprint of the
compressed and original LoRAs is matched for a fair com-
parison to VLLM’s multi-LoRA inference engine. When
serving over 1000 LoRAs, compression increases through-
put 1.6x and maintains 80% of the throughput of serving
the base LLM (or a single LORA merged into the LLM). §6
presents detailed results.

‘We summarize our main contributions below:

* We formulate the problem of compressing a collection of
LoRAs and propose a joint compression scheme based
on joint diagonalization.

* For large numbers of LoRAs, we scale joint compression
by proposing a clustering algorithm where each cluster is
jointly compressed to minimize reconstruction error.

* We establish theoretical guarantees for the reconstruction
error of our compression formulation and relate recon-
struction loss to performance empirically.

* We train a collection of more than 1000 high-quality
LoRAs for Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023a) on 1000 natural instruction tasks (Wang
et al., 2022) and demonstrate that our compression tech-
niques preserve the performance of the original LoRAs.
We will release over a 1000 LoRAs to facilitate future
work as well as the code for our method.

* We incorporate LoRA compression into a state-of-the-
art LLM serving system and demonstrate that it is possi-
ble to serve over 1000 LoRAs across thousands of asyn-

chronous requests with throughput comparable to serving
a single LoRA.

2. Related Work

Parameter-efficient fine-tuning (PEFT) has become preva-
lent for updating foundation models thanks to the need
for efficiency in training and communication (Lialin et al.,
2023). Many PEFT methods have been proposed, e.g.
(Houlsby et al., 2019; Liu et al., 2022b) and LoRA (Hu
et al., 2021) became the standard, partially due to the ease
of switching between LoRAs in inference time.

Several works improve LoRA (Liu et al., 2024; Wang et al.,
2024), sometimes with algebraic methods like SVD (Meng
et al., 2024; Zhang et al., 2023; Jiang et al., 2023b) or by
leveraging its statistical properties (Zhu et al., 2024; Zeng
& Lee, 2024). Relatively few, however, accelerate infer-
ence times. S-LoRA (Sheng et al., 2023) provides an effi-
cient means of switching between LoRAs. Wen & Chaud-
huri (2024) adapt training to reduce batch multiplications,
accelerating inference. Our method achieves a similar out-
come (see Appendix D) without changing the LoRA for-
mulation or requiring that LoRAs be trained in a dedicated
way; future improvements to LoORA will also benefit from
this aspect of our work (e.g., Meng et al. (2024)).

Punica (Chen et al., 2023) introduces Segmented Gather
Matrix-Vector Multiplication (SGMV) to optimize multi-
LoRA serving by parallelizing feature-weight multiplica-
tions in batches and grouping requests that use the same
LoRA. Our approach, by contrast, reduces parameters as
a means to serve multiple LoRAs efficiently, providing an
orthogonal strategy that can be seamlessly integrated with
Punica’s methods to enhance performance. In our vLLM
experiments, we leveraged the Punica kernel for multi-
LoRA implementation, demonstrating the application of
our method in conjunction with Punica’s optimizations.

Other research proposes alternative PEFT methods that
can be more parameter-efficient than LoRA. For example,
VeRA (Kopiczko et al., 2024) fine-tunes LLMs by sharing
global static parameters while learning local scaling vari-
ables; (IA)® (Liu et al., 2022a) also reduces adapter param-
eter counts. However, none of these approaches has been as
extensively tested or widely-adopted as LoRA. As a result,
work that builds on LoRA enjoys a practical advantage due
to its broad acceptance in practice.

There are many efforts to compress models (Cheng et al.,
2017; Gholami et al., 2022; Sharma et al., 2024; Li et al.,
2018). Predominantly, pruning and sparsification meth-
ods delete weights (Yadav et al., 2023a), and quantiza-
tion methods reduce the weights’ precision (Dettmers et al.,
2024). Some works compress weights to reduce model size
but typically require decompression and hence do not save

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

GPU memory (Hershcovitch et al., 2024). Similarly to our
work, a few note increased performance and generalization
after compression (Yadav et al., 2023a; Nadjahi et al., 2023;
Hershcovitch et al., 2024; Sharma et al., 2024).

Our work also relates to model merging (Choshen et al.,
2022; Wortsman et al., 2022; Matena & Raffel, 2021) and
mixtures of experts (Mugeeth et al., 2024; Yadav et al.,
2024). These methods reuse models trained by others
(Choshen et al., 2023; Raffel, 2023), serving them together
as one compressed model. Despite this similarity, these
methods create a single general model that acts on any in-
put, while ours yields more performant per-task solutions.

3. Rank-Based LoRA Compression

LoRA updates are parameterized by pairs of matrices A, B,
whose product B A updates the fixed weight matrices W €
R?2>d4 of a neural network foundation model. Given an
input z to a layer, the output of the LoRA-updated model
at this layer is (Wy + BA)x.

In formulating our compression algorithms, we consider a
collection of given LoRA adapters {(4;, B;)}"_; that we
would like to serve. We let r; refer to the rank of the LoRA
adapter-pair (A;, B;), i.e., B; € RIX7i A, ¢ Rrixda,

While our compression technique has access only to a col-
lection of {(A;, B;)}i~ pairs, in our experiments we will
assess the efficacy of compression by comparing how the
compressed matrices perform relative to uncompressed Lo-
RAs on typical data. For this reason, although in this sec-
tion we optimize a Frobenius norm reconstruction error rel-
ative to the product B; A;, this is a proxy for the nonlinear
and complex way that compression errors in the adapters
impact transformer performance. Our experiments will
thus focus on the performance of the compressed LoRAs
against the uncompressed versions on real data in §6.

Our compression methods significantly reduce the overall
number of parameters. Reducing parameters theoretically
accelerates storage and serving of a collection of LoRAs.
This reduction, however, alters the computational dynam-
ics during inference, so parameter reduction alone does not
immediately imply faster throughput. In light of the com-
plexities of GPU optimization, we experimentally assess
throughput under realistic conditions in §6.4.

3.1. Joint Diagonalization

To scale to many LoRAs, the compressed number of pa-
rameters should not scale linearly with n. Hence compress-
ing each LoRA individually (e.g., via SVD as in our experi-
mental baselines) is inherently limited. To address this, we
suggest a Joint Diagonalization (JD) method, which opti-
mizes a shared basis onto which we can project the set of

n LoRAs. This allows structure to be shared, implicitly
grouping and/or merging the collection of LoRAs.

In this model, each LoRA product B; A; is factorized into
the form UX;V, where U and V' are shared across all Lo-
RAs and ¥; is specific to each LoRA. In this formulation,
every ¥; shares the same rank 7. This allows U and V' to
be pre-loaded onto the GPU, with ¥; loaded when neces-
sary for each batch. The matrices Y; can be either diag-
onal or small square matrices, thus significantly reducing
the number of LoRA-specific parameters and accelerating
multi-LoRA serving.

Objective function. Motivated by the relationship of sin-
gular value decomposition to minimizing the Frobenius
norm of the reconstruction error, we also propose to mini-
mize the Frobenius norm of the adapter matrix approxima-
tion error. Specifically, we use the following objective:

min BiA; —US, V|3, (1)
s fpin 2 I

Note this problem is not solved by a single matrix SVD,
since U and V are shared among all terms but the 3J;’s are
not. Using the Frobenius norm has the added benefit of
making the objective convex in each argument separately,
suggesting the possibility of efficient optimization. This
objective function is underdetermined, however, so we con-
sider two constrained regimes below.

Full 3; approximation. The first method we call JD-Full.
Without loss of generality, U and V' can be constrained to
be orthogonal, so long as ¥; remains an unconstrained full
matrix. JD-Full adopts this restriction to make the opti-
mization better posed, but note it does not restrict the ex-
pressiveness of the objective equation 1. This setting yields
the following optimization problem:

JD-Full, ({B;A;}i—,) =

n
argmin Z IB;A; —USV T |30
{Z:37, i=1
vrtu=vitv=I,

(JD-Full) (2)

An efficient alternating algorithm to optimize this objective
function can be found in Appendix A.

Diagonal >; approximation. As an alternative, we can
leave U, V unconstrained (other than to have r columns)
and instead constrain the matrices 3; to be diagonal (but
not necessarily positive). This formulation yields the fol-
lowing optimization problem:

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

JD-Diag, ({B;A;}1,) =

n
argmin > || BiA; — Udiag(:)V " |3
(B UV o

(JD-Diag) (3)

Appendix A provides an efficient alternating least squares
algorithm for this objective. This diagonal version has per-
LoRA parameter savings when compared to JD-Full, since
the diagonal ¥; only needs r parameters instead of 2.

3.2. Clustering

As the number of LoRAs n grows and becomes more
diverse, the rank r needed for Joint Diagonalization to
achieve good performance will tend to increase. This in-
creases the size of each Y; that needs to be stored, espe-
cially for JD-Full which will require O(nr?) storage for
these matrices. If the necessary r grows proportionally to
n, then this storage will eventually become the bottleneck.

To resolve this limitation with very large n, we propose to
group the n LoRAs into k clusters C;. Each cluster is given
its own rank r for JD compression, and the clusters are cho-
sen such that the overall reconstruction error is minimized.
Specifically, the overall objective is

min B;A; — U %, Vi||%,
{wmwm&§;2;| iVillr

optimized by alternating between cluster assignments and
the JD of each cluster; Appendix A.3 provides details. Typ-
ically, the goal with large n is to have k& grow with n as r
becomes fixed. Comparing k rank-r JD-Full clusters to a
rank-kr JD-Full single cluster compression, the clustered
approach requires O(dkr + nr?) parameters, while the
single-cluster approach requires O(dkr + nk?r?) param-
eters due to the increased sizes of the >J;s. While these two
approaches have the same rank, they may have different
reconstruction abilities. Empirically, we find that multiple
clusters significantly aid performance for n > 100.

4. Theoretical Analysis

In this section, we seek to better understand the role of the
joint diagonalization method in §3.1 and how it motivates
the clustering approach. We focus on the full-3; case with
orthogonal U, V matrices. Note that, for the same r, the
r-JD-Diag has at least as large reconstruction error as 7-
JD-Full since it imposes an additional constraint on the ;.

Firstly, note that perfect reconstruction can be achieved if
and only if r is large enough, since there exist U,V such
that all the B;, A; are in the spans of U, V resp. if and only
ifr >

Proposition 1. Suppose rank(B;A;) = r; for all i, and let

7 = max {rank([41, ..., Ay)), rank([B; ..., B:L—])} .
Note max; r; < T < Z?zl ri. Then JD-Full (equation 2)
with r = T compresses losslessly (perfect reconstruction),
while r < 7 will give nonzero reconstruction error.

Due to training noise, 7 will equal Z?’Zl r; almost always.
This implies that in most realistic settings, the joint diago-
nalization approach is a lossy reconstruction.

This reconstruction loss can be significant, as the following
theorem shows (proved in Appendix B):

Theorem 1. Consider n LoRAs {A;, B},
with r,n < d? and form the matrix L =
[vec(B14y) vec(BnAy) |. Let o; be the
singular values of L, sorted from largest to smallest, and
let 5 be the singular values of > - | B;A;. Then, using
JD-Full (equation 2),

min(r?,n)

s n n
Do < Sl = XNV e < D a7,
j=1 i=1 i=1 j=1

implying the sum of squared Frobenius norms of the recon-
structed LoRAs satisfies

min(r?,n) 2
S ISV R, _2=1 <1, and

min r2,n
S IUZV = BiAillz,, 1 M
>t 1BiAill3y, B > 105

In other words, reconstruction error is unavoidable if L’s
singular values are not concentrated in the top 72 entries.

Remark 1 (Lower bound and merging). The lower bound
22:1 6J2» could be achieved by setting all the 3; equal, i.e.,
using a fully merged model instead of only merging the sub-

spaces U, V and allowing 33; to vary with 1.

Remark 2 (Upper bound and grouping). The upper bound
is smallest when the LoRAs are relatively clustered, i.e.,
when groups of vectors vec(B; A;) are similar. This situa-
tion raises the magnitude of the largest singular values of
L, raising the upper bound in the proposition. As the Lo-
RAs are d x d matrices that can be thought of as points
in Rd2, for typical values of d well into the hundreds, it is
likely that unrelated LoRAs will be unclustered, i.e., they
will have relatively low inner products with each other.

For orthogonal LoRAs, the singular values of L are the
norms of the LoRAs, suggesting the following corollary:'

'A result for isotropic Gaussian LoRAs could be obtained via
the quantiles of the Marchenko-Pastur Law.

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Corollary 1. Suppose (e.g., due to normalization) that
the inputs to the joint diagonalization algorithm all have
unit Frobenius norm, ie., |B;A;|lmo = 1. Moreover,
assume that the LoRAs are all orthogonal in the sense
tr((B;A;)(BjA;)") = 0 fori # j. Then, using the JD-
Full method equation 2, we have 1 < Y7 | [|5;]|3,, <
min(r?,n), implying that the sum of squared Frobenius
norms of the reconstructed LoRAs satisfies

n T AL 112 2
s T OB Bl (21

2 —,1
n Z?:l HB7A7H%‘r0 n ’
This implies that for the common setting where 1?2 < n,

the reconstructed LoRAs will be significantly smaller than
the original LoRAs, with significant reconstruction error.

Our analysis illustrates the tradeoffs of joint diagonaliza-
tion. If the LoRAs are similar or well-clustered, reconstruc-
tion error will be low. On the other hand, if the LoRAs are
random and orthogonal, reconstruction error will be high.

Since the loss space of transformers is highly complex, in-
creasing reconstruction error does not necessarily degrade
LLM performance. Interestingly, Figure 3 below shows
that while large reconstruction error rapidly decreases per-
formance, moderate (but still relatively large, at around
60%) reconstruction error does not damage performance
and may even slightly outperform the zero-error setting.
At the same reconstruction error, clustering outperforms
non-clustering. This motivates our focus on minimizing re-
construction error, while also suggesting that our approach
achieves something deeper than compression. Specifically,
joint diagonalization finds subspaces that are shared among
many LoRAs when r is large and merges subspaces when
r is small. When r is particularly small, this tendency
towards averaging all or some of the LoRAs connects to
merging LoRAs, whose empirical success (Shah et al.,
2023; Huang et al., 2024) could explain the procedure’s
success despite the nonlinearity of transformers.

Appendix H.11 explores this idea further, comparing re-
construction of real-world LoRAs to reconstruction of ran-
domly sampled LoRAs. The reconstruction error is gen-
erally large, but significantly lower than the reconstruction
error for random noise, indicating that a major shared com-
ponent between the LoRAs is successfully retained.

That said, as the number of LoRAs grows, the shared com-
ponent may not be significant enough to maintain suffi-
ciently low reconstruction error with low rank r. This moti-
vates the introduction of clustering in §3.2, since clustering
seeks to find groups of LoRAs that are similar and better
compressible by joint diagonalization. In particular, if the
number of clusters k grows with n, the reconstruction error
may no longer degrade with n even when r is fixed.

In the extreme case where £ = n, each LoRA is com-

pressed independently. By the Eckart-Young Theorem, JD
applied to a single LoRA reduces to an SVD, replacing
each rank-r; LoRA adapter B;A; with a reduced rank-r
approximation, where typically r < £ "% | r;:

SVD,(B;4;) = U;S:V;', Vi=1,....n. (4
As %;V,T can be saved as a single matrix, this approach has
rn(da + dp) parameters. We refer to this £ = n method as
r-SVD and find that it underperforms our other methods
while slightly outperforming the baseline uncompressed
LoRAs. This result parallels Jiang et al. (2023b)’s observa-
tion that lowering LoRA ranks is beneficial for multi-task
learning and model merging.

S. Training & Performance Evaluation

5.1. Training
We trained LoRA adapters on 1000 natu-
ral instruction tasks (Wang et al., 2022) using

Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a)
as the base. We set all LoRA adapter ranks to 16 (i.e.,
Vi,r; = 16), except for those in our ablation study
(Appendix H.1), where we vary the LoRA rank.

We selected 10 diverse tasks (Table 2 in Appendix C) man-
ually for consistent evaluation across experiments and ran-
domly sampled an additional 990 tasks, resulting in a total
of 1000 tasks (Table 3). The tasks went through a robust re-
viewing protocol to ensure high quality and diversity. Each
task data was divided into training, validation, and test sets.

Hyperparameters, such as early stopping, were tuned using
the validation sets. Table 1, Appendix C shows that on the
test sets, LORA consistently outperformed the base model
in terms of Rouge scores and loss metrics.

5.2. Evaluation

We evaluated multiple metrics for the natural instruction
tasks, including cross-entropy loss, Rouge-1, Rouge-L
(Lin, 2004), exact match, and agreement between uncom-
pressed and compressed LoRA. Here, agreement measures
the exact match in task-generations between the uncom-
pressed LoRA model and the compressed LoRA model,
rather than comparing to ground truth data. While detailed
results and discussions for all metrics are provided in Ap-
pendix H, our primary focus in the main text is on Rouge-
L. We find that all metrics correlate, but Rouge-L correlates
most strongly with downstream utility. This finding aligns
with prior work (Wang et al., 2022), which demonstrates
that Rouge-L correlates well with classification accuracy.

While cross-entropy is used for optimization during train-
ing, identical generation outputs across models can yield
different cross-entropy losses. Exact match is too rigid and

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

does not account for the variability in task responses. Sim-
ilarly, agreement does not capture the inexactness associ-
ated with most of our tasks, nor does it account for the
performance gains or losses of the compressed LoRAs. Ar-
guably, practitioners are primarily concerned with task per-
formance in the settings for which the LoRA was designed,
rather than exact generational agreement between models.

Joint diagonalization optimizes reconstruction error mea-
sured by the Frobenius norm, bounded by our theoretical
analysis in §4. We empirically study the relation between
the reconstruction error and downstream Rouge-L perfor-
mance in Section 6.2.

Instead of listing absolute performance, we compute the
performance difference between the base model and the
LoRA model for each task via the ratio

method-performance

Performance relative to LoORA :=
LoRA-performance

for the method in question, highlighting relative improve-
ment wrt the uncompressed LoRAs.

6. Experiments
6.1. Task Performance

For each method, we vary the number n of compressed
LoRAs and the compression rank . We run each exper-
iment three times with different random seeds and report
the mean and standard deviation. See Table 7 for results
evaluated on the same ten manually-selected tasks (Table
2) across settings. Every compressed collection of LoRAs
contains these 10 tasks (i.e., in-distribution tasks), and each
collection contains the smaller collections as subsets.

We normalize each LoRA adapter to have a Frobenius norm
of one prior to running joint diagonalization. This normal-
ization enhances performance and reduces the variance in
reconstruction error. We restore the original norms of the
LoRA adapters before reconstruction and testing.

Figure 2 illustrates the Rouge-L scores of the compressed
LoRAs divided by the Rouge-L scores of the uncompressed
LoRAs. JD variants often increase generalization and out-
perform the original LoRA. Notably, our JD methods ap-
proach the compression efficacy of a single LoRA, and with
clustering, this aggressive reduction in size also maintains
performance in larger collections. Appendix H includes ta-
bles of additional relative and absolute metrics.

For efficiency, we limited the JD methods to ten iterations
instead of full convergence. While the alternating algo-
rithm quickly reaches an approximate minimizer, squeez-
ing out the last few digits of precision takes many more iter-
ations with limited to no performance gain. Appendix H.12
also evaluates an alternative iterative algorithm that con-

1.04 W
//7)
"
£1.02 ® o
: o o
° W
21000 v oo @ e ve v >
3 LoRA Num: 10 -
s C
g ¢+ LoRA Num: 50)
©0.98 * LoRA Num: 100
= @® LoRA Num: 500
£ @ LoRA Num: 1000 ‘ ®
£ v SVD
& 0.96 JD-Diagonal
e JD-Full fﬁ>
e |D-Clustering A
0947070 0.2 0.4 0.6 0.8 1.0

Total Parameter Saved Ratio (1)

Figure 2: Performance after compression. We compare
the performance of compressed LoRAs relative to uncom-
pressed ones, with higher values on both axes reflecting
better performance. The Total Parameter Saved Ratio de-
picts the number of parameters saved for a system with

a large number n of different LoRAs. It is computed as:
r .—] — um parameters after compression
total = num. parameters before compression *

verges more rapidly once U,V are close to a minimizer,
with minimal performance differences.

6.2. Performance and Reconstruction Error

Figure 3 relates reconstruction error and performance. The
y-axis measures the mean performance improvement of
Rouge-L relative to uncompressed LoRA, and the z-axis
quantifies the mean relative reconstruction error between
the compressed reconstruction of the product BA and the
original product BA. Although performance and recon-
struction error relate non-linearly, we see a decreasing,
somewhat exponential trend. Notably, minimizing recon-
struction error does not yield optimal performance, indi-
cating that mild lossy reconstruction may enhance general-
ization. Interestingly, under the clustering approach, com-
pared to non-clustering, even more aggressive lossy recon-
struction can outperform less lossy reconstruction, suggest-
ing that reconstruction error is even less critical for perfor-
mance in the clustering scenario.

To select hyperparameters (compression rank and number
of clusters) for the clustering experiments, we first assessed
reconstruction error on a single LoRA module over a range
of settings (see Appendix G). These preliminary experi-
ments enabled efficient selection of cluster counts and rank
values for compressing all LoRA modules.

6.3. Benefits of Compression

Compressing LoRAs reduces their parameter counts, thus
lowering their overall memory footprint. While this offers

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

=
o
a

g
o
S

o
©
v

e ve org o P%km
pﬂ\
v

@

o
©
o

Performance Relative to LoRA (1)
o
fee]
w

LoRA Num: 10
¢ LoRA Num: 50
o LoRA Num: 100 g
0.80 @ LoRA Num: 500
@ LoRA Num: 1000
0.75 v SVD e
JD-Diagonal
0.70 e D-Full

e |D-Clustering

o
o
a

0.0 0.2 0.4 0.6 0.8 1.0
Reconstruction Error (1)

Figure 3: Reconstruction error vs. performance.

many benefits, in both training and inference scenarios pa-
rameters are often transferred between different memory
hierarchies (e.g., from CPU to GPU), and these transfers
usually scale linearly with the amount of data moved. At
the same time, compressed LoRAs alter the forward-pass
formulation (unless merged with the base model weights).
As shown in Figure 5 in the Appendix E, although com-
pression greatly reduces memory usage and transfer time,
it does not affect the forward-pass latency. Of the various
ways to leverage these improvements, this work focuses on
optimizing inference for multiple LoRAs using vLLM.

6.4. Throughput of Serving Compressed LoRAs

The previous sections demonstrate how to select an appro-
priate joint compression setting guided by the reconstruc-
tion error, such that the performance of the original LoRAs
is preserved. Naturally, the rank and/or the number of clus-
ters for the compression needs to increase as we compress
larger LoRA collections to match LoRA performance.

Figure 4 studies how throughput with various compression
settings compares to the vLLM multi-LoRA throughput
with the matched GPU memory footprint. Specifically, for
each number of unique LoRAs served and each compres-
sion setting, we compute the corresponding number of Lo-
RAs to be placed on the GPU during serving and report the
ratio of the two throughputs. For example, when serving
64 unique LoRAs and using rank 64 JD-Full compression,
we report the ratio of throughputs of rank 64 JD-Full and
vLLM multi-LoRA with 6 LoRAs allowed on the GPU at a
time (see Appendix F for details). As the number of unique
LoRAs increases, vLLM multi-LoRA throughput degrades
as it needs to schedule the requests and load and offload
the adapters. We note that vVLLM multi-LoRA already em-
ploys advanced optimizations, such as efficient scheduling
and non-blocking CPU-GPU communication when swap-
ping LoRAs as well as techniques introduced in S-LoRA
(Sheng et al., 2023; Kwon et al., 2023), but system opti-

1.8 mmmsm rank-16-JD_Full
rank-32-JD_Full

mmmmm rank-64-)D_Full

mmmm 7-clusters-rank-16-JD_Full

mmm 10-clusters-rank-16-JD_Full

mmmm 25-clusters-rank-16-)D_Full

1.6

14

Throughput ratio

1.2

1.0

4 8 16 32 64 128 256 512 1024
Unique LoRAs served

Figure 4: Throughput ratio when serving varying num-

bers of LoRAs with vLLM. Highlighted settings preserve
at least 99% of the uncompressed LoRA performance.

mization alone is insufficient to mitigate throughput degra-
dation when serving many LoRAs.

Figure 4 shows that across LoRA collection sizes our
compression techniques improve the throughput of vLLM
multi-LoRA. Additionally, we highlight regions for each
compression setting where compression is sufficiently
moderate to achieve 99%+ of LoRA performance, accord-
ing to the results in §6.2. Compression with a larger rank
or too many clusters does not improve baseline through-
put when serving a smaller number of LoRAs and should
not be used in such cases. For example, rank 16 JD-
Full improves baseline throughput with 4 and 8 LoRAs,
but will underperform with more LoRAs, while 25 clus-
ters rank 15 JD-Full does not improve throughput with 32
or fewer LoRAs, but when serving 1000+ LoRAs it im-
proves the throughput significantly while maintaining the
performance. Overall, an appropriate joint compression
setting improves VLLM multi-LoRA throughput and pre-
serves performance for LoRA collections of any size be-
tween 4 and 1024, as in Figure 1. Appendix F provides
compression settings for each collection size.

vLLM extensively uses custom CUDA kernels. To ac-
commodate our compression techniques, we minimally
adjusted the VLLM code to generate additional kernels
needed by the compressed LoRAs and used the Punica
(Chen et al., 2023) kernel to further accelerate matrix mul-
tiplication. Pseudocode is given in §F.4 to show how we
use the batch multiplication kernel. There likely is room
for improvement to optimize the newly added kernels.

Additional details. In this experiment, we considered
a varying number of rank-16 LoRAs, using a dataset of
Shakespeare sonnets as inputs® arriving asynchronously.

https://www.kaggle.com/
datasets/shivamshindel23/
william-shakespeares—-sonnet/data

https://www.kaggle.com/datasets/shivamshinde123/william-shakespeares-sonnet/data
https://www.kaggle.com/datasets/shivamshinde123/william-shakespeares-sonnet/data
https://www.kaggle.com/datasets/shivamshinde123/william-shakespeares-sonnet/data

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

We measured throughput, i.e., the number of requests
served per second when generating ten tokens per request.
The base was Mistral 7B Instruct; we simulated random
LoRAs and assigned inputs to LoRAs at random. Experi-
ments were conducted on H100 80GB GPU capped at 40%
memory consumption to reflect situations where a service
provider might want to serve many LoRAs from cheaper
hardware with lower memory than higher-end GPUs. This
setting applies to the scenario where the LLM is large com-
pared to the size of GPU and yet a provider may want to
serve many LoRAs efficiently using one device.

6.5. Recommendations

JD-Full is generally preferred over JD-Diag, although for
smaller numbers of LoRAs (less than 100), the perfor-
mance difference is negligible. While JD-Full alone is ef-
fective up to 100 LoRAs, incorporating clustering at scales
of 500-1000 LoRAs significantly enhances performance.

We recommend the following procedure for hyperparam-
eter selection. For < 100 LoRAs, JD-Full can be
used without substantial degradation, using a rank ~
(number of LoRAs/2) + 7. Beyond 100 LoRAs, cluster-
ing becomes increasingly critical. A robust method for any
number of LoRAs up to 1000 uses JD-Full with cluster-
ing. Specifically, select a LoORA module from the middle
of the network, apply a compression rank of 16, and exper-
iment with an exponentially increasing number of clusters.
Compute the reconstruction error for each setting on this
module across all LoR As—a computationally efficient pro-
cess. Choose the minimal number of clusters that achieves
a reconstruction loss below 0.6, and then use these settings
across LoRA modules. Figure 6 in the Appendix illustrates
this procedure applied to 500 LoRAs.

Tuning hyperparameters as discussed above using recon-
struction loss as a validation metric is convenient since it
can be done efficiently on CPU without expensive LLM
evaluation. As our experiments demonstrate, compression
settings that achieve below 0.6 reconstruction loss reliably
preserve 99% or more of the LoRA performance, some-
times even outperforming the original LoRAs.

For inference, this procedure is executed as a preprocess-
ing step before deploying our inference server. As new Lo-
RAs are submitted, they are initially served uncompressed.
A background CPU job can periodically re-run the com-
pression algorithm and update the served LoRA parameters
with the compressed versions.

7. Discussion

This study introduces approaches to LoRA compression,
addressing significant challenges emerging as customiza-
tion of foundation models such as LLMs and diffusion

models becomes increasingly popular. Our contributions
include theoretical formulations, empirical validation, and
practical implementations that enhance the understanding
and application of LLMs in scalable environments.

Our findings have several implications. Our theoretical
bounds on reconstruction error not only increase confi-
dence in the use of compressed models but also lay a
groundwork for future explorations. Demonstrating that
our compression techniques can preserve up to 100% of
the original LoRAs’ performance highlights the effective-
ness of our methods. Furthermore, integrating LORA com-
pression into state-of-the-art LLM serving systems demon-
strates potential for resource optimization, with throughput
for thousands of LoRAs nearing that of a single LoRA.

Our promising results suggest several future research direc-
tions. First, further compression may be possible via quan-
tization, since joint-diagonalization and quantization are
independent compression strategies. Second, when scal-
ing to hundreds of thousands of LoRAs, joint compression,
while effective, will be insufficient to fit all LoRAs onto the
GPU, thus requiring a procedure to schedule the requests.
Clustering offers opportunities for efficient scheduling that
incorporates the cluster assignments of LoRAs correspond-
ing to the incoming requests.

Privacy presents another research direction, particularly re-
garding the possibility of information leakage during joint
compression. As a preliminary study, Appendix H.2 inves-
tigates whether a base model with an adapter A for task T4,
after being jointly compressed alongside an adapter B for
task T'g, inadvertently improves on T5. Such an outcome
would indicate that adapter A acquired information from
adapter B. Our ablation study shows no performance gains
on T'p, suggesting that the compressed adapter A remains
independent and does not leak—or gain—information from
adapter B. A more detailed investigation of the privacy
properties of joint compression is an interesting next step.

In conclusion, our research advances LLM deployment by
providing robust, scalable, and efficient compression. The
ability of compressed LoRAs to maintain high performance
while saving resources opens avenues for the broad appli-
cation and adoption of LLMs across various industries. We
encourage the community to build upon our findings and
shared LoRAs to further enhance these technologies.

Impact Statement

This paper presents work whose goal is to advance machine
learning. There are no societal consequences of our work
that we feel must be specifically highlighted here.

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Acknowledgements

The MIT Geometric Data Processing Group acknowledges
the generous support of Army Research Office grants
WOI11INF2010168 and W911NF2110293, of National Sci-
ence Foundation grant 11S2335492, from the CSAIL Fu-
ture of Data program, from the MIT-IBM Watson Al Lab-
oratory, from the Wistron Corporation, and from the Toy-
ota—CSAIL Joint Research Center.

References

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis
Ceze, and Arvind Krishnamurthy. Punica: Multi-tenant
lora serving, 2023. URL https://arxiv.org/
abs/2310.18547.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey
of model compression and acceleration for deep neural
networks. arXiv preprint arXiv:1710.09282, 2017.

Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav

Katz. Fusing finetuned models for better pretraining.
ArXiv, abs/2204.03044, 2022.

Leshem Choshen, Elad Venezian, Shachar Don-Yehiya,
Noam Slonim, and Yoav Katz. Where to start? an-
alyzing the potential value of intermediate models. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1446-1470,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
90. URL https://aclanthology.org/2023.
emnlp-main. 90.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke
Zettlemoyer. Qlora: Efficient finetuning of quantized
llms. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey of
quantization methods for efficient neural network infer-
ence. In Low-Power Computer Vision, pp. 291-326.
Chapman and Hall/CRC, 2022.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang,
Andy Narayanan, Aonan Zhang, Bowen Zhang, Chen
Chen, Chung-Cheng Chiu, David Qiu, et al. Apple in-
telligence foundation language models. arXiv preprint
arXiv:2407.21075, 2024.

Moshik Hershcovitch, Leshem Choshen, Andrew Wood,
Ilias Enmouri, Peter Chin, Swaminathan Sundarara-
man, and Danny Harnik. Lossless and near-lossless

compression for foundation models. arXiv preprint
arXiv:2404.15198, 2024.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-
efficient transfer learning for nlp. In International con-
ference on machine learning, pp. 2790-2799. PMLR,
2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language
models. arXiv preprint arXiv:2106.09685, 2021.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. Lorahub: Efficient cross-
task generalization via dynamic lora composition, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023a.

Weisen Jiang, Baijiong Lin, Han Shi, Yu Zhang, and
James T Kwok. Byom: Building your own multi-task
model for free. arXiv preprint arXiv:2310.01886, 2023b.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M
Asano. VeRA: Vector-based random matrix adap-
tation. In The Twelfth International Conference on
Learning Representations, 2024. URL https://
openreview.net/forum?id=NjNfLdxr3A.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng,
Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management
for large language model serving with pagedattention. In
Proceedings of the 29th Symposium on Operating Sys-
tems Principles, pp. 611-626, 2023.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski. Measuring the intrinsic dimension of objective
landscapes, 2018.

Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky.
Scaling down to scale up: A guide to parameter-efficient
fine-tuning. arXiv preprint arXiv:2303.15647, 2023.

Chin-Yew Lin. ROUGE: A package for automatic eval-
uation of summaries. In Text Summarization Branches
Out, pp. 74-81, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/W04-1013.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
Few-shot parameter-efficient fine-tuning is better and
cheaper than in-context learning, 2022a. URL https:
//arxiv.org/abs/2205.05638.

https://arxiv.org/abs/2310.18547
https://arxiv.org/abs/2310.18547
https://aclanthology.org/2023.emnlp-main.90
https://aclanthology.org/2023.emnlp-main.90
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2205.05638
https://arxiv.org/abs/2205.05638

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raffel.
Few-shot parameter-efficient fine-tuning is better and
cheaper than in-context learning. Advances in Neural
Information Processing Systems, 35:1950-1965, 2022b.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. Dora: Weight-decomposed
low-rank adaptation, 2024.

Michael Matena and Colin Raffel.
els with fisher-weighted averaging.
arXiv:2111.09832, 2021.

Merging mod-
arXiv preprint

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa:
Principal singular values and singular vectors adap-
tation of large language models. arXiv preprint
arXiv:2404.02948, 2024.

Mohammed Mugeeth, Haokun Liu, Yufan Liu, and Colin
Raffel. Learning to route among specialized ex-
perts for zero-shot generalization. arXiv preprint
arXiv:2402.05859, 2024.

Kimia Nadjahi, Kristjan Greenewald, Rickard Briiel
Gabrielsson, and Justin Solomon. Slicing mutual infor-
mation generalization bounds for neural networks. In
ICML 2023 Workshop Neural Compression: From In-
formation Theory to Applications, 2023. URL https:
//openreview.net/forum?id=cbLcwK3Sz1i.

OpenAl. Openai fine-tuning api. https://platform.
openai.com/docs/guides/fine-tuning,
2024.

Predibase. Multi-lora inference server that scales to 1000s
of fine-tuned llms. https://loraexchange.ai,
2024.

Colin Raffel. Building machine learning models like open
source software. Communications of the ACM, 66(2):
38-40, 2023.

Viraj Shah, Nataniel Ruiz, Forrester Cole, Erika Lu, Svet-
lana Lazebnik, Yuanzhen Li, and Varun Jampani. Zi-
plora: Any subject in any style by effectively merging
loras. arXiv preprint arXiv:2311.13600, 2023.

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The
truth is in there: Improving reasoning in language mod-
els with layer-selective rank reduction. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
1id=0zX92bu8VA.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper,
Nicholas Lee, Shuo Yang, Christopher Chou, Banghua

10

Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez,
and Ion Stoica. S-lora: Serving thousands of concurrent
lora adapters, 2023.

TogetherAl. Together fine-tuning. https://www.
together.ai/products#fine-tuning, 2024.

Sheng Wang, Boyang Xue, Jiacheng Ye, Jiyue Jiang,
Liheng Chen, Lingpeng Kong, and Chuan Wu. Prolora:
Partial rotation empowers more parameter-efficient
lora. ArXiv, abs/2402.16902, 2024. URL https:
//api.semanticscholar.org/CorpusID:
268032580.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi,
Yeganeh Kordi, Amirreza Mirzaei, Anjana Arunkumar,
Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik,
David Stap, et al. Super-naturalinstructions: General-
ization via declarative instructions on 1600+ nlp tasks.
arXiv preprint arXiv:2204.07705, 2022.

Yeming Wen and Swarat Chaudhuri. Batched low-rank
adaptation of foundation models, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davi-
son, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine
Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexan-
der M. Rush. Huggingface’s transformers: State-of-the-
art natural language processing, 2020.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S. Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon,
Simon Kornblith, and Ludwig Schmidt. Model soups:
averaging weights of multiple fine-tuned models im-
proves accuracy without increasing inference time. In
International Conference on Machine Learning, 2022.

Prateek Yadav, Leshem Choshen, Colin Raffel, and Mo-
hit Bansal. Compeft: Compression for communicating
parameter efficient updates via sparsification and quanti-
zation. arXiv preprint arXiv:2311.13171, 2023a.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raf-
fel, and Mohit Bansal. TIES-merging: Resolving in-
terference when merging models. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems, 2023b. URL https://openreview.net/
forum?id=xtaX3WyCjl.

Prateek Yadav, Colin Raffel, Mohammed Mugeeth, Lu-
cas Caccia, Haokun Liu, Tianlong Chen, Mohit Bansal,
Leshem Choshen, and Alessandro Sordoni. A survey on

https://openreview.net/forum?id=cbLcwK3SZi
https://openreview.net/forum?id=cbLcwK3SZi
https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://loraexchange.ai
https://openreview.net/forum?id=ozX92bu8VA
https://openreview.net/forum?id=ozX92bu8VA
https://www.together.ai/products#fine-tuning
https://www.together.ai/products#fine-tuning
https://api.semanticscholar.org/CorpusID:268032580
https://api.semanticscholar.org/CorpusID:268032580
https://api.semanticscholar.org/CorpusID:268032580
https://openreview.net/forum?id=xtaX3WyCj1
https://openreview.net/forum?id=xtaX3WyCj1

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

model moerging: Recycling and routing among special- tuning. In The Eleventh International Conference on

ized experts for collaborative learning. arXiv preprint Learning Representations, 2023.

arXiv:2408.07057, 2024.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi,
Haitz Sdez de Ocariz Borde, Rickard Briiel Gabriels-
son, Leshem Choshen, Marzyeh Ghassemi, Mikhail

Yuchen Zeng and Kangwook Lee. The expressive power of
low-rank adaptation, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Yurochkin, and Justin Solomon. Asymmetry in low-
Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo Zhao. rank adapters of foundation models. arXiv preprint
Adaptive budget allocation for parameter-efficient fine- arXiv:2402.16842, 2024.

11

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

A. Joint Diagonalization Algorithms

A.1. Alternating Methods

Our goal is to derive algorithms that optimize equation 1. Common to both methods, we expand the objective functional:

S IBiA; —USiV [fo = > _tr((Bid; — US;V) (BiA; — US;V'")T) by definition

= [r(B;AA BT) = 2tx(B;AVE[UT) + tr(US,VTVEUT)]

i

const. — 2y _tr(BiAVE U+ UV R,

Using this expansion, we now consider the two settings discussed in §3.1.

Case 1: Non-diagonal 3 ;, orthogonal U, V. Setting the derivative of equation 5 with respect to ¥; to zero, we find

¥, = SH(U, V) =U"B;A;V.

We simplify our objective function after plugging in this expression:

Z |B;Ai — US; V|3, + const. = Z (115610 — 2tx(B;A;VEUT)] from equation 5
i

(3

= [r(UTB;AVVTA] BIU) - 2tx(B;AVV A B UUT)] from equation 6

i

=Y t(BAVVTABIUUT).

Substituting equation 6, we find

n

n
T *
Uopt7 Vvopt = arg Uglg}:(I Z ||U B’LA’LV”%I“O = arg Ur—p[jaf):(l Z sz (U7 V)”%ro'

i=1 vviog =1

Note that

S NUTBiAV |}y = tr ((Z BiAlvVVTAZTB,;T> UUT>

=1 i=1

= tr ((Z BiTAiTUUTAiBi> VVT> :

i=1

by the identity || A%, = tr(AT A). Hence, we optimize equation 7 by alternating between U and V:

®)

(6)

)

« U iteration: Define M = >, B;A;VV T A B . Parenthesizing this expression properly requires only O((m + n)r)
storage/computation time. With this definition, we maximize tr(MUU ") over U satisfying U'U = I. Since M is
positive semidefinite, the optimum is to take U to be the r eigenvectors of M with largest eigenvalue, equivalent to an

SVD problem.

* Viteration: Define N =), A;rBiT UU " B;A;. Similarly to the previous step, we take V' to contain the r eigenvectors

of N with largest eigenvalue, again solvable using an SVD.

This method decreases the objective in each step.

Case 2: Diagonal X;. If constrain X; to be diagonal, we interpret our objective function equation 1 as a “triple least

12

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

squares” problem. We compute gradients:
Vo) |BiAi —USVT [}, =2) (USVT = BiA)VE]
Vv Y IBidi —USVT |}, =2) (VE/UT - Al B US;

Ve, Y Bidi = ULV |}, = 20T (USVT = BiA)V

These expressions suggest efficient r x r linear systems to solve for U, V:
-1
U= <Z BiAiVEiT> (Z mﬂvzj)
-1
V= <Z AIBJUzi> (Z ZZUTUEZ) .
i i

For X;, we extract the diagonal from our gradient above:

diag(U'US,VTV); = (UTUSV V)
= Z(UTU)ijimm(VTv)mj

= (UTU o VTV)diag(%;)
dlag(UTBzAzV)j = Z(UTBi)jm(AiV)mj

=Y (WUTB)jm(V A)jm

=(U"B;oVTAN
= diag(%;) = (UTUoVTV) " H(UTB; o VTAN
Here o denotes the Hadamard product.

Combining these expressions, we use a simple coordinate descent algorithm cycling between the following three steps:

1. Solve for U

2. Solve for V

3. Solve for the ¥3;’s

4. Optionally, normalize so Y, [|%; %, = 1

A.2. Additional Eigenvalue Iteration Algorithm

For the first case in §A.1, we introduce an alternative algorithm that eschews the use of SVD. This alternative is optimized
for GPU execution, enabling tractable runs to convergence.

To derive this algorithm, we employ Lagrange multipliers to formulate the derived objective from equation 7:

n
Uspt Vopt = arg, macx D U TB AV [y, (8)
vyi—y =1
yielding the expression
1 1 1
A= —§||UTBZ-AZ-VH%rO - 5tr(XT(I -U'U)) - 5tr(YT(I —-VTV)).)

13

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Taking the derivatives gives

Voh ==Y Bi(AV)(VTA)(BU)+UX (10)
VA ==Y Al(BJU)UTB)(AV) + VY (11)

Setting these derivatives to zero shows

> B(AV)(VTAT(BfU)=UX (12)
S AIBIU)UTB)(AV) = VY. (13)

Here, one can show that the Lagrange multiplier matrices X and Y are diagonal and nonnegative, since the problem reduces
to an eigenvalue problem when either U or V is fixed; this is essentially the argument behind the alternating algorithm in
Appendix A. Hence, taking inspiration from classical eigenvalue iteration, we use the following updates to improve our
estimates of U and V:

U™ = DBV) (v) TAT (B UW) "

kD ST AT BIUMY(UP)T B (A VD) (15)
%

Ulk+l) orthogonalize(Uék+1)) (o

Y+l orthogonalize(Vo(kH)) a

Here, the function orthogonalize orthogonalizes the columns of a matrix, e.g. by using the @) part of the reduced-size
QR factorization. Although we lack a formal convergence proof, in practice we find that this method reliably reaches a
local optimum of our problem.

By executing matrix operations in the specified sequence, these computations can be rapidly performed on GPUs. Note the
expressions above are parenthesized to avoid constructing a large matrix product as an intermediate computation.
A.3. Clustering algorithm

Initialization: We run joint diagonalization with a single U, V' then perform k-means with k clusters on the space of ¥;’s.
This gives us our first clusters and we can use random initialization U;, V; for each cluster but the 3J; can be maintained as
initialization.

Step 1: Using the alternating JD algorithms from earlier in this section, we optimize the problem
ming; v, s, > iec, [1Bidi — U;%;V;" || for each j independently.

Step 2: New cluster assignment for ¢ : min; miny,, || B;A; — U; E,;VjT ||%. If any assignment changes we go to Step 1, else
we have converged.

B. Proof of Theorem 1

Proof. For the lower bound, note that by Jensen’s inequality,
2

)
Fro

U’ i BiAV

i=1

Z ||UTBlAlV||12Tro >

i=1

for any U, V. Hence,
2

U’ zn:B,;A,;V

=1

n
sup Z |UTB;A V|3, > sup
Uvest(k,d) =3 U,V ESt(k,d)

(18)

Fro

14

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

By the definition of singular value decomposition, the right hand side of equation 18 is maximized with U, V being the top
r singular vectors of Y7 | B; A;, yielding ||UT Y7, BiAiVH;O =i_, 07. Recalling that ¥; = U " B; A;V yields the
lower bound.

For the upper bound, recall that ¥; = U " B; A;V. Rearranging,
vec(X;) = (VI @ U T)vec(B;A;).

Define

Y= [vee(Xy), ..., vee(By)].

By our previous simplification,
Y=VTeUL.

Now
n

Y Bl = e = tr (VO U)(V @ U)T)(LLT))

i=1

Since U, V' are orthogonal and size d x r, the top 72 eigenvalues of the symmetric matrix (V @ U)(V @ U) T will be equal
to 1, and the rest will equal 0. The eigenvalues of the symmetric matrix LL " will be equal to the squared singular values
of L. We can then apply the Von Neumann trace inequality to obtain the upper bound.

The last statement follows from the Pythagorean theorem and the fact that the 3; is a projection of B; A; to the U,V
subspace. O

Note that we have only used the fact that the matrix (V' ® U) has singular values equal to 1; we have not used the fact
that it has Kronecker product structure. On the other hand, each vector vec(B;A;) is a sum of r; Kronecker products and
cannot be expressed as a Kronecker product. As a result, while the upper bound in the Von Neumann trace inequality is
achieved if the eigenvectors of the two matrices align, the Kronecker product structure is a severe constraint and the upper
bound we have provided is generous.

C. Training LoRAs

We trained LoRA adapters on 500 natural instruction tasks (Wang et al., 2022) using Mistral-7B-Instruct-v0.2
(Jiang et al., 2023a) as the base model. All LoRA adapters were configured with a rank of 16, i.e., Vi, r; = 16. We selected
10 diverse tasks manually for consistent evaluation across experiments and randomly sampled an additional 490 tasks,
resulting in a total of 500 tasks. These tasks were exclusively in English (both input and output), ensuring higher quality
and thorough review (Wang et al., 2022). Each task dataset was divided into training, validation, and test sets (80-10-10).
Hyperparameters, such as early stopping, were tuned using the validation sets; that is, we train for five epochs and take
the best-performing epoch-checkpoint per validation loss. Evaluation on the test sets demonstrated that LoORA consistently
outperformed the base model in terms of both Rouge scores and loss metrics (see Table 1).

In Table 1, we compare metrics between base model and LoRA finetuning.

Table 1: Comparison of metrics before and after LoRA training across 1000 tasks.

Metric Base Model LoRA
Loss 4.14 £+ 3.07 0.56 4= 0.58
Exact Match 1.81 +6.56 51.38 +£40.90
Rouge-1 21.70 £ 19.22 68.88 +29.73
Rouge-L 20.62 +18.21 67.80 & 30.15

In Table 3 we include all 1000 tasks that were used.

We use Huggingface (Wolf et al., 2020) in our implementation. For the base model, we use quantization with configuration:

15

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Table 2: Main Evaluation Tasks

Task Number Name Type Domain
task280 stereoset_classification_stereotype_type classification stereoset
task190 snli_classification snli image captions
task391 causal_relationship commonsense cause and effect
task290 tellmewhy_question_answerability answerability story
task1391 winogrande_easy_answer_generation commonsense social and physical
task1342 amazon_us_reviews_title title generation amazon reviews
task442 com_qa_paraphrase_question_generation question generation wikipedia
task620 ohsumed_medical_subject_headings_answer_generation keyword tagging scientific
task1598 nyc_long_text_generation data to text restaurants
task039 qasc_find_overlapping_words overlap extraction natural science

BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloatlé,

and LoRA configuration:

LoraConfig(
r=16,
lora_alpha=32,
target_modules=["g_proj",
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
init_lora_weights=init_lora_weights,

"k_proj", "V_proj"l ,

D. Avoiding Batched Matrix Multiplication (BMM)

Fast LoRA (Wen & Chaudhuri, 2024) aims to alleviate the batched matrix multiplication (BMM) bottleneck when serving
many LoRAs. They propose an adapter parameterization that replaces addition with elementwise multiplication, avoiding
BMM and improving LoRA throughput at lower ranks. Our JD LoRA formulation also circumvents or heavily reduces the
impact of BMM as discussed below, and both individual and joint compression methods can be applied to Fast LoRAs.

In the envisioned deployment scenario, a service provider hosts a large collection of LoRAs. Upon receiving a request, each
user specifies both the input data and the desired LoRA identifier. The provider then processes the base model augmented
with the specified LoRA for each user’s data. As a provider is batching a collection of requests for GPU parallelization,
they can expect to frequently have more than one unique LoRA identifier per batch.

Traditionally, a specific LoRA is integrated into the base model by transforming Wy, — W, + B;A;. Serving multiple
LoRAs conventionally would necessitate maintaining and executing a separate copy of the base model for each LoRA,
bringing substantial computational overhead. Alternatively, the computation for Wyx and B; A;z can be performed inde-
pendently and subsequently merged. This strategy necessitates only a single instance of Wyx computation and storage of
LoRA-specific parameters rather than the entire base model.

Consider the batch processing of BAx, where boldface indicates that B;, A; are stacked into tensors of dimensions (b X

16

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Memory (GB) CPU -> GPU Transfer Time (s) Forward Pass Time (s)

50

o
w
o

1

g
=}

——4— LoRA (rank=16)

JD-LoRA (JD-rank=16, clusters=1)
JD-LoRA (JD-rank=16, clusters=5)
JD-LoRA (JD-rank=16, clusters=10)
JD-LoRA (JD-rank=16, clusters=25)
JD-LoRA (JD-rank=32, clusters=1)
JD-LoRA (JD-rank=32, clusters=5)
JD-LoRA (JD-rank=32, clusters=10)
JD-LoRA (JD-rank=32, clusters=25)
JD-LoRA (JD-rank=64, clusters=1)
JD-LoRA (JD-rank=64, clusters=5) 10
JD-LoRA (JD-rank=64, clusters=10)

JD-LoRA (JD-rank=64, clusters=25)

40

o

©
I
N
v

w

o
o
N
o

o
o

Memory (GB)
S

o

B

Forward Pass Time (s)
=] =]
= =
o w

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
of LoRAs # of LoRAs # of LoRAs

CPU -> GPU Transfer Time (s)
Y
I
o
w

o
=]
o

=]

=]

o

Figure 5: Memory load, transfer time, and forward-pass performance of LoRA and JD-LoRA.

m x r) and (b X r X n) respectively, with batched data x shaped (b x | x n):

Ax & (bxrxn)x (bxlxn)— (bxIxr) bmm
B(Ax) < (bxmxr)x (bxIxr)— (bxIxm) bmm.

Here, “bmm” denotes batched matrix multiplication, a known bottleneck in both throughput and latency. Consider the
corresponding operations for our joint compression scheme, USV T 2:

Vx4 (7Fxn)x (bxlxn)— (bxIx7) broadcasted
S(VTx) ¢ (bx7) x (bx1x7) — (bx1xF) broadcasted
U(ZV %) ¢ (mx7) x (bx1x7) — (bx1xm) broadcasted

In our optimized setup, batched matrix multiplications can be completely circumvented if the >; matrices are diagonal. If
not, given that ¥ < m, n, any required batched matrix multiplication remains computationally inexpensive.

E. Simple Timing Experiments

In Figure 5, we present a set of simple experiments comparing the memory load, transfer time, and forward-pass perfor-
mance of LoRA and JD-LoRA. These experiments were conducted across multiple clusters and various rank configurations.
For memory usage, we measured all 96 LoRA modules in the Mistral model; however, for transfer time and forward-pass
performance, we tested only a single LoRA module. We also implemented F-LoRA (Wen & Chaudhuri, 2024), but contrary
to their reported results, we were unable to achieve faster forward-pass performance than standard LoRA.

F. GPU Memory Usage Computation for JD Compression.

The GPU memory consumption is primarily influenced by the number of parameters that need to be stored and processed
during inference. In this section, we introduce the detail of how we compute the GPU consumption of our method, and
how we find the number of vVLLM multi-LoRA that share the same GPU utilization.

* D: Hidden dimension size (e.g., D = 4098).

 r: Rank of the shared basis matrices for compression (e.g., r = 16, 32, 64).

* N: Maximum number of LoRA modules being served simultaneously (max_lora_num).
* c: Number of clusters in our clustering method (e.g., ¢ = 7, 10, 25).

In Figure 1, we use different JD-compression settings for serving different number of unique LoRAs. Specifically:

* Serving 4 unique LoRAs:
Ours: rank 16 JD-Full.
vLLM multiLoRA baseline: max-gpu-lora = 2.

17

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

* Serving 8 unique LoRAs:

Ours: rank 16 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 2.
* Serving 16 unique LoRAs:

Ours: rank 32 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 3.
* Serving 32 unique LoRAs:

Ours: rank 64 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 5.
* Serving 64 unique LoRAs:

Ours: rank 64 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 6.
* Serving 128 unique LoRAs:

Ours: 7 clusters, rank 16 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 8.
* Serving 256 unique LoRAs:

Ours: 10 clusters, rank 16 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 10.
* Serving 512 unique LoRAs:

Ours: 25 clusters, rank 16 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 26.
* Serving 1024 unique LoRAs:

Ours: 25 clusters, rank 16 JD-Full.

vLLM multiLoRA baseline: max-gpu-lora = 28

F.1. Baseline GPU Memory Usage
The baseline for our comparison is the standard LoRA method with a rank of 16. The total parameter count for the baseline

is given by:

Paramspgeline = D x 2 x 16.
This accounts for the parameters in the LoRA-adapted layers, where the factor of 2 represents the weights and biases.

F.2. GPU Memory Usage for JD Full Method

For the Joint Decomposition (JD) Full method without clustering, the total parameter count is:

Paramsanuu =D x2xr+4+ N X ’I“2.

* D x 2 x r: Parameters for the base model adapted with rank-r LoRA.
o N x r2: Additional parameters introduced by each of the N LoRA modules, each of size r x r.

The GPU memory usage ratio relative to the baseline is:
ParamsJD_FuH Dx2xr+ N x 7’2

GPU Usage Ratioyp, gy = Paramspasetine D x2x16
aseline

F.3. GPU Memory Usage for Clustering Method

When employing clustering, the parameter count changes due to the addition of cluster-specific parameters:

ParamsClustering =Dx2xrxc+ N x (r2 + 1)_

* D x 2 x r x c: Parameters for the base model adapted with rank-r LoRA across c clusters.

18

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

¢ N x (r? + 1): Additional parameters for each LoORA module and cluster assignments.

The GPU memory usage ratio is:

Paramsciusering D X 2 X7 X ¢+ N x (r? +1)
Paramspueeline. D x2x16

GPU Usage Ratiogygering =

F.4. Punica

In our vLLM experiments, we specifically used the Punica kernel for implementing multi-LoRA, applying our approach
in conjunction with Punica’s capabilities. Our custom function, add_lora_slice_with_sigma, implements the

following key steps:

Initialize Buffers: Creates temporary storage for intermediate calculations if not already provided.

Apply Matrix A: Transforms x using matrix A, storing the result in buffer.

Apply Matrix Sigma: Further transforms buf fer using Sigma, storing the result in buffer_sigma.

. Apply Matrix B and Update y: Finally, transforms buffer_sigma using B, applies scaling, and updates a slice of
y in place.

B

Below is the pseudocode for add_lora_slice_with_sigma, illustrating the integration:

Listing 1: Pseudocode for ‘add_lora_slice_with_sigma*

Function add_lora_slice_with_sigma(y, x, wa_t_all, wb_t_all, wsigma_t_all, indices,
layer_idx, scale, y_offset, y_slice_size, buffer=None):
T“ illifi:’*}iisz buf
if buffer is None:

buffer = create_tensor (shape=(x.size(0), R), dtype=float32)

buffer 31gma = create_tensor (shape= (buffer.size (0), R), dtype=float32)
1: Apply matrix A

dlspatch bgmv low level(buffer, x, wa_t_all, indices, layer_idx, scale=1.0)

- 1 Ff not
Ffers 1f not pr

=d

dlspatch bgmv low level(buffer sigma, buffer, wsigma_t_all, indices, layer_idx, scale
=1.0)
Step 3: Apply matrix B and update y slice
dlspatch bgmv_low_level (y, buffer_sigma, wb_t_all, indices, layer_idx, scale, y_offset
, y_slice_size)
End Function

G. Selecting Number of Clusters

To identify optimal hyperparameters for the clusters compression method, we analyzed the relationship between recon-
struction error and the parameter saved ratio for a single LoORA module, as shown in Figure 6. By comparing the results
across different numbers of Low-Rank Adaptation (LoRA) configurations (100 and 500, depicted in subfigures 6a and 6b),
we were able to observe the trade-off between model size reduction and reconstruction accuracy. Based on these findings,
we selected the rank and number-of-clusters hyperparameters that effectively balance these two objectives. The chosen
settings were then used to conduct full-scale experiments.

H. Additional Results

This section elaborates on the results that underpin the figures presented in the main text and showcases a consistent
correlation across various evaluation metrics. Additionally, we assess the significance of achieving convergence and the
performance of compression on new unseen LoRA models.

H.1. LoRAs of different ranks

In Table 4, we report the performance of our compression method on LoR As with ranks uniformly sampled between 16 and
64 (mean rank of 43). In Table 5, we present compression results for LoORAs of rank 43, matching the average rank from
Table 4. Because these same-rank LoRAs have an identical parameter count, they also exhibit identical parameter-saving

19

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Reconstruction Error vs Parameter Saved Ratio Reconstruction Error vs Parameter Saved Ratio

LoRA Rank (Color & Shape)

° LoRA Rank (Color & Shape) °
09 16
08
B rs =
A FRankes A
06 L d o7 =
5 5 @
5 06 /i
F / ‘i
2 04 2 A
H] A
7 g os |
H H AW fouits
\ \
i N 5]
02] i
’/\ (:
A A 03

0o o2 04 o6 o8 10 0.80 085 095 100

Parameter Saved Ratio Parameter Saved Ratio

(a) Recon. Error vs Parameter Saved Ratio for 100 LoRAs (b) Recon. Error vs Parameter Saved Ratio for 500 LoRAs

Figure 6: Comparison of reconstruction error against the parameter saved ratio for different numbers of LoRA configura-
tions for a single LoORA module. The left subplot shows results for 100 LoRAs, while the right subplot displays results
for 500 LoRAs. These plots illustrate the trade-off between reconstruction accuracy and compression efficiency, providing
insights into optimal parameter settings for compression.

ratios. While performance declines slightly for LoRAs with varying ranks, our compression method still preserves over
99% of the original performance.

H.2. Privacy Ablation

We investigate whether jointly compressing certain tasks results in improved performance on tasks within that same com-
pressed group, compared to tasks outside of the group. In other words, we examine whether information about which tasks
were compressed together could be inferred from subsequent performance differences. Table 6 presents the results.

In the Compressed Together setting, tasks (task1391, task190, task280, task290, and task391) are compressed jointly with
five other tasks. We then evaluate their cross-task performance within this group. In the Compressed Separately setting, the
same set of tasks is each compressed alongside nine other tasks that are not part of the original group. We again evaluate
the cross-task performance using the same sets of tasks, allowing us to compare and assess any differences in performance

attributable to joint versus separate compression.

Table 6: Privacy Ablation: Performance on tasks compressed together vs. performance on tasks compressed separately

Source Task Task Combination Test Loss Exact Match Rougel RougeL
Compressed Together
task1391 on task190 2.320 29 29.00 29.00
task1391 on task280 1.445 10 12.00 12.00
task1391 task1391 on task290 2.662 0 0.00 0.00
task1391 on task391 1.560 4 7.00 7.00
Average 1.997 10.8 12.00 12.00
task190 on task1391 1.392 0 0.00 0.00
task190 on task280 1.647 2 2.00 2.00
task190 task190 on task290 1.838 0 0.00 0.00
task190 on task391 2.622 2 2.00 2.00
Average 1.875 1.0 1.00 1.00
task280 on task1391 2.259 14 16.47 16.47
task280 on task190 2.922 20 20.50 20.50
task280 task280 on task290 0.729 33 43.07 43.07
task280 on task391 2.318 44 62.52 62.52
Average 2.057 27.8 35.64 35.64
task290 on task1391 0.867 36 46.58 46.58
task290 on task190 1.553 36 36.00 36.00
task290 task290 on task280 1.036 43 43.40 43.40
task290 on task391 0.461 59 86.33 86.33
Average 0.979 43.5 53.08 53.08
task391 on task1391 0.502 65 65.75 65.75
task391

20

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Table 6: Privacy Ablation: Performance on tasks compressed together vs. performance on tasks compressed separately
(continued)

Source Task ~ Task Combination Test Loss Exact Match Rougel RougeL

task391 on task190 1.421 31 31.00 31.00
task391 on task280 0.417 69 69.00 69.00
task391 on task290 0.265 71 90.33 90.33
Average 0.651 59.0 64.02 64.02
Compressed Separately
task1391 on task190 2.347 30 30.00 30.00
task1391 on task280 1.543 11 13.58 13.58
task1391 task1391 on task290 2477 0 0.00 0.00
task1391 on task391 1.253 10 18.00 18.00
Average 1.905 12.8 15.40 15.40
task190 on task1391 1.388 0 0.00 0.00
task190 on task280 1.603 2 2.00 2.00
task190 task190 on task290 1.771 0 0.00 0.00
task190 on task391 2.326 4 4.00 4.00
Average 1.772 1.5 1.50 1.50
task280 on task1391 3.111 2 5.13 5.13
task280 on task190 2.711 19 19.00 19.00
task280 task280 on task290 0.948 16 22.09 22.09
task280 on task391 2.449 39 53.11 53.11
Average 2.305 19.0 24.83 24.83
task290 on task1391 0.848 41 47.58 47.58
task290 on task190 1.355 38 38.00 38.00
task290 task290 on task280 1.050 41 41.00 41.00
task290 on task391 0.463 59 86.33 86.33
Average 0.929 44.8 53.23 53.23
task391 on task1391 0.428 68 68.74 68.74
task391 on task190 1.507 31 31.00 31.00
task391 task391 on task280 0.368 70 70.00 70.00
task391 on task290 0.269 73 91.00 91.00
Average 0.643 60.5 65.18 65.18

H.3. Relative Rouge-L Performance and Compression Rate

Table 7 presents comprehensive results from the experiments underlying Figure 2 for each evaluation task. Additionally, we incorporate
results using the Ties-merging benchmark (Yadav et al., 2023b), which consolidates all LoRA-adapters into a single adapter of identical
configuration and parameter count; this integration significantly compromises performance.

H.4. Absolute Rouge-L Performance and Compression Rate

Table 8 provides the full results behind Table 7, but with Rouge-L scores instead of relative performance compared to LoRA.

H.5. Relative Rouge-1 Performance and Compression Rate

Table 9 provides full results for relative performance of Rouge-1, which shows the same trends as the results for relative performance of
Rouge-L (Table 7).

H.6. Absolute Rouge-1 Performance and Compression Rate

Table 10 provides full results for absolute performance of Rouge-1, which shows the same trends as the results for absolute performance
of Rouge-L (Table 8).

H.7. Relative Exact-Match Performance and Compression Rate

Table 11 provides full results for relative performance of exact-match, which shows the same trends as the results for relative performance

of Rouge-L (Table 7).

21

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

H.8. Loss and Compression Rate

Table 12 provides full results for test loss (cross-entropy), which shows the same trends as the results for relative performance of Rouge-L
(Table 7).

H.9. Agreement and Compression Rate

Table 13 provides full results for agreement, which shows the same trends as the results for relative performance of Rouge-L (Table 7).
Note that agreement measures the exact match in task generations between the uncompressed LoRA model and the compressed LoRA
model, rather than comparing to the task’s ground truth data. The comparison is very strict and requires an exact match between the
generations of the two models (LoRA and the compressed LoRA), comparing each sample one at a time.

H.10. Reconstruction Error and Compression Rate

Table 14 provides the full results of the experiments behind Figure 3 for every evaluation task.

H.11. Reconstruction Error: Trained vs. Random

Table 15 provides the reconstruction error on random (untrained) LoRA matrices. Comparing with Table 14, we find that reconstruction
error is consistently higher on random (untrained LoRA) matrices than on trained LoRA matrices. This demonstrates that after training,
LoRAs have a shared structure that JD exploits.

H.12. Convergence

Table 16 presents outcomes where the JD-Full algorithm is executed until convergence. Our convergence criterion is defined as follows:
max (||Ut+1 — UU Usi1||#eo/ || U1 || Fro, || Vigr — ‘/t‘/;T‘/;t+IHFro/H‘/t+1”Fro) <T (19)

where the tolerance threshold 7 is set to 0.001. Due to the slow per-iteration computation times of the primary JD-Full algorithm, which
quickly reaches an approximate optimum but then has a long tail of convergence for final digits of precision, we devised an alternative
eigenvalue iteration algorithm (Appendix A.2) optimized for GPU acceleration. Our analysis indicates that adherence to this convergence
criterion does not significantly alter the results.

H.13. Out-of-distribution Performance (LoRA-hub)

For completeness, we incorporate results using the protocol of LoRA-hub (Huang et al., 2024). That is, 100 LoRA-adapters are sampled,
independent of the evaluation task, representing a measure of out-of-distribution performance. This also means that each result on a
task is averaged across all 100 LoRA-adapters (as there is no a priori LoORA-to-task mapping). These results were obtained without
normalizing the LoRA-adapters before applying the JD algorithms, a step we later identified as beneficial. We present performance
comparison in Table 18. Table 17 presents the average agreement between uncompressed and compressed LoRA across 10 evaluation
tasks. Results per task for JD-diagonal and JD-full are shown in Table 19 and Table 20, respectively.

From these tables, we find that the JD algorithms successfully maintain performance in this out-of-distribution context.

22

Compress then Serve

Serving Thousands of LoRA Adapters with Little Overhead

Table 3: List of all 1000 Tasks

Tk 1D Description TukiD Descrption Twk1D Descrption

concatente sl clements from index 10 iy slton el i reverse and concatenteal cements from index 0§ commongen sentnce generion

b ansltion cngish hindh m mumn s cngih Ko 201

i o g i . roctories sntence generaton b tramsition hindiurd b ramltion englih o

i s el b \m.mqwumm i st e g Eomeualiedicton dsifcaion
anlation marshi b roslarion i il i rsmluion engish arsd o mmper s

ety s B mingioke s ump.mwm.wnx,w.m.mem. udlmn\hwmngl

e ranson ted ranslaton o e tansiaon a ted

h)ﬁx«ﬂkx(mm xmcmmn e o & {ed ranston 5 pl S antaion
Jaton e vanslaton o st splicaton e

78

Sont gy ofeer
oo e clasifcaon
monsense m clssfation

e hmzo.
S et

Kb ages lenent

ot lasincaion
Somi clasifcation st
omie lascation tocation
onic clssficaton madeupor

can long ext genertion acton command sl

e tansaton apr

1ed ransaton i 8

gty diicaion

m ks s o ssveing
ronreview summiry Csihcaion

Spen subite hen m\h
Sl amswergcneraion from qestion
Sheck e
peian quly cvalution corps et completion
i ol s o laion
i encorp tranlation o1

mer s il =

et Sassion ity
sk i
sineanon syle

peron ey alacion e corpus

i Coprot daset
e Shbtanosexrayan e datset

all personal hte speech binary casicaion
e g cvent tcaion

i binary cashetion
ropura stucured et eneraion
ol vl e casifcion
Sqve orurhed

ypemym gener
T m nbver e casscation

long et genraton
wqumm e genraion
oo e

u Auw: i
2 with e

i books e dancicon

ik ramlation

Super e

o fenwion
G i

Sorschoe comet e umméw‘n
il

fesionpercn

muhm: i mbers

Toiserm g
bl .\.\\.m.m

ke n s perbaio g

RS & e Rnn o
el o

vl it count

e s enersin

] S W ctaision

o pacravl el

preposi
Emasonfond summary u.. secion
mq;mm swer sencrion
Thotha quesion genrsion

oliss

oy caon

ghench repeat copy logic
i snience based on given word senence generaton
it clements

gtk 14 e genertion

Il wor use tetance generation

Sl claviheaion

e comistent senence clasificaion

e o

Fopec

il answe generaton sociology

e uestion enertin

Thocsid answer seneraton frguency

i haliple chie anowering.

Samp oo e esonasveiog
asincsion

P emmsonts)

W.‘gmwrah :

sl ..,mm

v s cnion

ot Tp—

Totoga answer genrion
S gl srporing ot amve genrion
o Seincaion

B lasicanon
imanin prasebonk clasicaion
Sihetc longetpalindzome

nquisive quesion generation
prost meq sencration

S5 inglop quesion snswering
i don quesion amwrng
opus oy o

Shond e s casiaion

P anlation i marthi

ranlation i i
Scam sructured ext generaton command actional
e anslaton i pt

ranlton 51
i a0

Srcturedtext geneaton command acion shor
Hengo nformtiveneb clasifeaion
ne casinestion
ki iaion
long et acncraton cton command long.
ey ol aincanon
o calline o
Couney domatn
o s e dion
ertion rom g
ERCE Vb e iy
st et compression comprssion
ettty caslion

oo Aw\wer seneion

et

et corferenc

Curo e i fr o transation
ncomect snswer generaon

i

wen mn‘.m quesion answering

Couniy
head g wmm lmmlulwn entoes
subi e

i

e Sy deh ety

et
Sarssndetection hesdlne casiision
bengal policalhae speech binary clasiiaton
Bengal e st classicaion
Hatplan casiesion
olean enpors essoning
vlion eion ximction
one w.: locaon sy e

rml clsicaon

il s s asicion
BlesTypemym senerty
heck rqueney of words i sntencepsr
oo anwers toics queston gneraon
Smcaliow issihcanon
Wehquetion quesion gencation
o e hancation

e

an quesion snswerng
o gt
Hotpolgs setence eneraion
o omtrdicion cassfestion

et gencraion casy
Sountelements i s menccion
ircam anwer enc
ety e

o then

EXE couneraciual ot generstion
e v e £enrsion
e

:.w Clsnesion m.ny P
i Caitation o
[

o icaon s i

e ybridgssmewer gen
et} Vinomt assTesion endee g o
Jress

plnmhlc el endraton
e aiion
sation sencraion

oot Tickey e pavation gpemins
24 o

ki
et s s gneion
ki en sy prallcorp e Eu s
sy e veiat enifsion
ety Patacran] i < rasltion
ki3 o nower sener
s e conaont giicaon

0 e mer encrion
kil Hispart anewer generution
ka3 ifonch v daicaion
kil erton
ki3 Semeval hscin clasaicstion
preve) ol answeraii
ks positon o al rumericalcemeats n s
e e o cassion
el o diferent dilos
ety ropn s o ramision
] i mlation hén
ey St ranslton b en
preert) i el

g G amswer genr
e s m.m i
7 oga
e
ey
k059
s zen
et} mm e o ommon ubsing i twosings
ket it o e psion 3
st P
ko7 P M.MW Cateory e generation
ki medical subjet headings answer generaton
frevts] SV word Wi ame mesnin seence Enernon
ko0 gy T

o e iphabets n st

ope et classificaton
onhne pmw polcy txt casifesion

mimly answe generton collge biology
hiuctivenl leucation

il answer generion econometics
e Eevration ot s

ool mathemitics

p,
oy mw..m. o
o i o e

I answer e

il avows pnerton plowphy

e
et
ey
ety
et
e
ks
ey
w0
ety i g s fsion
k090, Sation eamer
k903 epine spnion spam casifaton
ko0 i Mm Speskers
sty bianttramstion
ey o i
927 ey negaive o poive syl ransfer
ko33 kst sy o
ki Conala max abote vl
ey Sncors cane et ulo ompleion
kot i o g wor rdicion
k0% conal s erecton
et P ransation engish tamil

igh schoo computr scence

ko9

Ses r commonsense me clssifcaton
o pl o me i
e Jap commonsense me clasi

K el
o mum.l “eauing
g manipulting fems

e
chet

K char i
oo avr role

el he

P

eapnl cing
i ong 01 eneration hort
S srctured txt wwm m.w o
Smazomeview ring lassas
Et mm,m
i

onlong

eraion on subjct relaion
pen ransaion
i cquiy cviuton orps gender classfr
el

o e

Seontyg s cefcaion iy
Sovaso andaoon
e e cin oy
s e ot
e

msver gencaion
s Guestion sencaion
il s
[—

mhmmvxm:umuhm)nch\\\ﬁkumn
e e e vanlaion

o e

i exiration e

o e exiracion

o S bl it
et extacion inem
Sonmanectn e Sastheaion

engal relgious e specch binaryclassiaton
S o | hour clock

il disios queston classfcaion
vy e o i

ot wordsstaring with
Rl gucsionpa st et casifcation
s en-s anslation

et
B ——
i

o elzwmu\ et o
cahance i dsambiguion
i mm...m Fen
oo
s revicwer perspetive lasiication
Eufopar ataion
icaion
feaion crotype ype
ulld ullenl& e g

Taesval ctssifcaion mm n
winomt clasication rofesson pro
s ot
Winomt clasifeaion gender denifiabily ni
Catno mmmm s ol
Spliyesand pomps esponse sub clssfcation
b e prnes

i remove dvi
Synhtc po o g calclion
over en ength

e s
VDI oy o

LTt demen o s e

ol Alpﬁnbchul cm.‘.\ inist
ol of i mamercl lemens i st separtely
s o word
i gusion Caslcaion
ot o,
i mum oy
it ranslton ek sn
it anation 1 by
G casieaion
i ioaue senence senrsion

by h posiion incnlish sptabet
i word whh diTerent mesng sentence geneaion
ey 14 vt et o
o e e

e mmn
ey m—
pTaen nsaion

e encsion st

Okt pracy poley (et poroe s gensaion

i school iology
i
igh

i schoolsarisics

- gencr
sencrtion muu\ dopues

aip muliplcarion uesion answ
fndenzr bt i ke sphabes it
emca b o clisication
o o
- japancse ext modihcaion

g empeteeiiy

s korean apanese rasltion
Paw Fench german ranaion

DN e el ranaion
s
et rtgender setimen analyss
Bl e Cmsonton
indtasel snswer senrston
p.‘. e

maws MUl question anwerng

ooy o g s

Vi s

eviews clasinet

oo el

Frochas gt toic .

Vlu,b«uq«u\uguv»hmhuhun
Eh offemie

e fom e

b rasfation Gl bengal
b ramltion bengah cnghi ey

v

el advit classificaion

ol i g el
\mv‘.w 2m9mkmwm wmwhry mathematica nswer
malhemitical e generaon

Conaa

el

\ed ransaton i

{ed ransaton s 6

led ranslton i

{ed ransston pt he

ied ansiton i p1

opnbonkgdslon smcrne
el et gt

cuwng:hmucunon

onrevicw rating hsshcation

indrange sy

oy ot et

‘couniry government

agiesion encraion from answer

penin cquy xsuaton copus e csier

Qe ot opton, gewn sion
del o dalog o
elasvag compietion
pels ot conpeion

cndence e
- ou lsibcaion enese cegory
e *

et vty aucion i
locaton ity exiracton be corpus

independence corpus ext clssfcaion
K bocka o.on tARAON

lari sentene gencraion

iningiccopa queston generation

Gl commens toicy clasifcation
i omments it cacuhesion

EEERE
ol ot

RS g
A eion
SR

Cosmonga incorect answe generution
o rand

i an

e e all s o e 103
Caropan clas

o enence senrtion ot
ncam oot e generation
o oy

e ens emotion ex. geeration

Jeopary ans
o s o sareoype ype
Sereoet cavhetion rleion

s iaeaion ety tack

[
Eaeevnclasineation ate

Winogrands question modifiction bjct
ot Sicaon s ion
ey nertion

ino asihotion negorsion Sk pre
e clsifcation o sk
2 polrty casiicsion
S e s

roduc

o ot s
o pm:um: B

ot e Gacion

bmirv o
movicga e genes

e s bl peertion

i o Tl ansiver ganeration
oM asincaion

bpadi 13l
mulnwrc\m\lnmlmn
ol s

v senraion

parial s cn ransaion

Sy Comony dsitcion

i i e
ooale weliomed query setence geeration

o di il et s icaton

anfns privacy polcy text nfonmstion typs generstion

asing
il answe generaton ogical flcies

g e v e

e o
) il ppoing s srion
M"m.zm.“mm.m..wn

i siteanon

B

Tawps liop quecion ety
oty o o re

emaions st

By ol Fesotuion

e, encraion

e o u\ctﬁu\ o gneaion
Eh affenre cas

ot hrtio e o e g
e)
b tranlaion e

23

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Table 4: Results for Different Numbers of Clusters (different LoR A-ranks)

Metric Uncompressed 1 Cluster 2 Clusters 4 Clusters 8 Clusters
Loss 0.5009 1.6023 0.9986 0.5603 0.5000
Exact match 69.6103 37.3392 60.1071 66.6474 69.6289
ROUGE-1 79.5755 50.3598 71.5644 76.2930 79.0576
ROUGE-L 78.9355 49.7491 71.0193 75.6152 78.3958
Recon. error 0 0.8311 0.6990 0.4846 0.3246
Agreement 1.0 36.6706 62.6699 72.2231 80.5545
Exact match ratio 1.0 0.5724 0.8079 0.9219 0.9541
Relative ROUGE-1 1.0 0.6220 0.8533 0.9406 0.9917
Relative ROUGE-L 1.0 0.6221 0.8550 0.9404 0.9915
Param. saved ratio 1.0 0.99 0.98 0.97 0.94

Table 5: Results for Different Numbers of Clusters (same LoRA-ranks of 43)

Metric Uncompressed 1 Cluster 2 Clusters 4 Clusters 8 Clusters
Loss 0.5764 0.7767 0.6277 0.5841 0.5659
Exact match 61.7746 53.2000 60.2000 61.5000 61.3000
ROUGE-1 79.9322 74.7695 79.4621 80.6950 80.4298
ROUGE-L 77.7961 72.4257 77.2141 78.3369 78.1883
Recon. error 0 0.7333 0.5594 0.3999 0.2502
Agreement 1.0 0.0000 6.6667 6.6667 6.6667
Exact match ratio 1.0 0.8175 0.9261 0.9618 1.0206
Relative ROUGE-1 1.0 0.9560 1.0153 1.0310 1.0241
Relative ROUGE-L 1.0 0.9501 1.0118 1.0268 1.0231
Param. saved ratio 1.0 0.99 0.98 0.97 0.94

24

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Para. Saved
| | task039 | taskl190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 | |
base 0.26 £000 | 0.02 000 | 0.19 000 | 0.42 +000 | 0.11 000 | 0.47 000 | 0.11 000 | 0.23 £0.00 | 0.19 £000 | 0.77 £0.00 | 0.28 021 1.00/1.00
lora 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 +0.00 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 0.00/0.00
10 0.81 000 | 0.57 002 | 0.45 £0.04 | 0.10 £001 | 0.83 +001 | 0.47 +000 | 0.69 £0.01 | 0.57 £000 | 0.82 +001 | 0.85 +0.00 | 0.62 £023 | 1.00/1.00
50 0.59 +000 | 0.41 000 | 0.18 £0.05 | 0.03 £001 | 0.91 001 | 0.31 £000 | 0.65 £000 | 0.62 £000 | 0.32 +004 | 0.84 000 | 0.48 £028 | 1.00/1.00
TIES 100 0.55 000 | 0.40 000 | 0.20 £0.05 | 0.01 £002 | 0.88 +000 | 0.33 +0.00 | 0.64 £000 | 0.57 £002 | 0.01 £000 | 0.82 +0.00 | 0.44 £030 | 1.00/1.00
500 0.37 £000 | 0.26 000 | 0.01 £0.00 | 0.00 £000 | 0.83 £000 | 0.29 £ 000 | 0.57 000 | 0.37 £000 | 0.01 000 | 0.43 000 | 0.31 £026 | 1.00/1.00
SVD 2 0.98 £003 | 1.07 £002 | 1.00 £000 | 1.00 £000 | 1.00 000 | 0.98 001 | 1.00 001 | 1.00 010 | 1.00 £001 | 1.00 £001 | 1.00 004 | 0.88/0.88
SVD SVD 4 0.99 £004 | 1.04 £001 | 1.00 £000 | 1.00 £000 | 1.00 001 | 1.00 000 | 0.99 £0.02 | 0.99 +008 | 0.99 £001 | 1.00 £001 | 1.00 003 | 0.75/0.75
SVD 8 1.00 £0.00 | 1.02 001 | 1.00 000 | 1.00 000 | 1.00 £000 | 1.00 £000 | 1.01 000 | 1.00 £0.01 | 1.01 £001 | 1.01 £000 | 1.00 001 | 0.50/0.50
SVD 16 1.00 +0.00 | 1.00 £000 | 1.00 +000 | 1.00 +0.00 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 £0.00 | 1.00 £000 | 1.00 000 | 1.00 +0.00 | 0.00/0.00
16D 1.02 +001 | 1.01 £001 | 1.00 £000 | 1.00 001 | 0.99 000 | 0.96 000 | 1.02+002 | 1.13 003 | 0.99 £002 | 0.98 £001 | 1.01 005 | 1.00/0.90
32D 1.01 o001 | 1.05 001 | 1.00 £000 | 0.99 000 | 1.01 001 | 0.99 000 | 0.97 001 | 1.05+003 | 1.00 001 | 1.00 £001 | 1.00 £003 | 1.00/0.80
10 diagonal (D) 64D 1.00 000 | 1.03 +001 | 1.00 000 | 1.00 £000 | 1.00 000 | 1.00 +000 | 1.01 £0.01 | 0.99 +001 | 1.01 £000 | 1.01 000 | 1.00 001 | 1.00/0.60
128D 1.00 £000 | 1.01 £001 | 1.00 £000 | 1.00 000 | 1.00 000 | 1.00 £000 | 1.01 001 | 0.99 001 | 1.00 £000 | 1.00 £000 | 1.00 £001 | 1.00/0.20
256 D 1.00 000 | 1.00 000 | 1.00 +000 | 1.00 000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 £000 | 1.00 000 | 1.00 £0.00 | 1.00 +0.00 | 1.00/-0.60
16 F 1.02 £000 | 1.06 001 | 1.00 £000 | 1.00 000 | 0.99 001 | 0.98 £0.00 | 1.01 002 | 1.07 000 | 1.01 001 | 1.00 000 | 1.01 £0.03 1.00/0.90
32F 1.02 £001 | 1.04 001 | 1.00 £000 | 1.00 000 | 1.00 000 | 0.99 000 | 0.96 001 | 1.00+002 | 1.00 £001 | 1.01 £000 | 1.00 £002 | 0.99/0.79
10 full (F) 64 F 1.00 £ 0.00 | 1.03 +001 | 1.00 000 | 1.00 +000 | 1.00 £0.00 | 1.00 +000 | 1.01 001 | 0.98 001 | 1.01 £000 | 1.01 000 | 1.00 +0.01 0.97/0.57
128 F 1.00 000 | 1.0I 001 | 1.00 +000 | 1.00 000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 0.99 000 | 1.00 000 | 1.00 +0.00 | 1.00 +000 | 0.88/0.07
256 F 1.00 000 | 1.00 000 | 1.00 +000 | 1.00 000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 000 | 1.00 000 | 0.50/-1.10
16D 0.98 £004 | 0.98 001 | 1.00 £000 | 0.92 £006 | 0.84 +007 | 0.92 £0.02 | 0.68 £005 | 0.87 +0.10 | 0.88 007 | 0.83 002 | 0.89 £010 | 1.00/0.98
32D 1.00 £002 | 1.02 £002 | 1.00 £000 | 0.99 000 | 0.96 001 | 0.95+002 | 0.84 002 | 1.00 013 | 0.98 £001 | 0.88 £001 | 0.96 007 | 1.00/0.96
50 diagonal (D) 64D 1.02 000 | 1.05 +002 | 1.00 000 | 1.00 £000 | 0.99 +0.01 | 0.97 +000 | 0.99 001 | 1.09 +003 | 1.01 £001 | 0.90 +001 | 1.00 £005 | 1.00/0.92
128D 1.01 o001 | 1.08 001 | 1.00 £000 | 1.00 000 | 0.99 001 | 0.98 £000 | 0.98 001 | 1.11 003 | 1.00 £000 | 1.00 001 | 1.01 £004 | 1.00/0.84
256 D 1.01 o001 | 1.03 £001 | 1.00 £000 | 1.00 000 | 1.00 001 | 1.00 £0.00 | 0.97 =003 | 1.01 003 | 1.00 001 | 1.01 001 | 1.00 £002 | 1.00/0.68
16 F 0.99 £004 | 1.00 001 | 1.00 001 | 0.96 001 | 0.95+0.02 | 0.94 001 | 0.64 010 | 1.01 £015 | 0.97 £002 | 0.87 000 | 0.93 £0.12 1.00/0.98
32F 1.02 £000 | 1.00 £002 | 1.00 £000 | 1.00 000 | 0.98 001 | 0.96 000 | 0.95 001 | 1.09 002 | 1.01 £002 | 0.89 £001 | 0.99 £005 | 0.99/0.95
50 full (F) 64 F 1.02 001 | 1.06 +002 | 1.00 000 | 1.00 +000 | 0.99 001 | 0.98 +001 | 1.03 001 | 1.11 000 | 1.00 £001 | 0.98 002 | 1.02 +0.04 0.97/0.89
128 F 1.02 £000 | 1.06 001 | 1.00 £000 | 1.00 000 | 1.00 001 | 0.98 £0.00 | 0.98 001 | 1.03 004 | 1.00 £001 | 1.00 £000 | 1.01 £003 | 0.88/0.72
256 F 1.00 £000 | 1.02 £000 | 1.00 £000 | 1.00 000 | 1.00 000 | 0.99 000 | 1.01 001 | 1.00+000 | 1.01 £000 | 1.01 £000 | 1.00 £001 | 0.50/0.18
16 D 0.80 +£007 | 0.89 006 | 0.93 £0.03 | 0.96 £001 | 0.50 £009 | 0.78 +0.01 | 0.28 £0.07 | 0.52 £0.10 | 0.78 £ 003 | 0.81 002 | 0.72 £022 | 1.00/0.99
32D 0.95 +006 | 0.98 001 | 1.00 £000 | 0.91 £006 | 0.80 +0.14 | 0.89 £0.06 | 0.60 £0.10 | 0.77 +026 | 0.91 +0.02 | 0.83 002 | 0.86 +0.14 | 1.00/0.98
100 diagonal (D) 64D 1.01 003 | 1.01 £0.01 | 1.00 £0.00 | 0.98 £0.02 | 0.96 001 | 0.94 +001 | 0.88 005 | 1.11 008 | 0.96 £0.02 | 0.87 003 | 0.97 £007 | 1.00/0.96
128D 1.01 000 | 1.02 001 | 1.00 £000 | 1.00 £000 | 0.99 001 | 0.97 000 | 1.00 £003 | 1.11 002 | 0.99 £0.01 | 0.89 £002 | 1.00 +005 | 1.00/0.92
256 D 1.00 £ 000 | 1.06 000 | 1.00 £000 | 1.00 000 | 0.99 000 | 0.98 000 | 1.00 001 | 1.11 003 | 1.00 001 | 0.98 £001 | 1.01 £004 | 1.00/0.84
16 F 0.95 001 | 0.97 003 | 0.97 £003 | 0.97 £003 | 0.93 +001 | 0.92 +001 | 0.64 £003 | 0.89 +0.16 | 0.87 +002 | 0.83 £0.01 | 0.89 £o.11 1.00/0.99
32F 1.00 £002 | 0.99 £001 | 1.00 £000 | 1.00 000 | 0.97 001 | 0.95 +0.00 | 0.86 003 | 1.12 +003 | 0.96 001 | 0.87 000 | 0.97 +0.07 0.99/0.97
100 full (F) 64 F 1.02 000 | 1.00 +002 | 1.00 000 | 1.00 +000 | 0.98 000 | 0.96 +000 | 0.99 001 | 1.09 001 | 0.99 +002 | 0.89 +0.00 | 0.99 +0.05 0.97/0.93
128 F 1.01 £o001 | 1.05 001 | 1.00 £000 | 0.99 000 | 1.00 000 | 0.98 000 | 1.03 001 | .10 001 | 1.01 £000 | 0.99 £001 | 1.02 £004 | 0.88/0.80
256 F 1.01 £o001 | 1.03 £001 | 1.00 £000 | 1.00 000 | 1.01 £000 | 0.99 000 | 0.98 000 | 1.00 +0.03 | 1.01 000 | 1.01 £0.00 | 1.00 £ 0.01 0.50/0.34
100 wiclusters (C) ‘ 16C5 ‘ 1.13 o001 ‘ 1.03 + o001 ‘ 1.00 + 0.00 ‘ 1.00 +0.00 ‘ 0.99 + o001 ‘ 0.96 +0.00 ‘ 1.01 +002 ‘ 1.23 + 002 ‘ 1.05 + o001 ‘ 0.99 +0.06 ‘ 1.04 + 008 ‘ 1.00/0.95
16C7 1.12 £001 | 1.01 £001 | 1.00 £000 | 1.00 000 | 0.99 001 | 0.96 001 | 1.02 002 | 1.24 +005 | 1.03 001 | 0.99 £005 | 1.04 +008 1.00/0.93
16 D 0.57 £007 | 0.55+003 | 0.83 £004 | 0.78 £0.16 | 0.85 004 | 0.68 007 | 0.24 001 | 0.43 £001 | 0.76 £006 | 0.79 £001 | 0.65 £020 | 1.00/1.00
32D 0.61 £012 | 0.55 +008 | 0.83 £0.02 | 0.84 £0.12 | 0.91 £002 | 0.71 £ 005 | 0.29 £0.05 | 0.47 £008 | 0.79 +004 | 0.79 +0.01 | 0.68 £020 | 1.00/1.00
500 diagonal (D) 64D 0.73 £002 | 0.63 011 | 0.89 £004 | 0.97 £000 | 0.94 +000 | 0.83 005 | 0.45 +£0.09 | 0.50 +0.07 | 0.82 £002 | 0.80 £002 | 0.76 018 | 1.00/0.99
128 D 0.84 +000 | 092 +002 | 0.97 £0.03 | 0.98 £001 | 0.94 000 | 0.88 +0.02 | 0.60 £0.15 | 0.53 +001 | 0.85 +005 | 0.80 £002 | 0.83 £015 | 1.00/0.98
256D 0.99 003 | 0.99 000 | 1.00 £000 | 1.00 £000 | 0.96 000 | 0.92 +0.03 | 0.66 £006 | 0.84 014 | 0.92 +002 | 0.84 001 | 0.91 £011 | 1.00/0.97
16 F 0.57 £001 | 0.43 007 | 0.78 £0.01 | 0.97 £000 | 0.96 +000 | 0.83 +0.01 | 0.64 £000 | 0.53 £003 | 0.83 001 | 0.83 £0.00 | 0.75 £0.17 1.00/1.00
32F 0.79 £005 | 0.54 004 | 0.93 £0.02 | 0.98 £000 | 0.97 £000 | 0.90 +0.01 | 0.69 £001 | 0.50 £000 | 0.86 002 | 0.83 £0.01 | 0.81 +0.16 0.99/0.99
500 full (F) 64 F 1.02 000 | 0.96 +0.01 | 0.94 £001 | 1.00 £001 | 0.96 +000 | 0.97 £0.01 | 0.73 £o001 | 0.54 +001 | 0.91 +001 | 0.86 £000 | 0.89 +014 | 0.97/0.96
128 F 1.03 £ 001 | 0.97 £002 | 0.99 000 | 1.00 £000 | 0.98 £000 | 0.96 +000 | 0.87 001 | 1.07 £0.02 | 0.98 £000 | 0.87 000 | 0.97 +0.06 0.88/0.86
256 F 1.03 000 | 1.03 001 | 1.00 £000 | 1.00 £000 | 0.99 001 | 0.97 001 | 0.99 £002 | 1.03 +001 | 1.00 001 | 0.87 £0.00 | 0.99 +0.05 0.50/0.47
16C7 1.09 1.00 0.99 1.00 0.98 0.95 0.72 0.87 0.98 0.90 0.95 1.00/0.98
16 C 10 1.10 1.01 1.00 0.99 0.97 0.93 0.70 1.30 1.02 0.88 0.99 1.00/0.98
500 wi/clusters (C) 16 C25 1.10 1.00 1.00 0.99 0.99 0.96 0.98 1.31 1.03 0.91 1.03 1.00/0.95
64C5 1.09 0.98 1.00 1.00 0.99 0.96 0.99 1.18 1.04 0.87 1.01 0.97/0.93
64C7 1.12 1.02 1.00 1.00 1.00 0.96 0.99 1.22 1.04 0.93 1.03 0.97/0.91
1000 w/clusters (C) | 16C25 | .09 | 098 | 1.00 | 100 | 097 | 09 | 072 | 130 | 1.0s | 091 | 1.00 | 1.00/0.97

Table 7: Relative In-Distribution ROUGE-L scores for various tasks and methods

25

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Para. Saved
‘ ‘ task039 ‘ task190 ‘ task280 ‘ task290 ‘ task391 ‘ task442 ‘ task620 ‘ task1342 ‘ task1391 ‘ task1598 ‘ ‘
base 24.44 +0.00 1.60 000 | 19.13 £000 | 39.22 +000 | 10.27 000 | 3546 000 | 7.85 =000 6.22 +000 | 17.82 +000 | 38.87 +o000 | 20.24 +1327 1.00/1.00
‘ lora ‘ 95.00 +0.00 ‘ 86.00 +0.00 ‘ 99.00 + 0.00 ‘ 93.67 +0.00 ‘ 94.33 +0.00 ‘ 74.88 +0.00 ‘ 74.40 + 0.00 ‘ 26.68 +0.00 ‘ 95.00 £0.00 | 50.32 +0.00 ‘ 78.87 £2256 | 0.00/0.00
10 76.50 000 | 49.00 £1.73 | 44.33 £404 | 9.80 £o058 78.56 £096 | 35.24 £o000 | 51.37 £067 | 15.26 002 | 77.67 £ 115 | 4272 001 | 48.05 +2361 | 1.00/1.00
50 55.80 £ 000 | 35.00 £0.00 | 18.00 +520 85.78 +096 | 23.03 £0.00 | 48.03 £000 | 16.50 +0.00 | 30.00 £346 | 42.47 002 | 35.70 2301 | 1.00/1.00
TIES 100 5243 £000 | 34.00 £000 | 19.67 £462 83.33 000 | 24.89 000 | 47.52 000 | 15.18 £042 | 1.00 £000 | 41.19 +003 | 32.03 +2450 | 1.00/1.00
500 35.18 £ 000 | 22.00 000 | 1.00 +0.00 78.00 £000 | 21.46 £000 | 42.22 004 | 9.93 +o0.13 1.00 000 | 21.50 +003 | 23.27 +2364 | 1.00/1.00
SVD 2 93.15£277 | 92.24 £1.85 | 99.09 018 | 93.44 £o01a | 93.89 +035 | 73.74 o051 | 74.55 098 | 26.80 £279 | 95.06 £1.35 | 50.21 £044 | 79.11 £2272 | 0.88/0.88
SVD SVD 4 94.01 £360 | 89.21 071 | 99.05 £0.09 | 93.65 +£003 | 94.66 +063 | 74.89 £033 | 73.61 115 | 26.34 213 | 93.98 £077 | 50.47 £o54 | 78.90 £2268 | 0.75/0.75
SVD 8 95.00 000 | 87.40 £059 | 99.05 £0.09 | 93.65+003 | 9436 +038 | 74.58 £012 | 75.07 000 | 26.71 +£027 | 95.51 £1.09 | 50.89 +007 | 81.01 £21.74 | 0.50/0.50
SVD 16 95.00 £0.00 | 86.00 £0.00 | 99.00 £000 | 93.67 000 | 94.33 £000 | 7490 003 | 7423 £018 | 26.68 +000 | 95.00 £0.00 | 50.30 £0.02 | 78.36 £2297 | 0.00/0.00
16D 96.67 £058 | 87.00 £1.00 | 99.00 £000 | 94.00 £067 | 93.11 £038 | 72.08 006 | 76.26 119 | 30.11 079 | 94.00 £1.73 | 49.30 £o046 | 79.15 £2218 | 1.00/0.90
32D 95.67 058 | 90.00 £1.00 | 99.00 £000 | 93.00 £033 | 94.89 o051 | 73.86 031 | 71.92 +084 | 27.89 070 | 94.67 x058 | 50.36 £026 | 79.13 £2275 | 1.00/0.80
10 diagonal (D) 64D 95.00 000 | 88.33 £058 | 99.00 000 | 93.67 +000 | 94.78 038 | 74.61 0.3 | 74.97 058 | 26.35 £025 | 96.00 000 | 50.99 +006 | 79.37 +2294 | 1.00/0.60
128D 95.00 000 | 86.67 058 | 99.00 +000 | 93.67 +000 | 9433 +000 | 7492 013 | 7496 051 | 26.45 +023 | 95.00 000 | 50.21 +012 | 79.02 £2284 | 1.00/0.20
256D 95.00 £000 | 86.00 £000 | 99.00 £000 | 93.67 £000 | 94.33 1000 | 74.88 000 | 74.40 £000 | 26.68 +£000 | 95.00 £0.00 | 50.27 £002 | 78.92 2277 | 1.00/-0.60
16 F 97.00 000 | 91.00 £ 1.00 | 99.00 +000 | 93.56 +0.19 | 93.56 +069 | 73.60 036 | 74.94 125 | 28.66 +003 | 96.00 £ 1.00 | 50.15+020 | 79.75 +2272 1.00/0.90
32F 96.67 +058 | 89.33 £058 | 99.00 £000 | 9322 019 | 9444 1019 | 7411 £019 | 71.74 £059 | 26.74 050 | 94.67 £058 | 50.63 £024 | 79.06 2301 | 0.99/0.79
10 full (F) 64 F 95.00 000 | 88.67 £058 | 99.00 +0.00 | 93.67 £000 | 94.56 £038 | 74.56 013 | 7547 +o058 | 26.26 £034 | 96.00 £0.00 | 50.89 +0.17 | 79.41 +2297 0.97/0.57
128F 95.00 000 | 86.67 058 | 99.00 £0.00 | 93.67 £000 | 94.33 000 | 75.04 £003 | 74.40 £000 | 26.53 013 | 95.00 £0.00 | 50.36 £0.03 | 79.00 + 2281 0.88/0.07
256 F 95.00 £0.00 | 86.00 £000 | 99.00 £000 | 93.67 £000 | 94.33 000 | 74.90 £003 | 7429 £019 | 26.68 +£000 | 95.00 £000 | 50.30 £003 | 78.92 £2277 | 0.50/-1.10
16D 92.76 353 | 84.67 £ 115 | 99.00 000 | 86.17 £581 | 79.68 +621 | 69.07 154 | 50.65 +£397 | 23.27 +260 | 83.90 £643 | 41.86 +096 | 71.10 £2399 | 1.00/0.98
32D 95.33 £208 | 87.33 £208 | 99.00 £000 | 92.60 £029 | 90.32 £ 104 | 71.16 147 | 6251 164 | 26.60 +354 | 93.33 £1.15 | 44.35 £041 | 76.25 2381 | 1.00/0.96
50 diagonal (D) 64D 97.00 000 | 90.33 £153 | 99.00 +0.00 | 93.78 +0.19 | 93.00 +058 | 72.37 035 | 73.39 £093 | 29.06 +080 | 95.67 058 | 4543 +034 | 78.90 +2329 | 1.00/0.92
128D 96.33 058 | 92.67 058 | 99.00 £0.00 | 93.56 019 | 93.00 +058 | 73.32 024 | 73.03 £109 | 29.51 +£093 | 95.00 000 | 50.16 £074 | 79.56 2251 | 1.00/0.84
256D 95.67 +058 | 88.33 £058 | 99.00 £000 | 93.56 019 | 94.67 £067 | 74.82 £024 | 7236 £207 | 26.90 075 | 95.33 £058 | 50.73 £046 | 79.14 £2290 | 1.00/0.68
16 F 94.06 £354 | 85.67 £ 115 | 98.67 058 | 90.35+137 | 89.90 191 | 70.32 066 | 47.62 +728 | 26.88 +£396 | 92.33 £1.53 | 43.68 £024 | 73.95 £2473 1.00/0.98
32F 97.00 £000 | 85.67 £1.53 | 99.00 £000 | 93.67 £000 | 9222 4069 | 71.88 030 | 71.01 102 | 29.07 065 | 95.67 £1.53 | 44.97 o041 | 78.02 £2318 | 0.99/0.95
50 full (F) 64 F 96.67 058 | 91.00 £200 | 99.00 000 | 93.56 0.9 | 9322 +051 | 73.16 x041 | 76.28 +051 | 29.67 +012 | 9533 £o058 | 49.31 £100 | 79.72 £2250 | 0.97/0.89
128F 97.00 000 | 91.00 £1.00 | 99.00 £000 | 93.33 £000 | 9411 +o051 | 73.51 023 | 73.17 058 | 27.53 £1.12 | 95.00 £1.00 | 50.56 £006 | 79.42 +2293 | 0.88/0.72
256 F 95.00 000 | 88.00 £000 | 99.00 £000 | 93.67 £000 | 94.44 £019 | 7425 021 | 7497 058 | 26.79 009 | 96.00 £000 | 50.86 £0.19 | 79.30 £2252 | 0.50/0.18
16D 76.43 £707 | 76.67 £493 | 91.61 +275 | 89.99 +1.07 | 47.55+856 | 58.08 £072 | 20.77 +£550 | 13.90 +279 | 73.93 £3.13 | 40.74 +oss | 58.97 2683 | 1.00/0.99
32D 90.10 £585 | 84.00 £1.00 | 99.00 £000 | 85.52 +£534 | 75.69 £1275 | 66.62 418 | 44.66 +726 | 20.49 +£7.07 | 86.67 £186 | 42.01 £094 | 69.48 £2514 | 1.00/0.98
100 diagonal (D) 64D 95.56 £249 | 86.67 £058 | 99.00 000 | 9224 £ 168 | 90.89 +£1.17 | 70.35 £ 045 | 65.62 +403 | 29.58 +202 | 91.67 £231 | 43.64 +136 | 76.52 +2302 | 1.00/0.96
128D 96.00 000 | 87.33 115 | 99.00 £000 | 93.89 £019 | 93.00 o058 | 72.70 £ 030 | 74.34 £207 | 29.66 £054 | 93.67 £oss | 44.82 o9 | 78.44 £ 2287 | 1.00/0.92
256D 95.00 £000 | 91.00 £000 | 99.00 £000 | 93.56 +0.19 | 93.11 £019 | 73.05 020 | 74.52 +095 | 29.67 +067 | 95.33 £058 | 49.42 £o6s5 | 79.37 £2238 | 1.00/0.84
16 F 90.70 £ 1.07 | 83.00 £265 | 96.00 £300 | 91.22 204 | 87.94 1054 | 68.72 x105 | 47.57 £254 | 23.75 £433 | 8233 £208 | 41.51 067 | 71.27 £2423 1.00/0.99
32F 95.33 £1.53 | 85.00 £1.00 | 99.00 £000 | 93.50 £022 | 91.44 1084 | 70.94 002 | 63.64 195 | 29.82 081 | 91.67 £058 | 43.94 £ous | 76.43 £2301 0.99/0.97
100 full (F) 64 F 97.00 £000 | 85.67 £1.53 | 99.00 000 | 93.78 0.9 | 92.56 +0.19 | 72.11 +008 | 73.29 +064 | 29.15 +024 | 9433 £1.53 | 44.97 +o05 | 78.18 £23.03 0.97/0.93
128F 96.33 £058 | 90.33 £058 | 99.00 £000 | 93.00 £000 | 93.89 £019 | 73.11 036 | 76.50 £ 101 | 29.45 +035 | 96.00 £0.00 | 49.81 £034 | 79.74 £2247 | 0.88/0.80
256 F 96.33 058 | 88.67 058 | 99.00 £000 | 93.67 £000 | 94.89 +0.19 | 74.40 016 | 72.90 012 | 26.77 068 | 96.00 000 | 50.83 £009 | 79.35 £2304 | 0.50/0.34
100 wiclusters (C) ‘ 16C5 ‘ 98.33 047 ‘ 89.00 + 0.2 ‘ 99.00 =+ 0.00 ‘ 93.25 040 ‘ 92.89 +0.87 ‘ 72.32 036 ‘ 77.08 £ 1.67 ‘ 28.26 +038 ‘ 96.67 =047 ‘ 68.30 + 1572 ‘ 81.51 +2063 ‘ 1.00/0.95
16C7 97.67 047 | 87.00 082 | 99.00 000 | 93.46 029 | 93.11 +068 | 72.52 +043 | 77.66 +130 | 28.51 +£126 | 95.33 £047 | 68.46 + 1494 | 81.27 £ 2035 1.00/0.93
16D 5444 £687 | 47.00 £283 | 82.21 £359 | 73.38 £ 1497 | 80.08 £371 | 51.02 £531 | 17.49 £ 110 | 11.58 o021 | 72.67 £603 | 39.65 +028 | 53.16 +2497 | 1.00/1.00
32D 58.08 £1152 | 47.00 £7.07 | 82.06 £1.69 | 78.62 £ 1123 | 85.57 £1.48 | 52.98 £381 | 21.73 £395 | 12.53 £226 | 75.33 404 | 39.78 042 | 55.66 2548 | 1.00/1.00
500 diagonal (D) 64D 69.21 +203 | 54.50 +9.19 | 88.33 £404 | 91.11 +038 | 88.78 +038 | 62.36 +352 | 33.36 +6.69 | 13.34 +1.86 | 77.67 +231 | 40.42 +098 | 62.16 +2605 | 1.00/0.99
128D 79.77 £037 | 79.50 £2.12 | 95.89 +283 | 91.89 +139 | 88.67 £0.00 | 65.92 +£179 | 44.98 +1098 | 14.14 +019 | 81.00 500 | 40.34 080 | 67.82 +2635 | 1.00/0.98
256D 93.83 £252 | 85.00 £000 | 99.00 £000 | 93.78 £0.19 | 90.56 +038 | 68.95 £192 | 49.39 £436 | 22.33 378 | 87.33 £231 | 42.15+073 | 72.83 £2503 | 1.00/0.97
16 F 54.30 £ 113 | 37.00 £566 | 77.67 058 | 91.00 £000 | 90.56 £0.19 | 62.47 £079 | 47.56 £029 | 14.18 067 | 79.00 £ 100 | 41.58 +£023 | 60.31 +24.42 1.00/1.00
32F 75.10 £492 | 46.50 £354 | 91.67 £153 | 91.56 £0.19 | 91.56 +03s | 67.37 083 | 51.17 081 | 13.44 002 | 81.67 £1.53 | 41.92 £042 | 65.84 £2564 | 0.99/0.99
500 full (F) 64 F 96.94 +042 | 82.50 £071 | 93.33 +058 | 93.89 £069 | 90.67 000 | 72.30 £071 | 54.63 079 | 14.49 +027 | 86.33 058 | 43.16 008 | 72.49 + 2664 0.97/0.96
128 F 97.67 £058 | 83.50 212 | 98.00 £000 | 93.56 019 | 92.00 £000 | 71.92 019 | 65.02 +081 | 28.49 +055 | 93.00 000 | 43.85 012 | 76.47 £2377 | 0.88/0.86
256 F 98.00 000 | 88.50 £0.71 | 99.00 +000 | 93.78 +0.19 | 93.00 +o0s8s | 72.45 038 | 73.77 +121 | 27.59 +039 | 95.33 £o0s8 | 43.81 £017 | 78.18 2416 | 0.50/0.47
16C7 95.00 86.00 98.00 93.67 91.67 71.19 54.69 20.03 90.00 46.34 74.66 1.00/0.98
16C 10 96.00 87.00 99.00 93.00 91.33 69.93 53.48 30.09 94.00 44.89 75.87 1.00/0.98
500 w/clusters (C) 16 C25 96.00 86.00 99.00 92.71 93.00 72.13 74.59 30.21 95.00 46.66 78.53 1.00/0.95
64C5 95.00 84.00 99.00 93.67 92.67 7232 75.60 27.17 96.00 4443 77.99 0.97/0.93
64C7 98.00 88.00 99.00 94.00 93.33 72.18 75.83 28.14 96.00 47.68 79.22 0.97/0.91
1000 w/clusters (C) | 16C25 | 9500 | 8400 | 9900 | 9367 | 9067 | 7220 | 5504 | 2997 | 97.00 | 4686 | 7634 | 1.00/0.97

Table 8: Absolute In-Distribution ROUGE-L scores for various tasks and methods

26

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Para. Saved
| | task039 | taskl190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 | |
base 0.26 £000 | 0.02 000 | 0.19 000 | 0.42 +000 | 0.11 000 | 0.51 000 | 0.11 000 | 0.26 £000 | 0.19 £000 | 0.80 £000 | 0.29 £022 1.00/1.00
lora 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 +0.00 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 0.00/0.00
10 0.81 000 | 0.57 002 | 0.45 £0.04 | 0.10 £001 | 0.83 +001 | 0.52 +000 | 0.71 £0.01 | 0.58 £000 | 0.82 +001 | 0.80 +0.00 | 0.62 £022 | 1.00/1.00
50 0.59 £000 | 0.41 000 | 0.18 £0.05 | 0.03 £001 | 0.91 001 | 0.34 +000 | 0.67 000 | 0.62 £000 | 0.32 +004 | 0.78 £0.00 | 0.48 £027 | 1.00/1.00
TIES 100 0.55 000 | 0.40 000 | 0.20 £0.05 | 0.01 £002 | 0.88 +000 | 0.36 +0.00 | 0.65 £000 | 0.57 £002 | 0.01 £000 | 0.78 000 | 0.44 £0290 | 1.00/1.00
500 0.37 £000 | 0.26 =000 | 0.01 £0.00 | 0.00 £000 | 0.83 +000 | 0.31 +000 | 0.58 £0.00 | 0.37 £000 | 0.01 £000 | 0.41 000 | 0.32 £026 | 1.00/1.00
SVD 2 0.98 £003 | 1.07 £002 | 1.00 £000 | 1.00 £000 | 1.00 £0.00 | 0.99 000 | 1.01 001 | 1.00 010 | 1.00 £001 | 0.99 £001 | 1.00 004 | 0.88/0.88
SVD SVD 4 0.99 £004 | 1.04 £001 | 1.00 £000 | 1.00 £000 | 1.00 001 | 1.00 000 | 0.99 001 | 0.99 +008 | 0.99 £001 | 1.01 £000 | 1.00 003 | 0.75/0.75
SVD 8 1.00 £0.00 | 1.02 001 | 1.00 000 | 1.00 000 | 1.00 £000 | 1.00 £000 | 1.01 000 | 1.00 £0.01 | 1.01 £001 | 1.01 £000 | 1.00 001 | 0.50/0.50
SVD 16 1.00 +0.00 | 1.00 £000 | 1.00 +000 | 1.00 +0.00 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 £0.00 | 1.00 £000 | 1.00 000 | 1.00 +0.00 | 0.00/0.00
16D 1.02 +001 | 1.01 £001 | 1.00 £000 | 1.00 001 | 0.99 000 | 0.97 000 | 1.03 002 | 1.12+003 | 0.99 £002 | 0.99 £000 | 1.01 £004 | 1.00/0.90
32D 1.01 o001 | 1.05 001 | 1.00 £000 | 0.99 000 | 1.01 001 | 0.99 000 | 0.97 001 | 1.04 003 | 1.00 001 | 1.01 £001 | 1.01 £002 | 1.00/0.80
10 diagonal (D) 64D 1.00 000 | 1.03 +001 | 1.00 000 | 1.00 £000 | 1.00 000 | 1.00 +000 | 1.01 £0.01 | 0.99 +001 | 1.01 £000 | 1.01 000 | 1.00 001 | 1.00/0.60
128D 1.00 £000 | 1.01 £001 | 1.00 £000 | 1.00 000 | 1.00 000 | 1.00 £000 | 1.01 001 | 0.99 001 | 1.00 £000 | 1.00 £000 | 1.00 £001 | 1.00/0.20
256 D 1.00 000 | 1.00 000 | 1.00 +000 | 1.00 000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 £000 | 1.00 000 | 1.00 £0.00 | 1.00 +0.00 | 1.00/-0.60
16 F 1.02 £000 | 1.06 001 | 1.00 £000 | 1.00 000 | 0.99 001 | 0.99 000 | 1.01 002 | 1.07 000 | 1.01 001 | 1.00 000 | 1.02 +0.03 1.00/0.90
32F 1.02 £001 | 1.04 001 | 1.00 £000 | 1.00 000 | 1.00 000 | 0.99 000 | 0.96 001 | 1.00+002 | 1.00 £001 | 1.01 £000 | 1.00 £002 | 0.99/0.79
10 full (F) 64 F 1.00 £ 0.00 | 1.03 +001 | 1.00 000 | 1.00 +000 | 1.00 £0.00 | 1.00 +000 | 1.01 001 | 0.98 001 | 1.01 £000 | 1.01 000 | 1.00 +0.01 0.97/0.57
128 F 1.00 000 | 1.0I 001 | 1.00 +000 | 1.00 000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 0.99 000 | 1.00 000 | 1.00 +0.00 | 1.00 +000 | 0.88/0.07
256 F 1.00 000 | 1.00 000 | 1.00 +000 | 1.00 000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 000 | 1.00 000 | 0.50/-1.10
16D 0.98 £004 | 0.98 001 | 1.00 £000 | 0.92 £006 | 0.85+006 | 0.94 £002 | 0.69 £005 | 0.88 +0.10 | 0.88 +0.07 | 0.86 £001 | 0.90 £0.10 | 1.00/0.98
32D 1.00 £002 | 1.02 £002 | 1.00 £000 | 0.99 000 | 0.96 001 | 0.96 002 | 0.85+0.02 | 1.00 012 | 0.98 £001 | 0.90 £000 | 0.97 £006 | 1.00/0.96
50 diagonal (D) 64D 1.02 000 | 1.05 +002 | 1.00 000 | 1.00 £000 | 0.99 001 | 0.97 +001 | 0.99 001 | 1.09 +003 | 1.01 £001 | 0.94 +000 | 1.01 £004 | 1.00/0.92
128D 1.01 o001 | 1.08 001 | 1.00 £000 | 1.00 000 | 0.99 001 | 0.98 £000 | 0.98 £0.02 | 1.10 £0.03 | 1.00 £000 | 1.01 001 | 1.02 £004 | 1.00/0.84
256 D 1.01 o001 | 1.03 £001 | 1.00 £000 | 1.00 000 | 1.00 001 | 1.00 £0.00 | 0.97 =003 | 1.00 003 | 1.00 001 | 1.01 000 | 1.00 £002 | 1.00/0.68
16 F 0.99 £004 | 1.00 001 | 1.00 001 | 0.96 001 | 0.95 =002 | 0.95 001 | 0.65 =009 | 1.01 0.5 | 0.97 +002 | 0.88 001 | 0.94 011 1.00/0.98
32F 1.02 £000 | 1.00 £002 | 1.00 £000 | 1.00 000 | 0.98 001 | 0.97 000 | 0.96 001 | 1.09 003 | 1.01 £002 | 0.93 £000 | 0.99 £004 | 0.99/0.95
50 full (F) 64 F 1.02 001 | 1.06 +002 | 1.00 000 | 1.00 +000 | 0.99 +0.01 | 0.98 +000 | 1.03 001 | 1.11 000 | 1.00 £001 | 0.99 001 | 1.02 +0.04 0.97/0.89
128 F 1.02 £000 | 1.06 001 | 1.00 £000 | 1.00 000 | 1.00 001 | 0.98 £0.00 | 0.98 001 | 1.03 004 | 1.00 £001 | 1.01 £000 | 1.01 £002 | 0.88/0.72
256 F 1.00 £000 | 1.02 £000 | 1.00 £000 | 1.00 000 | 1.00 000 | 0.99 000 | 1.01 001 | 1.00+000 | 1.01 £000 | 1.01 £000 | 1.00 £001 | 0.50/0.18
16 D 0.80 +£007 | 0.89 006 | 0.93 £0.03 | 0.96 £001 | 0.51 +009 | 0.81 £0.02 | 0.30 £0.07 | 0.54 £0.11 | 0.78 +003 | 0.83 £0.02 | 0.73 £021 | 1.00/0.99
32D 0.95 +006 | 0.98 001 | 1.00 £000 | 0.91 £006 | 0.80 £0.13 | 0.91 £0.05 | 0.62 £0.10 | 0.78 +025 | 0.91 002 | 0.85 £001 | 0.87 £014 | 1.00/0.98
100 diagonal (D) 64D 1.01 003 | 1.01 £0.01 | 1.00 £0.00 | 0.98 £0.02 | 0.96 001 | 0.95 +001 | 0.90 £005 | 1.11 £007 | 0.96 £0.02 | 0.88 002 | 0.98 £0.07 | 1.00/0.96
128D 1.01 000 | 1.02 001 | 1.00 £000 | 1.00 £000 | 0.99 001 | 0.98 £000 | 1.00 £003 | 1.11 002 | 0.99 £0.01 | 0.92 £000 | 1.00 £005 | 1.00/0.92
256 D 1.00 £000 | 1.06 000 | 1.00 £000 | 1.00 000 | 0.99 000 | 0.98 £000 | 1.00 001 | 1.11 003 | 1.00 £001 | 0.99 £002 | 1.01 £004 | 1.00/0.84
16 F 0.95 001 | 0.97 003 | 0.97 £0.03 | 0.97 £003 | 0.93 +001 | 0.93 £0.01 | 0.66 £003 | 0.90 +0.16 | 0.87 002 | 0.85 £0.01 | 0.90 +0.10 1.00/0.99
32F 1.00 £002 | 0.99 £001 | 1.00 £000 | 1.00 000 | 0.97 001 | 0.96 000 | 0.87 003 | 1.12+003 | 0.96 001 | 0.89 000 | 0.98 +0.07 0.99/0.97
100 full (F) 64 F 1.02 £ 000 | 1.00 £002 | 1.00 +000 | 1.00 £000 | 0.98 £000 | 0.97 +000 | 0.99 +001 | 1.10 £001 | 0.99 £002 | 0.93 +0.01 | 1.00 +0.04 0.97/0.93
128 F 1.01 £o001 | 1.05 001 | 1.00 £000 | 0.99 000 | 1.00 000 | 0.98 000 | 1.03 001 | .10 001 | 1.01 £000 | 1.00 £000 | 1.02 £003 | 0.88/0.80
256 F 1.01 o001 | 1.03 £001 | 1.00 £000 | 1.00 000 | 1.01 000 | 1.00 £0.00 | 0.98 =000 | 1.00 +0.03 | 1.01 000 | 1.01 £000 | 1.00 +0.01 0.50/0.34
100 wiclusters (C) ‘ 16C5 ‘ 1.13 o001 ‘ 1.03 + o001 ‘ 1.00 + 0.00 ‘ 1.00 +0.00 ‘ 0.99 + o001 ‘ 0.97 +0.00 ‘ 1.01 +002 ‘ 1.22 + 002 ‘ 1.05 + o001 ‘ 1.00 + 005 ‘ 1.04 + 007 ‘ 1.00/0.95
16C7 1.12 £001 | 1.01 £001 | 1.00 £000 | 1.00 000 | 0.99 001 | 0.97 000 | 1.02 002 | 1.22 +005 | 1.03 001 | 1.01 £003 | 1.04 +007 1.00/0.93
16 D 0.57 £007 | 0.55+003 | 0.83 £004 | 0.78 £0.16 | 0.85 004 | 0.73 007 | 0.24 £0.02 | 0.45 £001 | 0.76 £006 | 0.81 £000 | 0.66 £020 | 1.00/1.00
32D 0.61 £012 | 0.55 +008 | 0.83 £0.02 | 0.84 £0.12 | 0.91 £002 | 0.75 +0.05 | 0.30 £005 | 0.49 £007 | 0.79 +004 | 0.82 +0.01 | 0.69 £020 | 1.00/1.00
500 diagonal (D) 64D 0.73 £002 | 0.63 011 | 0.89 £004 | 0.97 £ 000 | 0.94 £ 000 | 0.86 +003 | 0.46 +0.09 | 0.51 +0.07 | 0.82 +002 | 0.83 £001 | 0.77 018 | 1.00/0.99
128 D 0.84 +000 | 092 +002 | 0.97 £0.03 | 0.98 £001 | 0.94 000 | 0.90 +0.02 | 0.62 £0.14 | 0.54 +001 | 0.85 +005 | 0.83 001 | 0.84 £015 | 1.00/0.98
256D 0.99 003 | 0.99 000 | 1.00 £000 | 1.00 £000 | 0.96 000 | 0.93 £0.02 | 0.68 £005 | 0.85 014 | 0.92 +002 | 0.85£000 | 0.92 £011 | 1.00/0.97
16 F 0.57 £001 | 0.43 007 | 0.78 £0.01 | 0.97 £000 | 0.96 +000 | 0.86 +0.01 | 0.65 000 | 0.55+002 | 0.83 001 | 0.84 £0.00 | 0.76 +£0.17 1.00/1.00
32F 0.79 £005 | 0.54 004 | 0.93 £0.02 | 0.98 £000 | 0.97 £000 | 0.92 +000 | 0.70 £001 | 0.52 +000 | 0.86 +0.02 | 0.85 +0.00 | 0.81 +0.16 0.99/0.99
500 full (F) 64 F 1.02 000 | 0.96 +0.01 | 0.94 £001 | 1.00 £001 | 0.96 +000 | 0.97 £0.01 | 0.74 £001 | 0.55 001 | 0.91 +001 | 0.87 £000 | 0.89 +014 | 0.97/0.96
128 F 1.03 £ 001 | 0.97 £002 | 0.99 000 | 1.00 £000 | 0.98 £000 | 0.97 £000 | 0.88 001 | 1.07 £0.02 | 0.98 £000 | 0.90 +000 | 0.98 +0.05 0.88/0.86
256 F 1.03 +000 | 1.03 001 | 1.00 £000 | 1.00 £000 | 0.99 001 | 0.97 000 | 1.00 £002 | 1.04 +002 | 1.00 001 | 0.93 £0.00 | 1.00 003 0.50/0.47
16C7 1.09 1.00 0.99 1.00 0.98 0.96 0.72 0.88 0.98 0.93 0.95 1.00/0.98
16 C 10 1.10 1.01 1.00 0.99 0.97 0.94 0.72 1.29 1.02 0.92 1.00 1.00/0.98
500 wi/clusters (C) 16 C25 1.10 1.00 1.00 0.99 0.99 0.97 0.98 1.30 1.03 0.96 1.03 1.00/0.95
64C5 1.09 0.98 1.00 1.00 0.99 0.97 0.99 1.17 1.04 0.93 1.02 0.97/0.93
64C7 1.12 1.02 1.00 1.00 1.00 0.97 1.00 1.22 1.04 0.99 1.04 0.97/0.91
1000 w/clusters (C) | 16C25 | .09 | 098 | 1.00 | 100 | 097 | 097 | 074 | 129 | 105 | 094 | 1.00 | 1.00/0.97

Table 9: Relative In-Distribution ROUGE-1 scores for various tasks and methods

27

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Para. Saved
| | task039 | taskl90 | task280 | task290 | task391 | task442 | task620 | task1342 | taskI391 | task1598 |
base 24.44 +0.00 1.60 000 | 19.13 £000 | 39.22 000 | 10.42 +000 | 39.88 000 | 8.05 +0.00 6.96 000 | 17.82 000 | 55.03 000 | 22.43 1649 | 1.00/1.00
‘ lora ‘ 95.00 + 0.00 ‘ 86.00 = 0.00 ‘ 99.00 +0.00 ‘ 93.67 +0.00 ‘ 94.33 +0.00 ‘ 78.43 +0.00 ‘ 74.90 + 0.00 ‘ 26.87 +0.00 ‘ 95.00 +0.00 ‘ 68.66 + 0.00 ‘ 81.14 + 2067 ‘ 0.00/0.00
10 76.50 £000 | 49.00 £1.73 | 44.33 £404 | 9.80 o058 78.56 £096 | 40.44 £000 | 53.10 £067 | 1548 x012 | 77.67 £ 115 | 54.89 £006 | 49.98 +£2333 | 1.00/1.00
50 55.80 000 | 35.00 =000 | 18.00 £520 | 2.42+050 | 85.78 096 | 26.75 +000 | 49.96 £000 | 16.73 000 | 30.00 £3.46 | 53.87 002 | 37.43 £2349 | 1.00/1.00
TIES 100 52.43 £000 | 34.00 000 | 19.67 £462 1.09 + 166 83.33 £000 | 28.57 £000 | 48.89 +000 | 15.18 x042 | 1.00 £000 | 53.44 £o002 | 33.76 +2522 | 1.00/1.00
500 35.18 000 | 22.00 =000 | 1.00 000 | 0.00 £000 | 78.00 £000 | 24.32+000 | 43.80 004 | 996 +013 | 1.00£000 | 27.90 +003 | 24.40 +2379 | 1.00/1.00
SVD 2 93.15 £277 | 92.24 +185 | 99.09 £018 | 93.44 £014 | 93.89 £035 | 77.33 029 | 7540 £1.01 | 26.90 £268 | 95.06 £135 | 67.71 +049 | 81.33 £2085 | 0.88/0.88
SVD SVD 4 94.01 £360 | 89.21 £071 | 99.05 009 | 93.65 £0.03 | 94.66 £063 | 78.42+023 | 74.09 £1.12 | 26.47 £206 | 93.98 £077 | 69.37 021 | 81.22 +2080 | 0.75/0.75
SVD 8 95.00 £000 | 87.40 059 | 99.05 £009 | 93.65 +003 | 94.36 +038 | 78.21 +£003 | 75.57 £000 | 26.88 £027 | 95.51 £1.09 | 69.33 + 008 | 83.02 £1987 | 0.50/0.50
SVD 16 95.00 £0.00 | 86.00 £000 | 99.00 £000 | 93.67 o000 | 94.33 o000 | 78.44 003 | 7473 o018 | 26.87 £000 | 95.00 £ 000 | 68.62 +004 | 80.76 +2105 | 0.00/0.00
16D 96.67 £0.58 | 87.00 =100 | 99.00 000 | 94.00 067 | 93.11 £038 | 76.08 +017 | 77.26 £1.47 | 30.15 £072 | 94.00 £1.73 | 68.25 +0.1s | 81.55 £2003 | 1.00/0.90
32D 95.67 058 | 90.00 =100 | 99.00 £000 | 93.00 £033 | 94.89 £o51 | 77.46 £024 | 7253 £1.00 | 27.98 £ 071 | 94.67 058 | 69.16 041 | 81.44 12080 | 1.00/0.80
10 diagonal (D) 64D 95.00 000 | 88.33 058 | 99.00 +000 | 93.67 000 | 94.78 +o038 | 78.28 £0.07 | 75.47 058 | 26.53 +025 | 96.00 +0.00 | 69.36 +005 | 81.64 +21.06 | 1.00/0.60
128D 95.00 £0.00 | 86.67 £058 | 99.00 £000 | 93.67 000 | 94.33 o000 | 78.45 016 | 75.46 o051 | 26.64 £023 | 95.00 £000 | 68.70 014 | 81.29 +2092 | 1.00/0.20
256D 95.00 £000 | 86.00 000 | 99.00 000 | 93.67 000 | 94.33 £o000 | 78.43 000 | 74.90 £000 | 26.87 £000 | 95.00 +000 | 68.59 +003 | 81.18 +£2086 | 1.00/-0.60
16 F 97.00 £000 | 91.00 100 | 99.00 £000 | 93.56 £019 | 93.56 £069 | 77.64 £025 | 75.78 £125 | 28.71 £009 | 96.00 £1.00 | 68.69 +008 | 82.09 + 2068 1.00/0.90
32F 96.67 058 | 89.33 058 | 99.00 000 | 93.22 +019 | 94.44 +o019 | 77.84 021 | 7224 £059 | 26.84 £o050 | 94.67 058 | 69.55 008 | 81.38 £21.11 0.99/0.79
10 full (F) 64 F 95.00 +0.00 | 88.67 +058 | 99.00 +0.00 | 93.67 +000 | 94.56 +038 | 78.19 +0.08 | 7597 +058 | 26.43 £034 | 96.00 +000 | 69.38 +0.11 | 81.69 +21.07 0.97/0.57
128 F 95.00 £000 | 86.67 058 | 99.00 000 | 93.67 000 | 94.33 000 | 78.46 003 | 74.90 £000 | 26.72 +0.13 | 95.00 000 | 68.65 +003 | 81.24 +2091 0.88/0.07
256 F 95.00 £000 | 86.00 +0.00 | 99.00 £000 | 93.67 000 | 9433 +o000 | 78.44 £003 | 74.79 019 | 26.87 +0.00 | 95.00 £000 | 68.64 +003 | 81.17 +2086 | 0.50/-1.10
16D 92.76 £353 | 84.67 115 | 99.00 000 | 86.17 +581 | 79.83 608 | 73.55+139 | 51.72 378 | 23.75 266 | 83.90 £643 | 59.05 +094 | 73.44 £ 2208 | 1.00/0.98
32D 95.33 £208 | 87.33 208 | 99.00 000 | 92.60 £029 | 90.35 +100 | 7543 +£133 | 63.84 £1.64 | 26.97 £321 | 93.33 £1.15 | 61.94 +032 | 78.61 £2160 | 1.00/0.96
50 diagonal (D) 64D 97.00 £000 | 90.33 153 | 99.00 +000 | 93.78 £0.19 93.00 £058 | 76.27 £049 | 74.39 £090 | 29.28 +081 | 95.67 £058 | 64.84 +027 | 81.36 +2083 1.00/0.92
128D 96.33 £058 | 92.67 058 | 99.00 £000 | 93.56 £0.19 | 93.00 £058 | 77.24 £019 | 73.76 £125 | 29.58 £093 | 95.00 £0.00 | 69.04 £ 054 | 81.92 £2044 | 1.00/0.84
256D 95.67 058 | 88.33 058 | 99.00 £000 | 93.56 +0.19 | 94.67 067 | 78.45 +0.14 | 72.86 £207 | 27.00 £077 | 95.33 £0s8 | 69.61 o018 | 81.45 £2100 | 1.00/0.68
16 F 94.06 £354 | 85.67 115 | 98.67 xo0s8 | 90.35+137 | 89.97 £ 178 | 74.46 £ 058 | 49.03 £7.07 | 27.14 £394 | 92.33 +153 | 60.26 +1.03 | 76.19 + 2280 1.00/0.98
32F 97.00 £000 | 85.67 153 | 99.00 £0.00 | 93.67 +000 | 92.22 £069 | 75.86 +022 | 71.68 065 | 29.26 070 | 95.67 +153 | 63.88 +0.10 | 80.39 £ 2081 0.99/0.95
50 full (F) 64 F 96.67 £058 | 91.00 £200 | 99.00 +000 | 93.56 019 | 93.22+051 | 77.17 +038 | 77.11 £o051 | 29.75 003 | 9533 + 058 | 68.13 075 | 82.09 +2033 0.97/0.89
128F 97.00 £000 | 91.00 £1.00 | 99.00 000 | 93.33 000 | 94.11 £051 | 77.23 £017 | 73.67 058 | 27.62 £1.12 | 95.00 £ 100 | 69.40 +0.16 | 81.74 £2097 | 0.88/0.72
256 F 95.00 £000 | 88.00 000 | 99.00 000 | 93.67 000 | 94.44 £o019 | 77.97 024 | 7547 058 | 26.96 £0.09 | 96.00 +0.00 | 69.28 +005 | 81.58 +2092 | 0.50/0.18
16D 76.43 £707 | 76.67 £493 | 91.61 £275 | 89.99 +107 | 47.89 £862 | 63.17 131 | 2223 £527 | 14.46 £289 | 73.93 £3.13 | 57.17 £ 105 | 61.35 £2578 | 1.00/0.99
32D 90.10 £585 | 84.00 =100 | 99.00 000 | 85.52 +534 | 7588 +1257 | 71.15 +361 | 46.10 £739 | 21.04 £676 | 86.67 + 186 | 58.64 + 102 | 71.81 £2339 | 1.00/0.98
100 diagonal (D) 64D 95.56 £249 | 86.67 058 | 99.00 000 | 92.24 +168 | 90.89 £ 1.17 | 74.57 050 | 67.07 +381 | 29.78 +192 | 91.67 +231 | 60.28 +1.51 | 78.77 2077 | 1.00/0.96
128D 96.00 000 | 87.33 £ 115 | 99.00 000 | 93.89 +0.19 | 93.00 +058 | 76.68 +0.18 | 74.84 £223 | 29.79 £050 | 93.67 058 | 63.49 +034 | 80.77 £2047 | 1.00/0.92
256D 95.00 £000 | 91.00 000 | 99.00 000 | 93.56 £019 | 93.11 £019 | 76.93 +023 | 75.13 £084 | 29.75 £073 | 95.33 £058 | 67.89 134 | 81.67 £2028 | 1.00/0.84
16 F 90.70 £1.07 | 83.00 =265 | 96.00 £300 | 91.22 +294 | 87.94 +o054 | 73.07 £093 | 49.41 £204 | 24.17 422 | 8233 £208 | 58.18 £ 044 | 73.60 £ 2223 1.00/0.99
32F 95.33 £1.53 | 85.00 £1.00 | 99.00 000 | 93.50 £022 | 91.44 £os84 | 75.00 £ 019 | 65.09 223 | 30.20 £081 | 91.67 058 | 60.92 +026 | 78.72 £2072 | 0.99/0.97
100 full (F) 64 F 97.00 £0.00 | 85.67 +1.53 | 99.00 000 | 93.78 £0.19 | 92.56 +0.19 | 76.01 £0.13 | 73.96 +089 | 29.46 +021 | 94.33 153 | 64.07 +037 | 80.58 +20.59 0.97/0.93
128 F 96.33 £058 | 90.33 058 | 99.00 £000 | 93.00 000 | 93.89 £019 | 77.04 030 | 77.33 £101 | 29.49 £035 | 96.00 £0.00 | 68.76 +025 | 82.12 £2035 | 0.88/0.80
256 F 96.33 £058 | 88.67 £058 | 99.00 £000 | 93.67 000 | 94.89 £o19 | 78.16 £ 018 | 73.40 o012 | 26.86 068 | 96.00 £ 000 | 69.47 +023 | 81.64 +2115 | 0.50/0.34
100 wiclusters (C) ‘ 16C5 ‘ 98.33 + 047 ‘ 89.00 + 052 ‘ 99.00 + 0.00 ‘ 93.25 + 040 ‘ 92.89 + 0.7 ‘ 76.33 + 028 ‘ 78.24 +226 ‘ 28.45 + 040 ‘ 96.67 + 047 ‘ 75.93 +831 ‘ 82.81 + 2002 ‘ 1.00/0.95
16C7 97.67 £047 | 87.00 082 | 99.00 £000 | 93.46 +029 | 93.11 £068 | 76.55+029 | 79.03 £205 | 28.62 £129 | 95.33 +£047 | 76.55 £691 | 82.63 +£19.76 1.00/0.93
16D 54.44 £687 | 47.00 £283 | 82.21 £359 | 73.38 £ 1497 | 80.13 +368 | 57.42 +529 | 1833 £133 | 12.19 £030 | 72.67 +6.03 | 55.79 +020 | 55.64 £2425 | 1.00/1.00
32D 58.08 £1152 | 47.00 £7.07 | 82.06 £ 169 | 78.62 +1123 | 85.57 148 | 59.19 £370 | 22.76 £395 | 13.15 194 | 75.33 £404 | 56.07 £ 052 | 58.16 +2456 | 1.00/1.00
500 diagonal (D) 64D 69.21 £203 | 54.50 £9.19 | 88.33 +404 | 91.11 +038 | 88.78 +038 | 67.71 +259 | 34.79 +686 | 13.80 =195 | 77.67 +231 | 56.78 073 | 64.61 +2479 | 1.00/0.99
128D 79.77 £037 | 79.50 212 | 95.89 £283 | 91.89 +139 | 88.67 +000 | 70.27 173 | 46.64 £1058 | 14.63 £025 | 81.00 £500 | 56.88 +055 | 70.20 £2463 | 1.00/0.98
256D 93.83 £252 | 85.00 000 | 99.00 000 | 93.78 £0.19 | 90.56 +038 | 7325 +186 | 51.14 £386 | 22.93 £386 | 87.33 £231 | 58.48 020 | 75.20 £2390 | 1.00/0.97
16 F 54.30 £1.13 | 37.00 £566 | 77.67 058 | 91.00 000 | 90.56 £0.19 | 67.63 +045 | 48.81 £035 | 14.70 065 | 79.00 £ 1.00 | 57.66 +0.19 | 62.69 +2346 1.00/1.00
32F 75.10 £492 | 46.50 £354 | 91.67 £1.53 | 91.56 019 | 91.56 038 | 72.03 o015 | 52.63 +0s6 | 13.93 £002 | 81.67 +153 | 58.50 020 | 68.24 £2429 | 0.99/0.99
500 full (F) 64 F 96.94 +042 | 82.50 +071 | 93.33 058 | 93.89 +0.69 90.67 £0.00 | 75.99 +064 | 55.63 +1.07 | 14.74 +027 | 86.33 £0.58 | 59.43 +005 | 74.69 + 2501 0.97/0.96
128 F 97.67 058 | 83.50 £212 | 98.00 £000 | 93.56 019 | 92.00 000 | 75.80 016 | 66.19 £os1 | 28.67 £049 | 93.00 £ 000 | 61.53 013 | 78.84 +2150 | 0.88/0.86
256 F 98.00 £000 | 88.50 071 | 99.00 000 | 93.78 £0.19 | 93.00 £o0s88 | 76.33 029 | 74.60 £121 | 27.82 +042 | 9533 o058 | 63.70 014 | 80.75 £2160 | 0.50/0.47
16C7 95.00 86.00 98.00 93.67 91.67 75.10 55.52 20.50 90.00 63.57 76.90 1.00/0.98
16C10 96.00 87.00 99.00 93.00 91.33 74.17 55.14 30.29 94.00 63.09 78.30 1.00/0.98
500 w/clusters (C) 16 C25 96.00 86.00 99.00 92.71 93.00 76.42 75.42 30.40 95.00 66.07 81.00 1.00/0.95
64C5 95.00 84.00 99.00 93.67 92.67 76.45 76.43 27.49 96.00 64.10 80.48 0.97/0.93
64C7 98.00 88.00 99.00 94.00 93.33 76.42 76.67 28.48 96.00 68.00 81.79 0.97/0.91
1000 w/clusters (C) | 16C25 | 9500 | 8400 | 99.00 | 93.67 | 9067 | 7643 | 56.71 | 3020 | 9700 | 6461 | 7873 | 1.00/0.97

Table 10: Absolute In-Distribution ROUGE-1 scores for various tasks and methods

28

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Para. Saved
| | task039 | taskl190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 | |
base 0.00 £0.00 | 0.00 =000 | 0.02 £000 | 0.00 £0.00 | 0.00 =0.00 | 0.00 +0.00 | 0.00 =000 | 0.00 000 | 0.00 £000 | 0.00 £000 | 0.00 001 | 1.00/1.00
lora 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 +0.00 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 0.00/0.00
10 0.69 £000 | 0.57 002 | 0.45 £0.04 | 0.10 £001 | 0.57 +003 | 0.00 000 | 0.39 £0.01 | 0.21 £000 | 0.82 +001 | 0.00 000 | 0.38 £028 | 1.00/1.00
50 0.45 +000 | 0.41 000 | 0.18 £0.05 | 0.03 £001 | 0.70 +002 | 0.00 000 | 0.36 000 | 0.21 £000 | 0.32 +004 | 0.00 £0.00 | 0.27 £022 | 1.00/1.00
TIES 100 0.41 000 | 0.40 000 | 0.20 £0.05 | 0.01 £002 | 0.65 000 | 0.00 000 | 0.36 000 | 0.21 £000 | 0.01 000 | 0.00 £0.00 | 0.23 £022 | 1.00/1.00
500 0.22 £000 | 0.26 =000 | 0.01 £0.00 | 0.00 £000 | 0.60 000 | 0.00 000 | 0.32 £000 | 0.07 £000 | 0.01 £000 | 0.00 £0.00 | 0.15 £020 | 1.00/1.00
SVD 2 0.98 £003 | 1.07 £002 | 1.00 £000 | 0.99 001 | 0.98 001 | 0.98 +003 | 0.94 +001 | 1.03 £017 | 1.00 £001 | 0.15+£029 | 0.91 028 | 0.88/0.88
SVD SVD 4 0.99 £004 | 1.04 £001 | 1.00 £000 | 1.00 £000 | 1.01 002 | L.I1 +000 | 0.97 £0.02 | 0.99 +0.13 | 0.99 £001 | 0.90 £017 | 1.00 008 | 0.75/0.75
SVD 8 1.00 £0.00 | 1.02 001 | 1.00 +000 | 1.00 000 | 1.00 £001 | 1.02 +£005 | 1.00 000 | 1.00 000 | 1.01 £001 | 1.00 +000 | 1.00 +0.02 | 0.50/0.50
SVD 16 1.00 +0.00 | 1.00 £000 | 1.00 +000 | 1.00 +0.00 | 1.00 £000 | 1.00 £000 | 0.99 001 | 1.00 £0.00 | 1.00 £000 | 1.00 000 | 1.00 +0.00 | 0.00/0.00
16D 1.02 +o001 | 1.01 £001 | 1.00 £000 | 1.01 002 | 0.96 001 | 1.I1 011 | 0.89 003 | 1.19 004 | 0.99 £002 | 0.33 £058 | 0.95£027 | 1.00/0.90
32D 1.01 o001 | 1.05 001 | 1.00 £000 | 0.98 001 | 1.02 =002 | 1.11 000 | 0.93 001 | 1.10 004 | 1.00 £001 | 0.67 £058 | 0.98 £019 | 1.00/0.80
10 diagonal (D) 64D 1.00 000 | 1.03 +001 | 1.00 000 | 1.00 £000 | 1.02 +001 | 1.11 000 | 0.99 +0.01 | 1.00 +000 | 1.01 £000 | 0.67 058 | 0.98 +0.19 | 1.00/0.60
128D 1.00 £000 | 1.01 001 | 1.00 £000 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 001 | 1.00+000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00/0.20
256 D 1.00 000 | 1.00 000 | 1.00 +000 | 1.00 000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 £000 | 1.00 000 | 1.00 £0.00 | 1.00 +0.00 | 1.00/-0.60
16 F 1.02 £000 | 1.06 001 | 1.00 £000 | 1.00 001 | 0.97 003 | 1.15 +006 | 0.92 002 | 1.17 004 | 1.0l £001 | 0.67 £058 | 1.00 £020 | 1.00/0.90
32F 1.02 £o001 | 1.04 001 | 1.00 £000 | 0.98 001 | 1.00 001 | 1.11 000 | 0.92 001 | 1.02+004 | 1.00 £001 | 1.00 £000 | 1.01 £005 | 0.99/0.79
10 full (F) 64 F 1.00 000 | 1.03 +001 | 1.00 £000 | 1.00 +000 | 1.01 £0.01 | 1.07 +006 | 1.01 £001 | 1.00 000 | 1.01 £000 | 1.00 000 | 1.01 +0.03 0.97/0.57
128 F 1.00 000 | 1.01 001 | 1.00 +000 | 1.00 000 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 +0.00 | 1.00 +000 | 0.88/0.07
256 F 1.00 000 | 1.00 000 | 1.00 +000 | 1.00 000 | 1.00 £000 | 1.00 £000 | 1.00 001 | 1.00 £000 | 1.00 £000 | 1.00 000 | 1.00 000 | 0.50/-1.10
16D 0.91 £006 | 0.98 001 | 1.00 000 | 0.91 009 | 0.78 0.05 | 0.89 029 | 0.34 +0.06 | 0.50 +045 | 0.86 £007 | 0.00 £000 | 0.72 035 | 1.00/0.98
32D 1.00 £002 | 1.02 £002 | 1.00 £000 | 1.00 001 | 0.90 003 | 0.85 042 | 0.56 +0.04 | 0.98 +023 | 0.98 £001 | 0.00 £000 | 0.83 £034 | 1.00/0.96
50 diagonal (D) 64D 1.02 000 | 1.05 +002 | 1.00 000 | 1.00 £001 | 0.95 +002 | 1.15+017 | 0.81 £0.03 | 1.14 +000 | 1.01 £001 | 0.00 000 | 0.91 +033 | 1.00/0.92
128D 1.01 £o001 | 1.08 o001 | 1.00 £000 | 1.00 001 | 0.95 =002 | 1.04 006 | 0.92 003 | 1.21 007 | 1.00 £000 | 0.67 £058 | 0.99 £020 | 1.00/0.84
256 D 1.01 o001 | 1.03 £001 | 1.00 £000 | 1.00 001 | 1.01 £002 | 1.11 000 | 0.95 004 | 1.02 +0.04 | 1.00 001 | 1.00 000 | 1.01 £004 | 1.00/0.68
16 F 0.96 £005 | 1.00 001 | 1.00 001 | 0.95 +004 | 0.87 001 | 1.04 006 | 0.31 008 | 0.98 +023 | 0.97 £002 | 0.00 000 | 0.81 £035 1.00/0.98
32F 1.02 £000 | 1.00 £002 | 1.00 £000 | 1.00 000 | 0.92 003 | 1.15+006 | 0.73 £0.04 | 1.17 004 | 1.01 £002 | 0.00 £000 | 0.90 £033 | 0.99/0.95
50 full (F) 64 F 1.02 001 | 1.06 +002 | 1.00 000 | 1.00 +001 | 0.96 002 | 1.22 +000 | 0.94 001 | 1.17 004 | 1.00 £001 | 0.00 000 | 0.94 +033 0.97/0.89
128 F 1.02 £000 | 1.06 001 | 1.00 £000 | 0.99 000 | 0.99 002 | 1.15 +006 | 0.92 001 | 1.10 008 | 1.00 £001 | 1.00 £000 | 1.02 £007 | 0.88/0.72
256 F 1.00 £000 | 1.02 £000 | 1.00 £000 | 1.00 000 | 1.00 001 | 1.04 006 | 0.99 000 | 1.00 +000 | 1.01 £000 | 1.00 £000 | 1.01 £002 | 0.50/0.18
16 D 0.54 £016 | 0.89 006 | 0.90 £0.04 | 0.89 £005 | 0.42 008 | 0.44 £000 | 0.08 £0.02 | 0.00 £000 | 0.76 005 | 0.00 000 | 0.49 £036 | 1.00/0.99
32D 0.85 +015 | 0.98 001 | 1.00 £000 | 0.86+013 | 0.70 +0.14 | 0.74 £ 028 | 0.28 £007 | 0.48 +055 | 0.91 +0.02 | 0.00 £000 | 0.68 £036 | 1.00/0.98
100 diagonal (D) 64D 1.00 004 | 1.01 £0.01 | 1.00 £0.00 | 0.98 £0.02 | 0.88 £0.04 | 1.07 +006 | 0.58 £0.09 | 1.10 £004 | 0.96 £0.02 | 0.00 000 | 0.86 +032 | 1.00/0.96
128D 1.01 000 | 1.02 001 | 1.00 £000 | 1.01 £001 | 0.95 002 | 1.11 £000 | 0.81 £006 | 1.21 000 | 0.99 £0.01 | 0.00 £000 | 0.91 +033 | 1.00/0.92
256 D 1.00 £000 | 1.06 000 | 1.00 £000 | 1.00 001 | 0.96 001 | 1.I1 011 | 0.92 002 | 1.21 007 | 1.00 £001 | 0.00 £000 | 0.93 £033 | 1.00/0.84
16 F 0.85 +003 | 0.97 003 | 0.97 £0.03 | 0.95 £006 | 0.80 +002 | 0.81 £0.17 | 0.29 £0.04 | 0.60 +034 | 0.87 002 | 0.00 £0.00 | 0.71 £033 1.00/0.99
32F 0.99 £002 | 0.99 001 | 1.00 000 | 1.00 001 | 0.90 £0.03 | 1.04 006 | 0.55 =004 | 1.07 £007 | 0.96 £001 | 0.00 £000 | 0.85 +032 0.99/0.97
100 full (F) 64 F 1.02 000 | 1.00 +002 | 1.00 000 | 1.00 +001 | 0.94 +0.01 | 1.04 +006 | 0.78 001 | 1.14 000 | 0.99 +002 | 0.00 000 | 0.89 +031 0.97/0.93
128 F 1.01 £o001 | 1.05 001 | 1.00 £000 | 0.98 000 | 0.98 001 | 1.15+006 | 0.94 001 | 1.21 000 | 1.01 £000 | 0.33 £058 | 0.97 028 | 0.88/0.80
256 F 1.01 £o001 | 1.03 £001 | 1.00 £000 | 1.00 000 | 1.02 001 | 1.19 006 | 0.93 001 | 1.02+004 | 1.01 £000 | 1.00 £000 | 1.02 £006 | 0.50/0.34
100 wiclusters (C) ‘ 16C5 ‘ 1.13 o001 ‘ 1.03 + o001 ‘ 1.00 + 0.00 ‘ 1.00 + o001 ‘ 0.97 + 003 ‘ 1.24 +009 ‘ 0.88 +0.06 ‘ 1.42 + 007 ‘ 1.05 + o001 ‘ 0.65 + 046 ‘ 1.04 +0.19 ‘ 1.00/0.95
16C7 1.12 +001 | 1.01 £001 | 1.00 £000 | 1.00 000 | 0.98 £003 | 1.16 0.1 | 0.92 005 | 1.45 004 | 1.03 001 | 0.69 £049 | 1.04 0.8 1.00/0.93
16 D 0.22 £0.10 | 0.55+003 | 0.81 £005 | 0.33 £049 | 0.70 003 | 0.15 +0.17 | 0.03 001 | 0.00 +000 | 0.76 £006 | 0.00 £000 | 0.35+£035 | 1.00/1.00
32D 0.27 +018 | 0.55 008 | 0.82 +£0.02 | 049 £037 | 0.75 +001 | 0.22 +0.11 | 0.05 £005 | 0.02 £004 | 0.79 £ 004 | 0.00 £0.00 | 0.39 £034 | 1.00/1.00
500 diagonal (D) 64D 0.40 £004 | 0.63 011 | 0.89 £004 | 0.91 £001 | 0.80 001 | 0.48 +006 | 0.13 +0.04 | 0.05+008 | 0.82 +£002 | 0.00 £000 | 0.51 £035 | 1.00/0.99
128 D 0.61 £004 | 092 +002 | 0.97 £0.03 | 0.93 £005 | 0.80 +000 | 0.74 £0.17 | 0.22 £0.11 | 0.12 +008 | 0.85 +0.05 | 0.00 £000 | 0.61 £036 | 1.00/0.98
256D 0.95 +002 | 0.99 000 | 1.00 £000 | 1.00 £001 | 0.86 001 | 0.85 +028 | 0.28 £006 | 0.55 +039 | 0.92 +0.02 | 0.00 000 | 0.73 £036 | 1.00/0.97
16 F 0.21 +002 | 0.43 007 | 0.78 £0.01 | 0.90 £000 | 0.86 001 | 0.59 +0.06 | 0.21 £001 | 0.12 +004 | 0.83 001 | 0.00 £0.00 | 0.50 +034 1.00/1.00
32F 0.54 +008 | 0.54 004 | 0.93 £0.02 | 0.92 £001 | 0.90 +001 | 0.63 £0.13 | 0.26 £002 | 0.14 000 | 0.86 +0.02 | 0.00 £000 | 0.57 £034 | 0.99/0.99
500 full (F) 64 F 0.99 +003 | 0.96 001 | 0.94 £0.01 | 1.01 £003 | 0.87 +000 | 1.04 £0.17 | 0.36 £000 | 0.14 £000 | 0.91 001 | 0.00 £0.00 | 0.71 £039 0.97/0.96
128 F 1.02 £ 001 | 0.97 £002 | 0.99 000 | 1.00 £0.01 | 0.92 £000 | 1.15 +006 | 0.61 001 | 1.07 000 | 0.98 £000 | 0.00 +000 | 0.87 +033 0.88/0.86
256 F 1.03 +000 | 1.03 001 | 1.00 £000 | 1.00 £001 | 0.95 +0.03 | 1.00 £000 | 0.78 £001 | 1.07 000 | 1.00 £0.01 | 0.00 £000 | 0.88 +031 0.50/0.47
16C7 1.08 1.00 0.99 1.00 0.92 1.01 0.39 0.62 0.98 0.00 0.80 1.00/0.98
16 C 10 1.10 1.01 1.00 0.98 0.91 1.01 0.37 1.51 1.02 0.00 0.89 1.00/0.98
500 wi/clusters (C) 16 C25 1.10 1.00 1.00 0.99 0.97 1.12 0.81 1.42 1.03 0.00 0.95 1.00/0.95
64C5 1.09 0.98 1.00 1.00 0.96 1.12 0.83 1.33 1.04 0.00 0.94 0.97/0.93
64C7 1.13 1.02 1.00 1.01 0.98 1.12 0.90 1.42 1.04 0.00 0.96 0.97/0.91
1000 w/clusters (C) | 16C25 | .09 | 098 | 1.00 | 100 | 089 | 1.01 | 039 | 142 | 105 | 000 | 08 | 100097

Table 11: Relative In-Distribution exact match scores for various tasks and methods

29

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Para. Saved
| | task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 | |
base 8.59 +0.08 | 9.15+£000 | 2.55+000 | 2.88 £0.00 | 2.34 £0.00 | 3.46 £004 | 6.40 018 | 5.55 +000 | 8.60 £000 | 2.67 +000 | 5.19 +265 | 1.00/1.00
lora 0.36 +001 | 0.17 000 | 0.01 £0.00 | 0.12 £000 | 0.11 000 | 0.76 002 | 1.17 £0.07 | 1.94 £000 | 0.16 +000 | 0.85 +0.00 | 0.57 £059 | 0.00/0.00
SVD 2 0.32 £001 | 0.15 000 | 0.01 £000 | 0.12 +000 | 0.10 000 | 0.76 +0.02 | 1.13 008 | 1.94 +000 | 0.13 £000 | 0.97 £000 | 0.57 060 | 0.88/0.88
SVD SVD 4 0.33 £001 | 0.16 000 | 0.01 £000 | 0.12 +000 | 0.11 000 | 0.76 £0.02 | 1.14 008 | 1.94 +000 | 0.14 £000 | 0.86 £000 | 0.56 059 | 0.75/0.75
SVD 8 0.35 £001 | 0.17 000 | 0.01 £000 | 0.12 +000 | 0.11 000 | 0.77 002 | 1.16 £0.07 | 1.94 £000 | 0.15 000 | 0.84 £000 | 0.51 058 | 0.50/0.50
SVD 16 0.36 £001 | 0.17 000 | 0.01 £000 | 0.12 +000 | 0.11 000 | 0.76 +0.02 | 1.14 006 | 1.94 £000 | 0.16 000 | 0.85£000 | 0.56 059 | 0.00/0.00
16 D 0.33 £001 | 0.15 +001 | 0.01 000 | 0.12 £000 | 0.10 +000 | 0.76 +0.03 | 1.13 £008 | 1.95 +001 | 0.14 £ 000 | 1.00 002 | 0.57 £061 | 1.00/0.90
32D 0.33 £001 | 0.16 000 | 0.01 £0.00 | 0.12 £000 | 0.10 £000 | 0.75 £ 002 | 1.11 £007 | 1.93 £000 | 0.14 001 | 0.88 +0.00 | 0.55 £060 | 1.00/0.80
10 diagonal (D) 64D 0.35 +001 | 0.17 £0.00 | 0.01 £000 | 0.12 +000 | 0.11 000 | 0.75 £0.02 | 1.11 £0.07 | 1.94 +000 | 0.15 £0.00 | 0.84 000 | 0.55 059 | 1.00/0.60
128D 0.35 £001 | 0.17 000 | 0.01 £000 | 0.12 +000 | 0.11 000 | 0.75 002 | 1.11 007 | 1.94 000 | 0.16 000 | 0.84 £000 | 0.56 £059 | 1.00/0.20
256 D 0.36 £001 | 0.17 000 | 0.01 £000 | 0.12 +000 | 0.11 000 | 0.75 002 | 1.12+0.07 | 1.94 000 | 0.16 000 | 0.85 £000 | 0.56 +059 | 1.00/-0.60
16 F 0.33 £000 | 0.15 +000 | 0.01 £0.00 | 0.12 £000 | 0.10 £000 | 0.76 +0.02 | 1.20 £0.02 | 1.95 +000 | 0.13 000 | 0.97 £0.00 | 0.57 £ 0561 1.00/0.90
32F 0.33 +001 | 0.16 =000 | 0.01 000 | 0.12+000 | 0.10 £000 | 0.75 002 | 1.11 £007 | 1.94 000 | 0.14 000 | 0.86 £0.00 | 0.55 +060 | 0.99/0.79
10 full (F) 64 F 0.34 001 | 0.16 000 | 0.01 000 | 0.12 4000 | 0.11 000 | 0.75 +002 | 1.11 £007 | 1.94 000 | 0.15 +000 | 0.84 £000 | 0.55 +059 0.97/0.57
128 F 0.35 £001 | 0.17 000 | 0.01 £000 | 0.12 +000 | 0.11 000 | 0.75 002 | 1.12+007 | 1.94 000 | 0.16 000 | 0.84 £000 | 0.56 059 | 0.88/0.07
256 F 0.36 £001 | 0.17 000 | 0.01 £0.00 | 0.12 £000 | 0.11 £000 | 0.75 002 | 1.12 £007 | 1.94 000 | 0.16 +0.00 | 0.85 £0.00 | 0.56 £059 | 0.50/-1.10
16D 0.61 £006 | 0.19 002 | 0.03 £0.01 | 0.29 £004 | 0.36 004 | 0.95 +005 | 1.73 o021 | 2.66 +022 | 0.32 +0.11 | 1.98 £001 | 0.91 +oss | 1.00/0.98
32D 0.37 £002 | 0.16 000 | 0.01 £0.00 | 0.19 £003 | 0.18 +001 | 0.85 £ 005 | 1.37 £0.14 | 2.12 £005 | 0.16 +000 | 1.65 +0.03 | 0.71 £073 | 1.00/0.96
50 diagonal (D) 64D 0.33 £002 | 0.15 +000 | 0.01 £0.00 | 0.12 £000 | 0.10 £000 | 0.79 +0.02 | 1.12 £008 | 1.97 £001 | 0.13 +001 | 1.13 £ 003 | 0.59 £063 | 1.00/0.92
128D 0.33 £001 | 0.15 000 | 0.01 £0.00 | 0.12 £000 | 0.10 £000 | 0.76 +0.03 | 1.10 £0.05 | 1.93 £001 | 0.14 £ 000 | 0.93 001 | 0.56 £060 | 1.00/0.84
256D 0.34 £001 | 0.16 =000 | 0.01 000 | 0.12 000 | 0.10 £000 | 0.76 003 | 1.11 £005 | 1.93 £000 | 0.15 +000 | 0.85 £000 | 0.55 +059 | 1.00/0.68
16 F 0.47 £006 | 0.17 000 | 0.02 £0.00 | 0.20 £002 | 0.19 £ 004 | 0.86 +0.03 | 1.71 £0.10 | 2.20 +004 | 0.17 001 | 1.84 £0.07 | 0.78 £0380 1.00/0.98
32F 0.36 £002 | 0.16 =000 | 0.01 £0.00 | 0.14 £000 | 0.11 000 | 0.80 £0.03 | 1.14 £008 | 2.00 £001 | 0.14 000 | 1.32 £0.02 | 0.62 065 0.99/0.95
50 full (F) 64 F 0.33 +001 | 0.15+000 | 0.01 £000 | 0.12 £000 | 0.10 000 | 0.77 £0.03 | 1.10 006 | 1.94 +0.00 | 0.13 000 | 1.02 +0.00 | 0.57 +0.61 0.97/0.89
128 F 0.33 +001 | 0.16 =000 | 0.00 £0.00 | 0.12 000 | 0.10 £000 | 0.76 003 | 1.11 £005 | 1.93 +000 | 0.14 000 | 0.87 £0.00 | 0.55 +060 | 0.88/0.72
256 F 0.35 £001 | 0.16 000 | 0.01 £000 | 0.12 +000 | 0.11 0.00 | 0.76 +0.03 | 1.11 005 | 1.94 +000 | 0.15 000 | 0.84 £000 | 0.55 059 0.50/0.18
16 D 1.69 049 | 0.26 004 | 0.18 £0.07 | 0.34 £002 | 1.01 £020 | 1.45 £010 | 3.59 £025 | 3.72 072 | 0.44 £020 | 2.37 009 | 1.51 £132 | 1.00/0.99
32D 0.67 +024 | 0.18 001 | 0.06 £0.05 | 0.31 £006 | 0.35+008 | 1.04 £ 015 | 1.97 £013 | 2.88 +070 | 0.22 + 001 | 2.12 £007 | 0.98 £098 | 1.00/0.98
100 diagonal (D) 64D 0.39 006 | 0.16 +0.00 | 0.01 £0.00 | 0.18 £002 | 0.14 001 | 0.86 £0.02 | 1.39 +007 | 2.18 004 | 0.17 £000 | 1.79 +0.02 | 0.73 £076 | 1.00/0.96
128D 0.32 000 | 0.15 +000 | 0.01 £0.00 | 0.12 £000 | 0.10 £000 | 0.79 +0.02 | 1.19 £0.02 | 2.00 £001 | 0.14 +001 | 1.24 £ 004 | 0.61 £065 | 1.00/0.92
256D 0.32 000 | 0.15 +000 | 0.01 £0.00 | 0.12 £000 | 0.10 +000 | 0.77 +0.02 | 1.16 000 | 1.94 £000 | 0.13 000 | 0.96 +0.01 | 0.56 £061 | 1.00/0.84
16 F 0.66 £007 | 0.19 001 | 0.03 £0.01 | 0.25+£002 | 0.29 +002 | 0.99 +0.07 | 2.50 051 | 2.63 £003 | 0.24 002 | 2.21 +0.08 | 1.00 £ 101 1.00/0.99
32F 0.40 000 | 0.17 000 | 0.01 £0.00 | 0.15 001 | 0.13 001 | 0.85+002 | 1.53 £0.12 | 2.17 +006 | 0.15 001 | 1.93 £004 | 0.75 £080 | 0.99/0.97
100 full (F) 64 F 0.34 £001 | 0.15 +000 | 0.01 £0.00 | 0.12 000 | 0.11 000 | 0.79 +0.01 | 1.23 £007 | 1.98 £001 | 0.15 000 | 1.26 £0.01 | 0.61 +065 0.97/0.93
128 F 0.32 000 | 0.15 +000 | 0.01 £0.00 | 0.12 000 | 0.10 £000 | 0.77 £ 002 | 1.16 001 | 1.94 £000 | 0.13 000 | 0.99 +0.01 | 0.57 £ 061 0.88/0.80
256 F 0.33 £000 | 0.16 =000 | 0.00 £0.00 | 0.12 £000 | 0.10 £000 | 0.76 +0.02 | 1.15 001 | 1.93 £000 | 0.14 000 | 0.86 +0.00 | 0.56 060 | 0.50/0.34
100 wiclusters (C) ‘ 16CS5 ‘ 0.34 + 001 ‘ 0.15 +0.00 ‘ 0.01 +0.00 ‘ 0.14 + 001 ‘ 0.11 +0.00 ‘ 0.79 +0.02 ‘ 0.97 +027 ‘ 1.97 + 0.00 ‘ 0.13 +0.00 ‘ 0.77 + 025 ‘ 0.54 +0.58 ‘ 1.00/0.95
16C7 0.34 +o001 | 0.15 +000 | 0.01 £0.00 | 0.13 £000 | 0.10 £000 | 0.78 £0.02 | 0.96 £027 | 1.96 +000 | 0.14 000 | 0.74 £ 022 | 0.53 +£057 1.00/0.93
16D 2.95+028 | 0.73 £029 | 0.27 £009 | 0.67 £028 | 0.52 £007 | 2.06 030 | 4.85 031 | 3.94 042 | 0.50 £0.05 | 2.50 003 | 1.94 +159 | 1.00/1.00
32D 2.33+030 | 0.62+017 | 0.24 £005 | 0.50 £016 | 0.37 007 | 1.86 025 | 4.73 035 | 3.81 059 | 0.39 004 | 246 005 | 1.77 +157 | 1.00/1.00
500 diagonal (D) 64D 1.67 018 | 0.43 +0.16 | 0.13 004 | 0.29 £002 | 0.23 002 | 1.32 +028 | 3.99 +036 | 3.41 +028 | 0.32+005 | 2.35+011 | 1.45+139 | 1.00/0.99
128D 1.12 002 | 0.23 000 | 0.04 £003 | 021 £004 | 0.22 £003 | 1.08 £006 | 3.05+087 | 3.09 £037 | 0.26 003 | 2.31 004 | 1.19+121 | 1.00/0.98
256 D 0.54 £003 | 0.18 001 | 0.01 £000 | 0.16 001 | 0.15 001 | 0.92 008 | 242 014 | 2.51 £013 | 0.19 £001 | 2.09 £002 | 0.94 099 | 1.00/0.97
16 F 2.14 006 | 0.70 004 | 0.28 £000 | 0.27 £001 | 0.21 £000 | 1.14 004 | 3.06 £027 | 2.71 001 | 0.34 001 | 2.21 001 | 1.33 +£1.09 1.00/1.00
32F 1.17 £007 | 0.48 £003 | 0.08 £004 | 0.21 001 | 0.17 000 | 0.99 004 | 2.69 010 | 2.47 +0.02 | 025 £002 | 2.11 £004 | 1.08 £099 | 0.99/0.99
500 full (F) 64 F 0.51 +003 | 0.21 £0.00 | 0.02 +000 | 0.17 001 | 0.14 000 | 0.88 £004 | 2.19 +0.14 | 2.34 +003 | 0.20 000 | 1.97 +002 | 0.89 +0.91 0.97/0.96
128 F 0.39 £001 | 0.16 £000 | 0.01 £000 | 0.13 000 | 0.11 000 | 0.81 £003 | 1.42 007 | 2.03 £001 | 0.16 000 | 1.71 £001 | 0.71 £074 | 0.88/0.86
256 F 0.32 001 | 0.15 +000 | 0.01 £0.00 | 0.12 000 | 0.10 £000 | 0.77 001 | 1.18 004 | 1.96 £000 | 0.14 001 | 1.25 £0.00 | 0.61 £ 065 0.50/0.47
16C7 0.40 0.18 0.01 0.15 0.13 0.90 2.03 2.21 0.16 1.50 0.77 1.00/0.98
16 C 10 0.36 0.16 0.01 0.14 0.13 0.87 2.19 2.04 0.15 1.38 0.74 1.00/0.98
500 wi/clusters (C) 16 C25 0.32 0.16 0.01 0.13 0.10 0.81 1.28 1.96 0.12 1.07 0.60 1.00/0.95
64C5 0.36 0.16 0.01 0.12 0.10 0.80 1.17 1.98 0.14 1.17 0.60 0.97/0.93
64C7 0.34 0.15 0.01 0.12 0.10 0.79 1.14 1.96 0.13 1.08 0.58 0.97/0.91
1000 w/clusters (C) \ 16C25 \ 0.37 \ 0.16 \ 0.01 \ 0.13 \ 0.13 \ 0.86 \ 2.12 \ 2.04 \ 0.14 \ 1.35 \ 0.73 \ 1.00/0.97

Table 12: Absolute In-Distribution test loss for various tasks and methods

30

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Para. Saved
| | task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | taskI391 | task1598 |
base 0.00 +0.00 0.00 +0.00 1.00 +0.00 0.00 + 000 0.00 +0.00 0.00 +0.00 0.00 +0.00 0.00 +0.00 0.00 +0.00 0.00 +0.00 0.10 £ 030 1.00/1.00
‘ lora ‘ 100.00 =+ 0.00 ‘ 100.00 +0.00 | 100.00 +0.00 | 100.00 +0.00 ‘ 100.00 +0.00 | 100.00 +0.00 | 100.00 +0.00 ‘ 100.00 +0.00 ‘ 100.00 +0.00 | 100.00 +0.00 | 100.00 +0.00 ‘ 0.00/0.00
10 41.00 000 | 53.67 +058 | 44.33 £404 10.33 £0s8 | 46.33 £404 1.00 < 0.00 8.00 +0.00 8.00 + 0.00 76.67 £ 115 1.00 000 | 29.03 £2560 | 1.00/1.00
50 24.00 £000 | 38.67 +o058 17.67 +462 2.00 +0.00 56.33 058 1.00 +0.00 8.00 +0.00 8.00 +0.00 29.67 +289 0.00 =+ 0.00 18.53 £1807 | 1.00/1.00
TIES 100 22.00 £000 | 38.00 +0.00 18.67 +4.62 1.00 £1.73 51.67 +4.62 1.00 £ 0.00 8.00 + 0.00 7.33 1058 2.00 +0.00 0.00 + 0.00 14.97 £1720 | 1.00/1.00
500 8.00 =+ 0.00 25.00 +0.00 1.00 =000 0.00 +0.00 59.00 +0.00 0.00 +0.00 3.00 +0.00 6.00 =+ 0.00 2.00 +0.00 0.00 +0.00 9.90 +£18.12 1.00/1.00
SVD 2 88.33 £065 | 91.91 £094 | 100.00 £000 | 97.25 045 | 92.83+039 | 76.50 £151 | 66.00 +1.41 58.08 £116 | 98.67 049 5.83 1094 | 77.42 £2760 | 0.88/0.88
SVD SVD 4 93.00 £000 | 96.64 050 | 100.00 +£0.00 | 100.00 +000 | 96.75 +0.87 88.83 +153 | 90.67 +123 72.17 058 98.67 +0.49 16.67 £178 | 85.24 £2439 | 0.75/0.75
SVD 8 98.89 +060 | 98.55+052 | 100.00 000 | 100.00 +000 | 99.42 +051 93.44 £o73 | 97.22 +044 | 8278 x164 | 99.00 000 | 60.00 £087 | 93.70 +1159 | 0.50/0.50
SVD 16 100.00 +0.00 | 100.00 £0.00 | 100.00 £0.00 | 100.00 £0.00 | 100.00 £000 | 99.67 £050 | 99.50 + 055 99.67 £050 | 100.00 £000 | 98.11 078 | 99.69 068 | 0.00/0.00
16D 8333 £153 | 88.33 4058 | 100.00 £000 | 97.00 £200 | 88.33+115 | 57.00 £100 | 48.67 +321 50.67 £493 | 97.67 £153 533 +115 | 71.63 £2953 | 1.00/0.90
32D 93.00 £100 | 9533 058 | 100.00 £0.00 | 98.00 =100 | 93.67 £1.53 80.67 +231 78.67 £ 1.15 68.00 +1.73 98.33 + 058 14.67 £252 | 82.03 £2499 | 1.00/0.80
10 diagonal (D) 64D 99.00 + 0.00 97.00 + 1.00 100.00 +0.00 | 100.00 +0.00 | 98.00 + 0.00 90.67 + 153 95.33 £ 115 79.67 +153 99.00 + 0.00 55.00 £436 | 91.37 +1378 1.00/0.60
128D 100.00 £ 000 | 99.33 £058 | 100.00 £0.00 | 100.00 £000 | 100.00 £000 | 96.67 153 | 98.33 115 | 95.67 231 | 100.00 000 | 91.67 £351 | 98.17 £204 | 1.00/0.20
256 D 100.00 4000 | 100.00 000 | 100.00 £0.00 | 100.00 +0.00 | 100.00 +000 | 100.00 =000 | 100.00 000 | 99.33 +1.15 | 100.00 000 | 95.00 +100 | 99.43 157 | 1.00/-0.60
16 F 83.00 + 200 93.00 +1.00 | 100.00 £000 | 98.33 +o0s8 91.67 +0.58 64.33 £321 59.33 £ 115 52.67 £1.53 98.33 +0.58 6.33 £ 115 T74.70 + 2871 1.00/0.90
32F 91.33 £0s8 | 96.00£100 | 100.00 £000 | 98.33 £058 | 94.33 +o0ss | 84.00+200 | 83.00+173 | 70.33 £153 | 99.00 £100 | 22.00 £265 | 83.83 2282 | 0.99/0.79
10 full (F) 64 F 99.00 + 0.00 97.33 +0s58 | 100.00 £000 | 100.00 +000 | 99.33 + 115 91.33 +1.53 96.33 +0.58 81.67 +231 99.00 + 0.00 5833 £153 | 92.23 +1276 0.97/0.57
128 F 99.67 £0ss | 99.33 £058 | 100.00 £000 | 100.00 £000 | 100.00 £000 | 97.67 £ 1.15 | 100.00 000 | 95.67 £1.15 | 100.00 £000 | 91.00 £100 | 98.33 +£2389 0.88/0.07
256 F 100.00 +000 | 100.00 =000 | 100.00 £0.00 | 100.00 £0.00 | 100.00 £000 | 99.67 058 | 99.67 £058 | 99.67 xo0s8 | 100.00 000 | 98.00 100 | 99.70 +0.70 0.50/-1.10
16D 52.67 £451 | 86.67 £306 | 100.00 £000 | 85.00 £346 | 65.33+379 | 25.33 £503 10.00 £100 | 10.67 £ 1026 | 81.00 +656 0.00 £000 | 51.67 £3618 | 1.00/0.98
32D 69.67 +321 88.67 +153 | 100.00 £0.00 | 95.00 200 | 80.00 £300 | 36.67 £5.13 17.00 + 265 26.33 £5.03 95.00 +2.00 0.00 =+ 0.00 60.83 £3602 | 1.00/0.96
50 diagonal (D) 64D 79.67 +2.52 91.00 + 100 | 100.00 £000 | 97.67 +058 88.00 100 | 52.00 +100 | 36.67 +560 | 41.33 £ 115 96.00 + 1.00 0.33 £0.58 68.27 £3266 | 1.00/0.92
128D 90.00 £1.00 | 91.33 058 | 100.00 £0.00 | 98.33 +0.58 90.67 208 | 73.67 £208 | 63.67 +153 56.33 £ 058 98.00 +0.00 7.33 £ 115 76.93 £2779 | 1.00/0.84
256 D 94.67 +0.58 96.33 +058 | 100.00 £000 | 99.67 + o058 96.33 + 115 87.33 o058 87.00 +2.65 71.67 £1.53 99.67 +0.58 31.67 +1.15 | 86.43 +2041 1.00/0.68
16 F 61.67 +3.06 89.67 + 115 99.67 + 058 90.67 +252 78.33 +351 34.00 + 1.00 7.00 + 346 25.00 +6.24 90.00 + 1.00 0.00 +0.00 57.60 +36.59 1.00/0.98
32F 71.00 £100 | 89.00£173 | 100.00 £000 | 98.00 £000 | 85.00+100 | 47.00£173 | 29.00 £300 | 35.00 £200 | 98.00 +1.00 0.00 +0.00 65.20 + 34.00 0.99/0.95
50 full (F) 64 F 81.67 +0.58 93.67 +1.15 | 100.00 £000 | 98.33 +o0s8 90.67 +2.08 61.67 +153 5433 £153 51.33 £ 115 98.33 +0.58 3.33 £oss 73.33 £2989 0.97/0.89
128 F 91.00 £100 | 94.33 £058 | 100.00 £000 | 99.00 £000 | 93.33 +153 | 81.67+o0s8 | 75.00 £1.73 | 67.67 £208 | 98.67 £os8 16.67 £o0ss | 81.73 +2446 | 0.88/0.72
256 F 97.00 £000 | 98.00 +000 | 100.00 000 | 100.00 000 | 99.67 058 | 92.00 000 | 94.33 x1.15 79.67 153 99.00 +000 | 57.33 252 | 91.70 £13.11 0.50/0.18
16D 33.00 £519 | 79.33 £569 | 89.33 £551 80.00 +3.61 3533 £603 4.00 £ 1.73 3.00 +1.00 0.00 +0.00 71.33 £451 0.00 £000 | 39.53 £3615 | 1.00/0.99
32D 51.00 + 751 90.00 +1.00 | 100.00 £0.00 | 88.00 +7.00 | 58.67 +11.68 | 17.67 41026 7.67 +289 9.33 £ 1286 86.33 +252 0.00 =+ 0.00 50.87 £3843 | 1.00/0.98
100 diagonal (D) 64D 68.00 + 265 87.33 +1.53 | 100.00 000 | 94.33 £404 80.33 £208 38.00 +3.00 19.67 +4.51 28.33 £153 92.67 +1.15 0.33 +058 60.90 + 3491 1.00/0.96
128D 82.00 £200 | 90.00 +200 | 100.00 000 | 97.33 +058 85.33 058 55.33 +208 3433 £379 | 36.67 252 94.67 + 058 0.00 +0.00 67.57 £3295 | 1.00/0.92
256 D 90.00 £1.00 | 93.00 +200 | 100.00 000 | 97.67 o058 | 91.67 oss | 71.67 £513 | 59.67 153 | 58.00 £000 | 97.67 +o058 4.00 £100 | 76.33 +2888 | 1.00/0.84
16 F 49.00 200 | 89.67 £321 | 97.00 £300 | 84.33 £306 | 6533 252 | 20.67 833 6.33 +208 8.33 £473 81.33 £208 0.00 £000 | 50.20 +537.06 1.00/0.99
32F 65.00 £346 | 90.33 £153 | 100.00 £0.00 | 96.33 + 153 80.00 £265 | 41.33 +321 16.00 £000 | 29.33 +208 92.00 265 0.00 +0.00 61.03 £3543 0.99/0.97
100 full (F) 64 F 72.33 £ 058 89.67 +1.53 | 100.00 000 | 97.67 058 86.00 + 1.00 53.00 + 1.00 3533 +1.53 38.00 +1.73 94.67 + 058 0.00 + 0.00 66.67 +32.54 0.97/0.93
128 F 8433 £153 | 9233 +153 | 100.00 £000 | 98.00 £000 | 91.33 £o0s8 | 68.67 058 | 56.00 100 | 57.67 £115 | 99.00 £ 000 533 +o0s8 | 7527 2867 | 0.88/0.80
256 F 91.67 115 96.67 058 | 100.00 £0.00 | 100.00 000 | 94.33 £o058 84.67 +o0ss | 78.00+000 | 69.67 +o058 99.00 000 | 22.00+100 | 83.60 +23.08 0.50/0.34
100 wiclusters (C) ‘ 16C5 ‘ 74.67 +0.94 ‘ 91.00 + 0.2 ‘ 100.00 + 0.00 ‘ 96.67 + 1.5 ‘ 87.67 +1.70 ‘ 53.67 +205 ‘ 40.67 + 287 ‘ 41.00 +4.55 ‘ 97.67 + 125 ‘ 0.67 + 094 ‘ 68.37 +31.46 ‘ 1.00/0.95
16C7 77.67 £047 | 9033 £125 | 100.00 £000 | 97.33 £094 | 90.33 £205 | 58.67 £094 | 49.00 £216 | 49.00 £o0s2 | 97.67 £047 3.67 125 | 71.37 £29.48 1.00/0.93
16D 8.00 + 3.61 51.50 +3.54 79.67 +493 | 28.00 +4244 | 56.67 +2.89 0.67 +1.15 0.33 +o0s8 0.00 =+ 0.00 71.67 +6.03 0.00 + 0.00 28.90 +33.54 1.00/1.00
32D 1433 £1102 | 52.50 £9.19 | 80.67 £208 | 43.00 £3148 | 60.67 o058 0.67 = 115 1.67 + 115 0.00 +0.00 74.33 £404 0.00 £000 | 32.10 £3343 | 1.00/1.00
500 diagonal (D) 64D 25.67 115 | 62.50 £12.02 | 87.33 +4.04 78.33 £ 115 65.33 +3.06 5.33 £351 3.67 £ 115 1.00 +1.73 76.67 +231 0.00 + 0.00 39.83 3580 | 1.00/0.99
128D 38.33 £321 8550 £212 | 96.00 £300 | 81.33+231 | 65.67 £ 115 11.67 £473 5.33 £208 2.00 + 1.00 80.00 +5.00 0.00 £000 | 4524 £3778 | 1.00/0.98
256 D 53.33 £ o058 91.00 +253 | 100.00 £0.00 | 89.00 +265 76.00 £200 | 20.67 +6381 6.00 +1.73 12.00 £800 | 86.33 231 0.00 =+ 0.00 52.14 £3864 | 1.00/0.97
16 F 8.33 +208 41.00 £566 | 76.67 +058 | 78.00 £000 | 72.67 +058 6.00 +0.00 5.67 +o0s8 0.00 +0.00 78.00 + 1.00 0.00 =+ 0.00 36.48 +35.46 1.00/1.00
32F 33.67 £416 | 51.00£141 | 92.67+155 | 77.00 £173 | 75.00 +2.00 14.33 153 8.00 +0.00 0.00 +0.00 80.67 + 153 0.00 £000 | 4297 £3550 | 0.99/0.99
500 full (F) 64 F 56.00 + 265 85.50 +0.71 94.33 £ 058 89.33 =289 7433 £ 115 36.33 £ 115 9.00 + 1.00 2.67 £115 84.00 + 1.00 0.00 =+ 0.00 52.03 £3692 0.97/0.96
128 F 69.33 £os58 | 88.50+071 | 99.00+000 | 9633 155 | 80.33 115 | 45.00 £200 16.33 +0s58 | 31.00+173 | 92.00 000 0.00 000 | 60.86 +3507 | 0.88/0.86
256 F 79.67 £ 0.8 89.50 £071 | 100.00 £0.00 | 97.67 +0.58 87.33 £058 | 57.00 +1.00 35.00 100 | 42.00+100 | 95.00 +1.00 0.00 + 0.0 67.59 + 3267 0.50/0.47
16C7 63.00 90.00 99.00 96.00 78.00 31.00 9.00 15.00 89.00 1.00 57.10 1.00/0.98
16 C 10 69.00 93.00 100.00 98.00 81.00 34.00 8.00 33.00 95.00 1.00 61.20 1.00/0.98
500 w/clusters (C) 16C25 79.00 90.00 100.00 97.00 88.00 53.00 38.00 48.00 98.00 0.00 69.10 1.00/0.95
64CS5 77.00 88.00 100.00 98.00 89.00 56.00 39.00 42.00 99.00 0.00 68.80 0.97/0.93
64C7 76.00 90.00 100.00 97.00 89.00 60.00 48.00 49.00 99.00 3.00 71.10 0.97/0.91
1000 w/clusters (C) ‘ 16C25 ‘ 73.00 ‘ 90.00 ‘ 100.00 ‘ 98.00 ‘ 77.00 ‘ 39.00 ‘ 8.00 ‘ 34.00 ‘ 96.00 ‘ 1.00 ‘ 61.60 ‘ 1.00/0.97

Table 13: Absolute In-Distribution agreement for various tasks and methods

31

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

‘ Method Type ‘

Tasks

Model Type Average
\ | task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 |
SvD2 0.29 +0.00 | 0.43 £0.00 | 0.31 £0.00 | 0.40 £0.00 | 0.38 000 | 0.31 000 | 0.37 000 | 0.31 +0.00 | 0.42 +0.00 | 0.30 £0.00 | 0.35 +0.05
SVD SVD 4 0.16 £0.00 | 0.24 000 | 0.16 £0.00 | 0.25 000 | 0.23 £000 | 0.17 £000 | 0.22 £000 | 0.16 000 | 0.25 £0.00 | 0.16 £0.00 | 0.20 £0.04
SVD 8 0.06 £0.00 | 0.09 000 | 0.06+£000 | 0.11 000 | 0.10 £000 | 0.07 £0.00 | 0.09 £0.00 | 0.06 000 | 0.11 £0.00 | 0.06 +0.00 | 0.08 £ 0.02
16D 0.37 +002 | 0.51 002 | 0.36 +001 | 0.57 002 | 0.55+000 | 0.39 002 | 0.49 +001 | 0.36 +002 | 0.53 £003 | 0.39 +001 | 0.45 +0.08
32D 0.21 £001 | 0.28 000 | 0.20 £0.01 | 0.35 000 | 0.33 £001 | 0.22 001 | 0.31 £001 | 0.20 001 | 0.32 £001 | 0.22 000 | 0.26 +0.06
10 diagonal (D) 64D 0.10 £000 | 0.11 001 | 0.09 £0.00 | 0.18 001 | 0.18 £000 | 0.10 000 | 0.15 001 | 0.09 000 | 0.14 £0.00 | 0.09 000 | 0.12 +0.04
128D 0.02 £0.00 | 0.01 000 | 0.02+000 | 0.03 000 | 0.04 £000 | 0.02 +000 | 0.03 £000 | 0.02 +000 | 0.02 £000 | 0.02 +000 | 0.03 +£0.01
256 D 0.00 £0.00 | 0.00 £0.00 | 0.00 £000 | 0.00 £0.00 | 0.00 £000 | 0.00 £0.00 | 0.00 £000 | 0.00 £000 | 0.00 £000 | 0.00 £0.00 | 0.00 £ 0.00
16 F 0.35 +£000 | 0.46 000 | 0.34 £000 | 0.51 000 | 0.47 £001 | 0.36 001 | 0.45 001 | 0.35 +001 | 0.49 £0.00 | 0.35 +001 | 0.41 +0.06
32F 0.20 £0.00 | 0.24 £0.00 | 0.20 £0.00 | 0.30 £0.00 | 0.29 000 | 0.22 000 | 0.27 £0.00 | 0.20 +0.00 | 0.27 £0.00 | 0.21 £0.00 | 0.24 +0.04
10 full (F) 64 F 0.10 £0.00 | 0.10 000 | 0.09 000 | 0.13 £000 | 0.13 £000 | 0.10 £0.00 | 0.12 £0.00 | 0.09 £0.00 | 0.12 +0.00 | 0.10 +0.00 | 0.11 +0.02
128 F 0.02 £0.00 | 0.02 000 | 0.02+000 | 0.01 000 | 0.02 000 | 0.02 +000 | 0.02 000 | 0.02+000 | 0.0 £0.00 | 0.02 +000 | 0.02 0.0
256 F 0.00 +£0.00 | 0.00 +0.00 | 0.00 000 | 0.00 000 | 0.00 000 | 0.00 000 | 0.00 000 | 0.00 +000 | 0.00 £000 | 0.00 +0.00 | 0.00 + 0.00
16 D 0.66 £001 | 0.69 001 | 0.88 £001 | 0.76 £0.03 | 0.95 002 | 0.91 001 | 0.83 £002 | 0.88 003 | 0.72 £0.02 | 0.88 002 | 0.82 +0.10
32D 0.50 £001 | 0.52 002 | 0.73 £001 | 0.58 003 | 0.88 £003 | 0.79 003 | 0.72 £001 | 0.75 001 | 0.57 £002 | 0.75 001 | 0.68 £o0.12
50 diagonal (D) 64D 0.34 +001 | 0.37 001 | 0.52+000 | 0.38 001 | 0.71 £002 | 0.58 001 | 0.54 £000 | 0.56 +000 | 0.44 £o0.01 | 0.58 +001 | 0.50 £o0.11
128 D 0.21 001 | 0.22 +0.01 | 0.31 £0.00 | 0.22 £0.00 | 0.51 001 | 0.42 001 | 0.38 £0.00 | 0.39 +0.00 | 0.27 £0.00 | 0.40 £0.00 | 0.33 £0.10
256 D 0.10 £0.00 | 0.12 000 | 0.16 £0.00 | 0.10 £0.00 | 0.29 £001 | 0.21 000 | 0.19 £0.00 | 0.23 001 | 0.15 £000 | 0.20 £0.00 | 0.18 £ 0.06
16 F 0.57 +001 | 0.60 001 | 0.86+001 | 0.71 +0.02 | 0.95+001 | 0.88 001 | 0.81 +000 | 0.83 001 | 0.67 +001 | 0.86 +001 | 0.78 +o0.12
32F 0.47 £001 | 0.48 o001 | 0.71 £0.00 | 0.55 001 | 0.78 £0.01 | 0.69 001 | 0.69 £000 | 0.65 001 | 0.53 £0.01 | 0.71 000 | 0.63 £o.11
50 full (F) 64 F 0.33 £000 | 0.35 000 | 0.45 +000 | 0.36 £000 | 0.56 £000 | 0.50 £0.01 | 0.47 £000 | 0.49 000 | 0.39 +001 | 0.49 +0.00 | 0.44 +0.08
128 F 0.19 +000 | 0.21 000 | 0.25+000 | 0.19 000 | 0.35 £000 | 0.30 000 | 0.28 £0.00 | 0.31 000 | 0.24 £0.00 | 0.30 +0.00 | 0.26 +0.05
256 F 0.09 +0.00 | 0.10 £0.00 | 0.10 £0.00 | 0.08 £0.00 | 0.16 £0.00 | 0.13 000 | 0.12 000 | 0.15+000 | 0.11 £0.00 | 0.13 £0.00 | 0.12 £0.02
16 D 0.90 001 | 0.85 001 | 0.87 £003 | 0.88 £0.02 | 0.68 £002 | 0.91 001 | 0.97 £0.01 | 0.98 001 | 0.96 £001 | 1.00 000 | 0.90 £ 0.09
32D 0.83 £0.02 | 0.77 000 | 0.77 £0.01 | 0.78 000 | 0.55+002 | 0.79 001 | 0.94 £002 | 0.94 +003 | 0.87 £000 | 0.98 001 | 0.82 £o0.12
100 diagonal (D) 64 D 0.67 +001 | 0.63 £000 | 0.59 £0.02 | 0.63 £0.01 | 0.40 £0.00 | 0.62 001 | 0.86 +002 | 0.82 +002 | 0.71 £0.03 | 0.93 £0.00 | 0.68 £0.15
128 D 0.49 £001 | 0.47 000 | 0.42 £001 | 0.45 000 | 0.27 £002 | 0.44 o001 | 0.73 £001 | 0.69 002 | 0.59 £0.02 | 0.80 002 | 0.53 £o.16
256 D 0.32 £000 | 0.31 000 | 0.26 £001 | 0.30 000 | 0.15+001 | 0.28 000 | 0.51 £002 | 0.51 002 | 0.40 £0.01 | 0.61 001 | 0.36 £0.14
16 F 0.88 £0.00 | 0.82 000 | 0.84 £001 | 0.86 000 | 0.67 £001 | 0.88 001 | 0.99 £000 | 0.96 001 | 0.91 £001 | 1.00 000 | 0.88 £0.09
32F 0.78 £0.00 | 0.72 000 | 0.73 £0.00 | 0.74 000 | 0.52 £000 | 0.74 001 | 0.94 £0.01 | 0.89 000 | 0.77 £0.02 | 0.99 000 | 0.78 £0.13
100 full (F) 64 F 0.60 +£0.00 | 0.57 000 | 0.57 £0.00 | 0.57 000 | 0.39 £000 | 0.56 +000 | 0.76 £0.00 | 0.73 000 | 0.60 £000 | 0.83 001 | 0.62 +o0.12
128 F 0.40 +0.00 | 0.38 000 | 0.35+000 | 0.37 000 | 0.25+000 | 0.37 000 | 0.52 £000 | 0.54 +000 | 0.45 +000 | 0.60 +0.00 | 0.42 +0.10
256 F 0.21 £000 | 0.20 £0.00 | 0.18 £0.00 | 0.19 000 | 0.13 £000 | 0.19 000 | 0.30 £0.00 | 0.34 000 | 0.26 £0.00 | 0.38 £0.00 | 0.24 £0.08
100 wiclusters (C) ‘ 16C5 ‘ 0.46 +0.00 | 0.46 +0.00 ‘ 0.45 +0.00 ‘ 0.47 +0.01 ‘ 0.61 +0.01 ‘ 0.65 +0.01 ‘ 0.61 +0.00 ‘ 0.64 +0.02 ‘ 0.45 +0.00 ‘ 0.59 +0.01 ‘ 0.54 +0.08
16C7 0.41 001 | 0.42 £001 | 0.39 £0.01 | 0.43 £0.01 | 0.51 001 | 0.56 001 | 0.53 001 | 0.55+000 | 0.42 £0.01 | 0.54 £0.01 | 0.48 +0.06
16 D 0.97 £0.00 | 0.73 000 | 0.96 £000 | 1.00 000 | 0.99 £001 | 0.96 001 | 0.90 £0.00 | 0.92 +000 | 1.00 £0.00 | 1.00 +0.00 | 0.94 0.8
32D 0.96 +0.00 | 0.70 000 | 0.92 001 | 0.98 001 | 0.96 +001 | 0.93 +001 | 0.86 000 | 0.89 +000 | 1.00 £000 | 1.00 +000 | 0.92 +0.09
500 diagonal (D) 64D 0.90 001 | 0.65 000 | 0.86 +0.01 | 0.96 002 | 0.90 001 | 0.87 001 | 0.81 £000 | 0.83 +001 | 0.99 +001 | 1.00 £0.00 | 0.88 £0.10
128 D 0.82 +£001 | 0.60 000 | 0.76 £0.00 | 0.90 002 | 0.83 £001 | 0.78 002 | 0.74 £0.00 | 0.74 001 | 0.97 £0.01 | 1.00 000 | 0.81 £o0.12
256 D 0.59 £002 | 0.51 000 | 0.56 £001 | 0.81 £0.02 | 0.70 £002 | 0.55 +001 | 0.57 £001 | 0.54 £001 | 0.91 £o001 | 1.00 001 | 0.67 £0.17
16 F 0.94 £0.00 | 0.67 000 | 0.88 £0.00 | 1.00 000 | 0.98 £000 | 0.90 000 | 0.82 £000 | 0.83 000 | 1.00 £0.00 | 1.00 £0.00 | 0.90 £0.10
32F 0.88 £0.00 | 0.61 000 | 0.81 £0.00 | 0.97 001 | 0.94 £000 | 0.84 000 | 0.75 £000 | 0.77 000 | 0.99 £0.00 | 0.99 000 | 0.86 £0.12
500 full (F) 64 F 0.80 +£0.00 | 0.55+000 | 0.72+000 | 0.86 000 | 0.82 £001 | 0.76 000 | 0.67 £000 | 0.70 000 | 0.94 £0.00 | 0.99 +000 | 0.78 £0.13
128 F 0.64 £0.00 | 0.46 +0.00 | 0.60 £0.00 | 0.74 000 | 0.65+000 | 0.63 000 | 0.56 £000 | 0.58 +0.00 | 0.85+£000 | 0.96 +0.00 | 0.67 £0.14
256 F 0.43 £0.00 | 0.35 000 | 0.44 £0.00 | 0.55 000 | 0.49 £0.00 | 0.45 000 | 0.40 £0.00 | 0.42 000 | 0.67 £0.00 | 0.84 000 | 0.50 £0.14
16C7 0.68 0.70 0.64 0.72 0.85 0.90 0.93 0.92 0.71 0.83 0.79
16C 10 0.61 0.65 0.61 0.66 0.84 0.86 0.88 0.84 0.62 0.76 0.73
500 wi/clusters (C) 16 C25 0.42 0.41 0.42 0.44 0.57 0.64 0.63 0.62 0.40 0.58 0.51
64C5 0.49 0.49 0.45 0.51 0.64 0.66 0.62 0.67 0.50 0.65 0.57
64C7 0.45 0.45 0.41 0.45 0.56 0.58 0.55 0.59 0.44 0.57 0.51
1000 w/clusters (C) \ 16 C25 \ 0.58 0.64 \ 0.54 \ 0.64 \ 0.81 \ 0.87 \ 0.90 \ 0.84 \ 0.57 \ 0.74 \ 0.71

Table 14: Reconstruction error In-Distribution for various tasks and methods

32

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Tasks

Model Type ‘ Method Type ‘ Average
‘ ‘ task039 ‘ task190 ‘ task280 ‘ task290 ‘ task391 ‘ task442 ‘ task620 ‘ task1342 ‘ task1391 ‘ task1598 ‘
16 F 0.46 £0.01 | 0.63 000 | 0.50 000 | 0.55+001 | 0.50 £000 | 0.49 £0.01 | 0.50 £0.01 | 0.50 001 | 0.61 £001 | 0.47 £001 | 0.52 +0.06
32F 0.30 +0.01 | 0.37 +000 | 0.31 000 | 0.35 000 | 0.34 £0.00 | 0.31 £000 | 0.33 +000 | 0.31 000 | 0.38 £0.00 | 0.30 £0.00 | 0.33 +0.03
10 full (F) 64 F 0.15 000 | 0.15 +000 | 0.16 +000 | 0.17 £0.00 | 0.17 000 | 0.16 £0.00 | 0.16 +0.00 | 0.16 £0.00 | 0.17 000 | 0.15 £000 | 0.16 +0.01
16 F 0.80 +0.02 | 0.82 +001 | 0.85+001 | 0.90 £0.02 | 0.78 £0.01 | 0.95 +001 | 0.76 +001 | 0.75 000 | 0.79 £001 | 0.82 +0.01 | 0.82 +0.06
32F 0.65 £0.01 | 0.67 001 | 0.72 001 | 0.76 +002 | 0.65 +001 | 0.82 £002 | 0.66 001 | 0.65 +001 | 0.67 £0.02 | 0.69 000 | 0.69 +0.06
50 full (F) 64 F 0.50 +0.01 | 0.52 +000 | 0.52 +000 | 0.55 £001 | 0.52 +001 | 0.62 +000 | 0.54 +0.01 | 0.51 £000 | 0.54 001 | 0.57 000 | 0.54 +0.03
16 F 0.93 £0.02 | 0.90 +002 | 0.93 001 | 0.91 £002 | 0.88 £0.03 | 0.98 +001 | 0.96 001 | 0.78 £0.00 | 0.82 £000 | 0.93 £0.02 | 0.90 +0.06
32F 0.87 £0.01 | 0.81 001 | 0.85+002 | 0.80 +001 | 0.79 £002 | 0.91 £000 | 0.90 £0.01 | 0.74 001 | 0.70 £ 002 | 0.85 +002 | 0.82 +007
100 full (F) 64 F 0.65 +004 | 0.69 +001 | 0.71 £ 001 | 0.67 001 | 0.64 +001 | 0.76 £0.01 | 0.77 £ 001 | 0.67 £0.00 | 0.61 +000 | 0.75 +006 | 0.69 +0.06
16 F 0.98 +0.04 | 0.98 +001 | 0.99 001 | 1.00 £0.00 | 0.99 +0.00 | 0.96 +005 | 0.93 +0.10 | 0.94 £0.09 | 1.00 £ 000 | 0.99 +0.00 | 0.98 +0.05
32F 0.92 £0.07 | 0.84 020 | 0.92+0.10 | 0.98 +002 | 0.97 £002 | 0.89 £008 | 0.82 £0.13 | 0.84 011 | 0.99 000 | 0.99 +002 | 0.92 +0.10
500 full (F) 64 F 0.80 +000 | 0.67 021 | 0.78 +0.11 | 0.90 £007 | 0.86 +0.08 | 0.76 £0.00 | 0.67 +0.00 | 0.70 £0.00 | 0.96 £0.03 | 0.99 +000 | 0.81 +0.13

Table 15: Reconstruction error on random LoRAs The error is larger in comparison to reconstructing trained (i.e., non-
random) LoRAs in Table 14 for the corresponding compression methods.

Model Type ‘ Method Type ‘ Tasks Average

| | task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 |

base 24.44 1.60 19.13 39.22 10.27 35.46 7.85 6.22 17.82 38.87 20.09

lora 95.00 86.00 99.00 93.67 94.33 74.88 74.40 26.68 95.00 50.32 78.93

32F 97.00 90.00 99.00 93.33 94.67 74.09 72.13 27.83 94.00 50.71 79.28

10 full (F) 64 F 95.00 89.00 99.00 93.67 94.67 74.29 74.80 26.63 96.00 51.04 79.41

32F 96.00 88.00 99.00 93.67 92.33 72.30 75.97 29.89 94.00 45.68 78.68

50 full (F) 64 F 98.00 89.00 99.00 93.67 93.33 72.74 76.50 29.33 96.00 45.71 79.33

32F 92.10 83.00 99.00 93.67 92.00 71.09 63.29 27.87 88.00 42.36 75.24

100 full (F) 64 F 97.00 87.00 99.00 93.67 92.33 72.23 74.69 29.98 95.00 4471 78.56
32F 68.92 43.00 87.00 91.67 90.67 70.08 51.16 14.40 83.00 41.97 64.19

500 full (F) 64 F 93.50 78.00 91.00 92.33 90.33 72.55 57.49 15.44 85.00 42.31 71.80

Table 16: Performance with convergence In-Distribution Rouge-L

Table 17: Agreement Comparison. 100 LoRAs

Configuration Agreement (%)

Base Model 83.015

Uncompressed LoRAs 100.000

Joint Compression

Diagonal Rank 8 87.032
Rank 16 88.908
Rank 32 91.545
Rank 64 94.659

Full Rank 8 87.686
Rank 16 90.163
Rank 32 94.018
Rank 64 96.918

33

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Table 18: Performance Comparison. 100 LoRAs

Configuration Average Performance

Base Model 32.28

Uncompressed LoRAs 48.32

Join Compression

Diagonal Rank 8 41.90
Rank 16 45.44
Rank 32 46.89
Rank 64 47.43

Full Rank 8 43.88
Rank 16 45.79
Rank 32 46.83
Rank 64 47.66

Table 19: Task-Based Performance Evaluation Across Different Models and Ranks

Task Base Model LoRA Diagonal R§ Diagonal R16 Diagonal R32 Diagonal R64
Causal Judgement 57.47 64.37 55.17 58.62 58.62 58.62
Date Understanding 15.33 23.33 20.67 22.00 21.33 22.67
Formal Fallacies 51.33 56.00 52.67 52.67 53.33 54.67
Hyperbaton 6.67 68.00 57.33 63.33 67.33 68.00
Logical Deduction (5 Objects) 21.33 37.33 32.00 36.67 37.33 37.33
Logical Deduction (7 Objects) 12.67 44.00 31.33 42.67 44.67 45.33
Movie Recommendation 62.67 67.33 62.00 64.67 66.67 67.33
Object Counting 34.67 38.00 35.33 36.67 36.67 38.00
Snarks 50.00 61.54 53.85 56.41 58.97 57.69
Temporal Sequences 16.67 23.33 18.67 20.67 24.00 24.67
Average 32.88 48.32 41.90 45.44 46.89 47.43

Table 20: Task-Based Performance Evaluation Across Different Models and Ranks

Task Base Model LoRA FullR8 FullR16 FullR32 Full R64
Causal Judgement 57.47 64.37 56.32 57.47 58.62 60.92
Date Understanding 15.33 23.33 19.33 22.00 22.67 22.67
Formal Fallacies 51.33 56.00 51.33 52.67 53.33 56.00
Hyperbaton 6.67 68.00 63.33 66.00 69.33 68.00
Logical Deduction (5 Objects) 21.33 37.33 35.33 36.00 35.33 37.33
Logical Deduction (7 Objects) 12.67 44.00 40.00 44.67 44.67 44.67
Movie Recommendation 62.67 67.33 63.33 65.33 67.33 67.33
Object Counting 34.67 38.00 35.33 36.67 37.33 37.33
Snarks 50.00 61.54 53.85 55.13 57.69 58.97
Temporal Sequences 16.67 23.33 20.67 22.00 22.00 23.33
Average 32.88 48.32 43.88 45.79 46.83 47.66

34

	Introduction
	Related Work
	Rank-Based LoRA Compression
	Joint Diagonalization
	Clustering

	Theoretical Analysis
	Training & Performance Evaluation
	Training
	Evaluation

	Experiments
	Task Performance
	Performance and Reconstruction Error
	Benefits of Compression
	Throughput of Serving Compressed LoRAs
	Recommendations

	Discussion
	Joint Diagonalization Algorithms
	Alternating Methods
	Additional Eigenvalue Iteration Algorithm
	Clustering algorithm

	Proof of Theorem 1
	Training LoRAs
	Avoiding Batched Matrix Multiplication (BMM)
	Simple Timing Experiments
	GPU Memory Usage Computation for JD Compression.
	Baseline GPU Memory Usage
	GPU Memory Usage for JD Full Method
	GPU Memory Usage for Clustering Method
	Punica

	Selecting Number of Clusters
	Additional Results
	LoRAs of different ranks
	Privacy Ablation
	Relative Rouge-L Performance and Compression Rate
	Absolute Rouge-L Performance and Compression Rate
	Relative Rouge-1 Performance and Compression Rate
	Absolute Rouge-1 Performance and Compression Rate
	Relative Exact-Match Performance and Compression Rate
	Loss and Compression Rate
	Agreement and Compression Rate
	Reconstruction Error and Compression Rate
	Reconstruction Error: Trained vs. Random
	Convergence
	Out-of-distribution Performance (LoRA-hub)

