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Abstract: In robotics, Learning by Demonstration (LbD) aims to trans-
fer skills to robots by leveraging multiple demonstrations of the same task.
These demonstrations are stored in a library and processed to extract a
consistent skill representation, typically requiring temporal alignment us-
ing techniques like Dynamic Time Warping (DTW). In this article, we
propose a novel Spatial Sampling algorithm (SSA) tailored for robot tra-
jectories, which enables time-agnostic alignment by providing an arc-length
parametrization of the input trajectories. This method eliminates the need
for temporal alignment and enhances skill representation. We demonstrate
the effectiveness of SSA in an upper-limb rehabilitation case study, intro-
ducing a new human-robot interaction architecture.

Keywords: Human-Robot Interaction, Motion Planning, Space-Time
Analysis

1 Introduction

Robot Learning by Demonstration (LbD) aims to teach robots tasks through a small num-
ber of demonstrations, making skill transfer intuitive, minimizing data requirements, and
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enabling non-experts to work with robots [1]. In LbD architectures, the initial step is an-
alyzing the demonstration set to extract the most informative content, often referred to as
the skill [2]. This skill is then transferred to the robot, which uses a controller to adapt to its
environment and handle internal or external constraints [3]. Before computing skills offline
and sending commands to the robot, demonstrations are typically pre-processed to align
signals. A key step involves measuring similarity or variance across the demonstrations to
extract the skill [4]. However, temporal misalignments often distort comparisons, as timing
can introduce inaccuracies in aligning time series. Techniques like Dynamic Time Warping
(DTW) are commonly used to measure similarity regardless of timing, though DTW does
not fully decouple time for many robotics applications [5, 6].
Once the trajectories are aligned, barycenter computation techniques are typically used to
identify the most representative skill from the dataset of demonstrations. Initially, the term
barycenter referred to an average sequence that minimizes the squared distance to all se-
ries in the demonstration library [7]. In robotics, this is commonly done using Gaussian
Mixture Regression (GMR), applied to a Gaussian Mixture Model (GMM) fitted on the
DTW-aligned trajectories [4, 8, 9].

We propose a novel architecture that still computes the barycenter using GMM/GMR but
aligns the dataset trajectories with a method called Spatial Sampling algorithm (SSA).
The SSA filters the input trajectory at evenly spaced points, capturing only its geomet-
ric information, independent of the timing variations introduced during the demonstration
phase [10, 11]. We validated the proposed algorithm in an upper-limb rehabilitation task.
In this setup, an expert (e.g. the therapist) teaches a target exercise to an end-user (e.g.
the patient). During the demonstration, the end-user holds the robot’s end-effector while
the expert guides them through the correct execution. The teaching phase may involve
multiple demonstrations with varying timing due to different speed profiles or pauses. In
this application, we demonstrate that the proposed SSA/GMR architecture offers three
key advantages: (i) it aligns the trajectories in the demonstration dataset to extract the
corresponding skill; (ii) it parameterizes the obtained barycenter based on its arc-length
domain, allowing any timing law to be applied later; and (iii) it provides a reference path
(the barycenter) with well-defined derivatives, facilitating the design of a custom phase-law
suited for human-robot interaction.

2 Methodology

2.1 Spatial Sampling

The proposed Spatial Sampling algorithm (SSA) generates a filtered trajectory ŷ(sk), which
is a function of the arc-length parameter sk, starting from the demonstrated Euclidean
trajectory y(t). The proposed algorithm works as follows. 1) Starting from the sequence of
samples yT,i = y(tT,i) = y(iT ) for i ∈ {0, . . . , n}, obtained by sampling the trajectory y(t)
with sampling time T , a linearly interpolating continuous-time function yL(t) is built. 2) A
new sequence ŷk is created by imposing that ŷ0 = yL(0) and ŷk = yL(tk) for k > 0, where
tk is the time instant that guarantees the following condition:

‖ŷk − ŷk−1‖ = δ, for k = 1, . . . , m. (1)

The parameter δ defines the geometric distance between consecutive samples of the filtered
trajectory, and can be freely chosen. The condition (1) implies that the total distance
between the first point ŷ0 and the generic k-th point ŷk is given by kδ, which approximates
the length of the curve yL(t) at the time instant tk with a precision that increases as δ
decreases. Therefore, for δ sufficiently small, the spatial sampling algorithm introduces the
following mapping between the length sk = kδ and the position along the approximating
linear curve yL:

ŷk = yL(tk), with tk = γ−1(sk), (2)
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Figure 1: Sketch displaying the operation of the SSA in a one-dimensional scenario. (a) Reference
trajectory y(t) sampled with constant period T and interpolating linear curve yL(t). (b) Sequence
of δ-spatially sampled points ŷ

k
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where s(t) = γ(t) is the particular timing law imposed during the trajectory demonstration,
describing how the robot moves along the imposed geometric path. Given an analytical
approximation ϕ(s) ≈ ŷk the following property holds:
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∥
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ds

∥

∥

∥

∥

s=sk

≈
‖ŷk+1 − ŷk‖

‖sk+1 − sk‖
=

δ

δ
= 1. (3)

Consequently the obtained filtered trajectory is a regular curve, given that the derivative
in (3) will always be different from zero, and the tangential direction of the curve will always
be well-defined. Note that this is of fundamental importance, as it allows any phase velocity
profile to be applied later on the curve ϕ(s). Indeed, we can express the velocity of a moving
point along the curve as ϕ̇(s(t)) = ϕ′(s(t))ṡ(t), with dϕ(s)/ds = ϕ′(s). Given a desired
velocity profile ϕ̇⋆(t), one can straightforwardly compute the phase profile ṡ⋆(t) simply as
ṡ⋆(t) = ϕ′(s(t))−1 · ϕ̇⋆(t), as (3) ensures ϕ′(s) to be always defined. In Section 4.2 we show
how this property can enhance human-robot cooperative tasks.

The operation of the spatial sampling algorithm is graphically shown in Fig. 1. The demon-
strated trajectory y(t) is first sampled with a sampling time T , in order to construct the
linearly interpolating function yL(t) as in Fig. 1(a). Subsequently, in Fig. 1(b), the spatial
sampling algorithm is applied to the curve yL(t) using a certain spatial interval δ, where it
can be noticed that a more accurate approximation of the original curve can be achieved
for smaller parameters δ. Fig. 1(a) shows that the proposed spatial sampling imposes no
constraints on the demonstrated trajectory y(t), which can also include parts with zero
speed which might occur if the user stops during the demonstration. This is an important
feature since no segmentation of the demonstrated trajectory is required, as done by other
approaches [2].

3 Control Architecture for Human-Robot Interaction

A novel control architecture, combining admittance control with guiding virtual fixtures, has
been developed to constrain the motion of the robot’s end-effector along a 3D path specified
by the therapist, without enforcing a specific temporal profile [10, 12]. This approach allows
the patient, connected to the robot’s end-effector, to impose the movement along the curve
by applying forces with the rehabilitated limb.
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Let us consider the reference path defined in the previous section and denoted as ϕ(s),
which has been recorded by the therapist through kinhestetic teaching. Thanks to the SSA,
the function ϕ(s) is a regular curve, with ϕ′(s) = dϕ(s)/ds being always well-defined.
In the experiments, the analytical expression of ϕ(s) was obtained as a sum of Bernstein
basis functions [11]. As the current application aims to enforce a specified geometric path
constrain, the arc-length parameterization is used, which is indeed directly provided by the
SSA [12].

As depicted in Fig. 2, a point-wise mass m is constrained to follow the path
ϕ(s), moving under the influence of the force applied by the user to the robot’s
end-effector. Simultaneously, the robot must accurately track the mass’s position.
The Admittance Guiding Virtual Fixture is implemented by computing the for-
ward dynamics of the virtual mass, considering the measured force F̂h. This ap-
proach allows us to determine the instantaneous reference position yd(t) = ϕ(s(t)).

m, b
s⋆

s = 0

s = l

F‖

Fh

Figure 2: Working principle of the
proposed control architecture based
on a constrained point-wise mass

The dynamic model of the point mass m in Fig. 2 is
derived by applying Lagrange’s equations. Under the as-
sumption that the mass constrained to the curve ϕ(s) is
not affected by gravity, the Lagrangian function L equals
the kinetic energy K, that is:

L = K =
1

2
mẏT

d ẏd =
1

2
mṡ2. (4)

From (3) and observing that ẏd = ϕ′(s)ṡ, one can write 4
as

ms̈ + bṡ = F‖, (5)

where bṡ is a non-conservative term representing friction,
and F‖ is the component of the force F̂ h applied by the
user to the robot tool (detected by a force sensor) that
is tangent to the curve, i.e.

F‖ = ϕ′(s)T · F̂ h, (6)

where, from (3), ϕ′(s) represents the unit tangent vector to ϕ(s) at a generic point s.

4 Experiments and Evaluation

4.1 Robot Handwriting Comparisons

(a) (b) (c)

Figure 3: Comparison of barycenter computation.

This section aims to analyze the geometric approximation error when calculating the
barycenter of a group of demonstrated trajectories. To achieve this, we analyzed end-
effector position recordings, where users repeated the same geometric path six times for
each symbol, varying speeds and introducing pauses [10, 11]. We tested three scenarios: (i)
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Figure 4: Haussdorff (dH) and DTW
(dDT W ) distance comparizons.

Table 1: Mean and standard deviation values
for approximation metrics.

dH (e−2) dDT W (e−1)
TIME/GMR 3.5±0.15 4.8±1.25
DTW/GMR 2.3±0.16 2.4±0.22
SSA/GMR 2.0±0.36 0.8±0.12

feeding time-based recordings to GMR (TIME/GMR), (ii) using DTW to align trajectories
before applying GMR (DTW/GMR) (iii) filtering recordings with SSA before sending them
to GMR (SSA/GMR). GMR is widely used in robotics for skill extraction, which justifies
its inclusion in this study [8]. Additionally, the DTW/GMR combination has been adopted
in many seminal robotics works, making it a relevant comparison algorithm [4, 9].

The error between recorded trajectories and their respective barycenter was defined in terms
of Haussdorff (dH) and, without loss of consistency, DTW (dDT W ) distance. Figure 3 plots
the results for S-shape recordings. Before using GMR to compute the barycenter (red), we fit
a GMM to the demonstrated trajectories (black) with N = 5 components (blue). At a first
look one can observe that in Fig. 3a temporal distortions leed to high variance demonstration,
thus lowering the quality of the retrieved skill. Substantial lower variances are obtained for
the DTW/GMR and SSA/GMR case (Fig. 3b and 3c), the former exhibiting a qualitative
whorse shape for the barycenter, which may depends on the choice of the reference to align
the trajectories. Quantitative values are provided in Fig. 4 and Table 1, where one can clearly
see how the proposed SSA/GMR combination outperforms the others. Indeed, unlike the
common DTW/GMR approach where trajectory alignment is required and performed using
DTW, our SSA filters the trajectories to obtain their arc-length counterpart, thus filtering
out time distortions. Similar results were observed when applying this approach to other
trajectories, such as those from the Panda Co-Manipulation Dataset introduced in [13].

Moreover, one can underline two important aspects. The first one is that intuitively by
increasing the number of Gaussian N better results can be achieved, particularly in the
DTW/GMR and SSA/GMR cases. However, as shown in [13], the quality of the skill ex-
trapolated in the DTW/GMR case can still be affected by the reference alignment trajectory.
This is not the case for SSA, which does not require a reference.
Second, while spatial consistency across demonstrations is essential, timing variations intro-
duce noise, potentially degrading the GMM model’s quality (see Fig.3-4). We demonstrated
that using SSA to capture only the geometric path improves skill representation by filtering
out timing inconsistencies, leading to better skill learning.

4.2 Rehabilitation Task

The rehabilitation process benefits significantly from a learning-by-demonstration proce-
dure, where the therapist can freely demonstrate and teach the exercise to the robot. This
approach allows the therapist to directly guide the robot, effectively transferring their knowl-
edge of the task to the system. By doing so, the therapist shapes the rehabilitation exercise,
enabling the patient to reproduce it more naturally and accurately. The proposed method
simplifies following the demonstrated path, enhancing the overall effectiveness and person-
alization of the rehabilitation session.

The rehabilitation tests involved a straightforward exercise aimed at assessing the patient’s
ability to extend and flex the arm. This task validated the effectiveness of the developed
framework, enabling the patient to successfully carry out the required movements. Specifi-
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Figure 5: Schematic of the proposed architecture.

(a) (b)

Figure 6: Comparison of results: (a) Traditional method without Spatial Sampling, and (b) Pro-
posed method with Spatial Sampling.

cally, the advantages of the SSA were highlighted by comparing it to a traditional solution
based on phase variable control. A schematic of the proposed architecture is illustrated in
Fig. 2.

The traditional approach, which relies on variations in a phase variable, often results in
stagnation. This phenomenon is related to the velocity imposed during task execution,
described analytically as:

ẏd(p(t)) =
dϕ(p(t))

dp
ṗ

As highlighted by red intervals in Fig. 6a, the patient may continue to exert forces, altering
the phase variable p and modulating its time derivative ṗ. However, the position along
the constraint remains unchanged because multiple values of p can correspond to the same
point on the path the patient is meant to follow. This type of mapping happens every time
pausing intervals are present in the demonstration trajectories. As a consequence, the term
dϕ(p(t))

dp
approaches zero, leading to a zero velocity during task execution and generating the

stagnation phenomenon.

This limitation is overcome with the proposed framework in Fig. 6b. In this case, the change
in position along the reference can be defined as:

ẏd(s(t)) =
dϕ(s(t))

ds
ṡ,

where s is the arc-length parameter. One can clearly see that the phase evolution described
by (5) never result in stagnation for the same position where the phenomenon happens in
the first scenario. This result comes from the fact that, as shown in Section 2.1, applying
SSA to the demonstrated trajectories produces regular curves with well-defined derivatives.
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Consequently, the term dϕ(s(t))
ds

remains non-zero, as described in (5). This approach pre-
vents stagnation and promotes smoother human cooperation, reducing the force required
by the patient and enhancing the natural performance of the task.

5 Conclusion

In this paper we introduced a novel technique, the Spatial Sampling algorithm (SSA), which
processes time-based Euclidean trajectories to extract their geometric paths, parameterized
by the arc-length parameter. The SSA filters the input trajectory, producing evenly spaced
samples along the path, and providing a regular curve with well-defined derivatives. We
demonstrate how SSA offers a robust alternative to traditional alignment methods like DTW,
particularly in Learning by Demonstration (LbD) scenarios. By removing time information,
which can introduce distortions, SSA ensures more accurate skill representation.

The arc-length parametrization supports applying any timing law to the constrain curve.
We utilized this to design a phase-update law suited for upper-limb rehabilitation tasks,
enabling the robot to impose virtual constraints while allowing the user to navigate along
the guide using force feedback applied to the end-effector. This phase-update law includes
adjustable knot parameters to modify the execution style, enhancing exercise flexibility. In
this context, multiple demonstrations could be provided to define the target task, each one
characterized by its own timing and possibly including pausing intervals. In the experiments
we showed how applying the SSA could facilitate the learning of a constrain curve which
enhances a more natural execution of the exercise, and avoids the problem of stagnation
due to the presence of pausing intervals.
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