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Abstract
Multi-modal fusion techniques, such as radar and images, enable a
complementary and cost-effective perception of the surrounding
environment regardless of lighting and weather conditions. How-
ever, existing fusion methods for surround-view images and radar
are challenged by the inherent noise and positional ambiguity of
radar, which leads to significant performance losses. To address this
limitation effectively, our paper presents a robust, end-to-end fusion
framework dubbed SparseInteraction. First, we introduce the Noisy
Radar Filter (NRF ) module to extract foreground features by cre-
atively using queried semantic features from the image to filter out
noisy radar features. Furthermore, we implement the Sparse Cross-
Attention Encoder (SCAE) to effectively blend foreground radar
features and image features to address positional ambiguity issues
at a sparse level. Ultimately, to facilitate model convergence and
performance, the foreground prior queries containing position in-
formation of the foreground radar are concatenated with predefined
queries and fed into the subsequent transformer-based decoder. The
experimental results demonstrate that the proposed fusion strate-
gies markedly enhance detection performance and achieve new
state-of-the-art results on the nuScenes benchmark. Source code is
available at https://github.com/GG-Bonds/SparseInteraction.
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1 Introduction
Perception of 3D obstacles via different types of sensors is a funda-
mental task in the field of computer vision and robotics. The fusion
of LiDAR and camera technologies has achieved high accuracy per-
formance [19, 26, 28, 29, 37–39]. However, cameras face limitations
in low-visibility conditions like heavy fog or rain while the high
cost of LiDAR poses further challenges.

Radar sensors are notable for their affordability, resilience in all
weather conditions and capacity for accurate speed estimations over
considerable distances [3, 20, 30, 32, 33, 41]. Nevertheless, the direct
usability of radar points is impeded by the inherent challenges of
noise and positional ambiguity.

Recent studies achieved convincing performance by transform-
ing image features onto the BEV (Bird’s Eye View) and fusing
them with radar features. In particular, CRN [11] fuses image-bev-
features and radar features based on transformer architecture to
resolve the ambiguity in radar positioning. However, the method
requires assistance from LiDAR point clouds during the training
process. Additionally, the presence of noisy radar data before the
fusion process leads to suboptimal fusion features. For filtering the
noisy information of radar, the CramNet [8], depicted in Figure 1-(a)
directly eliminates noisy radar by leveraging radar features. Con-
versely, the approach illustrated in Figure 1-(b), such as HVDetFu-
sion [12], utilizes detection bounding boxes from the image to filter
noisy information. Additionally, methods(e.g., MVFusion [36]) like
in Figure 1-(c), incorporate foreground classification from the image
to filter irrelevant information by projecting 3D radar points onto
2D image pixels. However, a common limitation of these methods
is their reliance on the characteristics of a single modality before
filtering. This singular focus tends to overlook the potential bene-
fits of integrating multiple modalities which leads to suboptimal
outcomes.
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Figure 1: Comparing different design pipelines for filtering
noisy radar. (a) CramNet, using radar features to generate
filtering conditions, is constrained by the limited representa-
tional capacity of single-modality features. (b) HVDetFusion,
translating image features into BEV space to create 3D pro-
posals as filtering conditions, is effective but complex. (c)
MVFusion employs UV space mask prediction as a filter-
ing conditions, facing challenges in depth differentiation
at identical image locations. (d) Our approach initially en-
hances radar features with semantic image information via
the Semantic-enhanced Radar Encoder (SRE), followed by
the effective filtering of noisy radar in BEV space.

In this paper, we present a robust, transformer-based, end-to-end
fusion framework named SparseInteraction. Firstly, considering
the negative impact of noisy radar on feature fusion, we introduce
the Noisy Radar Filter module composed of Semantic-enhanced
Radar Encoder (SRE) and Foreground Radar Mask (FRM) to pre-
serve useful radar information under the guidance of image seman-
tic information. Subsequently, we leverage the sparse foreground
radar features and their related effective image feature areas to en-
hance the interactive information of multimodal features through
Sparse Cross-Attention Encoder(SCAE) which effectively addresses
feature misalignment. This fusion method not only resolves the
issue of radar’s ambiguous positioning but also provides robust
results even in the event of sensor failures. Furthermore, we ex-
tract foreground object queries from both foreground radar features
and enhanced BEVusion features in an efficient way. Finally, the
foreground prior queries containing position information of the
foreground radar are concatenated with predefined queries and fed
into the subsequent transformer-based decoder, for facilitating the
model convergence and performance. Ultimately, our framework

achieves impressive and robust 3D object detection results without
LiDAR points cloud in either the training or testing phases.

In general, the contribution of this work can be summarized as
follows:

• We introduce a novel Noisy Radar Filter module designed
to efficiently address false positive issues by filtering out
useless information under the guidance of image semantic
features and radar features.

• To further effectively address the challenge of radar posi-
tioning ambiguity, an innovative sparse query-based module,
Sparse Cross-Attention Encoder, is proposed for featuring a
multi-modal representational interaction. Notably, it incor-
porates high-quality radar 3D object priors into 3D adaptive
queries.

• Experiments of our framework SparseInteraction on the
nuScenes dataset achieve state-of-the-art performance based
on transformer technology which is independent of LiDAR
data. The proposed foreground radar filtering is expected to
spur future research.

2 Related Work
2.1 Camera Based 3D Object Detection
Vision-based 3D object detection is a promising perception task
in autonomous driving. Recently, BEV(Bird’s Eye View) based 3D
object detection methods caught more eye in the academic world.
This approach can be categorized into bottom-up methods, such as
LSS [24], BEVDet [7], and BEVDepth [14], which transform image
features into BEV features through depth prediction. Conversely,
top-down methods pre-define queries in 3D space and project onto
images for sampling. For instance, DETR3D [35] uses learnable
3D queries for end-to-end detection pipelines without NMS post-
processing. BEVFormer [15] generates BEV features by taking grid-
like queries to sample relevant features from images.

2.2 Multi-modal 3D Object Detection
While FUTR3D [2] employs 3D reference points as queries to sample
features from the projected view and BEVFusion [19] uses a lift-
splat-shoot operation to project image features onto BEV space and
then fuse them with LiDAR features.

Similar to LiDAR, radar can offer potential position and precision
velocity information. However, challenges often arise due to the
inherently noisier, sparser points and vague height information
while cost-effectiveness and functionality in various conditions
make it an appealing option for enhancing camera robustness [27].
CRN [11] transforms image feature to BEV space and integrates
them with radar BEV features via a transformer structure while
requiring LiDAR data for depth supervision. To mitigate radar noise,
some studies first process the foreground radar, which results in
more significant outcomes. e.g., CramNet [8] and HVDetFusion [12].
However, these methods do not integrate features from the other
modality before extracting foreground information, leading to sub-
optimal extraction and complexity.
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Figure 2: The overall architecture of the proposed SparseInteraction.

3 Methodology
An overview of the proposed framework SparseInteraction is
illustrated in Figure 2. We first extract features from radar points
cloud and multi-view images, respectively. To address noisy radar
information, the Noisy Radar Filter is proposed to filter useless
features by combining both radar features and high-level semantic
features of images. Then, the enhanced foreground radar features
and image features are sent into the Sparse Cross-Attention Fusion
Encoder, which utilizes deformable attention mechanism [44]. Com-
pared to previous approaches such as BEVFusion [19], our Sparse
Cross-Attention Encoder effectively resolves radar localization am-
biguity without LiDAR depth supervision. Finally, prior information
from the foreground radar features is encoded as foreground prior
queries concatenated with predefined queries and introduced as
object queries in transformer decoder layers.

3.1 Modal Features Extractor
3.1.1 Image Feature Extractor. Following BEVFormer [15], we
adopt ResNet101 [5] as the backbone for extracting image features
from multi-view images and use a standard Feature Pyramid Net-
work (FPN) [17] on top of the backbone to generate multi-scale
image feature representations 𝐹 𝑖𝑐 , 𝑖 ∈ [1, 2, · · ·, 𝑁 ], where i denotes
each view of cameras.

3.1.2 Radar Feature Extractor. Given the limitation of radar in
providing reliable elevation, we utilize pillar-based representation
for radar points cloud. Following FUTR3D [2], we adopt Pillar-
Net [25] and multi-layer perception (MLP) to extract radar features

in BEV space, denoted as 𝐹𝑟 ∈ R𝐶×𝐻×𝑊 , where𝐶 is the dimension
of radar features and (𝐻,𝑊 ) represents the BEV resolution.

3.2 Noisy Radar Filter
Despite radar recording the velocity and location of objects, it also
inadvertently captures information of non-target which leads to
false positive detection issues. To overcome this limitation, we pro-
pose an innovative lightweight module Noisy Radar Filter (NRF),
comprising two key components: Semantic-enhanced Radar Encoder
and Foreground Radar Mask. The detailed architecture of NRFmod-
ule is depicted in Figure 3.

3.2.1 Semantic-enhanced Radar Encoder. To migrate noisy
radar information, we take non-empty features in 𝐹𝑟 as queries
for aggregating neighboring features guided by semantic informa-
tion from the image. More importantly, a substantial portion of
features originating from the radar encoder is vacant owing to the
inherent sparsity of radar points. Consequently, we employ a 3x3
bias-free convolution layer to disperse foreground radar features
into vacant positions, thereby augmenting the richness of radar
features. Subsequently, the valid radar features are onto correspond-
ing image features to generate semantic-enhanced radar features,
𝐹𝑠𝑟 ∈ R𝐶×𝐻×𝑊 . Specifically, considering radar’s uncertain height
information, for a valid radar features pixel 𝑄𝑟

𝑥,𝑦 located at (𝑥,𝑦),
we lift it to 𝑁𝑟𝑒 𝑓 3D points with different heights 𝑧 𝑗 and projecting
them onto the 𝑖-th image at projection pixels (𝑢𝑖 , 𝑣𝑖 ). Then valid
radar features are enhanced using deformable attention [44] with
the image features 𝐹 𝑖𝑐 . The entire enhanced process is represented
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Figure 3: The architecture of proposed Noisy Radar Filter module is designed to filter noisy features of radar. Taking radar and
camera features as input effectively filters out noise under the guidance of high-level semantic information from the image.

as follows:

𝑄𝑠
𝑥,𝑦 =

𝑁𝑐∑︁
𝑖=1

𝑁𝑟𝑒𝑓∑︁
𝑗=1

𝐷𝑒𝑓 𝐴𝑡𝑡𝑛(𝑄𝑟
𝑥,𝑦, 𝑃𝑖 (𝑥,𝑦, 𝑧 𝑗 ), 𝐹 𝑖𝑐 ) (1)

where 𝑄𝑠
𝑥,𝑦 is the semantic-enhanced radar features pixel lo-

cated at (𝑥,𝑦). 𝑃𝑖 (𝑥,𝑦, 𝑧 𝑗 ) represents projection point of 3D point
(𝑥,𝑦, 𝑧 𝑗 ) in the image coordinate system of the 𝑖-th camera.

3.2.2 ForegroundRadarMask. Acknowledging that radar points
predominantly manifest near objects, only a few points exist within
3D bounding boxes due to the ambiguity in radar localization. We
figured that radar points in proximity to 3D bounding boxes also
contribute to the detection process. Therefore, we enlarge the 3D
bounding boxes derived from ground truth labels to 1.5 times of orig-
inal dimensions, projecting them onto the BEV view as binary mask
ground truth𝑀𝑔𝑡 . We employ a 1x1 convolution layer paired with
a sigmoid activation function to classify the semantic-enhanced
radar features generated above. To ensure a superior recall, a lower
foreground threshold 𝛾 is used. Consequently, radar features with
foreground score 𝑠𝑖 exceeding the threshold 𝛾 are classified as fore-
ground radar features 𝐹 𝑓𝑟 ; the reverse applies for lower scores as
background radar features 𝐹𝑏𝑟 .

3.3 Sparse Cross-Attention Encoder.
While CRN [11] first generates sparse and discrete BEV features of
the image under the LiDAR depth supervision [16] and fuses with
radar features through the attention mechanisms which leads to
suboptimal fusion results. To address this, we propose the Sparse
Cross-Attention Encoder (SCAE), a novel Multi-modal fusion mod-
ule based on transformers. As shown in Figure 2, SCAE comprises
six encoding layers, each consisting of Temporal Self-Attention
(TSA) and Multi-modal Cross-Attention (MCA). First, a set of learn-
able FusionBEV queries interact with historical FusionBEV features
through TSA. Specially, for optimizing computation and more preci-
sion information, only sparse fusion features of the foreground are
utilized as valid queries in the subsequent module. To acquire more

comprehensive feature information, the relevant key values from
the image feature map and foreground radar features (generated by
Section 3.2) will be queried in the MCA submodule. Subsequently,
the FusionBEV queries are updated by a feedforward network as
input for the next layer. After six encoding layers, we generate
precise and robust FusionBEV features. Significantly, all the opera-
tions of our SCAE module are in sparse space which requires less
computation compared to FusionFormer [6].

3.3.1 FusionBEV Queries. We defined a set of learnable param-
eters 𝑄 ∈ R𝐶×𝑊 ×𝐻 called FusionBEV queries. Here,𝑊 ×𝐻 repre-
sents the resolution of BEV view, and𝐶 is the channel of FusionBEV
queries. These queries are shared across all modalities, directly fus-
ing images features 𝐹𝑐 and foreground radar features 𝐹 𝑓𝑟 .

3.3.2 Temporal Self-Attention. Temporal information plays a
crucial role in 3D object detection. Following BEVFormer [15], Ini-
tially, we align historical FusionBEV features based on ego-motion.
Subsequently, we employ Temporal Self-Attention to effectively
fuse these historical FusionBEV features. The process is as follows
expression:

𝑇𝑆𝐴
(
𝑄𝑝 ,

(
𝑄, 𝐵′

𝑡−1
) )

=
∑
𝑉 ∈{𝑄,𝐵′

𝑡−1 } 𝐷𝑒𝑓 𝐴𝑡𝑡𝑛
(
𝑄𝑝 , 𝑝,𝑉

)
.

(2)
where 𝑄𝑝 denotes the FusionBEV query located at 𝑝 = (𝑥,𝑦).

𝐵′
𝑡−1 represents the FusionBEV features at timestamp 𝑡 − 1 after

temporal alignment.

3.3.3 Multi-modal Cross-Attention. As detailed in Section 3.2,
the positions of the background have been established in the BEV
space. To optimize computational efficiency, FusionBEV queries in
these positions are excluded from the computation, which makes
FusionBEV queries focus on the potential target object positions
𝑝𝑡 = (𝑥𝑡 , 𝑦𝑡 ). More importantly, these queries are directly projected
onto each modality feature map and enhanced with deformable
attention [44], eliminating the need to transform image features
into BEV space beforehand. This process is represented by the
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following formula:

𝑀𝐶𝐴

(
𝑄𝑝𝑡 , 𝐹𝑐 , 𝐹

𝑓
𝑟

)
= 𝐷𝑒𝑓 𝐴𝑡𝑡𝑛

(
𝑄𝑝𝑡 , 𝑃2𝐷 (𝑝𝑡 ) , 𝐹 𝑓𝑟

)
+

𝑁𝑐∑︁
𝑖=1

𝑁𝑟𝑒𝑓∑︁
𝑗=1

𝐷𝑒𝑓 𝐴𝑡𝑡𝑛

(
𝑄𝑝𝑡 , 𝑃

𝑖
3𝐷

(
𝑝𝑡 , 𝑧 𝑗

)
, 𝐹 𝑖𝑐

) (3)

where 𝑄𝑝𝑡 denotes the FusionBEV query located at 𝑝𝑡 . 𝑃2𝐷 (𝑝𝑡 )
denotes the projected positions on the BEV space. As FusionBEV
queries lack height information, we employed the method similar
to described in Section 3.2, which lifting points 𝑝𝑡 with different
heights 𝑧 𝑗 to obtain 𝑁𝑟𝑒 𝑓 3D projection points (𝑥𝑝 , 𝑦𝑝 , 𝑧 𝑗 ), where
𝑃𝑖3𝐷 (𝑥𝑝 , 𝑦𝑝 , 𝑧 𝑗 ) are the corresponding positions of these 3D projec-
tion points on image 𝐹 𝑖𝑐 .

3.4 Foreground Prior Queries
Our 3D detection head adopts the decoder from BEVFormer [15],
similar to the decoder in Deformable DETR [44]. It is well known
that DETR-style predefined queries struggle to converge due to
the lack of prior knowledge [22, 40]. Inspired by two-stage meth-
ods [40], we encode the prior information of foreground radar
features near the region of interest directly into the decoder. To
minimize the effect of low-quality foreground radar, a higher thresh-
old r is adopted, ensuring only the most salient foreground radar
features are considered. Each foreground radar feature pixel in the
BEV plane only provides 2D position 𝑝 𝑓 =

(
𝑥 𝑓 , 𝑦𝑓

)
, and the ap-

proximate height 𝑧𝑝𝑟𝑒𝑑
𝑓

of each foreground radar feature pixel is
predicted using the FusionBEV features 𝐹𝑏 at the specific location
𝑝 𝑓 , expressed as:

𝑧
𝑝𝑟𝑒𝑑

𝑓
= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(
𝑀𝐿𝑃 (𝐹 𝑓

𝑏
)
)

(4)

Where 𝐹 𝑓
𝑏
is sampled feature from FusionBEV features at position

𝑝 𝑓 .
After obtaining the foreground prior 3D positional information

(𝑥 𝑓 , 𝑦𝑓 , 𝑧
𝑝𝑟𝑒𝑑

𝑓
), we encode it into foreground prior queries as fol-

lows:

𝑄𝑠𝑒𝑚 = 𝑆𝑒𝑚𝐸𝑛𝑐𝑜𝑑𝑒𝑟
(
𝐹
𝑓

𝑏
, 𝑠𝑖

)
(5)

𝑄𝑝𝑜𝑠 = 𝑃𝑜𝑠𝐸𝑛𝑐𝑜𝑑𝑒𝑟
(
𝑥 𝑓 , 𝑦𝑓 , 𝑧

𝑝𝑟𝑒𝑑

𝑓

)
(6)

𝑄prior = 𝑄sem +𝑄pos (7)

where 𝑠𝑖 represents the confidence score of the foreground radar
as predicted in Section 3.2. 𝑄𝑠𝑒𝑚 and 𝑄𝑝𝑜𝑠 represent the semantic
feature embedding and position embedding, respectively. 𝑃𝑜𝑠𝐸𝑛𝑐𝑜𝑑𝑒𝑟
consists of a sinusoidal transformation [31], and another MLP, with
𝑆𝑒𝑚𝐸𝑛𝑐𝑜𝑑𝑒𝑟 also being an MLP. And 𝑄𝑝𝑟𝑖𝑜𝑟 represents the final
foreground prior queries.

Finally, the encoded foreground prior queries and predefined
queries are concatenated and then fed into the decoder.

3.5 Head and Loss
We adopt a Deformable DETR-like detection head that outputs
the probability of object classes as well as the 3D detection boxes
directly without the need for NMS post-processing. The total loss
comprises two optimization terms: the mask loss L𝑚𝑎𝑠𝑘 and the

detection loss L𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 , as shown in Eq. 8. The mask loss L𝑚𝑎𝑠𝑘

aims to optimize foreground radar binary classification in the mask
module, and the detection loss L𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 optimizes for the 3D
detection head, respectively.

L𝑡𝑜𝑡𝑎𝑙 = L𝑚𝑎𝑠𝑘 + L𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 (8)
Considering the scarcity of foreground radar features, we employ

focal loss for training in the foreground radar mask module. For fair
comparison with BEVFormer, we adopt focal loss for classification
and L1 loss for box regression in the 3D detection head.

4 Experiments
4.1 Experimental Settings
4.1.1 Dataset and Metrics. We evaluate our approach on the
large-scale autonomous driving dataset, nuScenes [1]. It is divided
into 700/150/150 scenes for training, validation, and testing, respec-
tively. It provides a 360-degree panoramic view and includes data
from multiple sensors: six cameras, one LiDAR, and five radars. For
the nuScenes detection task, mean Average Precision (mAP) and
NuScenes Detection Score (NDS) are used as the metrics. The mAP,
calculated based on the BEV center distance between the predic-
tions and ground truth, is averaged over threshold distances of 0.5,
1, 2, and 4 meters. The NDS is a weighted average of the mAP and
additional true positive metrics, which include the Mean Average
Translation Error (mATE), Mean Average Scale Error (mASE), Mean
Average Orientation Error (mAOE), Mean Average Velocity Error
(mAVE), and Mean Average Attribute Error (mAAE).

4.1.2 Implementation Details. By default, in the camera branch,
we use ResNet101 [5] pre-trained with FCOS3D as backbone. For
neck, we utilize a standard FPN [17], featuring a dimension of 256
and scales of 1/16, 1/32, and 1/64. In Sparse Cross-Attention En-
coder, six fusion encoding layers are employed. For the radar branch,
we accumulate five previous radar sweeps. Similar to BEVFormer-
Base [15], unless specified otherwise, we use three frames of his-
torical BEV features in our Temporal Self-Attention module.

Our model is trained end-to-end for 24 epochs on 8 A100 GPUs
using the AdamW [21] optimizer, with learning rate of 2e-4 and
batch size of 1. No class balancing strategy (CBGS) [43] or BEV data
augmentation [14] is utilized during training.

4.2 Comparison with State-of-the-Arts
To evaluate the performance of our SparseInteraction, we con-
ducted comparison using nuScenes [1] val and test set, with results
presented in Table 1 and Table 2. Notably, our SparseInteraction
surpasses previous state-of-the-art radar-camera fusion methods,
achieving 51.1% mAP and 59.5% NDS on the validation set, and
61.7% mAP and 53.8% NDS on the test set without LiDAR auxil-
iary supervision. Compared with our baseline BEVFormer [15],
SparseInteraction shows substantial improvements, achieving 7.8%
and 9.5% performance gains in NDS and mAP, respectively. These
superior metrics underscore the effectiveness of our method.

Significantly, unlike CRN [11], our method does not require
extra depth supervision from LiDAR. Although CRN utilizes a more
powerful backbone, ConvNextB [18], and incorporates LiDAR data
during the training process. Our SparseInteraction still achieves



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Shaoqing Xu and Shengyin Jiang, et al.

Method Input Backbone LiDAR NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

BEVDepth† [14] C R101 ✓ 53.5 41.2 0.565 0.266 0.358 0.331 0.190
CRN [11] C+R R101 ✓ 59.2 52.5 0.460 0.273 0.443 0.352 0.180

FCOS3D [34] C R101 41.5 34.3 0.725 0.263 0.422 1.292 0.153
DETR3D [35] C R101 42.5 34.6 0.773 0.268 0.383 0.842 0.216
BEVFormer-S [15] C R101 44.8 37.5 0.725 0.272 0.391 0.802 0.200
CenterFusion† [23] C+R DLA34 45.3 33.2 0.649 0.263 0.535 0.540 0.142
MVFusion† [36] C+R R101 45.5 38.0 0.675 0.258 0.372 0.833 0.196
RCBEV† [42] C+R Swin-T 49.7 38.1 0.526 0.272 0.445 0.465 0.185
CRAFT† [10] C+R DLA34 51.7 41.1 0.494 0.276 0.454 0.486 0.176
BEVFormer [15] C R101 51.7 41.6 0.673 0.274 0.372 0.394 0.198
SparseInteraction-S C+R R101 54.8 45.8 0.572 0.268 0.396 0.379 0.189
SparseInteraction C+R R101 59.5 51.1 0.535 0.272 0.361 0.254 0.179

Table 1: Performance comparison on the nuScenes val set. "C" indicates Camera, "C+R" indicates Camera and Radar.
“SparseInteraction-S” does not leverage temporal information. "LiDAR": using extra LiDAR data source as depth supervi-
sion. †: trained with CBGS.

Method Input Backbone LiDAR NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
BEVDepth [14] C V2-99 ✓ 60.0 50.3 0.445 0.245 0.378 0.320 0.126
BEVStereo [13] C V2-99 ✓ 61.0 52.5 0.431 0.246 0.358 0.357 0.138
CRN [11] R+C ConvNextB ✓ 62.4 57.5 0.416 0.264 0.456 0.365 0.201

FCOS3D [34] C V2-99 42.8 35.8 0.690 0.249 0.452 1.434 0.124
CenterFusion [23] C+R DLA34 45.3 33.2 0.649 0.263 0.535 0.540 0.142
DETR3D [35] C R101 47.9 41.2 0.641 0.255 0.394 0.845 0.133
RCBEV [42] C+R Swin-T 48.6 40.6 0.484 0.257 0.587 0.702 0.140
MVFusion [36] C+R V2-99 51.7 45.3 0.569 0.246 0.379 0.781 0.128
CRAFT [10] C+R DLA34 52.3 41.1 0.467 0.268 0.456 0.519 0.114
BEVFormer [15] C V2-99 56.9 48.1 0.582 0.256 0.375 0.378 0.126
RCM-Fusion [9] C R101 58.0 49.3 0.485 0.255 0.386 0.421 0.115
SparseInteraction C+R V2-99 61.7 53.8 0.497 0.254 0.375 0.269 0.121

Table 2: Performance comparison on the nuScenes test set. "C" indicates Camera, "C+R" indicates Camera and Radar. "LiDAR":
using extra LiDAR data source as depth supervision. V2-99 is pre-trained on external depth dataset DDAD [4].

competitive results in terms of NDS and mAVE., leveraging the
lightweight backbone, V2-99 [4].

4.3 Ablation Study
In this section, we present a comprehensive validation of our frame-
work. For our ablation studies, we utilize a smaller version of
SparseInteraction, which includes reducing image resolution from
900x1600 to 700x1260, decreasing frames of historical BEV features
from 3 to 2 in our Temporal Self-Attention module, reducing Fusion-
BEV queries from 200x200 to 150x150, reducing fusion encoding
layers from 6 to 3, and employing R101 as the backbone with im-
age features downsampled by a factor of 32. As shown in Table 3,
we start with BEVFormer-Small [15] as our baseline (in #1) and
incrementally incorporate each module to assess its impact.

4.3.1 Noisy Radar Filter. Comparing #2 and #3 in Table 3 shows
the Noisy Radar Filter (NRF) gives 1.1 and 1.5 points improve-
ments on mAP and NDS, respectively. The NRF is composed of

# SCAE NRF FPQ NDS[%]↑ mAP[%]↑
1 47.87 37.00
2 ✓ 54.04 44.41
3 ✓ ✓ 55.53 45.20
4 ✓ ✓ ✓ 56.31 (+8.44) 46.46 (+9.46)

Table 3: Ablation of our components on nuScenes val set.
BEVFormer [15] is employed as the baseline, and we add the
Sparse Cross-Attention Encoder (SCAE), Noisy Radar Filter
(NRF) and Foreground Prior Queries (FPQ) in order.

a Semantic-enhanced Radar Encoder and Foreground Radar Mask.
Various experiments are conducted to evaluate each sub-module
within the NRF. In Table 4, setting 1 presents the result with the
SCAE module on the baseline, which is the same as #2 in Table 3.
Setting 2 illustrates the Semantic-enhanced Radar Encoder effec-
tively bridges the gap on the multi-modal features. However, the
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Figure 4: Analysis of robustness under different weather and
lighting conditions. Comparing with baseline model, our
SparseInteraction achieves superior robustness and perfor-
mance in all conditions.

# Setting SRE FRM NDS[%]↑ mAP[%]↑
1 54.04 44.41
2 ✓ 54.30 44.82
3 ✓ 53.62 43.75
4 ✓ ✓ 55.53 45.20

Table 4: Ablation of Noisy Radar Filter. SRE and FRM denotes
Semantic-enhanced Radar Encoder and Foreground Radar
Mask, respectively.

# Method Input NDS[%]↑ mAP[%]↑
BEVDepth C 47.49 35.94

+ Fusion radar C+R 51.38 38.87
+ NRF C+R 52.50 39.78

Table 5: Effect of Noisy Radar Filter module.

result worsens when extracting the radar foreground features di-
rectly using radar information without the semantic context from
the image. Ultimately, the Noisy Radar Filter achieves impressive
enhancement across all settings, the results as shown in setting 4.
To further validate the robustness and versatility of our method, we
also conducted experiments on BEVDepth [14]. The results demon-
strate consistent benefits, with an increase of 1.1% mAP and 1.2%
NDS, shown in Table 5, this also highlights the effectiveness of
removing noisy radar.

4.3.2 SparseCross-Attention Encoder. Incorporating the Sparse
Cross-Attention Encoder (SCAE) yields an improvement of 1.0% in
mAP and 1.2% in NDS presented in Table 3. We compare various
fusion strategies including addition, concatenation, and the Multi-
modal Feature Aggregation (MFA) method mentioned in CRN [11]
to demonstrate the effect of our SCAE in Table 6. SCAE aggregates
features by directly sampling image features and radar features
through FusionBEV Queries, which results in superior fusion fea-
tures.

4.3.3 Foreground Prior Queries. Adding the Foreground Prior
Queries (FPQ) contributes a gain of 1.0% mAP and 1.2% NDS as
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Figure 5: Analysis of convergence using mAP metric. Our
SparseInteraction converges ahead of schedule, approxi-
mately around epoch 16,while also achieving better detection
performance.

# Fusion Method NDS[%]↑ mAP[%]↑
Add 55.06 45.11

Concate 55.39 45.68
MFA 55.45 45.83
Ours 56.31 46.46

Table 6: Effect of Sparse Cross-Attention Encoder. Note that
MFA is a fusion method mentioned in CRN [11].

# Method NDS[%]↑ mAP[%]↑ mATE↓
statistics-based 56.18 45.93 0.580
learning-based 56.31 46.46 0.569

Table 7: Effect of different initial positioning heights in Fore-
ground Prior Queries.

shown in Table 3. To evaluate the effect of initial positioning height
in FPQ, we conducted experiments comparing the learning-based
method with statistics-based approaches, shown in Table 7. The
statistics-based refers to use the average height of ground truth
bounding boxes in the dataset as the initial height for FPQ. In con-
trast, the learning-based method acquires different heights on the
BEV plane. Unlike the fixed value in the statistics-based approach,
this method simplifies the learning complexity for object queries at
heights, thereby enhancing performance.

4.4 Analysis
4.4.1 Weather and Lighting. We analyze the robustness and
performance under different weather and lighting conditions in
Figure 4. It is noted that detection during nighttime poses chal-
lenges for camera-onlymethod. Thanks to the stable performance of
radar under adverse weather conditions, our fusion model achieves
consistent improvements in sunny and rainy weather, as well as
daytime and nighttime conditions, compared with baseline model.
This demonstrates the superior robustness and performance of our
proposed SparseInteraction in all conditions.
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Figure 6: Visualization of predictions from differentmodels. To validate the effectiveness of the sub-module in SparseInteraction,
we visualize each step’s result on our baseline BEVFormer. Specifically, SCAE represents the proposed fusion module, the
Sparse Cross-Attention Encoder. The first line illustrates framework predictions in the image view, while the second line
showcases detection results in BEV space. SparseInteraction effectively eliminates noisy radar inputs and enhances fusion
features, leading to a notable reduction in false positives.

4.4.2 Convergence. We perform the analysis on the convergence
of SparseInteraction in Figure 5. Thanks to the aid of radar, Sparse
Interaction without FPQ consistently achieves significantly better
detection performance compared to BEVFormer. However, their
rates of convergence are identical, which we believe is attributed to
them utilizing the same decoder head. Furthermore, because FPQ
provides prior location information, it enables SparseInteraction to
converge ahead of schedule, approximately around epoch 16, while
also enhancing detection performance.

4.4.3 Performance and Latency. We compare the performance
and latency using different frames in Table 8. After observing that
the utilization of multiple temporal frames significantly enhances
NDS, mAP, and mAVE while the best performance is achieved
with four frames. Consequently, we opted to use four frames, tak-
ing into consideration computation time and memory constraints
during training. Since we pre-save the history fusionBEV features
during testing, the use of temporal information does not increase
latency. Furthermore, in the Multi-Modal Cross Attention module,
the exclusion of FusionBEV queries at background positions from
computations enables the FusionBEV queries to focus on potential
target object positions. Consequently, our model achieves lower
latency and better performance compared to baseline model.

4.5 Visualization
We provide a more straightforward visualization in Figure 6. Com-
paring the predictions of BEVFormer, we note that enhanced fusion

# Frame # Method NDS↑ mAP↑ mAVE↓ FPS

4 BEVFormer 0.517 0.416 0.394 1.7
1

SparseInteraction

0.548 0.458 0.379 2.1
2 0.564 0.483 0.326 2.1
3 0.586 0.505 0.283 2.1
4 0.595 0.511 0.254 2.1
5 0.595 0.507 0.247 2.1

Table 8: Analysis of performance and latency using different
frames during training. “# Frame” denotes the frame number
during training.

features can refine the bounding box by SCAE. However, this pro-
cess is sometimes disrupted by noisy radar, leading to false positives.
In contrast, when comparing BEVFormer to SparseInteraction, it
becomes evident that our framework successfully eliminates noisy
radar data before fusion, effectively preventing false positives.

5 Conclusion
In this paper, we proposed a novel transformer-based foreground
radar camera fusion framework with a light module that extracts
foreground radar features under the guidance of semantic image.
Our approach effectively addresses the inherent challenges of noise
and positional ambiguity which achieves state-of-the-art perfor-
mance. In future work, we plan to incorporate velocity prediction
into the temporal module to further enhance the detection perfor-
mance.
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