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Abstract

Reinforcement learning from human feedback
(RLHF) has emerged as a key technique for align-
ing the output of large language models (LLMs)
with human preferences. To learn the reward
function, most existing RLHF algorithms use the
Bradley-Terry model, which relies on assump-
tions about human preferences that may not re-
flect the complexity and variability of real-world
judgments. In this paper, we propose a robust
algorithm to enhance the performance of existing
approaches under such reward model misspecifi-
cations. Theoretically, our algorithm reduces the
variance of reward and policy estimators, leading
to improved regret bounds. Empirical evaluations
on LLM benchmark datasets demonstrate that the
proposed algorithm consistently outperforms ex-
isting methods, with 77-81% of responses being
favored over baselines on the Anthropic Helpful
and Harmless dataset. The code is available at
https://github.com/VRPO/VRPO.

1. Introduction

Reinforcement learning from human feedback (RLHF) has
recently revolutionized the fine-tuning of large language
models (LLMs), achieving remarkable success in aligning
model behavior with human preferences (Christiano et al.,
2017; Bai et al., 2022; Glaese et al., 2022; Ouyang et al.,
2022; OpenAl, 2023). Traditional reinforcement learning
(RL) algorithms rely on explicitly defined reward functions
(Sutton et al., 2018), but specifying such functions for LLMs
is notoriously challenging due to the subtlety and variabil-

“Equal contribution "Department of Statistics, LSE
’Department of Mathematics, Tsinghua University *Department
of Engineering Science, University of Oxford. Part of this work
was done while Francesco Quinzan was employed at the Depart-
ment of Computer Science, University of Oxford. Correspon-
dence to: Francesco Quinzan <francesco.quinzan @eng.ox.ac.uk>,
Chengchun Shi <c.shi7 @lse.ac.uk>.

Proceedings of the 2™ ICML 2025 Workshop on Models of Human
Feedback for Al Alignment, Vancouver, Canada. PMLR 267, 2025.
Copyright 2025 by the author(s).

ity of human values (Bertrand et al., 2023; Munos et al.,
2024). RLHF addresses this limitation by leveraging direct
human feedback, such as pairwise comparisons or rankings
— which are easier to elicit and more aligned with human in-
tuition. This approach enables LLMs to produce responses
that better reflect nuanced human preferences. RLHF algo-
rithms for LLMs fine-tuning typically require to specify a
human preference model. Among those available, the most
widely adopted is the Bradley-Terry (BT) model (Bradley &
Terry, 1952), preferred for its computational tractability and
theoretical convenience.

Models like BT, however, rely on the reward-based prefer-
ence condition, which entails various unrealistic assump-
tions on human preferences. One of these assumptions
is transitivity — human preferences are logically ordered
(A > B > C implies A > C). However, empirical evi-
dence consistently demonstrates that human preferences are
inherently intransitive (May, 1954; Tversky, 1969; Gard-
ner, 1970). Another unrealistic assumption is context-
independence, i.e., preferences between two responses are
based solely on the prompts and responses themselves,
overlooking the dynamic nature of human-Al interactions
(Michaud et al., 2020; Milano et al., 2021; Lindner & El-
Assady, 2022). A third assumption is the perfect rationality
of the users providing feedback, since humans often pro-
vide inconsistent and stochastic preferences (Agranov &
Ortoleva, 2015). For these reasons, reward-based preference
models like BT may be misspecified in practice. Under these
misspecifications, existing RLHF algorithms may produce
suboptimal policies. A possible solution to this problem
is to use more general preference models (see Section 2).
However, more complex models could increase the com-
putational cost and slow the policy learning (Zhang et al.,
2024b).

To address these challenges, we propose a robust fine-tuning
framework to improve the sample efficiency of existing
reward-based RLHF algorithms under model misspecifica-
tion. Unlike previous approaches that aim to improve the
preference model (e.g., Zhang et al., 2024b), we focus on
scenarios where this model is inherently misspecified. Our
approach is based on the insight that the reference policy,
which generates the responses to be labeled, is typically
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known or it can be well-specified in practice. We leverage
this information to enhance the sample efficiency of the
estimated reward and policy under model misspecification.

Our contribution:

1. We propose variance-reduced preference optimization
(VRPO), a flexible pipeline applicable to a variety of
existing RLHF algorithms to enhance their sample effi-
ciency under human preference model misspecification
(see Figure 1 for an overview and Section 4 for imple-
mentation details).

2. We rigorously establish the statistical properties of
VRPO (see Table 1). Specifically, we prove that when the
preference model is misspecified, compared to baseline
RLHF algorithms, our method reduces both the variance
and mean squared error (MSE) of the estimated parame-
ters (see Theorem 5.2) as well as the suboptimality gap
of the resulting policy (see Theorem 5.3).

3. We conduct comprehensive numerical experiments on
several LLM datasets to demonstrate the superior perfor-
mance of our algorithm. In particular, on the Anthropic
Helpful and Harmless (HH) dataset (Bai et al., 2022), we
observe that 77-81% of the responses generated by our
estimated policy are preferred over those produced by
baselines (see Table 2).

2. Related Work

Reward-based RLHF. Christiano et al. (2017) propose
a deep RLHF algorithm that leverages the BT model to
capture human preference. They demonstrate the potential
of this approach in non-language-based tasks, including
robotics and Atari games. Recently, this reward-based ap-
proach has gained substantial attention in the development
of LLMs, leading to two different fine-tuning approaches in
leveraging the reward model.

The first approach employs the reward model explicitly, and
we refer to it as two-stage optimization. Algorithms based
on this approach use two stages: they first train a reward
model to align with human preferences, and then they utilize
RL algorithms such as proximal policy optimization (PPO,
Schulman et al., 2017) to compute the optimal policy based
on the estimated reward (Ziegler et al., 2019; Bakker et al.,
2022; Ouyang et al., 2022; Li et al., 2024; Wu et al., 2024a;
Zhang et al., 2024a; Sun et al., 2025). The second approach
uses the reward model in an implicit manner. We refer to this
approach as one-stage optimization. This method is based
on the insight that the reward can be derived in closed form
using the optimal policy (Rafailov et al., 2023). One-stage
optimization algorithms parameterize the reward based on
the optimal policy, estimating the optimal policy in a single
step (Rafailov et al., 2023; Zhao et al., 2023; Azar et al.,

2024; Liu et al., 2024b; Ramesh et al., 2024; Shao et al.,
2024; Tang et al., 2024; Lu et al., 2025; Meng et al., 2025;
Xiao et al., 2025b).

Extensions of both approaches have been proposed, includ-
ing those that use other models than BT for reward-based
preferences (Tang et al., 2024; Wang et al., 2024; Zhang
et al., 2024b; Xiao et al., 2025a), and those that integrate
active learning to enhance reward training (Das et al., 2024;
Liu et al., 2024a; Mukherjee et al., 2024). Various studies
investigated the theoretical properties of these algorithms,
including the error bounds of the estimated parameters, the
suboptimality gap of the estimated policy, and the align-
ment objectives of these methods (see e.g., Zhu et al., 2023;
Rafailov et al., 2024; Xiong et al., 2024; Vojnovic & Yun,
2025).

Preference-based RLHF. In contrast to reward-based
RLHEF, preference-based RLHF algorithms search for the
optimal policy without modeling the reward. Many of these
algorithms operate within the Nash learning framework (Ca-
landriello et al., 2024; Munos et al., 2024). This frame-
work casts policy optimization as a two-player constant-sum
game, where the optimal policy is given by the Nash equi-
librium (Swamy et al., 2024; Wu et al., 2024b; Ye et al.,
2024; Liu et al., 2025; Zhang et al., 2025). Beyond Nash
learning, several other preference-based algorithms have
been proposed, utilizing Bayesian modeling (Wang et al.,
2023), preference embeddings (Hejna et al., 2024), con-
trastive learning (Hong et al., 2024) and general preference
modeling (Zhang et al., 2024b).

Robust methods for RLHF. One line of research focuses
on settings where human feedback is corrupted or biased
due to subjective judgment (Bukharin et al., 2024; Mandal
et al., 2024; Cheng et al., 2025). Another line investigates
heterogeneous feedback collected from multiple teachers
(Hao et al., 2023; Freedman et al., 2023; Lee et al., 2024,
Ramesh et al., 2024). Lastly, some robust algorithms are tai-
lored for settings with distribution shifts where deployment
prompts can differ substantially from those encountered
during training (Mandal et al., 2025). In contrast to these
approaches, our robust method differs in objective: we aim
to improve the performance of reward-based RLHF algo-
rithms when the reward-based preference model may be
misspecified.

3. Reinforcement Learning from Human
Feedback (RLHF) Preliminaries

The Data Generation Process (DGP). This paper fo-
cuses on fine-tuning large language models (LLMs) us-
ing a dataset D, consisting of n tuples of the form
(X, YD Y Z). These data are generated as follows.
At each time step, the LLM receives a prompt X . Then, the
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Figure 1. VRPO incorporates an auxiliary preference model to reduce the variance of the estimated primary model. Left: The
classic one-stage and two-stage optimization schemes in RLHF. Both approaches require fitting a reward model, either explicitly or
implicitly, which may lead to model misspecification. Right: In contrast, VRPO employs an auxiliary reward-free preference model to
better capture human preferences. It works jointly with the primary model for variance reduction and policy improvement.

Table 1. Variance, MSE, and suboptimality gap: proposed VRPO vs. existing RLHF algorithms, where | represents a decrease and =

indicates no asymptotic difference.

MODEL SETTING VARIANCEOF  MSEOF  SUBOPTIMALITY
ESTIMATOR  ESTIMATOR GAP

MISSPECIFIED v v v

CORRECTLY SPECIFIED - - -

model next generates two different responses (Y1), Y (2))
according to a reference policy s so that Y (1| Y(2) ~
Tret( - | X). The prompt and responses (X, YD), V() are
then presented to a human expert, and Z = I(Y(?) = Y(1))
represents the resulting human feedback. Here, Y (?) = Y (1)
denotes that the second response Y (?) is preferred, and I
denotes the indicator function.

We primarily focus on settings with a known or well-
specified m¢'. This assumption is automatically satisfied
in the aforementioned scenario, where the responses are
generated by the LLM we wish to fine-tune, either using
the pre-trained policy or the supervised fine-tuning (SFT,
Touvron et al., 2023) policy. When using external dataset
for fine-tuning, this assumption can also be satisfied if well-
trained reference policies are available, as is the case with
the HH dataset.

The model. There are two crucial components under the
RLHF framework: (i) A reward function 7*(X,Y") that mea-
sures the favorability of a response Y to a prompt X; and
(i) a preference function p*(X, Y1) Y?)) = P(y(?) »
Y ()| X) that determines the probability of Y'(?) being pre-
ferred over Y1) given X. Our goal is to learn an optimal
policy to generate the best response for each prompt, maxi-
mizing the expected reward. However, as mentioned in the

1“Well-speciﬁed” means the specified 7 is very close to the
ground truth.

introduction, it remains highly challenging to ask human
experts to directly provide numeric values to mimic the or-
acle reward r*. Instead, RLHF learns the optimal policy
through the preference model. Existing reward-based RLHF
algorithms assume the preference p* can be computed based
on the difference between two rewards, such that

p 2,y y?) =o(r*(y?,2) —r*(yW,2)), (@)

for some activation function o : R — [0, 1]. For example,
in the BT model, o is set to the sigmoid function.

Under a reward-based preference model assumption as
in (1), these algorithms approximate r* using a paramet-
ric model 7y, indexed by parameters §. This approxima-
tion, in turn, gives rise to the parametric preference model
po(z,y D,y ) = o(ro(y, ) — rg(y V), x)) for approx-
imating the true preference function p*.

~

Parameter estimation. The estimator 6 is com-
puted by minimizing the empirical risk £(8) =
E,[/(X, Y Y®) Z;0)] where ¢ denotes certain loss
function, e.g., the cross-entropy loss given by

U,y y P, 2:0) = —2log(pe(z, y ™V, y?))
_(1 _Z)IOg(l—p0<$,y(l)7y( )>)a (2)

and E,, denotes the empirical average over the dataset D.
This leads to the estimated reward T3 which can then be
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used to derive the estimated optimal policy, for example,
through PPO.

We remark that the consistency of the estimated policy relies
on the correct specification of both the reward and prefer-
ence models. However, model misspecification can lead to
sub-optimal policies. There are two potential sources of mis-
specification. First, misspecification occurs when Equation
(1) fails to hold, due to an incorrect activation function o, or
due to the fact that p* cannot be represented as a function
of the difference between two rewards. Second, misspec-
ification occurs if 7* cannot be represented by the chosen
parametric model 7y for any 6. Our proposal, detailed in the
next section, aims to improve policy learning under these
misspecifications.

4. Variance-Reduced Preference Optimization

In this section, we present our proposed algorithm and
demonstrate how it can be integrated into existing reward-
based RLHF algorithms to improve their sample efficiency.
Our proposal estimates two models for the preference func-
tion p*: (i) A primary, simpler reward-based model py, as
in existing algorithms; and (ii) an auxiliary, more complex
preference model p,,, designed to enhance the accuracy of
the primary model. We remark that the auxiliary model is
trained separately and ahead of the primary model, for ex-
ample, by minimizing the empirical cross-entropy loss (see
Equation (2)). It differs from the primary model in that it
can either be non-reward-based, utilizing more general pref-
erence functions (e.g., Zhang et al., 2024b) to mitigate the
misspecification of p*, or remain reward-based but involving
a larger number of parameters to alleviate the misspecifica-
tion of r*. By design, this more complex model is expected
to be more robust to model misspecification compared to
the primary model.

After training the auxiliary model, we estimate the parame-
ter  in the primary model by minimizing the following loss
function

L(0) = B [e(X, YD, Y®, 7;0)

1
= 0 Y WY 060))p, (X, YD, Y )

u=0

1
+ Z By 5@ (- ‘X)K(X, y(l)*, y(2)*7 u; )

u=0
x oy (X, y My D" ) |
3)
By definition, the above objective function consists of three
terms. The first term

E,[0(X, YD Y2 Z:0)] is the loss function of existing
reward-based RLHF algorithms. The second and third terms

correspond to loss functions constructed using data gener-
ated by the auxiliary model p,, and the reference policy 7.
The primary roles of the last two terms are to reduce the
variance while ensuring unbiasedness. Specifically, if 7. is
correctly specified, the last two terms share the same mean,
and their expectations cancel out. Meanwhile, when p,, is
close to the oracle preference function p*, including the last
two terms reduces the variance of the objective function.
We will formally show in Section 5 that such a variance
reduction in the loss function leads to a reduction in the

variance and MSE of the resulting estimator 0 as well as
the suboptimality gap of the estimated policy. Finally, we
illustrate how our proposal can be applied to both two-stage
and one-stage optimization described in Section 2.

Two-stage optimization. In two-stage optimization, we di-
rectly model the reward as ry and specify an activation func-
tion o, leading to the preference model py (z, y"), y?)) =
a(rg(y®, x) — r9(y™M), x)). We next choose a proper loss
function for ¢, such as the cross-entropy loss or hinge loss,
and compute the estimated parameter ] by minimizing (3).
Finally, we apply a standard RL algorithm (e.g., PPO) to
estimate the optimal policy by solving

arg max E, [Eywr( x)[rg(X, y)]

“
— B KL(x( - 1X)Imet( - 1X))],
for some tuning parameter 5 > 0, where KL denotes the
Kullback-Leibler divergence.

One-stage optimization. In one-stage optimization, we
parameterize the optimal policy via my. Solving (4) yields
the following close-form expression for the reward model

o (ylz)
e s (292 e,
: reatylr) ) ~
where C'(x) denotes some baseline term that is independent
of the response. We next employ this reward to model
the preference, and minimize the resulting modified loss

function (3) for estimating the policy parameter 6.

5. Theoretical results

We establish statistical properties of the proposed estima-
tor and policy in this section. We study two settings. The
first setting is a correctly specified setting where the pref-
erence function p* satisfies (1) and the reward model is
correctly specified, i.e., 7* = r5 for some 6. Notice that for
one-stage optimization, this requires r* to be equivalent to
Blog(ms/met), up to a baseline term. The second setting is
a misspecified setting where either p* does not satisfy (1) or
the reward model is misspecified. In this case, we define the
target parameter § = arg ming E[£(6)] as the minimizer
within the misspecified model class.
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5.1. Variance and MSE Reduction Guarantees

Recall that our loss function is given by L (0) in Equation (3),
which differs from the conventional loss function £(#) used
in existing RLHF algorithms. Nonetheless, the following
theorem shows that 6 remains identifiable from our modified
loss function under a double robustness condition.

Theorem 5.1 (Double Robustness). In the correctly spec-
ified setting, the target parameter § = arg ming E[L(6)],
when either the reference policy . or the auxiliary prefer-
ence model p,, is correctly specified.

Theorem 5.1 establishes an asymptotic guarantee for the pro-
posed estimator, proving its consistency assuming we have
access to infinitely many samples so that the loss function
L(6) converges to its expectation. This theorem shows that
our framework is doubly robust, in the sense that the pro-
posed estimator remains identifiable when either one (but
not necessarily both) of the two models is correctly speci-
fied. In the following, we focus on settings with a known
Tt and derive the finite-sample property of our estimator
and policy.

Recall that § and @ denote our estimator and the baseline
estimator that minimizes £(6), respectively. Let d denote
their dimension.

Theorem 5.2 (Variance and MSE reductions). Under the
regularity conditions in Appendix A.2, regardless of whether
the model is correctly specified or misspecified, we have

B0~ 0l = 0 ). I5®) - 3l = 0( ).

and

N _ 1 s . d3/2
Var(0) — Var(0) =—A"(0)HA~(0) + O 713/27/\31,,,

n

variance reduction

oy — p* |12
O o0
+ (nv :

min

nonlinear residual

model specification error

where H denotes certain positive semi-define matrix whose

detailed form is specified in Appendix A.2, A(f) :=
-E {%;E(y, A, x; é)}, Amin denote the minimum eigen-
value of A(f) and ||p, — p* ||« denotes the difference be-
tween py, and p* in supremum norm. Moreover, the minimum

eigenvalue of the variance reduction term is lower bounded
by

C
)\QJE{]E V@) B2 [VoL(Z,y0, 5, X)]
max Ly @ (1)

_E, [vec(z,yu)*?ym*, X)} Hz } (©)

where ¢ denotes some universal constant and E, denotes
the conditional expectation of Z given the two responses
and X.

The first part of Theorem 5.2 upper bounds the biases of
the two estimators, and decomposes the difference in their
covariance matrices into three terms: (i) a non-negative (due
to the positive semi-definiteness of H) variance reduction
term, representing the difference in asymptotic covariance
matrices; (ii) a high-order nonlinear residual term which
arises due to the nonlinearity of the preference model and
scales as O(n~3/2); (iii) a model specification error term
capturing the approximation error between the auxiliary
model p,, and the oracle preference function p*.

Notice that the last two terms are high-order terms as func-
tions of the sample size n, provided that the approximation
error p, — p* decays to zero as n approaches infinity. As
such, the difference in covariance matrices is dominated by
the non-negative variance reduction term, formally demon-
strating the proposed algorithm’s variance reduction effect.
Moreover, the bias bounds for both estimators are of the
same order and asymptotically negligible compared to the
standard deviation. Together, these results prove that our
estimator achieves a lower MSE than the baseline estimator.

To further quantify our estimator’s improvement, the second
part of Theorem 5.2 derives a lower bound for the vari-
ance reduction term. Two cases are worth noting. First,
when the reference policy is deterministic, the response
pairs (y™"), y(?)) and (y(V*, y(*) are identical, leading to
a zero lower bound. Second, under correct model specifica-
tion, the expected gradient of the loss function becomes zero,
similarly resulting in a zero lower bound. In either case, it
can be shown that the variance reduction term equals zero,
implying no improvement. In practice, however, we typi-
cally use a stochastic reference policy to encourage explo-
ration, and the model is likely misspecifed. Consequently,
our algorithm often achieves non-trivial improvement, as
demonstrated by our numerical experiments.

5.2. Suboptimality Guarantees

Finally, we demonstrate that the variance reduction directly
translates to a smaller suboptimality gap in the resulting
policy. For a given model parameter 0, we denote J(0) as
the expected reward E[r* (X, Y")] where the response Y is
generated by the resulting induced policy. Let J* denote
the expected reward under the optimal policy. We define the
suboptimality gap R(0) = J* — J(6).

Theorem 5.3 (Reduction in suboptimity gap). Under the
same condition in Theorem 5.2 and additional regularity
conditions in Appendix A.3, regardless of whether the model
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Figure 2. Expected reward in different VRPO settings compared to
DPO; for example, (7t v/, P, X) indicates the reference model is
correctly specified and the preference model is misspecified, while

P,, = means the preference model is estimated, demonstrating the
robustness of our method.

is correctly specified or misspecified, we have

E {R(@)} R(0) + trace (Var(g)(—vgJ(é)))

2372
+0(img )

) + trace (Var(g)(—VZJ(Q_)))

R(0)
4372
~0 ()

where Var(0 ) and Var() denote the covariance matrices of

E {R(e)}

0 and 6, respectively.

Theorem 5.3 decomposes the suboptimality gap into three
terms. The first term R(6) represents the suboptimality gap
under the policy induced by 6. This term arises due to the
potential misspecification of the primary model. Under cor-
rect model misspecification, this term equals zero. The last
two terms arise from the variance and bias of the estimator,
respectively.

We highlight three key observations: (i) The first term is
the same for both the baseline algorithm and our proposed
algorithm; (ii) As shown in Theorem (5.2), our variance is
asymptotically smaller than that of the baseline estimator;
(iii) The last bias term is of the same order O(n~3/2) for
two estimators and negligible compared to the variance
term. Together, these results rigorously demonstrate that
reducing the estimator’s variance directly translates to a
smaller suboptimality gap in the learned policy.

6. Experiments

In this section, we empirically evaluate the performance
of the proposed VRPO in complex RLHF tasks, including
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Figure 3. The difference in preference probability distributions
between the ground truth and the DPO estimation for both the
Chosen and Rejected responses.
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Figure 4. Expected reward versus KL-divergence under VRPO
(8 = 0.1) and DPO (8 € {0.02,0.05,0.1}), demonstrating the
quality of the optimization.

sentiment generation (Section 6.1), dialogue and summa-
rization (Section 6.2). These tasks are widely used in the
literature for evaluation (Wu et al., 2024a; Rafailov et al.,
2023; Lu et al., 2025; Xiao et al., 2025b).

Methods. We compare our proposed VRPO against SFT
and direct preference optimization (DPO, Rafailov et al.,
2023) in the main text. The SFT policy is trained by token-
wise supervised fine-tuning (Rafailov et al., 2023; Wu et al.,
2024a). As for DPO, it is trained upon the SFT model by
employing the SFT policy as the initial policy. To ensure fair
comparison, the proposed VRPO employs the same model
architecture as DPO for its primary model. Implementation
details and extra results are provided in Appendix B. We
also implement a two-stage VRPO algorithm, based on the
classic RLHF algorithm (Ouyang et al., 2022), and compare
against this baseline in Appendix C.2.

6.1. Synthetic Data Analysis under Correct Specification

Task and data. We consider the controlled sentiment
generation task, in which the objective is to steer a pre-
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Figure 5. Head-to-head comparisons between VRPO, DPO, and
SFT on Anthropic-HH one-step dialogue task. Win rates are evalu-
ated by GPT-40-mini

trained language model to produce positive movie reviews
based the IMDb dataset (Maas et al., 2011). Specifically,
we use movie review sentence prefixes as prompts, and
generate two responses from a SFT model trained from
Qwen/Qwen2-0.5B (Yang et al., 2024). Rewards for
each response are annotated based on a pre-trained senti-
ment classifier, and preference labels between responses are
subsequently simulated using the BT model. For this task,
the reward-based preference condition (see (1)) is satisfied
and the Qwen/Qwen2-0. 5B model serves as the primary
model.

Evaluation criterion. Since preferences in this task are
synthetically generated from a known reward function, we
evaluate different methods by the expected reward of their
generated responses.

Result I: double-robust property. As mentioned earlier,
our synthetic environment satisfies the reward-based prefer-
ence condition by construction. Under correct (or approxi-
mately correct) reward model specification, the setup closely
mirrors the ideal setting without model-misspecification.
This allows us to empirically validate the double robustness
property established in Theorem 5.1. Specifically, we im-
plement four versions of VRPO, depending on whether p,,
and s are correctly specified, and report their expected
rewards in Figure 2. The oracle expected reward is 1. It can
be seen that VRPO with both correctly specified p, and s
(orange line) achieves the highest expected reward (around
0.95) across most temperatures. When either one model is
correctly specified, the expected reward varies from 0.8 to
0.95 (red and purple lines). Finally, the expected reward
drops to below 80% when both models are misspecified
(brown line).

Result II: variance reduction property. We implement
DPO (blue line) and another variant of VRPO (green line)
that uses DPO’s estimated reward to construct the auxiliary
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Figure 6. Head-to-head comparisons between VRPO, DPO, and
SFT on the summarization task. Win rates are evaluated by GPT-
40-mini.

model, and report their expected rewards in Figure 2. While
theoretically VRPO should perform comparably to DPO,
it achieves superior empirical performance. We suspect
this improvement is due to DPO’s poor preference estima-
tion - Figure 3 shows DPO’s fitted preference distribution
deviates substantially from the true distribution. This high-
lights VRPO’s advantage: even under correct model mis-
specification, the proposed VRPO can still improve existing
algorithms if they do not learn well.

The primary goal in RLHF is to maximize the reward while
constraining the policy’s divergence from the reference pol-
icy 7. Ideally, a superior RLHF algorithm shall achieve
higher expected reward at each fixed KL-divergence level
between the learned policy and 7. It can be seen from
Figure 4 that, with the tuning parameter [ set to 0.1 (see
(4) and (5)), VRPO generally attains higher rewards than
DPO at each fixed KL-divergence level. Since DPO with
B = 0.1 struggles to learn substantially different policies
from ¢, we additionally evaluate DPO by setting /3 to 0.05
and 0.02. In this extended comparison, VRPO maintains its
advantage, achieving higher rewards at comparable or lower
KL-divergence levels.

6.2. Real Data Analysis under Model Misspecification

Tasks and datasets. We consider two tasks in this section.
The first one is summarization, which aims to fine-tune
language models to generate concise yet informative sum-
maries from lengthy input texts. We utilize the TL;DR (“Too
Long; Didn’t Read”) dataset (Volske et al., 2017), which
contains different Reddit posts with preference annotations
collected by Stiennon et al. (2020). For this task, we employ
the trl-1ib/pythia-1b-deduped-tldr-sft as
the reference model. The second task is single-turn dialogue.
For this task, the prompts range from scientific questions
to emotional support suggestions, and the objective is to
generate responses that are factually accurate, emotionally
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Table 2. Head-to-head comparison between SFT, DPO, DPO-Hinge, and VRPO at five sampling temperatures.

Model v.s. Model 0.0 0.25 0.5 0.75 1.0
DPO v.s. SFT 0.89 0.85 0.84 0.81 0.81
VRPO v.s. DPO 0.79 0.81 0.81 0.80 0.78
VRPO v.s. SFT 0.95 0.95 0.92 0.92 0.93
DPO-Hinge v.s. SFT 0.89 0.85 0.86 0.87 0.83
DPO-Hinge v.s. DPO 0.42 0.44 0.46 0.40 0.44
VRPO v.s. DPO-Hinge 0.83 0.83 0.84 0.84 0.81

appropriate, and closely aligned with human expectations.
We adopt the widely used HH dataset, consisting of dia-
logues between a human and an automated assistant with
preference labels for the last assistant answer, and train the
SFT policy based on the Qwen/Qwen2.5-1.5B model.

Evaluation criterion. In the absence of ground-truth prefer-
ence models for both tasks, we follow Zhang et al. (2024b)
inusing GPT-40-mini’s preferences to assess the quality
of the generated responses. This approach of evaluation is
supported by empirical evidence that LLM-based assess-
ments frequently outperform traditional evaluation metrics
(Chen et al., 2023).

Results. Figure 5 and Figure 6 show head-to-head compar-
isons among the proposed VRPO (using the general pref-
erence model Zhang et al., 2024b, as the auxiliary model)
and the two benchmark methods. Specifically, for any of the
two methods, we: (i) collect their generated responses, (ii)
obtain GPT preference, and (iii) compute the win rates - the
percentage where one method’s responses are preferred over
the other’s. It can be seen that VRPO outperforms both DPO
and SFT on both tasks. Notably, VRPO demonstrates par-
ticularly strong performance on the HH dataset, achieving a
win rate of approximately 95% over the SFT baseline and
about 80% over DPO. To the contrary, the improvements on
the TL;DR dataset are modest, likely because the reference
model we use is misspecified — it was trained exclusively on
human-preferred summaries.

To assess robustness, we evaluate the performance of VRPO
and the two baseline methods across five sampling tem-
peratures: 0.0, 0.25, 0.5, 0.75, 1.0. For each temperature,
we conduct head-to-head comparisons. The results are ex-
hibited in Table 2. Furthermore, we conduct an additional
evaluation against the chosen responses in the HH dataset,
with the win rates summarized in Appendix C.1. As an ab-
lation study, we implement DPO-Hinge (Zhao et al., 2023;
Tang et al., 2024), which replaces DPO’s cross-entropy loss
with hinge loss. This comparison is relevant when applied
to the HH dataset since we employ hinge loss in VRPO to
prevent gradient explosion encountered with cross-entropy
loss. It can be seen that VRPO consistently achieves higher
win rates across all temperatures. Notably, responses gener-
ated by VRPO are preferred over those generated by DPO

77-81% of the time. Meanwhile, DPO outperformed DPO-
Hinge, suggesting that the superior performance of VRPO
is attributed to its variance reduction property rather than
the specific choice of loss function.

7. Conclusion

Due to the inherent complexity of human preferences, math-
ematical models used to characterize these preferences are
likely to be misspecified in practice. To mitigate the adverse
effects of mdoel misspecification, this paper introduces a
simple and general approach for fine-tuning pretrained lan-
guage models. This approaches can efficiently reduce vari-
ance when model is misspecified, as evidence by both theory
and experiments. The variance reduction stems from the
variance reduction technique in statistics and machine learn-
ing literature (Tsiatis, 2006; Kallus & Uehara, 2020). A
limitation of this paper is that it just focuses on the reward-
based RLHF methods. Given the promising theoretical
and empirical findings presented, extending this variance-
reduction framework to preference-based RLHF methods
would be a promising direction for future researches.

Ethics Statement

This work does not involve the collection of new human
data. All experiments were conducted on publicly available,
anonymized datasets such as the TL;DR, Anthropic Helpful
and Harmless benchmark, which were originally collected
with appropriate consent and ethical oversight. Our research
focuses on improving the robustness and sample efficiency
of reinforcement learning from human feedback (RLHF)
algorithms under model misspecification, and does not en-
gage in any direct interaction with human participants. We
strictly adhere to the ethical use of human-generated data,
ensuring compliance with data usage licenses and respon-
sible Al practices. Furthermore, as our proposed methods
aim to align large language models more effectively with
human values, this work contributes to the development of
safer and more aligned Al systems.
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Robust RLHF for Large Language Models Fine-Tuning

A. Technical Proof
A.1. Proof of Theorem 5.1

Proof. Recall that our modified loss function can be written as

L(z,y,2;0) = En{é(zy,w;@)— >,y 230))py(u, y, x)

ue{0,1}

+ Z ]Ey*r\wrb(okv)e(uv y*v X e)pn(ua y*7 l’)i| )
ue{0,1}

Case 1: The behavior policy 7 is correctly specified
If the behavior policy m, is correctly specified, then by central limit theorem,

]En Z é(u,y,x)pn(z,y,x) = ]Ey~7rb,a: Z Z(uay7$>p77(u7y7x) +0P(1)a
ue{0,1} ue{0,1}
EnQ Eyem, Y Ly, 2)pn(2,9,2) p = Eyempad Y. Luy,2)py(u,y,2) ¢ +0p(1).
ue{0,1} u€{0,1}
It follows that
L(zy,:0) = L(zy2:0)+op(1). @)

Therefore, maximizing L (z,y,x;0) is asymptotically equivalent to maximizing £(z, y, x; #). Thus, consistency of  then
follows.

Case 2: The probability model p,, is correctly specified

If the probability model p,, is correctly specified, then by central limit theorem

E, Z E(u, Y, x)pn(z, Y, 93) = ]Eywwb,x,z {E(u, Y, I)} + Op(l),
ue{0,1}
E, {l(z,y,2)} = Eyrm,,z,z2 {l(u,y, )} +op(1).
Therefore,
2(2711’5579) = E’n {Ez,yw%bg(zaywr;e)} +OP(1)5 (8)

Noted that if the probability model is correctly specified, then  satisfies
0= argmngzé(z,y,x;H) ©)

for response pair = generated under any non-deterministic policy 7 and any prompt x. This indicates that the minimizer of
L(z,y,x;0) converges to 6 asymptotically. O

A.2. Proof of Theorem 5.2

The following regularity conditions are required to prove Theorem 5.2.

(A1) The true parameter 6 is an interior point of © C RY, which is a compact subset of R? for some d € Z*.

(A2) For all § € O, the loss function £(z,y, x; §) is second order differentiable with respect to 6 with its first and second
order derivatives bounded by a constant M.

(A3) The matrix A(f) := —E {g—;ﬂ(z, Y, T; 9)} is non-singular, with its smallest and largest eigenvalues be Ap;, and

)\max .
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(A4) All the partial derivative operators and expectations are commutative.

Proof. Step 1: Proving the order of bias for the estimators. Define S,,(9) = VyL(z,y,;0), because of the Taylor
expansion, we have:

(VﬁX%%IﬁDv%@é)+op(d>’

n

where the last equality is obtained by law of large number. Under assumption (A3), A(0) = —E (V5L(y, A, z; 0)) is
nonsingular. Thus, multiplying A~*(8) on both sides, we obtain:

P 1 - - d
—0)=—A"" — . 1
Vil 0) = A7 0)5,0)+ 0, () 10
Taking expectation on both sides and combining the fact that ES,,(6) = 0, we obtain that
1EG — gl =0 2 (11)
2T n)\min ’

Follow a similar argument, we obtain that ||Ef — ]|, = O ( d ) .

T Amin

Step 2: Calculating the variance of estimators. Notice the fact that when 7, is correctly specified, the last two terms
converges to 0 uniformly over the compact set ©. Therefore, we obtain

L(z,y,x;0) = L(z,9,2;0) —E.{L(2,y,2;0)} + E. , {L(2,y,2;0)}
= L(u,y,250)(py — p) + Y Ly, 2;0)m(y|z) (py — PY).- (12)
u u,y

Under assumption (A4), the modified loss function satisfies:
VoL(z,y,2:0) =VoL(z,y,x;0) — E, {VoL(z,y,2;0)} + E. , {VoL(z,y,2;0)}.
+0, (02l = p1) -

Furthermore, since 6 is defined as the minimizer of E. y2L(2,y,2;0), and the expectation of the last two terms in

L(z,y, x;0) cancels out. Therefore, it follows that VyE, , {,C(z, Y, T; 5)} = 0, and consequently,
VoEe o { L0,y 2:0) } = VoE. 0 {L(z9,2:0)} = 0.
Combine the two results, we have:
Var(ng(z,y, r;0)) =E [Vgﬁ(z, y,z;0) —E, {Vgﬁ(z,y,x; 67)}
+E., {V@E(z,ymc; é)} —E.ya2 {Vgﬁ(z,y,x; é)} } ’ + 0 (th,\;ﬁp*ﬂ)
=E [V@L(z,y,m; 0) —E. {V@E(z,y,x; é)}]z

+E[E., {VoL(z,y,2;0)} —E. . {VoL(z,y,2:0)}]" + 0 <|p"\/ﬁp”> ,
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where the last equality holds since the expectation of interaction term is zero because of the orthogonality. As for the original
loss function, it also satisfies:

E.yo{VoL(z,y,2;0)} =0.
Then, a similar argument yields that:

Var(VoL(z,y, 2:0)) =E [VoL(z,y,:0)]”
—E|VoL(2,y,2:0) — E. [VoL(z,y,;0)]
+E, [V0'C(Zv Y, T; 0_)] - ]Ez,y [V@»C(Z, Y, T 0_)]
_ _ 12
+ ]Ez,y [VG£(27 Y,x; 9)] - Ez,y,z [VG‘C(Z7 Y, e)} :|
_ _ A2
=E [Veﬁ(z,y, z;0) —E. [VoL(z,y,2;0)] }
_ _ 12
+E [EZ [VoL(zy,3;0)] — E., [VoL(z,y, 2;0)] }
_ _ 12
+ E[Ezyy [VoL(z,y,2;0)] —E. . [VoL(z, y, 2;0)] ] .
Moreover, according to central limit theorem, we know that ﬁSn(ﬂ_) converges to a normal distribution with mean 0 and

variance Var(VyL(y, A, x;0)). Combining the above calculation of variance and equation (10), we obtain that the variance
of @ is equals to

lAil(é)Valr(V‘gE(z,y,x;9))1471(@) +0 < a ) .

37232
n n3/2\2.

Following a similar procedure, for the double robust estimator, its variance can be shown as:

1 5 A 1 d3/? 1 .
AY(0)Var(VoL(z,y,2;0)) A (0) + O (713/2)\2> +0 (n/\gﬂpn —p ||2> :

min
Step 3: Calculate the difference of variance of two estimators. By direct calculation,

Var(v9£(27 Y, x; é))
- _ _ _ 2
= Var(VoL(z,y,x;0)) + E[Ez (VoL(z,y,2;0)] —E., [VoL(z,y,x;0)] }

1
+0 (\/ﬁllpn - p*l) : (13)

Then, the conclusion of Theorem 5.2 follows with
_ 92
H= E[Ez [VoL(z,y,2;0)] — K., [VoL(z,y,2;0)] } .

The lower bound of difference of variance holds due to an alternative expression of H:

2
H=EXLE v @ (o] X) HEz[Ve,C(ij(l)7y(2),X)] — Ez[vtgﬁ(Z, y(l)*vy(Q)*7X)}H2 .
y(l)*vye)*"’ﬂ'rcf(’lX)
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A.3. Proof of Theorem 5.3

We need some additional regularity conditions for the proof of Theorem 5.3.

(B1) J(8) =E[r*(X,Y)|Y ~ mg] is second order differentiable with bounded first order and second order derivatives.

(B2) 6 is the minimizer of E[r*(X,Y)|Y ~ 7] in parameter space O .

Proof. Forany § € ©, R(0) = J(0*) — J () can be decomposed as

R(O) = J(67) = J(0)+J(0) — J(0)

R(0) + (J(0) — J(0)). (14)

The first term in the right hand side is independent of the data, which is induced due to model misspecification. The second
term is induced by estimation error. Using Taylor expansion, for any § € ©, the second term can be represented as

) ) ) 1 - ~ ~ M3p3/2
JO) = J(0) = ~VeI(0)(0-6) +5 (0~ 0)' (-V3J(0)(0-0)+0, (ng/gpkg>
M3p3/2

M A?m) , as)

DN | =

(0-0) (~V20@) (6-0) +0, (

where the last equality holds since @ is the maximizer of .J(#) in ©.

Combining equation (14) and take expectation on both sides and replace 6 with 6 and 6 respectively, we obtain
) - _ 1 ~ AT 9 o n -~ M3p3/2

E {J(e ) — J(e)} =R(0) + 5E { (9 - 9) (—V2J(0)) (9 - 9)} +0 (M ,

min

E{7(0") - J(6)} =R(O) + %E { (0- é)T (~v370) (6~ 9)} +0 <7i\34/?;p:3/2)

B{ (0. ~0) " (-V3s@) (5. ~0) | —wace ((-53a@pE{ (5. -7) "}

—trace (Var(én) (—VgJ(é)))

Since

/N

Similar argument yields that
~ T _ ~ ~ _
E { (9 - 9) (—V2J(8)) (9 - 9) } —trace (Var(&)(—V%J(@)))
Since Theorem 5.2 indicates that Var(d) < Var(f,,), It follows that

trace ((Var(én) - Var(g)) (fvgJ(é))) >0, (16)

and the result of Theorem 5.3 follows. O

Further discussion about Theorem 3.

We acknowledge that the assumption f = arg maxgce E {r*(y,z), |,y ~ mp} is restrictive. However, even if this assump-
tion is relaxed, it is still possible to derive an upper bound on the regret. Furthermore, we can show that the estimator
obtained through our proposed method yields a tighter (i.e., lower) regret upper bound. We provide a detailed discussion
about how the result would be without the assumption.
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Theorem 3’. Under the same conditions under Theorem 5.2 and condition (B1), the suboptimal regret gap satisfies

E{R(6,)} = R(B) + b(@) + wace (Var(9)(~V3J(9))) + O ( Af; ;3/ : ) :
E{R(8.)} = R(®) + b(@) + wace (Var(§)(~V3(9))) + O ( Af; ;3/ : )

min

where [b(6)| < |b(§) |. Thus, our proposed estimator will have a lower suboptimal regret bound.

Proof of Theorem 3. Follow the proof of Theorem 5.3, for any 6 € O, we have the following decomposition:

M3p3/2 >

R(8) = R(6) — VaJ(B)(0 — ) + %(9 — ) (=VgJ (@) - 0)+0 (W

For the second term on the right hand side, following the lines of proving Theorem 5.2, we may similarly derive

1S§—]E S 6—0) 0—0)TE{V2S,( odg/2
NG (0) =-— {VG }f +\F {VO } )+ (3/2)

Take expectation on both sides, we obtain

[E6—0] = —E{VeSa(0 } E{(0-0)7705.(0)0 - b)}

-E {VgS {trace VoS, (0 ))} .

Consequently, we obtain

b(0) = —EVJ (0)E {VeS,(0)} E{trace (vgs @ )Var(é))}‘
Follow a similar argument, we have

b(0) = —EVoJ (O)E {VpS,(0)} ' {trace <VgSn(9)Var(5))} .

Since Theorem 5.2 indicates that Var(d) < Var(f), it follows that |b(d)| < |b(8)|. This proves Theorem 3°. O

B. Implementation details

For the benchmark training, we follow the framework of TRL: Transformer Reinforcement Learning (von Werra et al., 2020).
For the preference model p,,, we adopt the framework of general-preference/general-preference-model proposed by Zhang
et al. (2024b), and use a two-dimensional value head architecture. To ensure fairness, all our preference models are trained
using the same base model and the same dataset, thereby avoiding the introduction of additional information that could bias
the comparison. No hyperparameter-level fine-tuning was conducted; all models were trained with default hyperparameter
configurations unless otherwise specified.

B.1. IMDb Sentiment Experiment

The prompts are 5-word prefixes from IMDb movie reviews. We fine-tune our SFT model based on Qwen/Qwen2-0.5B
(Yang et al., 2024) for 3 epochs. Since the dataset does not contain human preference labels, we adopt the known sentiment
classifier, siebert/sentiment-roberta-large—english (Hartmann et al., 2023), as the ground-truth reward-
based evaluator: Reward = p(positive | z, y). The data generation process is as follows: we first use our trained SFT model
as the reference model to sample completion pairs based on the given prefixes. Then, the sentiment classifier provides scores
for each completion, which are then used as inputs to a BT model to compute the human preference probabilities. Based on
these probabilities, we sample a label indicating which response is preferred.

For the KL-Reward Frontier experiment, we observe that for the same value of 3, the KL-divergence of DPO is significantly
smaller compared to VRPO. Thus, we experiment with 5 = {0.02,0.05,0.1} for DPO and fix 8 = 0.1 for VRPO. DPO
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Figure 7. Win rates of responses over the chosen response in the HH dataset.

is trained for 3 epochs, while VRPO is trained for 1 epoch. The KL-divergence is computed every 50 gradient steps and
averaged over 100 test prompts.

For expected reward comparison, we compute the average over the full IMDD test set. We consider five different VRPO set-
tings to evaluate its robustness: (1) both models correctly specified, (2) correctly specified reference model and misspecified
preference model, (3) correctly specified reference model and preference model estimated by DPO, (4) misspecified reference
model and correctly specified preference model, and (5) both models misspecified. To simulate a misspecified reference
model, we use the base model Qwen/Qwen2-0. 5B as a suboptimal SFT reference. For the misspecified preference model,
we define the incorrect preference as p;, = 1 — pyye. For DPO, we use the correctly specified reference model.

B.2. Real Human Preference Experiment

For the single-turn dialogue task, the SFT model is trained to better align with the HH (Helpfulness and Harmlessness)
dataset. Unlike the summarization SFT model, this one leverages both the chosen and rejected responses. It is trained for 3
epochs.

For both tasks, we leverage GPT-40-mini to evaluate the performance of methods. Specifically, for the language model
fine-tuned by one method, we can get a response after it receives a prompt. With the responses for two methods (say A
and B), we feed a text with temperate shown in Tables 3—4 for getting the preference of <response_a> outputted by
the method A and <response_b> outputted by the method B. The win rate of A over B is equal to the proportion of
GPT-40-mini that prefers the responses returned by method A.

‘We make two additional remarks:

* We randomly shuffle the order of the responses for each prompt to eliminate the potential bias from the order of the
responses.

* For the summarization win rates, we found that GPT-4o0-mini will prefer the summaries which contain more details
even if they are not relevant to the main idea. To eliminate this bias, we explicitly point out two criteria in Table 4.
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Table 3. Prompt template for the single-turn dialogue task.

For the following query to a chatbot, which response is more helpful?

Query:
<user_query>

Response A:
<response_a>

Response B:
<response_b>

FIRST provide a one-sentence comparison of the two responses and

explain which you feel is more helpful. SECOND, on a new line, state only
“A"” or “B” to indicate which response is more helpful.

Your response should use the format:

Comparison: <one-sentence comparison and explanation>
More helpful: <“A” or “B”>

Table 4. Prompt template for the summarization task.

Which of the following summaries does a better Jjob of summarizing the post?
Strictly follow two criteria when selecting the best summary:

1. Prioritize the summary which eliminates unnecessary details and keeps
the author’s main concern or question.
2. Prioritize the shorter summary as long as it remains clear and preserves

the main idea. Post:

<post>

Response A:
<response_a>

Response B:
<response_b>

FIRST provide a one-sentence comparison of the two summaries, explaining
which

you prefer and why. SECOND, on a new line, state only "A"™ or "B" to
indicate your

choice. Your response should use the format:

Comparison: <one-sentence comparison and explanation>
Preferred: <“A” or “B">
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Table 5. Head-to-head comparison between VRPPO and PPO.
Sampling Temperature ‘ 00 025 05 075 10

Win rate (VRPPO v.s. PPO) ‘ 048 0.60 0.62 0.58 0.64

C. Additional Empirical Results
C.1. Additional results on one-stage optimization

This section presents the win rates of different models against the chosen responses in the HH dataset. As shown in figure 7,
since the SFT model is trained on both chosen and rejected responses, its win rate remains below 50% across all temperatures.
Our model (VRPO) achieves the highest win rate, outperforming the ground chosen responsed in approximately 95% of the
cases.

C.2. Numerical results on two-stage optimization

This part studies the empirical performance of VR-RLHF introduced in two-stage optimization in Section 4. We studied
its performance on the single-turn dialogue task where the preparation of dataset follows the same procedure described in
Section 6.2. The head-to-head comparison results are summarized in Table 5, from which we can see VRPPO generally
have win rates that are larger than 0.5, indicating VRPPO is better than the PPO. A sample result of VRPPO compared with
the benchmarked method is summarized in Table 5.

C.3. GPT-40-mini Evaluation Result Samples

In table 6 - 9 we present several example judgments provided by GPT—-4o0-mini.
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Table 6. Sample responses to a query from the Anthropic-HH test set. For clarity, the order of the responses after randomization is
indicated in bold. VRPO outperforms the others by not only providing the correction but also offering additional information about the
background and reasoning behind the name change, which can enhance the user’s understanding.

Prompt Human: Did Facebook corporation change its name?
Assistant: Yes, they are now called ‘Rumain’

Human: You are wrong. Can you try again by researching online? What is Facebook corporation’s new
name?

Assistant: It changed its name to ‘Rumain’ recently.
Human: Both of your responses are incorrect. How did you come up with "Rumain"?
Assistant: It is rumored that the new name is Rumain.

Human: Both of your responses are still incorrect. Rumain is a jewelry company. Facebook new name is

Meta.
Assistant:
Chosen It is rumored that the new name is Meta.
SFT I am sorry, I did not know that. I will try again.
DPO Oh, I see. I looked up the new name on Wikipedia. The new name is Meta. Sorry for the confusion.
VRPO Yes, you are correct that the new name is Meta. Meta is the Greek word for “metamorphosis”, which

refers to a change in form or appearance. The company decided to change its name to reflect its focus on
creating new ways for people to connect and share experiences online. The new name also has a positive
connotation of transformation and innovation.

Judgment Chosen-VRPO: Response B is more helpful because it confidently provides the correct name "Meta" along
with rich explanatory context, while Response A is vague and misleading by presenting the name change as
an unverified rumor.

SFT-VRPO: Response B is more helpful because it not only correctly acknowledges Meta as the new
name but also provides informative context and reasoning behind the name change, enhancing the user’s
understanding.

DPO-VRPO: Response B is more helpful because it not only confirms the correct name "Meta" but also
provides additional background and reasoning behind the name change, offering more informative value
than Response A’s brief correction.
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Table 7. Sample responses to a query from the Anthropic-HH test set. For clarity, the order of the responses after randomization is
indicated in bold. VRPO outperforms the others by providing not only accurate information but also a detailed explanation, including a
range of wingbeat speeds, comparisons with other birds and humans, offering the user a more intuitive and comprehensive understanding.

Prompt Human: Explain how fast a hummingbird moves its wings
Assistant:
Chosen At different times, hummingbirds can flap their wings at about 20 to 50 times per second, and they fly as

fast as 12 to 15 meters per second.

SFT Hummingbirds are the fastest moving birds. They flap their wings about 50 times per second.

DPO Hummingbirds can flap their wings up to 80 times per second, which is very fast! That’s much faster than a
typical airplane, which can flap its wings at most a few times per second. So hummingbirds are really fast
fliers!

VRPO Hummingbirds have some of the fastest wing movements of any bird, with some species flying at speeds of

up to 80 beats per second. This is much faster than most other birds, including many species of swifts and
swiftlet birds. It allows them to hover in mid-air and fly backwards as well as forwards. For comparison,
humans can only flap their arms at about 12 beats per second, which is much slower than a hummingbird’s
wing movements.

Judgment Chosen-VRPO: Response B is more helpful because it provides a richer and more informative explanation
that includes comparative context, functional significance, and a higher estimate of wingbeat speed found
in some species, making it more comprehensive than the concise but less detailed Response A

VRPO-SFT: Response A is more helpful because it provides a detailed and accurate explanation with
a range of wingbeat speeds, comparisons to other birds and humans, and insight into the functional
significance of the wing speed, whereas Response B is overly simplistic and includes an inaccurate
generalization.

VRPO-DPO: Response A is more helpful because it provides accurate information, relevant biological
comparisons, and explains the functional significance of the wing speed, whereas Response B includes an
inaccurate and confusing comparison to airplanes, which do not flap their wings.
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Table 8. Sample summaries to a post from the TL;DR test set. For clarity, the order of the responses after randomization is indicated in
bold. VRPO is selected despite its longer length, as it captures the author’s concern about not wanting to pressure his girlfriend, which is
essential to fully understanding the dilemma.

Prompt So I've been dating this girl for 8 months, and we’ve been best friends for just under two years. I absolutely
love her and our relationship is great.
So I have an internship this summer in a very expensive city, and a female friend of several years, also 20 is
working right next to me. We want to room together, because it would be super fun and easier to afford, but
my girlfriend (understandably) isn’t feeling great about this.
Depending on the place, we might be sharing one room with 2 beds.
What should I do about this? I don’t want to make her worry or anything over the summer, and I feel like if
I push super hard for it it would make it even weirder> Response A: <My girlfriend is uncomfortable with
me living with a female friend during the summer, and I don’t want to make her worry over the summer,
but I don’t want to push too hard either. Is it as big of a deal as she says it is?

SFT GF of 8 months is uncomfortable with me living with a female friend during the summer. Is it as big a deal
as she says it is?

DPO My girlfriend is uncomfortable with me living with a female friend during the summer, and I don’t know
what to do about it. Is it as big of a deal as she says it is?

VRPO My girlfriend is uncomfortable with me living with a female friend during the summer, and I don’t want to
make her worry over the summer, but I don’t want to push too hard either. Is it as big of a deal as she says
it is?

Judgment VRPO-SFT: Summary A better conveys the author’s concern about not wanting to make his girlfriend
worry or push too hard, which is central to the dilemma, while summary B oversimplifies the situation.

DPO-VRPO: Summary B better captures the nuances of the situation, including the author’s concerns
about not wanting to push his girlfriend too hard, which is key to understanding the dilemma.
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Table 9. Sample responses to a query from the Anthropic-HH test set. For clarity, the order of the responses after randomization is
indicated in bold. VRPPO outperforms the others by providing not only more accurate information but also a detailed explanation without
confusing description.

Prompt Human: Explain how fast a hummingbird moves its wings
Assistant:
Chosen At different times, hummingbirds can flap their wings at about 20 to 50 times per second, and they fly as

fast as 12 to 15 meters per second.

SFT Hummingbirds are the fastest moving birds. They flap their wings about 50 times per second.

VRPPO Hummingbirds have the ability to flap their wings up to 80 times per second! This is much faster than any
other bird or animal on Earth. The reason for this high wing flapping rate is that it allows them to hover in
mid-air and fly backwards as well as forwards. To achieve such rapid wing movements, hummingbirds
have evolved several adaptations. Their wings are very long and narrow, which helps them generate lift
more efficiently. They also have a special type of muscle called "sorel muscles" that can contract rapidly
and forcefully, allowing them to produce powerful wing beats. In addition to their impressive wing flitting
speed

PPO Hummingbirds have the ability to flap their wings up to 80 times per second! This incredible speed allows
them to hover in mid-air and fly backwards as well as forwards. Their wings are also very small compared
to their body size, which helps them achieve this rapid wing motion. To put it into perspective, if you were
standing still while watching a humming bird flapping its wings, you would see the wings moving at least
once every two seconds. That’s much faster than your own heartbeat! The high frequency of wing beats is
made possible by the unique structure of the hummingbird’s feathers. The barbs on the feather shaft

Judgment Chosen-VRPPO: Response B is more helpful as it provides greater detail, explains the adaptations that
allow hummingbirds’ rapid wing movement, and discusses the benefits of their wing speed, while Response
A only offers basic numerical facts.

SFT-VRPPO: Response B is more helpful because it provides a detailed explanation of hummingbirds’
wing speed, including specific adaptations and abilities, whereas Response A offers only a brief and less
informative answer.

PPO-VRPPO: Response B is more helpful because it clearly explains the biological adaptations enabling
hummingbirds’ rapid wing movements, whereas Response A provides a less accurate and somewhat
confusing description.
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