

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TEMPORALLY DETAILED HYPERGRAPH NEURAL ODES FOR TYPE 2 DIABETES PROGRESSION MODEL- ING

Anonymous authors

Paper under double-blind review

ABSTRACT

Disease progression modeling aims to characterize and predict how a patient’s disease complications worsen over time based on longitudinal electronic health records (EHRs). Accurate modeling of disease progression, such as type 2 diabetes, can enhance patient sub-phenotyping and inform effective and timely interventions. However, the problem is challenging due to the need to learn continuous-time dynamics of progression patterns based on irregular-time event samples and patient heterogeneity (e.g., different progression rates and pathways). Existing mechanistic and data-driven methods either lack adaptability to learn from real-world data or fail to capture complex continuous-time dynamics on progression trajectories. To address these limitations, we propose **Temporally Detailed Hypergraph Neural Ordinary Differential Equation (TD-HNODE)**, which represents disease progression on clinically recognized trajectories as a temporally detailed hypergraph and learns the continuous-time progression dynamics via a neural ODE framework. TD-HNODE contains a learnable TD-Hypergraph Laplacian that captures the interdependency of disease complication markers within both intra- and inter-progression trajectories. Experiments on two real-world clinical datasets demonstrate that TD-HNODE outperforms multiple baselines in modeling the progression of type 2 diabetes and related cardiovascular diseases.

1 INTRODUCTION

Many chronic diseases follow a progressive trajectory with multiple complications that worsen over time (Uddin et al., 2023). For example, one patient with type 2 diabetes may gradually develop retinopathy, which advances to visual impairment and eventually to blindness. Another patient may develop hypertension, then atrial fibrillation, and ultimately heart failure. Other patients may experience complications on both trajectories. Disease progression modeling aims to characterize and predict how a patient’s disease complications worsen over time based on longitudinal electronic health records (EHRs) (Mould, 2012; Wang et al., 2014). Specifically, given a patient’s historical clinical visit records, each associated with a risk factor feature vector (e.g., lab order, medications) and a target complication marker vector (e.g., whether the patient has hypertension, atrial fibrillation, or cerebrovascular disease), the machine learning model needs to predict the complication marker vector for the next visit, so that the progression of these complication markers follows a set of clinically verified trajectories. Disease progression modeling plays a crucial role in patient sub-phenotyping (*i.e.*, grouping patients into categories based on heterogeneous progression patterns) and informing effective and timely treatment (Buil-Bruna et al., 2015; Prague et al., 2013).

However, the problem poses several technical challenges. First, patient records of hospital visits are often sampled at irregular time points, although the underlying disease conditions evolve in continuous time. Second, many chronic and progressive diseases—such as type 2 diabetes, Alzheimer’s disease, chronic kidney disease (CKD), cancer (e.g., breast or prostate), and cardiovascular diseases—have clinically recognized progression trajectories that are routinely used to guide prognosis, monitoring, and treatment planning. Building upon these validated pathways is crucial as it aligns with current clinical practice and enhances both the applicability and interoperability of machine learning systems in real-world settings. Third, the progression dynamics are heterogeneous among patients, as reflected by the varying progression rates and progression trajectories (e.g., some pa-

054 tients rapidly develop kidney damage while others remain stable for many years, and some patients
 055 may experience neuropathy followed by a foot ulcer).

056 Existing works on disease progression modeling can be broadly categorized into mechanistic and
 057 data-driven approaches (Cook and Bies, 2016; Mould, 2012). Mechanistic models (van Schaick
 058 et al., 2015; Shahar, 1995) incorporate biological, pathophysiological, and pharmacological pro-
 059 cesses into the modeling structure, providing enhanced interpretability but with limited adaptability
 060 to real-world data. Data-driven approaches can be further divided into traditional machine learning
 061 and deep learning. Traditional machine learning methods often use hidden Markov models (Jackson
 062 et al., 2003; Sukkar et al., 2012; Liu et al., 2015) to capture transition probabilities between dis-
 063 ease stages, but they often rely on strong assumptions about data distribution at known progression
 064 stages and cannot learn implicit stages based on complex feature representations. With increasing
 065 electronic health records (EHRs) being collected over the last decade, deep learning methods have
 066 been widely developed (Shickel et al., 2017; Solares et al., 2020), including recurrent neural net-
 067 works (e.g., LSTM) (Zhang, 2019; Zhang et al., 2019; Sohn et al., 2020), attention-based models
 068 (e.g., Transformers) (Zisser and Aran, 2024; Zhang, 2019), and Neural Ordinary Differential Equa-
 069 tions (Neural ODEs) (Chen et al., 2018; Goyal and Benner, 2023; Chen et al., 2024a). Neural ODE
 070 models can capture the continuous-time dynamics of disease progression based on irregular-time
 071 clinical events, but existing models (Qian et al., 2021; Dang et al., 2023) fail to incorporate the clin-
 072 ically verified progression pathways. Continuous-time graph neural networks (Rossi et al., 2020;
 073 Tian et al., 2021; Liu et al., 2024; Cheng et al., 2024) can potentially represent known progression
 074 trajectories as a directed graph, where nodes are complication markers and temporal edges repre-
 075 sent progression between them, but a normal graph only captures pairwise interactions (between
 076 one complication and its immediate predecessor or successor) and thus miss high-order interactions
 077 across all complication nodes along a trajectory (pathway) (Yoon et al., 2020).

078 To address these limitations, we propose the Temporally Detailed Hypergraph Neural Ordinary Dif-
 079 ferential Equation (TD-HNODE), which models disease progression along clinically verified tra-
 080 jectories as a temporally detailed hypergraph and learns the continuous-time progression dynamics
 081 via a neural ODE framework. Specifically, TD-HNODE consists of two components: (1) a tem-
 082 porally detailed hypergraph (TD-Hypergraph), whereby each node denotes a complication marker
 083 and each hyperedge captures temporal dynamics of complication markers (nodes) along a clinically
 084 verified progression trajectory (pathway); (2) a Neural ODE module that learns these continuous-
 085 time progression dynamics from irregular-time patient records. It is worth noting that our proposed
 086 framework differs from existing temporal hypergraph neural networks (Lee and Shin, 2023; Liu
 087 et al., 2022; Lee and Shin, 2021), which assign timestamps at the level of entire hyperedges, fail-
 088 ing to capture the fine-grained temporal progression details within each hyperedge. Although some
 089 methods adopt recurrent modules (e.g., RNNs (Wang et al., 2024a; Younis and Ahmadi, 2024)) and
 090 others incorporate continuous-time dynamics (e.g., Neural ODEs (Yao et al., 2023)), they still con-
 091 struct hypergraph snapshots over discrete intervals, where hyperedges remain static units without
 092 modeling marker-level timestamps. Detailed experiments on two real-world EHR datasets demon-
 093 strate that TD-HNODE outperforms baselines in modeling the progression of type 2 diabetes and
 094 related cardiovascular diseases.

095 2 PROBLEM STATEMENT

096 2.1 PRELIMINARIES

097 A patient’s medical history can be represented as a sequence of hospital visits called **encounters**. We
 098 denote an encounter for patient u at time t_k as $\{\mathbf{x}_u(t_k); \mathbf{y}_u(t_k)\}$, where $\mathbf{x}_u(t_k) \in \mathbb{R}^{c \times 1}$ is a vector
 099 of **risk factors**, such as medications, laboratory test results, and vital signs, and $\mathbf{y}_u(t_k) \in \{0, 1\}^{n \times 1}$
 100 is a vector of **disease complication markers** (1 for presence, 0 for absence), such as hypertension
 101 (HP), atrial fibrillation (AF), heart failure (HF), cerebrovascular disease (CD), and stroke (S). The
 102 set of all n markers is denoted as $\mathcal{V} = \{v_i \mid i = 1, \dots, n\}$.

103 The marker vector $\mathbf{y}_u(t)$ evolves over time in the encounter sequence of patient u , reflecting the
 104 progression of disease states. How the markers evolve follows a set of **disease progression trajec-
 105 tories** (or **pathways**) that can be constructed based on clinical knowledge. Formally, a trajectory
 106 is defined as an ordered sequence of distinct markers, denoted as $p_j = \langle v_1^j, v_2^j, \dots, v_{|p_j|}^j \rangle$, where
 107

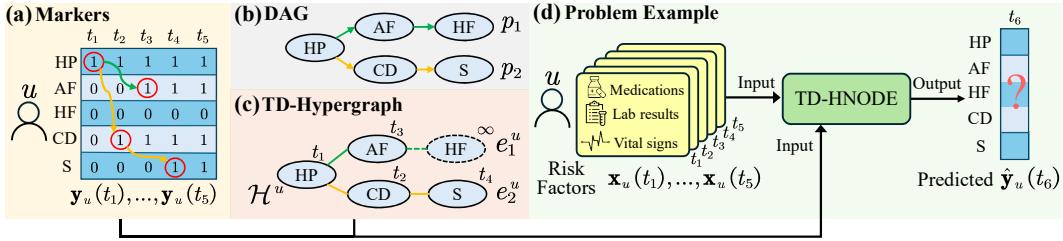


Figure 1: (a) Patient u 's marker status vector from t_1 to t_5 ; (b) The corresponding DAG of trajectories p_1 and p_2 ; (c) Patient u 's TD-Hypergraph with two temporally detailed hyperedges e_1^u, e_2^u ; (d) An example of problem definition showing TD-HNODE's input and output.

$v_i^j \in \mathcal{V}$ represents the i -th marker in the j -th trajectory, and $|p_j|$ is the number of markers. We assume that the disease markers in the trajectory are **irreversible**, *i.e.*, the binary status of markers can only transit from 0 to 1 (or stay the same) within an encounter sequence. This assumption is reasonable, as many chronic diseases—such as Alzheimer's disease, Parkinson's disease, chronic kidney disease (CKD), type 2 diabetes, and chronic obstructive pulmonary disease (COPD)—exhibit irreversible progression (*e.g.*, neuronal loss, organ fibrosis, vascular damage); thus, it is essential to model patient-specific and temporally evolving disease trajectories to support early and personalized interventions (Wu et al., 2021; Kazemian et al., 2019; Bhatwadekar et al., 2021; Wang et al., 2024b).

Figure 1(a) provides an example of the temporal records of a patient's five disease complication markers (HP, AF, HF, CD, and S) from t_1 to t_5 . Figure 1(b) shows two clinically known progression trajectories (in green and yellow) that these markers follow, *i.e.*, $p_1 = \langle HP, AF, HF \rangle$ and $p_2 = \langle HP, CD, S \rangle$. The fact that the patient's markers follow these trajectories is highlighted by the red circles as well as the green and yellow arrows in Figure 1(a). For instance, once the patient has hypertension ($HP = 1$) at time t_1 , the status will persist. The patient's disease progresses from hypertension to cerebrovascular disease ($CD = 1$) at time t_2 and to stroke ($S = 1$) at t_4 , following the yellow trajectory. Similarly, the disease progresses from hypertension to atrial fibrillation at t_3 ($AF = 1$) following the green trajectory. Note that the patient's disease complication markers have not yet progressed to heart failure (HF) by t_5 , but it could happen at a future time.

The set of clinically known progression trajectories forms a Directed Acyclic Graph (DAG), as illustrated in Figure 1(b). To capture the higher-order marker patterns within trajectories, we propose to represent trajectories using a hypergraph (Gallo et al., 1993). Specifically, we represent the set of markers within the same trajectory as a hyperedge. There are two key advantages: (1) a hyperedge can connect multiple markers in an entire trajectory (pathway), enabling the modeling of high-order dependencies beyond pairwise relations (Feng et al., 2019; Gao et al., 2022); and (2) different hyperedges overlap with each other through common markers (potentially pivotal nodes) (Chitra and Raphael, 2019), making it easier to model interdependency across progression pathways.

We formally define the **disease progression hypergraph** as $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} is the set of **markers**, also referred to as **nodes** throughout the paper, and \mathcal{E} denotes the set of hyperedges, each corresponding to a predefined trajectory (we use the terms 'hyperedge', 'pathway', and 'trajectory' interchangeably). Specifically, $\mathcal{E} = \{e_1, e_2, \dots, e_m\}$, and $e_j = \{v_1^j, v_2^j, \dots, v_{|e_j|}^j\}$, where m is the total number of predefined trajectories, and $|e_j|$ is the number of markers in the j -th trajectory.

We define a **temporally detailed trajectory** as the actual progression of markers of a patient u over time. Formally, $p_j^u = \langle (v_1^j, t_1), (v_2^j, t_2), \dots, (v_{|p_j^u|}^j, t_{|p_j^u|}) \rangle$, where p_j^u represents patient u 's realized progression along trajectory p_j , v_i^j is the i -th marker in the trajectory p_j , t_i is the timestamp when marker v_i^j first appeared in the patient's encounter sequence, and $|p_j^u|$ is the number of markers observed in the j -th trajectory for patient u . Since a patient may not develop all markers in a predefined trajectory, the length $|p_j^u|$ of a temporally detailed trajectory can be shorter than the full trajectory length $|p_j|$. For example, as shown in Figure 1(a), the two temporally detailed trajectories identified for patient u up to timestamp t_5 are $p_1^u = \langle (HP, t_1), (AF, t_3) \rangle$ (shorter than the full potential trajectory $p_1 = \langle HP, AF, HF \rangle$) and $p_2^u = \langle (HP, t_1), (CD, t_2), (S, t_4) \rangle$.

A **Temporally Detailed Hypergraph (TD-Hypergraph)** is formally defined as $\mathcal{H}^u = (\mathcal{V}, \mathcal{E}^u)$, where \mathcal{V} is the set of nodes, and \mathcal{E}^u is the set of temporally detailed hyperedges, with each hy-

162 hyperedge corresponding to a patient-specific temporally detailed trajectory. Specifically, $\mathcal{E}^u =$
 163 $\{e_1^u, e_2^u, \dots, e_m^u\}$, and $e_j^u = \{(v_1^j, t_1), (v_2^j, t_2), \dots, (v_k^j, t_k), (v_{k+1}^j, \infty), \dots, (v_{|e_j|}^j, \infty)\}$, where m
 164 is the total number of predefined trajectories, and each hyperedge e_j^u encodes markers with their
 165 corresponding timestamps. We assume that up to the latest observed timestamp t_k , the patient u 's
 166 j -th trajectory has progressed to marker v_k^j . The placeholder ∞ indicates that the remaining markers
 167 in a hyperedge have not been observed yet. Figure 1(c) provides an example of the TD-Hypergraph
 168 at time t_5 corresponding to the patient u in Figure 1(a)–(b). By the time t_5 , the markers have
 169 progressed to S (stroke) but not HF (heart failure) yet. The TD-Hypergraph of a patient is time-
 170 dependent. It evolves with the progression of complication markers over time, as represented by the
 171 updates of timestamps (temporal details) on hyperedges (trajectories).

172 A list of commonly used notations is provided in Table 3 (Appendix A).
 173

174 2.2 PROBLEM DEFINITION

175 Given patient encounter data with risk factors $\{\mathbf{x}_u(t_1), \dots, \mathbf{x}_u(t_k)\}_{u=1}^N$ and target
 176 complication markers $\{\mathbf{y}_u(t_1), \dots, \mathbf{y}_u(t_k); \mathbf{y}_u(t_{k+1})\}_{u=1}^N$, and the TD-Hypergraph
 177 $\{\mathcal{H}^u\}_{u=1}^N$, the problem aims to learn a TD-HNODE model f_θ such that $\hat{\mathbf{y}}_u(t_{k+1}) =$
 178 $f_\theta(\mathbf{x}_u(t_1), \dots, \mathbf{x}_u(t_k), \mathbf{y}_u(t_1), \dots, \mathbf{y}_u(t_k); \mathcal{H}^u)$. The objective is to minimize the loss
 179 $\min_\theta \frac{1}{N} \sum_{u=1}^N \mathcal{L}(\hat{\mathbf{y}}_u(t_{k+1}), \mathbf{y}_u(t_{k+1}))$. Figure 1(d) provides an illustrative example. The
 180 TD-HNODE model takes as input patient u 's risk factors $\mathbf{x}_u(t_1), \dots, \mathbf{x}_u(t_5)$ (e.g., medications,
 181 lab results, and vital signs, Figure 1(d) left), marker status $\mathbf{y}_u(t_1), \dots, \mathbf{y}_u(t_5)$ (Figure 1(a)), and a
 182 TD-Hypergraph \mathcal{H}^u (Figure 1(c)). The model predicts future marker status at t_6 (Figure 1(d) right).
 183

184 3 METHODOLOGY

185 **An overview of our model framework:** To incorporate prior clinical knowledge of disease pro-
 186 gression trajectories, we designed TD-HNODE, where nodes represent complication markers and
 187 hyperedges represent patient progression trajectories across the markers. As shown in Figure 2(a),
 188 TD-HNODE employs Neural ODE to capture continuous progression from irregular-time encoun-
 189 ters (patient index u omitted for simplicity). At each time step t_k , risk factors $\mathbf{x}(t_k)$ and complica-
 190 tion markers $\mathbf{y}(t_k)$ are embedded into node representations of the temporally detailed hypergraph
 191 \mathcal{H}^u . The embedded features and progression timestamps were used to construct a learnable TD-
 192 Hypergraph Laplacian (Figure 2(b)), capturing intra-trajectory dynamics and inter-trajectory depen-
 193 dencies. Let $\mathbf{S}(t) \in \mathbb{R}^{n \times d}$ denote the hidden state of markers at time t , where n is the number of
 194 markers and d is the embedding dimension. The learnable TD-Hypergraph Laplacian $\tilde{\mathbf{L}}(t)$, together
 195 with current risk factors $\mathbf{x}(t_k)$ and hidden state representation $\mathbf{S}(t_k)$, was passed to the Neural ODE
 196 solver to update the latent state $\mathbf{S}(t_{k+1})$ for the next time step t_{k+1} , which was then decoded to
 197 predict disease complication marker status $\hat{\mathbf{y}}(t_{k+1})$.
 198

201 3.1 NEURAL ODE AND HYPERGRAPH NEURAL NETWORK

202 We started with an introduction to a Neural ODE, which learns a continuous dynamic function $\mathbf{S}(t)$:

$$203 \frac{d\mathbf{S}(t)}{dt} = f(t, \mathbf{S}(t), \mathbf{x}(t); \Theta), \quad (1)$$

204 where Θ are learnable parameters, and $f(\cdot)$ is a neural network that models the temporal gradient
 205 of the disease state. We initialized the hidden state $\mathbf{S}(t_1)$ based on the patient's initial marker status
 206 and risk factors at time t_1 .

207 To infuse clinical domain knowledge of disease progression pathways into the Neural ODE frame-
 208 work and capture high-order dependencies among disease markers, we proposed to integrate a hy-
 209 pergraph Laplacian \mathbf{L} inspired by Hypergraph Neural Networks (Feng et al., 2019). It enabled
 210 multi-way message passing over disease trajectories. The resulting ODE dynamics were defined as
 211 follows:

$$212 \frac{d\mathbf{S}(t)}{dt} = -\mathbf{L} [\mathbf{S}(t) + h(\mathbf{x}(t))] \Theta, \quad (2)$$

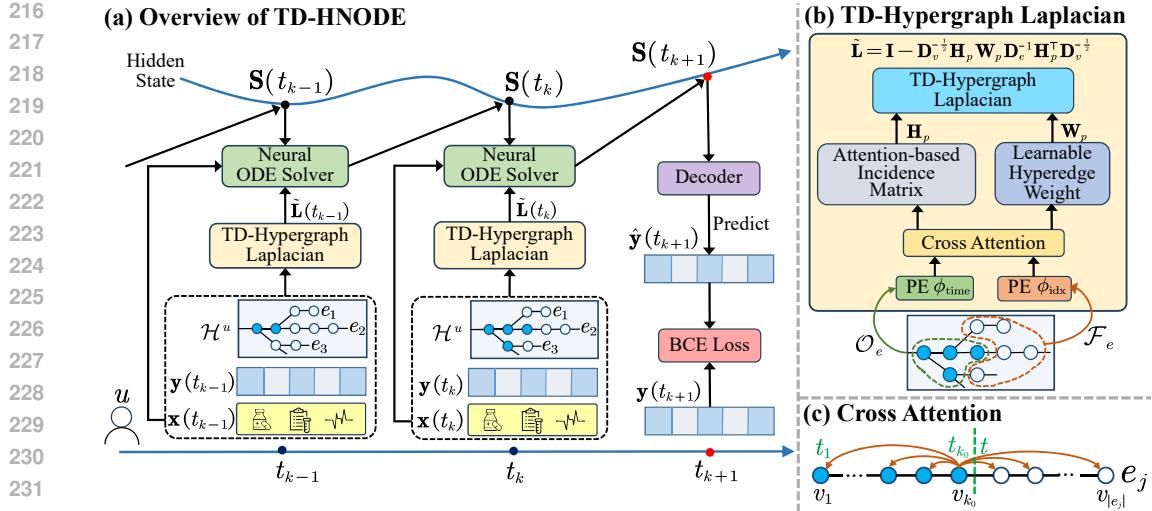


Figure 2: (a) Overview of the TD-HNODE, with an example of patient u ’s encounter sequence; (b) The TD-Hypergraph Laplacian module combining an Attention-based Incidence Matrix and a Learnable Hyperedge Weight Matrix; (c) An illustration of cross attention within hyperedge e_j .

where $h(\cdot)$ maps $\mathbf{x}(t)$ into the same space as $\mathbf{S}(t)$, and $\Theta \in \mathbb{R}^{d \times d}$ is a learnable transformation matrix. The negative sign simulates diffusion-like propagation among markers (Ji et al., 2022). The common hypergraph Laplacian \mathbf{L} is defined as:

$$\mathbf{L} = \mathbf{I} - \mathbf{D}_v^{-1/2} \mathbf{H} \mathbf{W} \mathbf{D}_e^{-1} \mathbf{H}^\top \mathbf{D}_v^{-1/2}, \quad (3)$$

where $\mathbf{H} \in \{0, 1\}^{n \times m}$ is the incidence matrix with $\mathbf{H}(i, e) = 1$ if marker v_i belongs to hyperedge e , and $\mathbf{H}(i, e) = 0$ otherwise. $\mathbf{W} \in \mathbb{R}^{m \times m}$ is a diagonal hyperedge weight matrix. The node and hyperedge degree matrices are $\mathbf{D}_v(i, i) = \sum_e \mathbf{H}(i, e) \mathbf{W}(e, e)$, and $\mathbf{D}_e(e, e) = \sum_i \mathbf{H}(i, e)$.

However, the initial formulation above uses a static incidence matrix \mathbf{H} and treats all nodes equally within each hyperedge. In addition, it relies on fixed diagonal hyperedge weight matrices $\mathbf{W} \in \mathbb{R}^{m \times m}$. These simplifications fail to capture several important characteristics of disease progression modeling: (1) the relative importance of markers within a trajectory may evolve over time; and (2) inter-trajectory dependencies due to shared markers and correlated temporal dynamics. In the following section, we extend this formulation into a learnable TD-Hypergraph Laplacian, which is temporally adaptive and tailored to patient-specific progression patterns.

3.2 LEARNABLE TD-HYPERGRAPH LAPLACIAN

We proposed two key enhancements: (1) Attention-based Incidence Matrix: we replaced the binary incidence matrix with a learnable attention mechanism, allowing the model to assign time-aware, patient-specific importance to each marker node within a progression trajectory; (2) Learnable Hyperedge Weights: instead of assigning fixed weights to hyperedges, we introduced learnable weights that captured inter-trajectory dependencies based on shared markers and correlation patterns. This design allowed TD-HNODE to perform high-order message passing guided by clinical knowledge while adapting to patient-specific disease trajectories.

3.2.1 ATTENTION-BASED INCIDENCE MATRIX

To account for temporal dynamics and the varying importance of markers in a trajectory, we designed an adaptive incidence matrix based on cross-attention within each temporally detailed hyperedge. Given a temporally detailed hyperedge $e_j = \{(v_1^j, t_1), (v_2^j, t_2), \dots, (v_{k_0}^j, t_{k_0}), (v_{k_0+1}^j, \infty), \dots, (v_{|e_j|}^j, \infty)\}$, we denoted the current progression point at time t_{k_0} as v_{k_0} , omitting the trajectory index j for notational simplicity. Based on this, we split e_j into two subsets: a *past set* $\mathcal{O}_e^j = \{v_1, \dots, v_{k_0}\}$, and a *potential set* $\mathcal{F}_e^j = \{v_{k_0+1}, \dots, v_{|e_j|}\}$ (since we had not yet observed the actual occurrence of the complication markers yet).

270 Each marker $v_i \in e_j$ had an initial embedding $\mathbf{b}_i \in \mathbb{R}^d$, which captured its identity information
 271 within the trajectory. Specifically, \mathbf{b}_i was obtained by applying a learnable multilayer perceptron to
 272 the one-hot encoding of the marker v_i . To incorporate temporal order, we applied different positional
 273 encodings depending on whether the marker had been observed: $\phi(i) = \phi_{\text{time}}(t_i)$ if $v_i \in \mathcal{O}_e^j$, and
 274 $\phi(i) = \phi_{\text{idx}}(i)$ if $v_i \in \mathcal{F}_e^j$, where $\phi_{\text{time}}(t_i) \in \mathbb{R}^d$ was a continuous-time encoding (Xu et al., 2020),
 275 and $\phi_{\text{idx}}(i) \in \mathbb{R}^d$ was a discrete index-based encoding (Vaswani et al., 2017).

276 We computed the query vectors as:

$$\mathbf{q}_i^{\text{time}} = (\mathbf{b}_i + \phi_{\text{time}}(t_i)) \mathbf{W}_Q \quad \text{if } v_i \in \mathcal{O}_e^j, \quad (4)$$

$$\mathbf{q}_i^{\text{idx}} = (\mathbf{b}_i + \phi_{\text{idx}}(i)) \mathbf{W}_Q \quad \text{if } v_i \in \mathcal{F}_e^j, \quad (5)$$

280 where $\mathbf{W}_Q \in \mathbb{R}^{d \times d}$ is a learnable projection matrix. Key and value vectors $\mathbf{k}_i^{\text{time}}, \mathbf{k}_i^{\text{idx}}, \mathbf{v}_i^{\text{time}}, \mathbf{v}_i^{\text{idx}} \in \mathbb{R}^d$
 281 for all markers $v_i \in e_j$ were constructed in the same way, using the respective positional encod-
 282 ings and projection matrices $\mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d \times d}$.
 283

284 We then computed the attention weights from v_{k_0} to all other markers $v_i \in e_j$ using:

$$\alpha_e(i, k_0) = \begin{cases} \frac{\exp(\mathbf{q}_{k_0}^{\text{time}} \cdot \mathbf{k}_i^{\text{time}} / \sqrt{d})}{\sum\limits_{l \in \mathcal{O}_e} \exp(\mathbf{q}_{k_0}^{\text{time}} \cdot \mathbf{k}_l^{\text{time}} / \sqrt{d})} & \text{if } i \leq k_0, \\ \frac{\exp(\mathbf{q}_{k_0}^{\text{idx}} \cdot \mathbf{k}_i^{\text{idx}} / \sqrt{d})}{\sum\limits_{l \in \mathcal{F}_e} \exp(\mathbf{q}_{k_0}^{\text{idx}} \cdot \mathbf{k}_l^{\text{idx}} / \sqrt{d})} & \text{if } i > k_0. \end{cases} \quad (6)$$

293 This attention mechanism allowed the model to differentiate between observed and unobserved
 294 markers, assigning context-aware, time-sensitive weights within each hyperedge. We then con-
 295 structed the adaptive incidence matrix \mathbf{H}_p by modulating each entry with the cross-attention weight
 296 from the current marker v_{k_0} to the marker v_i :

$$\mathbf{H}_p(i, e) = \begin{cases} \mathbf{H}(i, e) \cdot \alpha_e(i, k_0) & \text{if } v_i \in e, \\ 0 & \text{otherwise.} \end{cases} \quad (7)$$

300 Here, $\alpha_e(i, k_0)$ encodes the directional and time-aware importance of marker v_i under the current
 301 progression context. This formulation allows the incidence matrix to capture both structural relations
 302 and temporal dynamics, reflecting the evolving role of each marker during disease progression.

3.2.2 LEARNABLE HYPEREDGE WEIGHT MATRIX

306 Traditional hypergraph-based methods typically assume a fixed hyperedge weight matrix $\mathbf{W} \in \mathbb{R}^{m \times m}$, where m is the number of hyperedges. However, this assumption fails to capture vari-
 307 able correlation strengths in patient-specific progression across trajectories. To address this, we
 308 introduced a learnable hyperedge weight matrix $\mathbf{W}_p \in \mathbb{R}^{m \times m}$ based on hyperedge representation,
 309 which modeled dynamic dependencies among trajectories. The key idea was to derive trajectory-
 310 level embeddings from their constituent markers and compute trajectory similarity in a learned latent
 311 space.
 312

313 For each marker $v_i \in e_j$, we computed its context-enhanced representation $\tilde{\mathbf{v}}_i$ using self-attention
 314 within the subset it belongs to. Specifically, self-attention was performed separately over the past set
 315 \mathcal{O}_e^j and the future set \mathcal{F}_e^j , producing $\tilde{\mathbf{v}}_i = \text{SelfAttn}(v_i, \mathcal{O}_e^j)$ if $v_i \in \mathcal{O}_e^j$, and $\tilde{\mathbf{v}}_i = \text{SelfAttn}(v_i, \mathcal{F}_e^j)$
 316 if $v_i \in \mathcal{F}_e^j$. Here, $\text{SelfAttn}(v_i, \cdot)$ denotes standard scaled dot-product attention with v_i as query and
 317 all other markers in the same subset as keys and values. The resulting vector $\tilde{\mathbf{v}}_i \in \mathbb{R}^d$ captured
 318 context-specific information and was used to form hyperedge-level representations. Specifically, for
 319 hyperedge $e_j \in \mathcal{E}$, we aggregated the value vectors $\tilde{\mathbf{v}}_i$ to obtain a trajectory-level representation:

$$\mathbf{g}_j = \text{Aggregate}\{\tilde{\mathbf{v}}_i \mid v_i \in e_j\}, \quad (8)$$

321 where $\text{Aggregate}(\cdot)$ is a differentiable pooling function, such as average pooling.
 322

323 We aggregated the trajectory-level embeddings from all hyperedges \mathcal{E} into trajectory embedding
 324 matrix $\mathbf{G} = [\dots; \mathbf{g}_j; \dots] \in \mathbb{R}^{m \times d}$, where the j -th row of \mathbf{G} , i.e., \mathbf{g}_j , encoded the representation of

324 the j -th trajectory (hyperedge). We then projected this matrix into a latent space using a trainable
 325 linear transformation: $\tilde{\mathbf{G}} = \mathbf{G}\mathbf{W}_{\mathcal{E}}$, where $\mathbf{W}_{\mathcal{E}} \in \mathbb{R}^{d \times d}$. The latent trajectory embedding matrix $\tilde{\mathbf{G}}$
 326 was then used to compute the trajectory correlation matrix, also called *learnable hyperedge weight
 327 matrix*:

$$\mathbf{W}_p = \tilde{\mathbf{G}}\tilde{\mathbf{G}}^T \in \mathbb{R}^{m \times m}. \quad (9)$$

331 This learnable matrix \mathbf{W}_p captures data-driven similarities between all trajectories, allowing the
 332 model to emphasize more relevant progression pathways as well as their interdependency.

333 We combined the adaptive incidence \mathbf{H}_p and the learnable hyperedge weight matrix \mathbf{W}_p to form
 334 our Knowledge-Infused TD-Hypergraph Laplacian:

$$\tilde{\mathbf{L}} = \mathbf{I} - \mathbf{D}_v^{-\frac{1}{2}} \mathbf{H}_p \mathbf{W}_p \mathbf{D}_e^{-1} \mathbf{H}_p^T \mathbf{D}_v^{-\frac{1}{2}}, \quad (10)$$

338 where \mathbf{I} is the $n \times n$ identity matrix. In this way, $\tilde{\mathbf{L}}$ encodes intra-trajectory time-sensitive marker
 339 dependencies (through \mathbf{H}_p) and inter-trajectory correlations (through \mathbf{W}_p). Note that $\tilde{\mathbf{L}}$, \mathbf{H}_p , and
 340 \mathbf{W}_p all depend on the current time t , since the current progression marker timestamp t_{k_0} on each
 341 hyperedge is determined by the time point t . To reflect continuous-time progression, we rewrote
 342 $\tilde{\mathbf{L}}$ into a time-dependent form $\tilde{\mathbf{L}}(t)$, which was recomputed at each integration step t to reflect
 343 the evolving patient state and hypergraph structure. Substituting $\tilde{\mathbf{L}}(t)$ into Eq. (2) yields our final
 344 knowledge-infused disease progression model:

$$\frac{d\mathbf{S}(t)}{dt} = -\tilde{\mathbf{L}}(t) [\mathbf{S}(t) + h(\mathbf{x}(t))] \Theta. \quad (11)$$

348 The complete training procedure and pseudocode are provided in Appendix B, while the **computational
 349 complexity analysis** is detailed in Appendix C.

351 4 EXPERIMENTS

353 4.1 EXPERIMENTAL SETUP

355 **Datasets.** We conducted experiments on two EHR datasets: (1) a clinical dataset collected from a re-
 356 gional medical network affiliated with our institution, referred to as the *University Hospital* dataset;
 357 and (2) *MIMIC-IV* (Johnson et al., 2023), a publicly accessible EHR dataset. We extracted 34 risk
 358 factors associated with the progression of diabetes and its complications, as detailed in Table 4
 359 (Appendix D.1), and identified 21 outcome markers of diabetes complications \mathcal{V} , as summarized in
 360 Table 5 (Appendix D.2). We also constructed a disease progression hypergraph \mathcal{H} based on expert-
 361 validated clinical pathways provided by our clinical collaborators, as detailed in Appendix D.3. The
 362 *University Hospital* and *MIMIC-IV* datasets contained 2,415 patients and 902 patient sequences,
 363 respectively. More details are provided in Appendix D.4.

364 **Baselines.** To evaluate TD-HNODE, we compared it with representative baselines across four
 365 categories. For **Sequential Models**, we included T-LSTM (Baytas et al., 2017), which handles
 366 irregular visits using time-aware LSTM, and ContiFormer (Chen et al., 2024b), which redefines
 367 self-attention over evolving latent trajectories. For **Temporal Graph Neural Networks**, we used
 368 discrete-time MegaCRN (Jiang et al., 2023) and continuous-time TGNE (Cheng et al., 2024), which
 369 model temporal graphs via snapshots and event-based messages, respectively. For **Temporal Hy-
 370 pergraph Neural Networks**, we compared with DHS (Wang et al., 2024a), which fuses hyper-
 371 graph convolution with GRU, and HyperTime (Younis and Ahmadi, 2024), which builds dynamic
 372 hypergraphs with LSTM-enhanced hyperedge convolutions. For **Neural ODE-based Models**, we
 373 included NODE (Chen et al., 2018), capturing continuous dynamics in latent space, and CODE-
 374 RNN (Coelho et al., 2025), which integrates ODEs with RNNs for time-series modeling. Full base-
 375 lines implementation details are provided in Appendix D.6.

376 We evaluated performance using Accuracy, Precision, Recall, and F1-score, emphasizing Recall due
 377 to class imbalance and the need to detect early progression. High Recall reflects better identification
 378 of true positives, critical for clinical deployment. Source code has been included in the Supple-
 379 mentary Material for reproducibility, and implementation details are provided in Appendix D.5.

378
379
380
Table 1: Results (%), average \pm std of all methods on *University Hospital* dataset and *MIMIC-IV*
dataset, with the best results in bold.

Methods	University Hospital				MIMIC-IV			
	Accuracy	Precision	Recall	F1-score	Accuracy	Precision	Recall	F1-score
T-LSTM ContiFormer	69.2 \pm 0.4	10.6 \pm 0.2	55.7 \pm 0.2	12.8 \pm 0.1	84.1 \pm 0.2	17.0 \pm 0.5	58.2 \pm 0.1	24.5 \pm 0.3
	77.2 \pm 0.2	12.3 \pm 0.1	65.4 \pm 0.2	16.7 \pm 0.2	86.2 \pm 0.1	26.2 \pm 0.4	82.1 \pm 0.2	36.5 \pm 0.3
MegaCRN TGNE	70.7 \pm 0.1	8.1 \pm 0.1	64.5 \pm 0.6	12.9 \pm 0.1	83.4 \pm 0.5	22.4 \pm 0.3	70.1 \pm 1.3	30.8 \pm 0.4
	72.4 \pm 0.2	8.6 \pm 0.1	75.4 \pm 0.3	14.2 \pm 0.1	85.0 \pm 0.5	23.4 \pm 0.1	72.8 \pm 0.2	32.1 \pm 0.2
DHSL HyperTime	72.8 \pm 0.1	8.3 \pm 0.1	60.5 \pm 0.3	13.5 \pm 0.3	82.9 \pm 0.2	22.0 \pm 0.2	69.9 \pm 0.3	29.8 \pm 0.2
	74.9 \pm 0.2	9.3 \pm 0.1	59.0 \pm 0.1	13.9 \pm 0.1	84.6 \pm 0.2	25.1 \pm 0.1	71.4 \pm 0.2	31.7 \pm 0.2
NODE CODE-RNN	72.3 \pm 0.1	10.7 \pm 0.3	56.9 \pm 0.1	14.4 \pm 0.3	84.4 \pm 0.2	19.5 \pm 0.3	62.3 \pm 0.2	27.2 \pm 0.1
	73.0 \pm 0.1	10.0 \pm 0.1	61.5 \pm 0.2	15.0 \pm 0.1	85.7 \pm 0.1	23.5 \pm 0.2	74.5 \pm 0.4	32.5 \pm 0.2
TD-HNODE	79.4\pm0.1	14.3\pm0.2	79.3\pm0.3	20.4\pm0.4	87.9\pm0.1	31.8\pm0.4	85.7\pm0.4	42.9\pm1.3

391
392
Table 2: Ablation study results (%) of TD-HNODE on *University Hospital* and *MIMIC-IV* dataset.
393

\mathbf{H}_p	\mathbf{W}_p	University Hospital				MIMIC-IV			
		Accuracy	Precision	Recall	F1-score	Accuracy	Precision	Recall	F1-score
✓	✓	79.4	14.3	79.3	20.4	87.9	31.8	85.7	42.9
✗	✓	75.3	12.9	77.0	18.9	86.1	27.7	78.5	36.6
✓	✗	76.5	11.5	79.2	18.7	86.8	29.0	84.9	38.5
✗	✗	73.1	10.6	76.1	15.5	83.0	23.3	73.1	30.8

401
402
4.2 COMPARISON ON CLASSIFICATION PERFORMANCE

403 We compared TD-HNODE with all baselines on the *University Hospital* and *MIMIC-IV* datasets,
404 with results summarized in Table 1. TD-HNODE consistently achieved the best performance across
405 all metrics. On *University Hospital*, it outperformed the strongest baseline (ContiFormer) by 2.2% in
406 accuracy and 3.7% in F1-score, and by 1.7% and 6.4% on *MIMIC-IV*. Compared to non-structural
407 models like T-LSTM, NODE, and CODE-RNN, TD-HNODE showed substantial Recall and F1
408 gains (e.g., +23.4% Recall over NODE on *MIMIC-IV*), demonstrating its strength in capturing com-
409 plex disease dynamics through its trajectory-aware hypergraph structure. TD-HNODE also sur-
410 passed temporal structure models such as MegaCRN and TGNE. Notably, it achieved 3.9% and
411 12.9% Recall improvements over TGNE on *University Hospital* and *MIMIC-IV*, respectively. These
412 results confirmed that modeling high-order multi-node interactions via hyperedges offered stronger
413 representational power than traditional pairwise edges, enabling more accurate and clinically mean-
414 ingful early disease prediction with fewer false negatives.

415 Additional experiments on cardiovascular disease are provided in Appendix D.7, further demon-
416 strating the generalizability of TD-HNODE beyond diabetes.

417
418
4.3 ABLATION STUDY

419 We assessed the impact of two core components in TD-HNODE: the **adaptive incidence matrix**
420 \mathbf{H}_p and the **learnable hyperedge weights** \mathbf{W}_p . As shown in Table 2, using \mathbf{H}_p improved F1-score
421 from 15.5% to 18.7% without \mathbf{W}_p , and to 20.4% with it, highlighting the benefit of intra-trajectory
422 attention for time-aware marker importance. Meanwhile, enabling \mathbf{W}_p boosted recall from 76.1%
423 to 77.0% and F1-score from 15.5% to 18.9% even with static \mathbf{H} , and yielded 5.4%/5.8% gains on
424 recall/F1 on *MIMIC-IV*, validating the value of modeling inter-trajectory dependencies.

425
426
4.4 SENSITIVITY ANALYSIS

427 We analyzed TD-HNODE’s sensitivity to two hyperparameters: embedding dimension d and the
428 number of ODE solver steps in RK4. As shown in Figure 3(a), increasing d from 64 to 128 sig-
429 nificantly improved recall (e.g., from 0.747 to 0.857 on *MIMIC-IV*), but further increases showed
430 diminishing returns or overfitting, so we chose $d = 128$. Similarly, Figure 3(b) shows that vary-
431 ing the number of steps from 4 to 12 revealed underfitting at lower values (e.g., 4 or 6), while

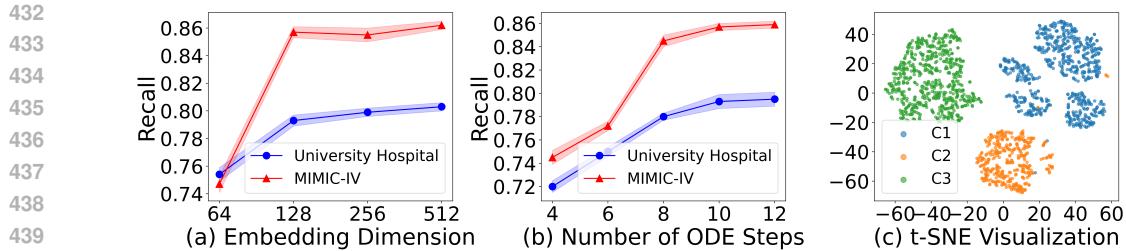


Figure 3: (a) Recall of TD-HNODE on both datasets with varying embedding dimensions. (b) Recall with varying numbers of ODE steps. (c) t-SNE visualization of 1,690 patients from the *University Hospital* dataset; C1, C2, and C3 denote Clusters 1, 2, and 3.

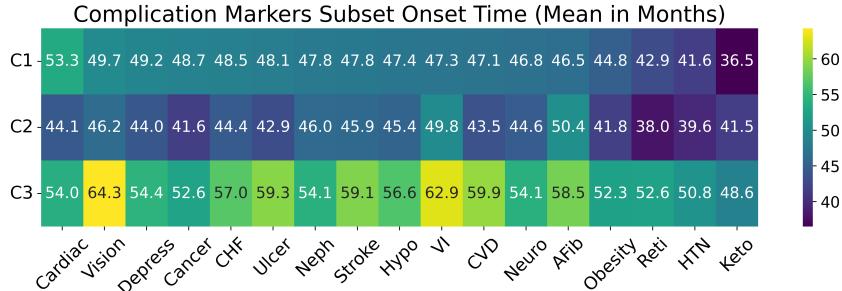


Figure 4: Mean onset time (in months from the first encounter) of each marker across patients in each cluster. Earlier values indicate earlier manifestation or faster progression.

performance stabilized around 10 steps with minimal gains beyond. These results confirmed TD-HNODE’s robustness and the suitability of its default hyperparameter settings for real-world EHR applications.

4.5 CASE STUDY

We conducted a case study to apply the TD-HNODE results for patient progression sub-phenotyping. Specifically, we extracted the patient embeddings (prior to the decoder layers) learned from TD-HNODE on the *University Hospital* dataset. We visualized the patient embeddings in 2D using t-SNE projection and identified three clear clusters, as shown in Figure 3(c). We then used hierarchical clustering to group patients into these three clusters and analyzed disease progression patterns within each cluster. Specifically, for each of the 21 complication markers, we computed the *mean onset time* (in months since the first encounter) for patients within each cluster. A smaller onset time indicated faster progression of complication outcomes. As shown in Figure 4, patients in Cluster 3 exhibited the slowest progression, followed by Cluster 1, and then Cluster 2, which showed the most rapid progression. For example, compared to Cluster 3, patients in Cluster 2 experienced earlier onset by 9 months in *Cardiac Revascularization* (*Cardiac*), 18 months in *Blindness and Vision Loss* (*Vision*), and 12 months in *Congestive Heart Failure* (*CHF*). These results demonstrated that TD-HNODE effectively captures the heterogeneity within the patient cohort.

5 CONCLUSION AND FUTURE WORK

In this work, we proposed TD-HNODE, a novel framework for continuous-time disease progression modeling that integrates medical knowledge with a TD-hypergraph-based Neural ODE. The method captures both intra- and inter-trajectory dependencies, and experiments on real-world EHR datasets demonstrated its effectiveness in modeling diabetes progression. For future work, our framework currently focuses on known disease progression pathways, as in chronic diseases such as diabetes, and should be extended to infer unknown or partially characterized trajectories (e.g., via frequent pattern mining or Bayesian networks). In addition, we plan to incorporate causal inference to evaluate the impact of complex treatment regimens.

486 REFERENCES
487

488 Shahadat Uddin, Shangzhou Wang, Arif Khan, and Haohui Lu. Comorbidity progression patterns
489 of major chronic diseases: the impact of age, gender and time-window. *Chronic Illness*, 19(2):
490 304–313, 2023.

491 DR Mould. Models for disease progression: new approaches and uses. *Clinical Pharmacology &*
492 *Therapeutics*, 92(1):125–131, 2012.

493 Xiang Wang, David Sontag, and Fei Wang. Unsupervised learning of disease progression models.
494 In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and*
495 *data mining*, pages 85–94, 2014.

496 Núria Buil-Bruna, Tarjinder Sahota, José-María López-Picazo, Marta Moreno-Jiménez, Salvador
497 Martín-Algarra, Benjamin Ribba, and Iñaki F Trocóniz. Early prediction of disease progression in
498 small cell lung cancer: Toward model-based personalized medicine in oncology. *Cancer research*,
499 75(12):2416–2425, 2015.

500 Mélanie Prague, Daniel Commenges, and Rodolphe Thiébaut. Dynamical models of biomarkers and
501 clinical progression for personalized medicine: The hiv context. *Advanced drug delivery reviews*,
502 65(7):954–965, 2013.

503 Sarah F Cook and Robert R Bies. Disease progression modeling: key concepts and recent developments.
504 *Current pharmacology reports*, 2:221–230, 2016.

505 Erno van Schaick, Jenny Zheng, Juan Jose Perez Ruixo, Ronald Gieschke, and Philippe Jacqmin. A
506 semi-mechanistic model of bone mineral density and bone turnover based on a circular model of
507 bone remodeling. *Journal of pharmacokinetics and pharmacodynamics*, 42:315–332, 2015.

508 Yuval Shahar. *A knowledge-based method for temporal abstraction of clinical data*. Stanford Uni-
509 versity, 1995.

510 Christopher H Jackson, Linda D Sharples, Simon G Thompson, Stephen W Duffy, and Elisabeth
511 Couto. Multistate markov models for disease progression with classification error. *Journal of the*
512 *Royal Statistical Society Series D: The Statistician*, 52(2):193–209, 2003.

513 Rafid Sukkar, Elyse Katz, Yanwei Zhang, David Raunig, and Bradley T Wyman. Disease progres-
514 sion modeling using hidden markov models. In *2012 annual international conference of the IEEE*
515 *engineering in medicine and biology society*, pages 2845–2848. IEEE, 2012.

516 Yu-Ying Liu, Shuang Li, Fuxin Li, Le Song, and James M Rehg. Efficient learning of continuous-
517 time hidden markov models for disease progression. *Advances in neural information processing*
518 *systems*, 28, 2015.

519 Benjamin Shickel, Patrick James Tighe, Azra Bihorac, and Parisa Rashidi. Deep ehr: a survey of
520 recent advances in deep learning techniques for electronic health record (ehr) analysis. *IEEE*
521 *journal of biomedical and health informatics*, 22(5):1589–1604, 2017.

522 Jose Roberto Ayala Solares, Francesca Elisa Diletta Raimondi, Yajie Zhu, Fatemeh Rahimian, Dex-
523 ter Canoy, Jenny Tran, Ana Catarina Pinho Gomes, Amir H Payberah, Mariagrazia Zottoli, Milad
524 Nazarzadeh, et al. Deep learning for electronic health records: A comparative review of multiple
525 deep neural architectures. *Journal of biomedical informatics*, 101:10337, 2020.

526 Yuan Zhang. Attain: Attention-based time-aware lstm networks for disease progression modeling.
527 In *In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-2019)*, pp. 4369–4375, Macao, China., 2019.

528 Yuan Zhang, Xi Yang, Julie Ivy, and Min Chi. Time-aware adversarial networks for adapting disease
529 progression modeling. In *2019 IEEE International Conference on Healthcare Informatics (ICHI)*,
530 pages 1–11. IEEE, 2019.

531 Hyunwoo Sohn, Kyungjin Park, and Min Chi. Mulan: Multilevel language-based representation
532 learning for disease progression modeling. In *2020 IEEE International Conference on Big Data*
533 (*Big Data*), pages 1246–1255. IEEE, 2020.

540 Moshe Zisser and Dvir Aran. Transformer-based time-to-event prediction for chronic kidney disease
 541 deterioration. *Journal of the American Medical Informatics Association*, 31(4):980–990, 2024.
 542

543 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
 544 differential equations. *Advances in neural information processing systems*, 31, 2018.

545 Pawan Goyal and Peter Benner. Neural ordinary differential equations with irregular and noisy data.
 546 *Royal Society Open Science*, 10(7):221475, 2023.
 547

548 Yang Chen, Hong Liu, Pinhao Song, and Wenhao Li. Neural ordinary differential equation for
 549 irregular human motion prediction. *Pattern Recognition Letters*, 178:76–83, 2024a.
 550

551 Zhaozhi Qian, William Zame, Lucas Fleuren, Paul Elbers, and Mihaela van der Schaar. Integrat-
 552 ing expert odes into neural odes: pharmacology and disease progression. *Advances in Neural*
 553 *Information Processing Systems*, 34:11364–11383, 2021.

554 Ting Dang, Jing Han, Tong Xia, Erika Bondareva, Chloë Siegela-Brown, Jagmohan Chauhan, An-
 555 dreas Grammenos, Dimitris Spathis, Pietro Cicuta, and Cecilia Mascolo. Conditional neural ode
 556 processes for individual disease progression forecasting: a case study on covid-19. In *Pro-
 557 ceedings of the 29th ACM SIGKDD Conference On Knowledge Discovery and Data Mining*, pages
 558 3914–3925, 2023.

559 Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
 560 Bronstein. Temporal graph networks for deep learning on dynamic graphs. *arXiv preprint*
 561 *arXiv:2006.10637*, 2020.
 562

563 Sheng Tian, Tao Xiong, and Leilei Shi. Streaming dynamic graph neural networks for continuous-
 564 time temporal graph modeling. In *2021 IEEE International Conference on Data Mining (ICDM)*,
 565 pages 1361–1366. IEEE, 2021.

566 Jie Liu, Jiamou Liu, Kaiqi Zhao, Yanni Tang, and Wu Chen. Tp-gnn: Continuous dynamic graph
 567 neural network for graph classification. In *2024 IEEE 40th International Conference on Data*
 568 *Engineering (ICDE)*, pages 2848–2861. IEEE, 2024.
 569

570 Ke Cheng, Junchen Ye, Xiaodong Lu, Leilei Sun, and Bowen Du. Temporal graph network for
 571 continuous-time dynamic event sequence. *Knowledge-Based Systems*, 304:112452, 2024.

572 Se-eun Yoon, Hyungseok Song, Kijung Shin, and Yung Yi. How much and when do we need higher-
 573 order information in hypergraphs? a case study on hyperedge prediction. In *Proceedings of the*
 574 *web conference 2020*, pages 2627–2633, 2020.
 575

576 Geon Lee and Kijung Shin. Temporal hypergraph motifs. *Knowledge and Information Systems*, 65
 577 (4):1549–1586, 2023.
 578

579 Yunyu Liu, Jianzhu Ma, and Pan Li. Neural predicting higher-order patterns in temporal networks.
 580 In *Proceedings of the ACM Web Conference 2022*, pages 1340–1351, 2022.

581 Geon Lee and Kijung Shin. Thyme+: Temporal hypergraph motifs and fast algorithms for exact
 582 counting. In *2021 IEEE international conference on data mining (ICDM)*, pages 310–319. IEEE,
 583 2021.
 584

585 Shun Wang, Yong Zhang, Xuanqi Lin, Yongli Hu, Qingming Huang, and Baocai Yin. Dynamic
 586 hypergraph structure learning for multivariate time series forecasting. *IEEE Transactions on Big*
 587 *Data*, 10(4):556–567, 2024a.

588 Raneen Younis and Zahra Ahmadi. Hypertime: A dynamic hypergraph approach for time series
 589 classification. In *2024 IEEE International Conference on Data Mining (ICDM)*, pages 570–579.
 590 IEEE, 2024.
 591

592 Chengzhi Yao, Zhi Li, and Junbo Wang. Spatio-temporal hypergraph neural ode network for traffic
 593 forecasting. In *2023 IEEE International Conference on Data Mining (ICDM)*, pages 1499–1504.
 IEEE, 2023.

594 Botong Wu, Sijie Ren, Jing Li, Xinwei Sun, Shi-Ming Li, and Yizhou Wang. Forecasting irreversible
 595 disease via progression learning. In *Proceedings of the IEEE/CVF Conference on Computer*
 596 *Vision and Pattern Recognition*, pages 8117–8125, 2021.

597

598 Pooyan Kazemian, Jonathan E Helm, Mariel S Lavieri, Joshua D Stein, and Mark P Van Oyen.
 599 Dynamic monitoring and control of irreversible chronic diseases with application to glaucoma.
 600 *Production and operations management*, 28(5):1082–1107, 2019.

601

602 Ashay D Bhatwadekar, Aumer Shughoury, Ameya Belamkar, and Thomas A Ciulla. Genetics of
 603 diabetic retinopathy, a leading cause of irreversible blindness in the industrialized world. *Genes*,
 604 12(8):1200, 2021.

605

606 Yipei Wang, Bing He, Shannon Risacher, Andrew Saykin, Jingwen Yan, and Xiaoqian Wang. Learning
 607 the irreversible progression trajectory of alzheimer’s disease. In *2024 IEEE International*
 608 *Symposium on Biomedical Imaging (ISBI)*, pages 1–5. IEEE, 2024b.

609

610 Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Directed hypergraphs and
 611 applications. *Discrete applied mathematics*, 42(2-3):177–201, 1993.

612

613 Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
 In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pages 3558–3565,
 2019.

614

615 Yue Gao, Yifan Feng, Shuyi Ji, and Rongrong Ji. Hgnn+: General hypergraph neural networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3):3181–3199, 2022.

616

617 Uthsav Chitra and Benjamin Raphael. Random walks on hypergraphs with edge-dependent vertex
 618 weights. In *International conference on machine learning*, pages 1172–1181. PMLR, 2019.

619

620 Jiahao Ji, Jingyuan Wang, Zhe Jiang, Jiawei Jiang, and Hu Zhang. Stdnet: Towards physics-guided
 621 neural networks for traffic flow prediction. In *Proceedings of the AAAI conference on artificial*
 622 *intelligence*, volume 36, pages 4048–4056, 2022.

623

624 Da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and kannan achan. Inductive representation
 625 learning on temporal graphs. In *International Conference on Learning Representations (ICLR)*,
 2020.

626

627 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 628 *tion processing systems*, 30, 2017.

629

630 Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
 631 Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
 632 electronic health record dataset. *Scientific data*, 10(1):1, 2023.

633

634 Inci M Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K Jain, and Jiayu Zhou. Patient subtyping via
 635 time-aware lstm networks. In *Proceedings of the 23rd ACM SIGKDD international conference*
 636 *on knowledge discovery and data mining*, pages 65–74, 2017.

637

638 Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer:
 639 Continuous-time transformer for irregular time series modeling. *Advances in Neural Information*
 640 *Processing Systems*, 36, 2024b.

641

642 Renhe Jiang, Zhaonan Wang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa Kobayashi, Xuan
 643 Song, Shintaro Fukushima, and Toyotaro Suzumura. Spatio-temporal meta-graph learning for
 644 traffic forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37,
 645 pages 8078–8086, 2023.

646

647 C Coelho, M Fernanda P Costa, and LL Ferrás. Neural chronos ode: Modeling bidirectional tempo-
 648 ral patterns in time-series data. *Expert Systems with Applications*, page 126784, 2025.

649

Dunya Tomic, Jonathan E Shaw, and Dianna J Magliano. The burden and risks of emerging compli-
 650 cations of diabetes mellitus. *Nature Reviews Endocrinology*, 18(9):525–539, 2022.

648 Vivian A Fonseca. Defining and characterizing the progression of type 2 diabetes. *Diabetes care*,
649 32(Suppl 2):S151, 2009.
650

651 Marc Gregory Yu, Daniel Gordin, Jialin Fu, Kyoungmin Park, Qian Li, and George Liang King.
652 Protective factors and the pathogenesis of complications in diabetes. *Endocrine reviews*, 45(2):
653 227–252, 2024.

654 Mikhail S Dzeshka, Gregory YH Lip, Viktor Snezhitskiy, and Eduard Shantsila. Cardiac fibrosis in
655 patients with atrial fibrillation: mechanisms and clinical implications. *Journal of the American
656 College of Cardiology*, 66(8):943–959, 2015.

657 Robert O Bonow, Douglas L Mann, Douglas P Zipes, and Peter Libby. *Braunwald's heart disease
658 e-book: A textbook of cardiovascular medicine*. Elsevier Health Sciences, 2011.
659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

A MATHEMATICAL NOTATIONS

The main mathematical notations of this paper is shown in Table 3.

Table 3: Main mathematical notations.

Notation	Description
$\mathbf{x}_u(t_k)$	Risk factors vector of patient u at time t_k
$\mathbf{y}_u(t_k)$	Marker status vector of patient u at time t_k
\mathcal{V}	Set of markers (nodes)
p_j	The j -th trajectory: $\langle v_1^j, v_2^j, \dots, v_{ p_j }^j \rangle$
n	Number of predefined markers (nodes)
m	Number of predefined trajectories (hyperedges)
v_i^j	The i -th marker in trajectory p_j
\mathcal{H}	Disease progression hypergraph: $(\mathcal{V}, \mathcal{E})$
p_j^u	Patient u 's temporally detailed trajectory along p_j
\mathcal{H}^u	TD-Hypergraph of patient u : $(\mathcal{V}, \mathcal{E}^u)$
e_j^u	TD-Hyperedge of u along p_j

756 **B TRAINING ALGORITHM**
757758 After integrating the ODE from the latest observed timestamp t_k to t_{k+1} , we obtain $\mathbf{S}(t_{k+1}) \in$
759 $\mathbb{R}^{n \times d}$, the hidden representations of all n markers at time t_{k+1} . These embeddings are then mapped
760 to prediction scores for each marker, followed by a sigmoid activation to estimate the probability
761 of presence for each marker at t_{k+1} . The model is trained by minimizing the binary cross-entropy
762 (BCE) loss between the predicted probabilities and the ground-truth marker statuses.763 The overall training process is detailed in **Algorithm 1** below. In particular, we adopt an auto-
764 regressive training loop: for each patient, the model integrates the continuous dynamics forward
765 in time, using the hidden state at t_k to predict marker outcomes at t_{k+1} . At each step, the TD-
766 Hypergraph Laplacian computed at time t_k guides the flow of information, capturing fine-grained
767 trajectory dynamics and marker dependencies.768 **Algorithm 1** Training procedure of TD-HNODE

769770 **Require:** • Encounter sequences for N patients:
771

772
$$\{\mathbf{x}_u(t_1), \dots, \mathbf{x}_u(t_{l_u}); \mathbf{y}_u(t_1), \dots, \mathbf{y}_u(t_{l_u})\}_{u=1}^N;$$

773

774 • TD-Hypergraphs: $\{\mathcal{H}^u\}_{u=1}^N$
775 **Ensure:** Model parameters Θ' 776 1: Initialize all parameters Θ'
777 2: **for** epoch in 1 : MaxEpoch **do**
778 3: **for** each patient u **do**
779 4: Initialize hidden state $\mathbf{S}_u(t_1)$
780 5: **for** timestamp $t_k \leftarrow t_1 : t_{l_u}$ **do**
781 6: Compute incidence matrix $\mathbf{H}_p(t_k)$ (Eq. 7)
782 7: Compute hyperedge weights $\mathbf{W}_p(t_k)$ (Eq. 9)
783 8: Compute TD-Hypergraph Laplacian $\tilde{\mathbf{L}}(t_k)$ (Eq. 10)
784 9: Update state: $\mathbf{S}_u(t_{k+1}) \leftarrow \text{ODESolver}(\mathbf{S}_u(t_k), \mathbf{x}_u(t_k), \tilde{\mathbf{L}}(t_k), [t_k, t_{k+1}])$
785 10: $\hat{\mathbf{y}}_u(t_{k+1}) = \text{Sigmoid}(\mathbf{S}_u(t_{k+1}))$
786 11: Compute loss $\mathcal{L} \leftarrow \text{BCE}(\hat{\mathbf{y}}_u(t_{k+1}), \mathbf{y}_u(t_{k+1}))$
787 12: **end for**
788 13: **end for**
789 14: Update Θ' via gradient descent on accumulated loss
790 15: **end for**
791 16: **return** Θ'

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
C COMPUTATIONAL COMPLEXITY812
813
814
815
Assume the average number of timestamps per patient sequence is \hat{L} , the batch size is B , the number
of markers (nodes) is n , the number of hyperedges is m , the number of attention heads is \hat{h} , and
the hidden dimension is \hat{d} . We denote the average number of markers per hyperedge as n_e and the
number of Runge-Kutta steps in Neural ODE as s .816
817
818
819
820
821
822
823
824
825
826
827
828
829

- Attention-based incidence matrix (Eq. 6): The query matrix dimensions are $Q \in \mathbb{R}^{B \times \hat{h} \times m \times \hat{d}}$ and the key matrix dimensions are $K \in \mathbb{R}^{B \times \hat{h} \times m \times n_e \times \hat{d}}$. The dot-product attention computation has complexity $O(B \cdot \hat{h} \cdot m \cdot n_e \cdot \hat{d})$ per timestamp.
- Hyperedge weight matrix (Eq. 9): Self-attention pooling within each hyperedge costs $B \cdot m \cdot n_e^2 \cdot \hat{d}$, and computing the pairwise trajectory correlation matrix $W_p \in \mathbb{R}^{m \times m}$ costs $B \cdot m^2 \cdot \hat{d}$. Total complexity is $O(B \cdot (m \cdot n_e^2 + m^2) \cdot \hat{d})$.
- TD-Hypergraph Laplacian (Eq. 10): Matrix multiplications for constructing \tilde{L} require $O(B \cdot n \cdot m)$ operations per timestamp.
- ODE solver: Each message passing operation during one Runge-Kutta step costs $O(B \cdot n \cdot m \cdot \hat{d})$, and since the solver performs s such steps for numerical integration, the total cost is $O(B \cdot s \cdot n \cdot m \cdot \hat{d})$ per timestamp.

830
831
The overall per-batch complexity of TD-HNODE is

832
$$T_{\text{total}} = O(B \cdot \hat{L} \cdot (\hat{h}mn_e\hat{d} + mn_e^2\hat{d} + m^2\hat{d} + nm + snm\hat{d})),$$

833
834
and since $n_e \leq n$, we can further bound it by

835
$$T_{\text{total}} \leq O(B \cdot \hat{L} \cdot \hat{d}(mn^2 + m^2 + snm)).$$

837
838
839
Given our settings with $n \in [20, 30]$, $m \in [10, 15]$, and $\hat{L} \leq 20$, the dominant cost is the ODE solver
 $O(B \cdot \hat{L} \cdot s \cdot n \cdot m \cdot \hat{d})$, and overall complexity scales linearly with sequence length and the number
of hyperedges.840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **D EXPERIMENTS**
865866 **D.1 RISK FACTORS**
867868 The risk factors were defined below by our clinical co-author (MD) based on established expertise
869 and supported by the literature on diabetes complications (Tomic et al., 2022).
870871 Table 4: List of 34 risk factors used in the study.
872

873 SEX_CD	GFR
874 HDL	Triglycerides
875 Beta.blockers	CCB
876 DPP4i	Lipid
877 Loop	Metformin
878 Non_loop	RAS
879 Sulfonylurea	Thiazolidinedione
880 Alcohol_use_disorder	Angina_flag
881 Cardiovascular.Disease	Chronic_kidney_disease
882 Drug_use_disorder	End.Stage.Renal.Disease
883 Exercise	Gestational_diabetes
884 History_of_Myocardial_Infarction	History_of_stroke
885 HIV_AIDS	Hypercholesterolaemia
886 Lower_extremity_amputation	Myocardial_Infarction_MI
887 Organ_transplant	Peripheral_vascular_disease
888 Photocoagulation	Pregnancy
889 Retinopathy_intravitreal_injections	Secondary_diabetes

918
919

D.2 COMPLICATION MARKERS

920 The 21 diabetes complication outcome markers were defined below by our clinical co-author
 921 (MD) based on established clinical expertise and supported by the literature on diabetes compli-
 922 cations (Tomic et al., 2022). In our formulation, we treat all 21 markers as **irreversible**. Although
 923 some markers such as ‘HbA1c Low’, ‘HbA1c High’, ‘Poor Lipid’, and ‘Poor BP’ are laboratory test
 924 results that may fluctuate over time, we emphasize their *first occurrence* as an indication that the pa-
 925 tient has progressed to this stage of disease or has experienced this level of abnormality. Following
 926 clinical guidance, we therefore model the initial onset of each marker as a significant progression
 927 event that remains active in the disease trajectory representation.

928
929

Table 5: List of 21 diabetes complication markers and their abbreviations used in Figure 4.

HbA1c Low	HbA1c High	Hypoglycemia (Hypo)
Obesity	Nephropathy (Neph)	Neuropathy (Neuro)
Foot Ulcer (Ulcer)	Cancer	Hypertension (HTN)
Poor Lipid	Poor BP	Retinopathy (Reti)
Depression (Depress)	DKA (Keto)	Visual Impairment (VI)
Blindness and Vision Loss (Vision)	Cerebrovascular Disease (CVD)	Stroke
Atrial Fibrillation (AFib)	Cardiac Revascularization (Cardiac)	Heart Failure (CHF)

930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 D.3 DISEASE PROGRESSION PATHWAYS
973974 The predefined hyperedges (progression pathways) were determined below with guidance from our
975 clinical co-author (MD) and supported by established medical literature (Fonseca, 2009; Yu et al.,
976 2024).977

- 978 • HbA1c High → Poor Lipid → Hypertension / Poor BP → Atrial Fibrillation → Heart
979 Failure
- 980 • HbA1c High → Obesity
- 981 • HbA1c High → Retinopathy → Visual Impairment → Blindness and Vision Loss
- 982 • HbA1c Low → Hypoglycemia
- 983 • HbA1c High → DKA
- 984 • HbA1c High → Poor Lipid → Hypertension / Poor BP → Cardiac Revascularization
- 985 • HbA1c High → Depression
- 986 • HbA1c High → Poor Lipid → Hypertension / Poor BP → Cerebrovascular Disease →
987 Stroke
- 988 • HbA1c High → Neuropathy → Foot Ulcer
- 989 • HbA1c High → Nephropathy

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 D.4 DATASET DETAILS
10271028 We provide additional details about the two datasets used in our study.
10291030 **University Hospital Dataset.** This study was approved by the Institutional Review Board (IRB)
1031 of our institution. This dataset contains longitudinal EHR sequences for 2,415 diabetic patients
1032 collected from a regional medical network affiliated with our institution. Each patient record consists
1033 of a time-ordered sequence of hospital encounters, including structured clinical information such as
1034 laboratory test results, vital signs, medications, and diagnosis codes.
10351036 **MIMIC-IV Dataset.** MIMIC-IV (Johnson et al., 2023) is a publicly available EHR dataset col-
1037 lected from the Beth Israel Deaconess Medical Center. Although not specifically designed for dia-
1038 betes, we identified 902 patients with at least one diabetes-related complication by mapping ICD-
1039 9/10 diagnosis codes to our predefined marker set \mathcal{V} .
10401041 **Preprocessing.** For both datasets, we organized each patient’s data as a sequence of 20 encounters,
1042 with each encounter containing a risk factor vector $\mathbf{x}_u(t_k)$ and a binary complication marker vector
1043 $\mathbf{y}_u(t_k)$. For the University Hospital dataset, the raw encounter sequence lengths ranged from 10 to
1044 40. To standardize the input format, we fixed the sequence length at 20. The basic statistics of both
1045 datasets are shown in Table 6. For patients with fewer than 20 encounters, we applied padding at the
1046 end of the sequence; for those with more than 20, we selected the latest 20 encounters, as disease
1047 progression events tend to occur in later stages of follow-up.
10481049 Table 6: Dataset statistics for University Hospital and MIMIC-IV.
1050

Dataset	Number of Encounters			Time Span (Months)		
	Min	Avg	Max	Min	Avg	Max
University Hospital	10	15	40	19.4	68.6	121.7
MIMIC-IV	20	20	20	6.4	73.1	177.1

1056 Missing values in the risk factor vectors were imputed using the most recent non-missing value
1057 from prior encounters (i.e., last-observation carried forward). This approach preserves temporal
1058 consistency and aligns with clinical practice, where outdated test results are often referenced until
1059 updated.
10601061 In addition, under guidance from clinical collaborators, several continuous-valued physiological
1062 indicators were discretized into clinically meaningful categories. Specifically:
1063

- **GFR** values were discretized into GFR_NORM (≥ 90), GFR_Decrease_Slight ($60 \leq GFR < 90$), and GFR_Decrease_Severe (< 60).
- **HDL** values were mapped to HDL_Good (≥ 60), HDL_Normal ($40 \leq HDL < 60$), and HDL_Bad (< 40).
- **Triglycerides** were categorized into Triglycerides_Good (< 150), Triglycerides_LowRisk ($150 \leq TG < 199$), and Triglycerides_HighRisk (≥ 199).

1071 These discrete categories were embedded as input tokens for our model.
10721073 For the MIMIC-IV dataset, only structured diagnosis codes were used to construct the complication
1074 marker vectors $\mathbf{y}_u(t_k)$ by mapping ICD-9/10 codes to the predefined marker set \mathcal{V} . Risk factor
1075 inputs were not utilized due to sparsity and inconsistency across patient records.
10761077 **Hypergraph Construction.** We constructed a disease progression hypergraph \mathcal{H} based on expert-
1078 validated trajectories of diabetes complications. Each trajectory forms a hyperedge capturing high-
1079 order progression patterns among markers, serving as the structural backbone for constructing
patient-specific TD-Hypergraphs in our framework.
1080

1080 D.5 IMPLEMENTATION DETAILS
10811082 We applied the same label preprocessing strategy to both datasets: **for each complication marker,**
1083 **only its first occurrence (onsite) was used.** This transformed the problem from simple state classi-
1084 fication to the actual challenge, i.e., **disease onset prediction** — whether a new complication would
1085 occur in the next encounter. For both datasets, we randomly split patients into training, validation,
1086 and test sets using an 8:1:1 ratio.1087 We implemented all models using PyTorch and conducted training on a cluster of 8×NVIDIA A100
1088 GPUs (80GB). Our TD-HNODE model was trained using the Adam optimizer with a learning rate
1089 of 1e-4, weight decay of 1e-6, and a batch size of 1. Training was run for up to 200 epochs, with
1090 early stopping applied based on the validation loss (patience = 5).1091 We used 128-dimensional embeddings for both discrete token inputs and continuous time position
1092 embedding. The hyperedge attention encoder consisted of 2 attention layers with 8 attention heads
1093 each, a feed-forward expansion factor of 4, GELU activation, and dropout rate of 0.1. Positional
1094 encodings were learnable, and token embeddings were initialized using a uniform distribution.1095 The Neural ODE module modeled continuous-time latent dynamics over the TD-Hypergraph using
1096 a fixed-step Runge-Kutta 4th-order method (RK4) with 10 solver steps. The input to the ODE
1097 consisted of the hypergraph-enhanced representations obtained from the TD-Hypergraph Laplacian,
1098 and its outputs were decoded into complication marker probabilities via a sigmoid layer.

1099 Source code has been included in the Supplementary Material for reproducibility.

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134
1135

D.6 BASELINES DETAILS

1136
1137

To evaluate the effectiveness of TD-HNODE, we compare it against representative baselines from several major categories:

1138
1139

(1) Sequential Models:

1140
1141
1142
1143
1144

- **T-LSTM** Baytas et al. (2017): A time-aware LSTM variant designed to handle irregularly sampled patient records.
- **ContiFormer** Chen et al. (2024b): Extends the Transformer architecture by redefining self-attention to operate over time-evolving latent trajectories.

1145

(2) Temporal Graph Neural Networks:

1146
1147
1148
1149

- **MegaCRN** Jiang et al. (2023): A discrete-time GNN model that combines graph convolution with gated recurrent units (GRU), operating on temporal graphs represented as discrete-time snapshots.
- **TGNE** Cheng et al. (2024): A continuous-time GNN that constructs event-based structural messages to model evolving temporal graphs in a fine-grained manner.

1150
1151
1152
1153

(3) Temporal Hypergraph Neural Networks:

1154
1155
1156
1157
1158
1159

- **DHSL** Wang et al. (2024a): Combines a hypergraph convolution network with a GRU to jointly model high-order spatial correlations and temporal dependencies.
- **HyperTime** Younis and Ahmadi (2024): Constructs dynamic hypergraphs from time series segments and applies LSTM-enhanced hyperedge convolutions to model evolving temporal patterns.

1160
1161
1162
1163
1164
1165
1166

(4) Neural ODE-based Models:

- **NODE** Chen et al. (2018): A foundational continuous-time model that captures smooth temporal dynamics via ODE-based latent evolution.
- **CODE-RNN** Coelho et al. (2025): Combines Neural ODEs with recurrent networks to model temporal dynamics in time-series data.

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

As for DHSL and HyperTime, both adopt a discrete-time hypergraph neural network: They divide continuous time domain into discrete time intervals (different snapshots). Within each time interval, they construct a static hypergraph snapshot and use hypergraph convolution to extract spatial structure. Then, a recurrent module (GRU/LSTM) is applied across the snapshots to propagate features over time. This design may encounter difficulties in modeling the subtle temporal progression patterns on irregular time data (as in our case).

To ensure fairness, we customized each method to our task setting. Specifically, for models without structural inputs, *i.e.*, Categories (1) and (4), we concatenate risk factors vector \mathbf{x} and marker status vector \mathbf{y} as inputs. For graph-based models, *i.e.*, Categories (2), we break the TD-Hypergraph \mathcal{H} into standard graph with pairwise edge. For models that assume discrete time, *i.e.*, MegaCRN, DHSL, HyperTime, we segment the temporal graph or hypergraph into fixed-length snapshots by treating each patient encounter as a separate timestamp. That is, we construct a static graph (or hypergraph) for each encounter and stack them sequentially as discrete time steps. For graph-based that assume continuous time, *i.e.*, TGNE, we treat each encounter as an individual event, ordered by its timestamp. We convert the temporally detailed hypergraph into a sequence of timestamped edges.

1188
1189

D.7 ADDITIONAL EXPERIMENTS ON CHRONIC DISEASE

1190
1191
1192
1193
1194
1195

To further evaluate the generalizability of our framework, we incorporated an **additional chronic disease (cardiovascular disease)** using the publicly available MIMIC-IV dataset Johnson et al. (2023). ICD-9/10 codes were mapped to five clinically recognized markers: Hypertension, Atrial Fibrillation, Heart Failure, Cerebrovascular Disease / Stroke, and Myocardial Infarction. Based on prior clinical studies Dzeshka et al. (2015); Bonow et al. (2011), we defined three representative progression pathways:

1196
1197
1198
1199
1200

- Hypertension → Atrial Fibrillation → Heart Failure
- Hypertension → Myocardial Infarction → Heart Failure
- Hypertension → Cerebrovascular Disease / Stroke

1201
1202

This preprocessing resulted in 1,665 patients (train/validation/test = 1,332/166/167), with dataset statistics summarized in Table 7.

1203
1204

Table 7: Statistics of the cardiovascular disease dataset.

1205
1206
1207
1208
1209

Dataset	Number of Encounters			Time Span (Months)		
	Min	Avg	Max	Min	Avg	Max
Cardiovascular Disease	9	14	20	4.2	53.3	94.2

1210
1211

We compared TD-HNODE with all baseline methods, and the results are presented in Table 8.

1212
1213

Table 8: Performance comparison on the cardiovascular disease dataset.

1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224

Model	Accuracy	Precision	Recall	F1-score
T-LSTM	0.701	0.126	0.613	0.179
ContiFormer	0.796	0.189	0.765	0.266
MegaCRN	0.744	0.167	0.759	0.233
TGNE	0.761	0.175	0.801	0.247
DHSL	0.740	0.150	0.717	0.232
HyperTime	0.752	0.160	0.734	0.231
NODE	0.786	0.152	0.689	0.227
CODE-RNN	0.779	0.166	0.699	0.190
TD-HNODE	0.804	0.193	0.818	0.291

1225
1226
1227
1228

As shown in Table 8, TD-HNODE consistently outperforms all baselines on the cardiovascular disease dataset, particularly in recall and F1-score. These findings demonstrate that our framework effectively captures the progression of chronic diseases beyond diabetes and highlight its potential for generalization when expert-defined progression pathways are available.

1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241