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ABSTRACT

Implicit Q-learning (IQL) serves as a strong baseline for offline RL, which never
needs to evaluate actions outside of the dataset through quantile regression. How-
ever, it is unclear how to recover the implicit policy from the learned implicit
Q-function and whether IQL can utilize weighted regression for policy extraction.
IDQL reinterprets IQL as an actor-critic method and gets weights of implicit pol-
icy, however, this weight only holds for the optimal value function under certain
critic loss functions. In this work, we introduce a different way to solve the im-
plicit policy-finding problem (IPF) by formulating this problem as an optimization
problem. Based on this optimization problem, we further propose two practical
algorithms AlignIQL and AlignIQL-hard, which inherit the advantages of decou-
pling actor from critic in IQL and provide insights into why IQL can use weighted
regression for policy extraction. Compared with IQL and IDQL, we find that our
method keeps the simplicity of IQL and solves the implicit policy-finding problem.
Experimental results on D4RL datasets show that our method achieves competitive
or superior results compared with other SOTA offline RL methods. Especially
in complex sparse reward tasks like AntMaze, our method outperforms IQL and
IDQL by a significant margin.

1 INTRODUCTION

Offline Reinforcement Learning (RL), or Batch RL aims to seek an optimal policy without environ-
mental interactions (Fujimoto et al., 2019; Levine et al., 2020). This is compelling for having the
potential to transform large-scale datasets into powerful decision-making tools and avoid costly and
risky online environmental interactions, which offers significant application prospects in fields such
as healthcare (Nie et al., 2021; Tseng et al., 2017) and autopilot (Yurtsever et al., 2020; Rhinehart
et al., 2018). Notwithstanding its promise, applying off-policy RL algorithms (Lillicrap et al., 2015;
Fujimoto et al., 2018; Haarnoja et al., 2018a;b) directly into the offline context presents challenges
due to out-of-distribution actions that arise when evaluating the learned policy.(Fujimoto et al., 2019;
Levine et al., 2020).

Although a variety of methods based on constraint and conservative Q-learning have been proposed to
address this problem, IQL (Kostrikov et al., 2021b) stands out among them since IQL avoids visiting
out-of-distribution (OOD) actions and decouples the critic from the actor, which contributes to stability
and hyperparameter robust. For implicit policy extraction, IQL extracts policy through advantage-
weighted regression (AWR) (Nair et al., 2020; Peng et al., 2019; Peters et al., 2010). However, the
general form of extracted policy is π(a|s) ∝ µ(a|s)w(s,a), where µ(a|s) is the behavior policy.
The AWR’s weight used by IQL is obtained from the constrained policy search, which does not
guarantee that it is the policy the learned IQL’s value function is actually evaluating (Hansen-Estruch
et al., 2023).

To solve this problem, IDQL (Hansen-Estruch et al., 2023) reinterprets IQL as an actor-critic method
and derives the implicit optimal policy weights. Nevertheless, this optimal weight hinges on the
assumption that the optimal value function can be learned under certain critic loss functions. It
remains unclear whether using AWR to extract policies for IQL is feasible, and how to extract policies
from arbitrary critic loss function, not just the expectile loss. Recently, this issue has become more
important since 1) many recent offline RL (Chen et al., 2023) and safe RL methods (Zheng et al.,
2023) use IQL to learn the Q-function; 2) IQL’s performance is significantly affected by the choice
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of a policy extraction algorithm (Tarasov et al., 2024). Addressing these issues can lead to a better
understanding of IQL-style methods’ bottlenecks, thereby promoting the development of offline RL.

In this paper, we address the above issues by formulating the implicit policy-finding problem as an
optimization problem, where the objective function is a generalized form of behavior regularizers
and the constraint is policy alignment. Policy alignment ensures the extracted policy is the policy
implied in the Q-function. By solving this optimization problem, we can get a closed-form solution,
which can be expressed by imposing weight on the behavior policy. The weight consists of a value
function, an action-value function, and multipliers, indicating that using AWR to extract IQL policies
is feasible only when the certain multiplier is less than 0, and this conclusion can be generalized to
any value function loss. Furthermore, our work also explains how the implicit policy in IQL-style
methods addresses OOD actions from the perspective of behavior regularizers.

Based on the optimization problem, we further propose two algorithms, AlignIQL-hard and AlignIQL.
Both inherit the characteristics of IQL, i.e. the decoupling of actor and critic training. AlignIQL-hard
can theoretically achieve a globally optimal solution, but it is more vulnerable to hyperparameter
choices than AlignIQL. AlignIQL relaxes the policy alignment constraint and performs better in
complex tasks like sparse rewards tasks, but it does not guarantee convergence to the global optimum.

Recently, Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) have
been widely used in Offline RL, since behavior policy is often complex and potentially multimodal,
the unimodal Gaussian policy used in IQL is unlikely to accurately approximate the complex behavior
policy (Wang et al., 2022; Hansen-Estruch et al., 2023; Chen et al., 2022; He et al., 2024), which in
turn affects the implicit policy extraction. Our method can also be easily combined with diffusion
models. We just need to resample the actions generated by the diffusion-parameterized behavior
model according to the weights w(s,a) of our method. We verify the effectiveness of our method
on D4RL datasets and Atari datasets and demonstrate its state-of-the-art (SOTA) performance on
sparse reward datasets like AntMaze tasks in which the learning of the critic network is hard and
unstable. We also show that, compared to IDQL, AlignIQL is more robust to hyperparameters and
achieves more stable training.

To summarize, our main contributions are as follows:

• We propose the policy-finding problem, where the policy alignment term is added as a
constraint. By solving this problem, we provide insights into why and when IQL can use
weighted regression for policy extraction, and in turn, make it better to understand the
bottlenecks of the IQL-style algorithms.

• We demonstrate that there is no price to achieving policy alignment in IQL-style methods,
all we need is to modify the importance weights of the extracted policy. These results can
be generalized to any generalized value loss function, which greatly extends the theoretical
results of IDQL.

• We introduce two IQL-style algorithms: AlignIQL-hard and AlignIQL. AlignIQL-hard can
theoretically achieve a globally optimal solution. AlignIQL obtains SOTA performance on
D4RL AntMaze tasks and show robustness on sparse reward tasks.

2 RELATED WORK

Offline RL. Offline RL algorithms need to avoid OOD actions. Previous methods to mitigate this
issue under the model-free offline RL setting generally fall into three categories: 1) value function-
based approaches, which implement pessimistic value estimation by assigning low values to out-of-
distribution actions (Kumar et al., 2020; Fujimoto et al., 2019), or implicit TD backups (Kostrikov
et al., 2021b; Ma et al., 2021) to avoid the use of out-of-distribution actions 2) sequential modeling
approaches, which casts offline RL as a sequence generation task with return guidance (Chen et al.,
2021; Janner et al., 2022; Liang et al., 2023; Ajay et al., 2022), and 3) constrained policy search (CPS)
approaches, which regularizes the discrepancy between the learned policy and behavior policy (Peters
et al., 2010; Peng et al., 2019; Nair et al., 2020).

Implicit Q-learning. Recently, implicit Q-learning (Kostrikov et al., 2021b) has attracted interest
due to its stable training and simplicity. Many offline RL methods (Chen et al., 2023; Zheng
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et al., 2023; Hansen-Estruch et al., 2023) use IQL-style expectile regression to learn Q-function and
realize the advantage of decoupling the training of actor and critic. While IQL achieves superior
performance, several issues remain unsolved. SQL (Xu et al., 2023) reinterprets IQL in the Implicit
Value Regularization (IVR) framework and provides insights about why in practice a large τ may
give a worse result in IQL. However, there is another important open question about IQL, that is,
what policy the learned value function is evaluating. IDQL (Hansen-Estruch et al., 2023) solves this
by reinterpreting the IQL as an actor-critic method and getting the corresponding implicit policy for
the (generalized) IQL loss function. However, the corresponding implicit policy in IDQL only holds
for optimal value function under certain critic loss functions.

The closest work to ours is IDQL (Hansen-Estruch et al., 2023), which derives the implicit policy for
optimal value function under different critic loss functions. Our method is related, but features with
AlignIQL can be applied to arbitrary sub-optimal value functions and arbitrary critic loss functions.
More importantly, our method explains when and why IQL can use AWR for policy extraction while
providing theoretical insights for IQL and other RL paradigms that use Q-values to guide sampling.

3 BACKGROUND

Offline RL. Consider a Markov decision process (MDP): M = {S,A, P,R, γ, d0}, with state
space S, action space A, environment dynamics P(s′|s,a) : S × S × A → [0, 1], reward func-
tion R : S × A → R, discount factor γ ∈ [0, 1), policy π(a|s) : S × A → [0, 1], and ini-
tial state distribution d0. The action-value or Q-value of policy π is defined as Qπ(st,at) =

Eat+1,at+2,...∼π

[∑∞
j=0 γ

jr(st+j ,at+j)
]
. The goal of RL is to get a policy to maximize the cu-

mulative discounted reward J(ϕ) =
∫
S d0(s)Q

π(s,a)ds. dπ(s) =
∑∞
t=0 γ

tpπ(st = s) is the
state visitation distribution induced by policy π (Sutton & Barto, 2018; Peng et al., 2019), and
pπ(st = s) is the likelihood of the policy being in state s after following π for t timesteps. In
offline setting (Fujimoto et al., 2019), environmental interaction is not allowed, and a static dataset
D ≜ {(S,A, R,S ′, done)} is used to learn a policy.

Advantage Weighted Regression (AWR). Prior works (Peters et al., 2010; Peng et al., 2019)
formulate offline RL as a constrained policy search (CPS) problem with the following form:

π∗ = argmax
π

J(π) = argmax
π

∫
S
d0(s)

∫
A
π(a|s)Qπ(s,a)dads

s.t. DKL(µ(·|s)∥π(·|s)) ≤ ϵ, ∀s (1)∫
a

π(a|s)da = 1, ∀s,

Previous works (Peters et al., 2010; Peng et al., 2019; Nair et al., 2020) solve Equation 1 through
KKT conditions and get the optimal policy π∗ as:

π∗(a|s) = 1

Z(s)
µ(a|s) exp (αQθ(s,a)) , (2)

where Z(s) is the partition function, α ≥ 0 is a Lagrange multiplier, and Qθ is a learned Q-function
of the current policy π. Intuitively we can use Equation 2 to optimize policy π. However, the
behavior policy may be very diverse and hard to model. To avoid modeling the behavior policy, prior
works (Peng et al., 2019; Wang et al., 2020; Chen et al., 2020) optimize π∗ through a parameterized
policy πϕ, known as AWR:

arg min
ϕ

Es∼Dµ [DKL (π
∗(·|s)||πϕ(·|s))] (3)

=arg max
ϕ

E(s,a)∼Dµ

[
1

Z(s)
log πϕ(a|s) exp (αQθ(s,a))

]
.

where exp(αQθ(s,a)) being the regression weights.

Implicit Q-learning (IQL). To avoid OOD actions in offline RL, IQL (Kostrikov et al., 2021a) uses
the state conditional upper expectile of action-value function Q(s,a) to estimate the value function
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V (s), which avoid directly querying a Q-function with unseen action. For a parameterized critic
Qθ(s,a), target critic Qθ̂(s,a), and value network Vψ(s) the value objective is learned by

LV (ψ) = E(s,a) ∼D[L
τ
2(Qθ̂(s,a)− Vψ(s))]

where Lτ2(u) = |τ − 1(u < 0)|u2,
(4)

where 1 is the indicator function. Then, the Q-function is learned by minimizing the MSE loss

LQ(θ) = E(s,a,s′) ∼D[(r(s,a) + γVψ(s
′)−Qθ(s,a))2]. (5)

Note that, in IQL, the policy is not explicitly represented, it is implicit in the learned value function.
For policy extraction, IQL uses Equation 3 in AWR (Peters et al., 2010; Peng et al., 2019; Nair et al.,
2020), which trains the policy through weighted regression by minimizing

Lπ(ϕ) = E(s,a)∼D[− exp(α(Qθ̂(s,a)− Vψ(s))) log πϕ(a|s)]. (6)

However, it is still unclear whether AWR can be used to extract policies for IQL. Answering this
question can help us better understand the bottlenecks of IQL-style methods.

4 IMPLICIT POLICY-FINDING PROBLEM

Before drawing our method, we first introduce the form of the Implicit Policy-finding Problem.
Firstly, we introduce Definition 4.1, which defines what a policy implied by a value function is (i.e.
Policy alignment) .

Definition 4.1. We refer to a policy as one implied by the value function Q(s,a), V (s), when

Q(s,a)− r(s,a)− γEs′∼p(s′|s,a),a′∼π(a′|s′) [Q(s′,a′)] = 0. (7)

Ea∼π(a|s) [Q(s,a)] = V (s), (8)

Definition 4.1 is derived from IDQL (Hansen-Estruch et al., 2023) and the conventional definition
of the value function in actor-critic methods. Note that in IQL, the Q-function is updated by
minimizing Equation 5, which implies if we can ensure Equation 8, Equation 7 can be derived by
substituting Equation 8 back in Equation 5. So in the following sections, we eliminate Equation 7
and use Equation 8 as policy alignment constraint.

It is known that the offline RL problem can be solved by constrained policy search (CPS) problem
(aka AWR) (Nair et al., 2020; Peng et al., 2019; Peters et al., 2010), where a policy is sought to
maximize cumulative rewards under the constraint of policy divergence from the behavior policy.
Inspired by CPS, we formulate the implicit policy-finding problem (IPF) as a constrained optimization
problem, where a policy is sought to minimize policy divergence from the behavior policy under
policy alignment

min
π

Es∼dπ(s),a∼π(a|s)

[
f

(
π(a|s)
µ(a|s)

)]
s.t. π(a|s) ≥ 0, ∀s,∀a∫

a

π(a|s)da = 1, ∀s

Ea∼π(a|s) [Q(s,a)]− V (s) = 0, ∀s,

(IPF)

where V (s), Q(s,a) is the learned value function, which does not have to be the optimal value
function. f(·) is a regularization function which aims to avoid out-of-distribution actions. The third
constraint ensures that the extracted policy is the policy implied in Q,V .

Here we briefly describe the characteristics of the solution to problem IPF. In problem IPF, when
the feasible set includes multiple policies (i.e. multiple implicit policies satisfy Definition 4.1),
problem IPF aims to find an optimal implicit policy that deviates least from the behavior policy while
satisfying the requirements of policy alignment. In other cases, when the feasible set has a unique
policy, problem IPF will return the unique policy as the optimal implicit policy. The above analysis
shows that we can model the implicit policy-finding problem in IQL as problem IPF.
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Assumption 4.2. Assume π(a|s) > 0 =⇒ µ(a|s) > 0 so that π(a|s)µ(a|s) is well-defined. (Xu et al.,
2023)
Assumption 4.3. Assume that f(x) is differentiable on (0,∞) and that hf (x) = xf(x) is strictly
convex and f(1) = 0. (Xu et al., 2023)
Remark 4.4. Under the above assumptions, problem IPF is a convex optimization problem and
assumption 4.3 makes the regularization term positive due to Jensen’s inequality as Eµ[πµf(

π
µ )] ≥

1, f(1) = 0 (Xu et al., 2023). Slater’s conditions hold since the first and second constraints define
a probability simplex, and the third constraint defines a hyperplane in the tabular setting. The
intersection of these convex sets is nonempty if the optimal policy exists, i.e. the optimal policy is
not a uniform distribution. The analysis described above shows that this convex optimization problem
is feasible and Slater’s conditions are satisfied.

5 OPTIMIZATION

In this section, we introduce two methods AlignIQL-hard and AlignIQL for solving problem IPF.
Theoretically, AlignIQL-hard is more rigorous as it strictly ensures policy alignment and provides
insights into why IQL can use AWR for policy extraction, but it suffers from complex training.
AlignIQL avoids the training complexity of AlignIQL-hard while also guaranteeing local convergence
to the optimal solution of problem IPF through soft constraints. All proof can be found in Appendix A.

5.1 ALIGNIQL-HARD

We first consider directly solving IPF with KKT conditions (See proof in Appendix A.1) and get the
following theorems.
Theorem 5.1. For problem IPF, the optimal policy π∗ and its optimal Lagrange multipliers satisfy
the following optimality condition for all states and actions:

π⋆(a|s) = µ(a|s)max {gf (−α∗(s)− β∗(s)Q(s,a)) , 0} . (9)

Ea∼µ [max {gf (−α∗(s)− β∗(s)Q(s,a)), 0}] = 1, (10)
Ea∼µ(a|s) [Q(s,a)max {gf (−α∗(s)− β∗(s)Q(s,a)), 0} − V (s)] = 0, (11)

where α∗, β∗ is the Lagrange multiplier, gf is the inverse function of h′f (x).

We can also follow Peters et al. (2010); Peng et al. (2019); Nair et al. (2020) to train our policy πϕ
through

arg min
ϕ

Es∼Dµ [DKL (π
∗(·|s)||πϕ(·|s))]

≈ arg min
ϕ

Lπ(ϕ) = E(s,a)∼D [−max {gf (−α∗(s)− β∗(s)Q(s,a)) , 0} log πϕ(a|s)] .
(12)

However, loss function Equation 12 needs the exact policy density, which may limit the usage of
diffusion models or other generative models.
Remark 5.2. Note that α∗ is a normalization term, it does not affect the action generated by the policy.
Let f(x) = log x, then gf (x) = exp (x− 1)) > 0, we can get π∗(a|s) ∝ µ(a|s) exp (−β∗Q(s,a))
In most environments (especially MuJoCo tasks), β∗ we learned through the neural network is
negative. Because only the positive and negative of β∗ affect the action generated by the policy,
we can approximate −β∗ with a fixed β ∈ (0,∞], i.e. π∗(a|s) ∝ µ(a|s) exp (βQ(s,a)), which
is exactly what optimal policy obtained by AWR. This explains why IQL can learn implicit policy
with weighted regression and shows implicit policy further avoids the OOD actions through the
regularization function f , which gives a deeper understanding of how IQL-style methods handle the
distribution shift. This also addresses the issue in IDQL, that is, they find that simply taking the
action with the highest Q-value usually yields better performance at evaluation time.

Previous works (Hansen-Estruch et al., 2023; Chen et al., 2022) often use the increasing function
of Q(s,a) as a weight. However, according to Theorem 5.1, when β∗(s) ≥ 0, we need to be more
conservative, that is, we should choose actions with lower Q(s,a). To calculate the weights, we need
to solve the closed-form solution of Equation 10, Equation 11, which is usually intractable. However,
we can use the parameterized neural network to approximate it.

5
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Lemma 5.3. Following EQL (Xu et al., 2023), let f(x) = log x, then gf (x) = exp (x− 1)) > 0.
We can approximate α∗(s), β∗(s) through neural network with the following loss function:

max
α,β
LM = −Ea∼µ [exp (−α(s)− β(s)Q(s,a)− 1)]− α(s)− β(s)V (s), (13)

Proof. Then Lemma 5.3 can be get through setting the gradient of Equation 13 to 0 with respect to
α, β, which is Equation 10, Equation 11 respectively.

Remark 5.4. Now we can obtain α∗, β∗ by iteratively updating α, β following Equation 13.

Based on Theorem 5.1 and Lemma 5.3, we can get AlignIQL-hard, where hard means we rigidly
constrain the policy to satisfy policy alignment. AlignIQL-hard shows when multiplier β(s) < 0,
we can use AWR for extracting the implicit policy in IQL. However, for strict policy alignment,
AlignIQL-hard needs to train an additional two multiplier networks, which increases the training costs
and compound errors. Moreover, the exponential term in Equation 13 makes the unstable training. In
the remainder of this section, we introduce a more simple and effective method AlignIQL to solve
problem IPF.

5.2 ALIGNIQL

In this section, we introduce AlignIQL to solve the alignment problem of IQL. Firstly, we introduce
the soft constraint form of problem IPF. Given η > 0 , IPF-Soft is defined as

min
π,V (s)

Es∼dπ(s),a∼π(a|s)

[
f

(
π(a|s)
µ(a|s)

)
+ η (Q(s,a)− V (s))

2

]
s.t. π(a|s) ≥ 0, ∀s,∀a∫

a

π(a|s)da = 1, ∀s.

(IPF-Soft)

Remark 5.5. Note that we relax problem IPF by adding penalty term Ea∼π(a|s)[η (Q(s,a)− V (s))
2
]

rather than η(Ea∼π(a|s)[Q(s,a)] − V (s))2. The latter relaxation formulation is equivalent to the
quadratic penalty method, whose convergence relies on the penalty parameter η approaching positive
infinity which leads to an ill-conditioned Hessian matrix for the quadratic penalty function (No-
cedal & Wright, 1999). Our penalty term can avoid this issue since the optimal solution of
Ea∼π(a|s)[η (Q(s,a)− V (s))

2
] satisfies Equation 8 (setting the gradient to 0 with respect to V ),

which shows that our penalty term can implicitly recover policy alignment constraint Equation 8.

We refer to the above problem as problem IPF-Soft, since the policy alignment is not rigidly held.
Then we solve problem IPF-Soft by KKT conditions (See proof in Appendix A.2) and get the optimal
policy:

π⋆(a|s) = µ(a|s)max
{
gf

(
−α(s)− η (Q(s,a)− V (s))

2
)
, 0
}
. (14)

Theorem 5.6. Suppose that f(x) = log x, then the optimal policy of problem IPF-Soft satisfies

π⋆(a|s) ∝ µ(a|s) exp
{
−η (Q(s,a)− V (s))

2
}
. (15)

If the exact policy density is known, we can also follow Peters et al. (2010); Peng et al. (2019); Nair
et al. (2020) to train our policy πϕ through

arg min
ϕ

Es∼Dµ [DKL (π
∗(·|s)||πϕ(·|s))]

≈ arg min
ϕ

Lπ(ϕ) = E(s,a)∼D

[
− exp

(
−η (Q(s,a)− V (s))

2
)
log πϕ(a|s)

]
.

(16)

Compared to AWR: For η > 0, Equation 15 prefers actions that minimize (Q(s,a)− V (s))2. This
is different from AWR, which prefers actions with higher Q(s,a). The reason behind this difference
is that AlignIQL aims to balance between behavior cloning and policy alignment, whereas AWR
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aims to balance between behavior cloning and critic exploitation. In fact, η can also be interpreted as
implicit critic exploitation. In IQL, V (s) is trained to approximate argmaxa∼D Q(s,a). A higher
η increases the probability assigned to actions where Q(s,a) ≈ V (s), which can be viewed as an
implicit policy improvement, as V (s) = argmaxa∼D Q(s,a) in IQL.

Finally, we show the connection between the solution of problem IPF and problem IPF-Soft through
the following Proposition 5.7.

Proposition 5.7. Suppose that π∗(a|s) is a global solution to the convex optimization problem IPF,
with its corresponding value function (denoted as V ∗(s)). Then there exists a η such that π∗, V ∗(s)
is a local minimizer of problem IPF-Soft. (See proof in Appendix A.3.)

Remark 5.8. Proposition 5.7 indicates that we can obtain the solution to problem IPF by solving
problem Equation IPF-Soft. Because KKT conditions are the first-order necessary for a solution
in nonlinear programming to be optimal, the solution to problem IPF can be written in the form of
Equation 15. This implies that if we train Q(s,a) and V (s) using IQL and η satisfies Proposition 5.7,
we can extract the implicit policy from the value function using Equation 15. Actually, for IQL, the
expectile loss Equation 4 approximates the maximum ofQθ̂(s,a) when τ ≈ 1. We can approximately
think V (s) = argmaxa∼D Q(s,a), and thus, according to Equation 15, â = argmaxaQ(s,a)
has a weight of 1, while other actions are weighted by exp

{
−η(Q(s,a)− V (s))2

}
. For a fixed

η, the weights for other actions are smaller than argmaxa∼D Q(s,a). Therefore, Equation 15
approximately recovers the implicit policy π∗(a|s) = argmaxa∼D Q

∗(s,a) from IQL learned
value functions.

Two ways to use AlignIQL or AlignIQL-hard: There are two ways to utilize our methods in offline
RL (corresponding to Algorithm 3 and Algorithm 1).

• Energy-based implementation: We first use the learned diffusion-based behavior model
µϕ(a|s) to generate N action samples. These actions are then evaluated using weights
from Equation 15 or Equation 9 (Algorithm 3). In this setting, the hyperparameter N has a
greater influence on performance than η, as a higher N is more likely to find the “lucky”
action that satisfies â = argmaxaQ(s,a).

• Policy-based implementation: We use Equation 16 or Equation 12 to train the policy,
which needs the exact probability density of the current policy (Algorithm 1).

In summary, the first method can be used when employing diffusion-based policies, as the probability
density of diffusion models is unknown. The second method is applicable when using Gaussian-based
policies. Note that in both AlignIQL-hard and AlignIQL, we do not impose a limit on the loss
function of the Q− V , which means that our conclusion can be generalized to the arbitrary critic loss
function and the arbitrary sub-optimal value function. To summarize, both the AlignIQL-hard and
AlignIQL are "IQL-style" algorithms, which means the training of actor and critic are decoupled and
the critic is learned by expectile regression. The difference between AlignIQL-hard and AlignIQL
lies in the calculation of weights and the necessity of training multiplier networks. We summarize
the procedure of AlignIQL-hard and AlignIQL in Algorithm 2 and Algorithm 3. (Suppose that
f(x) = log x.)

6 EXPERIMENTS

In this section, we conduct extensive experiments and specifically answer the following questions

• Q1: Can AlignIQL match the performance with other SOTA offline RL baselines?

• Q2: What are the benefits of using weights from AlignIQL?

• Q3: Both IDQL and AlignIQL derive the weights needed for policy extraction. Are our
weights better than IDQL?

6.1 RESULTS ON D4RL TASKS (Q1)

We conduct extensive experiments on D4RL datasets (Fu et al., 2020) to verify the performance of
AlignIQL.
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Baselines: For the selection of baselines, we select Conservative Q-learning (CQL) (Kumar et al.,
2020), DiffusionQL (Wang et al., 2022), Implicit-Q Learning (IQL) (Kostrikov et al., 2021a), SQL (Xu
et al., 2023), SfBC (Chen et al., 2022), which first trains a diffusion-based policy and then selects
actions based on the Q value, similar to AWR, because of their strong performance in the offline RL
setting. We also select the DD (Ajay et al., 2022) and Diffuser (Janner et al., 2022) as baselines since
they represent sequential-modeling-based RL algorithms.

Aggregated results can be found in Table 1 and Table 2. In MuJoCo tasks, where the performance
is already saturated, therefore we use the policy-based implementation of AlignIQL (abbreviated
AlignIQL) for faster training. Additionally, we noticed that energy-based implementation shows
slightly worse results than other methods.(Table 4) This may be due to the saturated performance in
MuJoCo tasks, where the impact of policy alignment is less pronounced, and the objective function
in Equation IPF restricts exploration.

In more challenging AntMaze tasks, we use the energy-based implementation of AlignIQL (abbre-
viated D-AlignIQL). D-AlignIQL outperforms other methods by a large margin in Antmaze tasks
Table 2. More importantly, we find that D-AlignIQL benefits from larger values of N , whereas larger
N often leads to performance degradation in other diffusion-based methods such as IDQL. We will
elaborate on this in the following sections.

Table 1: The performance of our method and other SOTA baselines on MuJoCo tasks. We use the
policy-based implementation of AlignIQL. The best result is highlighted in SkyBlue. We report the
score of AlignIQL by choosing the best scores from η ∈ {0.5, 1, 5, 10} over 3 random seeds.

Dataset Environment CQL Diffusion-QL SfBC SQL DD Diffuser IDQL IQL AlignIQL (ours)

Medium-Expert HalfCheetah 62.4 96.8 92.6 94.0 90.6 79.8 89.2 86.7 84.6±0.36

Medium-Expert Hopper 98.7 111.1 108.6 111.8 111.8 107.2 108.2 91.5 97.7±3.9

Medium-Expert Walker2d 111.0 110.1 109.8 110.0 108.8 108.4 111.7 109.6 110.5±0.03

Medium HalfCheetah 44.4 51.1 45.9 48.3 49.1 44.2 46.0 47.4 42.7±0.02

Medium Hopper 58.0 90.5 57.1 75.5 79.3 58.5 56.3 66.3 69.1±0.4

Medium Walker2d 79.2 87.0 77.9 84.2 82.5 79.7 77.6 78.3 83.2±0.1

Medium-Replay HalfCheetah 46.2 47.8 37.1 44.8 39.3 42.2 41.1 44.2 45.1±0.01

Medium-Replay Hopper 48.6 101.3 86.2 99.7 100.0 96.8 86.2 94.7 91.1±4.4

Medium-Replay Walker2d 26.7 95.5 65.1 81.2 75.0 61.2 85.1 73.9 82.2±8.8

Average (Locomotion) 63.9 87.9 75.6 83.3 81.8 75.3 78.0 76.9 78.5

# Diffusion steps - 5 15 − 100 100 5 - −

Table 2: The performance of our method and other SOTA baselines on AntMaze tasks. We report the
performance of baseline methods using the best results reported from their papers except for IDQL.
We rerun the official code of IDQL and report the results on the same hardware (RTX 4090 with
24GB memory) for a fair comparison. We report the best result of D-AlignIQL and IDQL by taking
the average of the last evaluation over 10 seeds. The best result is highlighted in SkyBlue. "D-"
means diffusion-based implementation.

Dataset Environment CQL Diffusion-QL SfBC SQL DD Diffuser IDQL IQL D-AlignIQL (ours)

Default AntMaze-umaze 74.0 93.4 92.0 92.2 - - 93.4 87.5 94.8 ±3.2

Diverse AntMaze-umaze 84.0 66.2 85.3 74.0 - - 75.2 62.2 82.4±4.4

Play AntMaze-medium 61.2 76.6 81.3 80.2 - - 85 71.2 87.5 ±2.5

Diverse AntMaze-medium 53.7 78.6 82.0 79.1 - - 74.4 70.0 85.0 ±5.0

Play AntMaze-large 15.8 46.4 59.3 53.2 - - 60.0 39.6 65.2 ±9.6

Diverse AntMaze-large 14.9 57.3 45.5 52.3 - - 58.4 47.5 66.4 ±9.7

Average (AntMaze) 50.6 69.8 74.2 71.8 - - 74.4 63.0 80.2

# Diffusion steps - 5 15 − 100 100 5 - 5

6.2 COMPARISON WITH DIFFUSION+AWR (Q2)
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In this section, we conduct a detailed comparison of the impact of the policy alignment. We first
train a diffusion-based behavior policy, then we sample N actions from the diffusion-based behavior
policy and select the action with maximum Q(s,a), where the value function is learned by IQL.

We choose the AntMaze tasks since challenging tasks can better show the effect of alignment. In
the experiment shown in Figure 1, we use a diffusion-based behavior policy and guarantee that
all the hyperparameters and network structures are identical except for parameters used for policy
extraction. Figure 1 shows that under the same N ( where N represents the samples per state),
The correctly aligned policy (D-AlignIQL in Figure 1) converges faster and does not experience a
significant performance drop at higher N = 256. Generally, the greedy selection of actions based on
Q-values (Brandfonbrener et al., 2021; Haarnoja et al., 2018b), which usually yields better results, but
performs poorly here. This is due to AWR-based weights assigning high values to out-of-distribution
actions potentially generated by the behavior policy. In MuJoCo tasks, due to the relative simplicity
of the tasks, the Q-function can achieve good generalization performance through training, so this
issue is not pronounced. Above all, the results in Figure 1 show the benefits of policy alignment and
demonstrate the correctness of our theory through the performance difference between D-AlignIQL
and AWR .

6.3 COMPARISON WITH IDQL (Q2,Q3)

Since both IDQL and D-AlignIQL provide weights under policy alignment, in this part we evaluate
which weights are better through D4RL AntMaze tasks and ablation study on N . In this section’s
experiments, IDQL and D-AlignIQL use expectile regression to learn the critic network. The details
of weight used by IDQL can be found in Appendix D. We use expectile regression to train the critic
network since the expectile objective is used in IQL. Of course, our D-AlignIQL framework can also
be extended to other generalized critic loss functions mentioned in IDQL.
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Figure 1: Performance of D-AlignIQL and AWR (Diffusion-based implementation) on AntMaze
tasks across different training steps. The horizontal axis represents time (s) on a logarithmic scale.
Results are averaged over 10 random seeds.

Ablation Study. Since the main limitation of diffusion-based methods is the running speed, we
compare the performance of IDQL and D-AlignIQL at different training times in Figure 2. Figure 2
shows that as training time increases, the performance of AlignIQL improves with increasing N ,
whereas IDQL does not exhibit a similar trend. This phenomenon demonstrates the robustness of
our method, as we expect that, for a robust method, the performance with different values of N
should not degrade. We also observe that D-AlignIQL converges faster than IDQL. In Appendix F.2,
we also compare the D-AlignIQL with other methods in terms of running time and show that the
training time of D-AlignIQL can be significantly reduced through acceleration methods (Kang et al.,
2024; Lu et al., 2022). In Appendix H, we also compare the effect of different regularizers function
f(x). Overall, compared to IDQL, the weights computed by our method not only have better
theoretical properties (applicable to any Q-loss, without requiring optimal V ) but also perform better
in practice. We also compare D-AlignIQL-hard (Diffusion-based AlignIQL-hard) and D-AlignIQL in
Appendix F.1.

We also present the quantitative scores of D-AlignIQL and IDQL on AntMaze tasks (Figure 2) to
highlight the superiority of D-AlignIQL.
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Figure 2: Performance of D-AlignIQL and IDQL on AntMaze tasks with different training steps. The
different sizes, from smallest to largest, represent N = 16, N = 64, N = 256, respectively.

Table 3: Quantitative Results of D-AlignIQL and IDQL on AntMaze Large tasks.

IDQL D-AlignIQL
D4RL Tasks N = 16 N = 64 N = 256 N = 16 N = 64 N = 256

AntMaze 72.0 66.5 58.8 65.8 70.2 70.7

As shown in Table 3, the performance of D-AlignIQL improves with increasing N , whereas IDQL
does not exhibit such a trend. This is because our method selects actions to minimize (Q − V )2,
and when V approaches the optimal value V ∗(s) = maxa∼D Q(s,a), D-AlignIQL equals to select
a = argmaxa∼D Q(s,a). Compared to other weights, such as AWR, which directly selects actions
based on Q-values, D-AlignIQL is more robust to variations in N . This robustness arises because
out-of-distribution (OOD) actions generated by the policy network (e.g., using a diffusion model) are
unlikely to exactly match V (s) but may still exhibit higher Q(s,a). (Fujimoto et al., 2018). This
explains why our method benefits from larger N .

7 DISCUSSION

Discussion. In our work, we define the implicit policy-finding problem in IQL and propose two
practical algorithms AlignIQL-hard and AlignIQL to solve it. The optimal policy (Theorem 5.1) in
AlignIQL-hard shows that it is feasible to extract policy with AWR in certain cases, which builds the
bridge between the Implicit Q-learning and Weighted Regression. Our theoretical findings also extend
the policy alignment of IDQL to arbitrary critic loss and value functions. Besides the theoretical
findings, we also verify the effectiveness of our algorithm on D4RL datasets. Experimental results
show that compared to other IQL-style algorithms, our algorithm achieves SOTA performance and
is more stable, especially in sparse reward tasks. One future work is to explore better methods
for training multiplier networks and explore the impact of different regularization functions of
problem IPF. Another future work is to extend our approach to fields of safe RL and offline-to-online
(O2O) learning. In safe RL, prior works (Zheng et al., 2023; Cao et al., 2024) have used IQL to learn
the Q-function. Investigating how to ensure policy alignment while satisfying safety constraints is an
interesting research direction.
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A PROOF

A.1 PROOF OF THEOREM 5.1

Proof. The Lagrange function of Equation IPF is written as follows

L(π, α(s), β(s), λ) = Es∼dπ(s),a∼π(a|s)

[
f(
π(a|s)
µ(a|s)

)

]
− Es∼dπ(s),a∼π(a|s) [λ(a|s)π(a|s)]

+ Es∼dπ(s)

[
α(s)

(∫
a

π(a|s)da− 1

)]
+

Es∼dπ(s)
[
β(s)

(
Ea∼π(a|s) [Q(s,a)]− V (s)

)]
,

(17)

where dπ(s) represents the state distribution induced by policy π, α(s), β(s), and λ are Lagrangian
multipliers for the equality and inequality constraints respectively.

Let hf (x) = xf(x). Then for all states and actions, the KKT conditions can be written as follows

π(a|s) ≥ 0 (18)∫
a

π(a|s)da = 1 (19)

Ea∼π(a|s) [Q(s,a)− V (s)] = 0 (20)

λ(a|s) ≥ 0 (21)
λ(a|s)π(a|s) = 0 (22)

h′f (
π(a|s)
µ(a|s)

) + α(s) + β(s)Q(s,a)− λ(a|s) = 0 (23)

We eliminate dπ(s) due to irreducible Markov chain assumption. Note that in our derivation, we
assume that V (s) and Q(s,a) are known.

Since h′f is a strictly increasing function, its inverse function exists and is also a strictly increasing
function. Let gf = (h′f )

−1(x) be its inverse function. From Equation 23, we can get

π(a|s) = µ(a|s)gf (λ(a|s)− α(s)− β(s)Q(s,a)) (24)

Given a state s, we can get λ(a|s) = h′f (
π
µ ) + α(s) + β(s)Q(s,a) from Equation 23, then

(a) If λ(a|s) = h′f (
π
µ ) + α(s) + β(s)Q(s,a) > 0, then π(a|s) is zero due to complementary

slackness. Note that π(a|s) = 0, thus h′f (0) + α(s) + β(s)Q(s,a) > 0 and we can get
gf (−α(s)− β(s)Q(s,a)) < gf (h

′
f (0)) = 0.

(b) If λ(a|s) = 0, then h′f (
π
µ ) + α(s) + β(s)Q(s,a) is zero and π(a|s) =

µ(a|s)gf (−α(s)− β(s)Q(s,a)) ≥ 0. Note that π(a|s) ≥ 0, thus h′f (0) + α(s) +

β(s)Q(s,a) ≤ 0 and we can get gf (−α(s)− β(s)Q(s,a)) ≥ gf (h′f (0)) = 0.

Through analysis (a) and (b), we can resolve optimal policy π∗(a|s) as

π⋆(a|s) = µ(a|s)max {gf (−α(s)− β(s)Q(s,a)) , 0} . (25)

Substituting back in Equation 19 and Equation 20 with Equation 9, we can get

Ea∼µ [max {gf (−α∗(s)− β∗(s)Q(s,a)), 0}] = 1, (26)

Ea∼µ(a|s) [Q(s,a)max {gf (−α∗(s)− β∗(s)Q(s,a)), 0} − V (s)] = 0, (27)
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A.2 PROOF OF THEOREM 5.6

Proof. The Lagrange function of Equation IPF-Soft is written as follows

L(π, V, α(s), β(s), λ) = Es∼dπ(s),a∼π(a|s)

[
f(
π(a|s)
µ(a|s)

) + η (Q(s,a)− V (s))
2

]
− Es∼dπ(s),a∼π(a|s) [λ(a|s)π(a|s)]

+ Es∼dπ(s)

[
α(s)

(∫
a

π(a|s)da− 1

)]
.

(28)

Let hf (x) = xf(x). Then for all states and actions, the KKT conditions can be written as follows

π(a|s) ≥ 0 (29)∫
a

π(a|s)da = 1 (30)

Ea∼π(a|s) [Q(s,a)− V (s)] = 0 (31)

λ(a|s) ≥ 0 (32)
λ(a|s)π(a|s) = 0 (33)

h′f (
π(a|s)
µ(a|s)

) + α(s) + η (Q(s,a)− V (s))
2 − λ(a|s) = 0 (34)

Since h′f is a strictly increasing function, its inverse function exists and is also a strictly increasing
function. Let gf = (h′f )

−1(x) be its inverse function. From Equation 34, we can get

π(a|s) = µ(a|s)gf
(
λ(a|s)− α(s)− η (Q(s,a)− V (s))

2
)

(35)

Given a state s, we can get λ(a|s) = h′f (
π
µ ) + α(s) + η (Q(s,a)− V (s))

2 from Equation 34, then

(a) If λ(a|s) = h′f (
π
µ ) +α(s) + η (Q(s,a)− V (s))

2
> 0, then π(a|s) is zero due to comple-

mentary slackness. Note that π(a|s) = 0, thus h′f (0) + α(s) + η (Q(s,a)− V (s))
2
> 0

and we can get gf (−α(s)− η (Q(s,a)− V (s))
2
) < gf (h

′
f (0)) = 0.

(b) If λ(a|s) = 0, then h′f (
π
µ ) + α(s) + η (Q(s,a)− V (s))

2 is zero and π(a|s) =

µ(a|s)gf
(
−α(s)− η (Q(s,a)− V (s))

2
)
≥ 0. Note that π(a|s) ≥ 0, thus h′f (0) +

α(s) + η (Q(s,a)− V (s))
2 ≤ 0 and we can get gf (−α(s) − η (Q(s,a)− V (s))

2
) ≥

gf (h
′
f (0)) = 0.

Through analysis (a) and (b), we can resolve optimal policy π∗(a|s) as

π⋆(a|s) = µ(a|s)max
{
gf

(
−α(s)− η (Q(s,a)− V (s))

2
)
, 0
}
. (36)

let f(x) = log x, then gf (x) = exp (x− 1)) > 0. Substituting back in Equation 36 with gf (x) =
exp (x− 1)), we can get Equation 15.

A.3 PROOF OF PROPOSITION 5.7

Proof. The proof of Proposition 5.7 is based on finding a minimum for the Problem IPF-Soft in a
region, and then let the value of Problem IPF-Soft at π∗, V ∗ less than the minimum of Problem IPF-
Soft in this region to determine the value of η. Let U =

{
π(a|s)|π(a|s) ≥ 0,

∫
a
π(a|s)da = 1

}
.

Since infx,y g(x, y) = infx infy g(x, y) and the constraints about π and V in Problem IPF-Soft are

15
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independent, we can reformulate Problem IPF-Soft as

min
π,V

s.t.π∈U

Es∼dπ(s),a∼π(a|s)

[
f

(
π(a|s)
µ(a|s)

)
+ η (Q(s,a)− V (s))

2

]

= min
π

s.t.π∈U
min
V

Es∼dπ(s),a∼π(a|s)

[
f

(
π(a|s)
µ(a|s)

)
+ η (Q(s,a)− V (s))

2

]
.

(37)

For V , this is an unconstrained problem. Setting the gradient with respect to V to 0 (η > 0), we
obtain that

V (s) = Ea∼π(a|s) [Q(s,a)] . (38)

Substituting back in Equation 37, we can get

min
π

s.t.π∈U
min
V

Es∼dπ(s),a∼π(a|s)

[
f

(
π(a|s)
µ(a|s)

)
+ η (Q(s,a)− V (s))

2

]
= min

π
s.t.π∈V

Es∼dπ(s),a∼π(a|s)

[
f

(
π(a|s)
µ(a|s)

)
+ η (Q(s,a)− V (s))

2

]
,

(39)

where V =
{
π(a|s)|π(a|s) ∈ U , V (s) = Ea∼π(a|s) [Q(s,a)]

}
. Note that V is the feasible set of

Problem IPF and the left-hand side of Equation 39 is exactly Problem IPF.

Let T =
{
π|π ∈ V, π ∈ Ů(π∗, σ)

}
, where Ů(π∗, σ) = {π|0 < |π − π∗| < σ, σ > 0}. Note that

T /∈ ∅, since V is a convex set and π∗ ∈ V .

Assume Equation 39 can achieve the minimum in T ; if it cannot, it indicates a minimum at π∗ and
V ∗, and Proposition 5.7 holds. We only need to adjust the value of η to ensure that the value of
Equation 39 at π∗, V ∗ is less than the minimum, thereby proving Proposition 5.7.

k∗ = min
π

s.t.π∈T
E s∼dπ(s)
a∼π(a|s)

[
f

(
π(a|s)
µ(a|s)

)
+ η (Q(s,a)− V (s))

2

]
(40)

Therefore, if the value of Equation 39 at π∗, V ∗ is less than k∗, then π∗, V ∗ is a local minimizer of
Problem IPF-Soft. Let h∗ = E s∼dπ(s)

a∼π∗(a|s)

[
(Q(s,a)− V ∗(s))

2
]
, we can get

p∗ + ηh∗ = k∗. (41)

where p∗ is the global solution of problem IPF. Here, for simplicity, we treat η as a hyperparameter
rather than solving for its exact value. So if η satisfies Equation 41, we can get π∗, V ∗ is a local
minimizer of Problem IPF.

B EXTRA RELATED WORK

Diffusion Model in Offline RL. Due to our method using the diffusion model for modeling behavior
policy, we review works that incorporate the Diffusion model in offline RL. There exist several works
that introduce the diffusion model to RL. Diffuser (Janner et al., 2022) uses the diffusion model
to directly generate trajectory guided with gradient guidance or reward. DiffusionQL (Wang et al.,
2022) uses the diffusion model as an actor and optimizes it through the TD3+BC-style objective with
a coefficient η to balance the two terms. AdaptDiffuser Liang et al. (2023) uses a diffusion model
to generate extra trajectories and a discriminator to select desired data to add to the training set to
enhance the adaptability of the diffusion model. DD (Ajay et al., 2022) uses a conditional diffusion
model to generate trajectory and compose skills. Unlike Diffuser, DD diffuses only states and trains
inverse dynamics to predict actions. QGPO Lu et al. (2023) uses the energy function to guide the
sampling process and proves that the proposed CEP training method can get an unbiased estimation
of the gradient of the energy function under unlimited model capacity and data samples. SfBC (Chen
et al., 2022) first trains a diffusion-based policy and then selects actions based on the Q value, similar
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to AWR.IDQL (Hansen-Estruch et al., 2023) reinterpret IQL as an Actor-Critic method and extract
the policy through sampling from a diffusion-parameterized behavior policy with weights computed
from the IQL-style critic. EDP (Kang et al., 2024) focuses on boosting sampling speed through
approximated actions. SRPO (Chen et al., 2023) uses a Gaussian policy in which the gradient is
regularized by a pretrained diffusion model to recover the IQL-style policy. Our method is distinct
from these methods because we aim to align the implied policy with the value function.

C DIFFUSION MODEL

Diffusion Probabilistic Model (DPM). Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019) are composed of two processes: the forward diffusion process and
the reverse process. In the forward diffusion process, we gradually add Gaussian noise to the data
x0 ∼ q(x0) in T steps. The step sizes are controlled by a variance schedule βi:

q(x1:T |x0) :=
∏T
i=1 q(x

i |xi−1),

q(xi |xi−1) := N (xi;
√
1− βixi−1, βiI).

(42)

In the reverse process, we can recreate the true sample x0 through p(xi−1|xi):

p(x) =

∫
p(x0:T )dx1:T

=

∫
N (xT ;0, I)

T∏
i=1

p(xi−1|xi)dx1:T .

(43)

The training objective is to maximize the ELBO of Eqx0
[log p(x0)]. Following DDPM (Ho et al.,

2020), we use the simplified surrogate loss
Ld(ϕ) = Ei∼[1,T ],ϵ∼N (0,I),x0∼q

[
||ϵ− ϵϕ(xi, i)||2

]
(44)

to approximate the ELBO. After training, sampling from the diffusion model is equivalent to running
the reverse process.

Conditional DPM. There are two kinds of conditioning methods: classifier-guided (Dhariwal &
Nichol, 2021) and classifier-free (Ho & Salimans, 2021). The former requires training a classifier
on noisy data xi and using gradients ∇x log fΦ(y|xi) to guide the diffusion sample toward the
conditioning information y. The latter does not train an independent fΦ but combines a conditional
noise model ϵϕ(xi, i, s) and an unconditional model ϵϕ(xi, i) for the noise. The perturbed noise
wϵϕ(xi, i) + (w + 1)ϵϕ(xi, i, s) is used to later generate samples. However (Pearce et al., 2023)
shows this combination will degrade the policy performance in offline RL. Following (Pearce et al.,
2023; Wang et al., 2022) we solely employ a conditional noise model ϵϕ(xi, i, s) to construct our
noise model (w = 0).

D IMPLICIT DIFFUSION Q-LEARNING (IDQL)

Implicit Diffusion Q-learning (IDQL). To find the implicit policy in the learned value function,
IDQL (Hansen-Estruch et al., 2023) generalizes the value loss in Equation 4 with an arbitrary convex
loss U on the difference Q− V .

V ∗(s) = argmin
V (s)

Ea∼µ(a|s)[U(Q(s,a)− V (s))] = argmin
V (s)

LUV (V (s)). (45)

Under some assumptions about U , IDQL derives the implicit policy in optimal V defined in Equa-
tion 45

w(s,a) =
|U ′(Q(s,a)− V ∗(s))|
|Q(s,a)− V ∗(s)|

, (46)

which yields an expression for the implicit actor as πimp(a|s) ∝ µ(a|s)w(s,a). For expectile loss
f(u) = Lτ2(u) (from Equation 4), the weight of IDQL is

wτ2 (s, a) = |τ − 1(Q(s, a) < V 2
τ (s))|. (47)

E PSEUDOCODE
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Algorithm 2 AlignIQL Training
1: Initialize behavior policy network µϕ, critic net-

works Qθ ,Vψ , and target networks Qθ̂ , multiplier
networks αω(s), βχ(s)

2: for t = 1 to T do
3: Sample from B={(st,at, rt, st+1)}∼D.
4: # Critic updating
5: ψ ← ψ − λ∇ψLV (ψ) (Equation 4)
6: θ ← θ − λ∇θLQ(θ) (Equation 5)
7: if AlignIQL-hard: then
8: # Multiplier network updating
9: ω ← ω + λ∇ωLM (ω)

10: χ← χ+ λ∇χLM (χ)
11: end if
12: ϕ← ϕ− λ∇ϕLµ(ϕ)(Equation 44)
13: # Target Networks updating
14: θ̂ ← (1− η)θ̂ + ηθ
15: end for

Algorithm 3 AlignIQL Policy Extraction
1: Pretraining: Qθ̂ ,Vψ ,µϕ,multiplier networks
αω(s), βχ(s)

2: Samples per state N , η
3: while not done do
4: Get current state s
5: Sample ai ∼ µϕ(a|s), i = 1, . . . , N
6: if AlignIQL-hard: then
7: Compute weight w(s,a) through Equa-

tion 9
8: else
9: Compute weight w(s,a) through Equa-

tion 15
10: end if
11: Normalize: pi = w(s,ai)∑

j w(s,aj)

12: Select ataken with the highest probability ac-
cording to pi

13: end while

Algorithm 1 IQL using AlignIQL
or AWR

Initialize parameters ψ, θ, θ̂, ϕ.
TD learning (IQL):
for each gradient step do
ψ ← ψ − λV∇ψLV (ψ)
θ ← θ − λQ∇θLQ(θ)
θ̂ ← (1− α)θ̂ + αθ

end for
# Policy extraction (AWR or
AlignIQL):
for each gradient step do

# Update policy with Equa-
tion 6 # AWR
Update policy with Equa-
tion 15 # AlignIQL

end for

The pseudocode for AlignIQL and AlignIQL-hard is presented
in Algorithm 2 and Algorithm 3. Note that when we use
AlignIQL, the training process is the same as IQL, to implement
AlignIQL, we only need to change the weight used in IQL to
our AlignIQL’s weight. As shown in Algorithm 1.

F EXPERIMENTAL DETAILS

MuJoCo Experiments: Our Policy-based implementation
is based on CORL (Tarasov et al., 2022), an Offline Re-
inforcement Learning library that provides high-quality and
easy-to-follow single-file implementations of SOTA ORL algo-
rithms. Following AWR, we clip the weight of AlignIQL using
max {0.01,weight}. We sweep η since the alignment of policy
depends on the value of η in different environments.

AntMaze Experiments: Our Energy-based implementation is
based on IDQL (Hansen-Estruch et al., 2023) and jaxrl repo
which uses the JAX framework to implement RL algorithms.
All networks are optimized through the Adam (Kingma & Ba,
2014). We clip the multiplier network gradient to prevent gra-
dient explosion due to the exponential term. For the AntMaze
experiments in Table 1, we fix η = 1 and sweep N while keeping other hyperparameters consistent
with IDQL. We report the best final evaluation average scores of D-AlignIQL and IDQL under
different values of N . We use quantile loss and Equation 47 for IDQL since the expectile objective
is used in IQL. For networks, we follow the default networks and parameters used by IDQL. The
policy network uses an LN_Resnet architecture Hansen-Estruch et al. (2023) (Appendix G) with
hidden size 256 and n = 3. The critic and value networks are 2-layer MLPs with a hidden size of
256 and ReLU activation functions.

Sparse Rewards Tasks: For D-AlignIQL, we use η = 1 > 0 and τ = 0.7 and keep other
hyperparameters the same as Table F. For D-AlignIQL-A, we sweep over N ∈ {256, 512, 1024},
and τ ∈ {0.7, 0.9}. For IDQL, we sweep over τ ∈ {0.7, 0.9}. The weight of IDQL is wτ2 (s, a) =
|τ − 1(Q(s, a) < V 2

τ (s))|. We report the scores of Table 8 by choosing the best score from different
N .

We provide the main hyperparameters in Table F to reproduce our results in D4RL. Following IDQL,
we use normalization to adjust the rewards, which means r = r/(rmax − rmin). For AntMaze tasks,
r = r − 1. We also follow the IDQL’s advice to take the maximum probability action at evaluation

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

time. We train for 300000 epochs for AntMaze tasks with batch size 512 and 100000 epochs for
MuJoCo tasks with batch size 256, consistent with IDQL and CORL. Here are the hyperparameters
for reproducing our results.

LR (For all networks except for multiplier) 3e-4
LR ( Multiplier Network ) 3e-5
Critic Batch Size 512
Actor Batch Size 512
τ Expectiles 0.7 (locomotion), 0.9 (AntMaze)

η For AlignIQL and D-AlignIQL

0.5 (Half-ME)
5 (Half-MR,Hopper-ME,Hopper-MR)

1 (Half-M,Walker-MR)
10 (Hopper-M,Waler-ME,Hopper-M)

1 (D-AlignIQL AntMaze)
Grad norm for multiplier on MuJoCo 1.0 (α), 0.5 (β)
Grad norm for multiplier on AntMaze 1.0 (α), 1 (β)
Critic Grad Steps 3e6
Actor Grad Steps 3e6
Target Critic EMA 0.005
T 5
Beta schedule Variance Preserving (Song et al., 2020)
Actor Dropout Rate 0.1 for actor on all tasks
Critic Dropout Rate 0.1 for AntMaze Tasks in AlignIQL-hard
Number Residual Blocks 3
Actor Cosine Decay (Loshchilov & Hutter, 2016) Number of Actor Grad Steps
Optimizer Adam (Kingma & Ba, 2014)

Best N For D-AlignIQL

256 (umaze)
16 (umaze-d)

256 (medium-p)
2048 (medium-d)

64 (large-p)
64 (large-d)

F.1 RESULTS OF ALIGNIQL-HARD

In this chapter, we report the results of D-AlignIQL-hard. Table F reports the hyperparameters we
used for AlignIQL-hard.

Table 4: Average Results of D-AlignIQL-hard on AntMaze tasks.

D-AlignIQL-hard D-AlignIQL
D4RL Tasks N = 16 N = 64 N = 256 N = 16 N = 64 N = 256

AntMaze 54.2 57.9 56.7 65.8 70.2 70.7

We also report the performance of D-AlignIQL under different N . Therefore, the results in Table 4
are slightly lower than those in Table 1. For D-AlignIQL and D-AlignIQL-hard, especially for
D-AlignIQL-hard, we perform minimal hyperparameter tuning. In most cases, we use the default
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parameters of IDQL. Therefore, the performance of our algorithm can be further improved with
additional tuning.

F.2 RUNNING TIME

The biggest problem of the diffusion-based method is the long inference time, which comes from
the iterative running of the Markov chain. In this part, we present the running time of D-AlignIQL
compared to other methods. We tested the runtime of DiffCPS on an RTX 3050 GPU on D4RL
tasks. (3000 epochs (3e6 gradient steps)) From Table 5, it’s evident that the runtime of D-AlignIQL
is comparable to other diffusion-based methods.

Table 5: Runtime of different diffusion-based offline RL methods. (Average)
D4RL Tasks D-AlignIQL (ours) (T=5) DiffusionQL (T=5) SfBC (T=5) IDQL (T=5)

Locomotion Runtime (1 epoch) 9.12s 5.1s 8.4s 9.5s

AntMaze Runtime (1 epoch) 9.76s 10.5s 10.5s 10.5s

Although the runtime of D-AlignIQL is comparable to other diffusion-based methods, AlignIQL is
still slower than the Gaussian-based policy (about 1.2s for one epoch). The slow inference speed can
harm the performance in real-time robot control tasks. Fortunately, this problem can be solved by
recent sample acceleration methods, like SiD (Zhou et al., 2024b;a) or EDP (Kang et al., 2024). EDP
directly constructs actions from corrupted ones at training to avoid running the sampling chain. In
this way, EDP only needs to run the noise-prediction network once, which can substantially reduce
the training time. Below, we first shortly introduce EDP

EDP: Kang et al. (2024) noticed that the noisy sample of diffusion model can be written as q(xt|x0) =
N (xt;

√
ᾱtx

0, (1− ᾱt)I).
Using the parametrization trick, we can get

xt =
√
ᾱtx

0 +
√
1− ᾱtϵ, ϵ ∈ N (0, I) (48)

Replacing ϵ with our denoising network ϵϕ(xi, i, s), we can obtain the action by running the noise-
prediction once:

x0 =
1√
ᾱt

xt −
√
1− ᾱt√
ᾱt

ϵϕ(xi, i, s) (49)

Although EDP is a simple method, it can greatly reduce the training time of diffusion-based offline
RL methods while keeping competitive results. EDP can also enjoy the benefits of other diffusion
acceleration methods, like DPM-solver Lu et al. (2022).

We use the EDP’s official IQL code to reimplement our method. In fact, reimplementing AlignIQL
based on IQL is very simple, we only need to change one line code corresponding to the policy
extraction step as shown below.

def compute_actor_loss(
self, batch: TorchMiniBatch, action: None

):
# compute weight
with torch.no_grad():

v = self._modules.value_func(batch.observations)
min_Q = self._targ_q_func_forwarder.compute_target(

batch.observations, reduction="min"
).gather(1, batch.actions.long())

# Weights for AlignIQL used in extracting the IQL policy
exp_a = torch.exp(((min_Q - v)**2) * self.eta).clamp(

max=self._max_weight
)
# Weights for AWR used in extracting the IQL policy
# exp_a = torch.exp((min_Q - v) * self._weight_temp).clamp(
# max=self._max_weight
#)
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# compute log probability
dist = self._modules.policy(batch.observations)
log_probs = dist.log_prob(batch.actions.squeeze(-1)).unsqueeze(1)

return ActorLoss(-(exp_a * log_probs).mean())

Table 6 shows the results of EDP-based AlignIQL.

Table 6: Performance and runtime time (1 epoch) of D-AlignIQL (Diffusion steps T = 5) and
EDP-based D-AlignIQL.

Method Performance Runtime (s)
Large-p Large-d Large-p Large-d

D-AlignIQL 65.2 66.4 9.5 9.78
EDP-based D-AlignIQL 43 62 2.22 1.95

The above results are conducted on a 1 random seed since we mainly focus on the runtime. Table 6
shows that simple EDP-based AlignIQL can reduce at most 80% training time while matching the
performance of policy with origin diffusion-based policy. Note that we do not use theDPM-solver in
our code, which can add an additional 2.3x training speedup according to EDP’s origin paper. In
brief, the diffusion-based policy with sample acceleration can match the speed of the Gaussian policy
(about 1.2s for one epoch).

F.3 EXTRA ABLATION STUDY

Table 7 shows the best results of different η on selected tasks.

Table 7: Performance of AlignIQL under different η

η
Walker2d Halfcheetah

ME MR ME MR
η = 3 110.3 77.4 82.1 42.6
η = 5 110.4 79.5 81.4 42.7
η = 10 110.5 80.1 80.1 42.5

G SPARSE REWARD TASKS

Results on D4RL Sparse Reward Tasks. We conduct the experiment on Adroit tasks. Compared
with MuJoCo tasks, the Adroit tasks are high dimensional and feature sparse rewards. For human and
expert datasets, the data is collected from human demonstrators. Results can be found in Table 8.
Table 8 shows that compared to IDQL, AlignIQL can achieve competitive results and significantly
outperform IDQL on some challenging tasks like relocate-human.

H DISCUSSION ON DIFFERENT REGULARIZERS

In this chapter, we aim to validate the effect of different regularizers. We experimented with the case
of f(x) = x−1 in D-AlignIQL-hard and D-AlignIQL. Let f(x) = x−1, we can get gf (x) = 1

2x+
1
2 .

Substituting back in Equation 36 and Equation 9 with gf (x) = 1
2x+ 1

2 , we can get

AlignIQL: π⋆(a|s) = µ(a|s)max

{
1

2

(
−α(s)− η (Q(s,a)− V (s))

2
)
+

1

2
, 0

}
, (50)

AlignIQL-hard: π⋆(a|s) = µ(a|s)max

{
1

2
(−α(s)− β(s)Q(s,a)) +

1

2
, 0

}
. (51)
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Table 8: Normalized scores of D-AlignIQL against other baselines on D4RL sparse-reward tasks. We bold
the mean values that ≥ 0.99 ∗ highest value. "-A" indicates that we sweep over all the hyperparameters.
D-AlignIQL refers to fixed η = 1 and τ = 0.7.

Task BC BCQ CQL IQL D-AlignIQL-A Algae-
DICE IDQL D-AlignIQL

pen-human 63.9 68.9 37.5 71.5 76.0±4.8 -3.3 70.7±8.4 76.0±4.8
hammer-human 1.2 0.5 4.4 1.4 2.25±0.01 0.3 2.8±0.8 2.0±0.7
door-human 2.0 0.0 9.9 4.3 6.0±3.6 0.0 5.2±1.3 6.0±3.6
relocate-human 0.1 -0.1 0.2 0.1 0.67±0.14 -0.1 0.09±0.02 0.28±0.34
pen-expert 85.1 114.9 107.0 111.7 127.3±1.2 -3.5 132.9±4.5 116.0±4.3
hammer-expert 125.6 107.2 86.7 116.3 125.5±0.25 0.3 126.5±0.7 124.7±1.9
door-expert 34.9 99.0 101.5 103.8 105.0±0.5 0.0 105.0±0.1 104.6±0.5
relocate-expert 101.3 41.6 95.0 102.7 108.3±0.2 -0.1 108.3±1.3 106.0±1.5

We conducted experiments on Antmaze-umaze to evaluate the effects of different regularizers. We
keep all other hyperparameters the same as Table F. The experimental details are described as follows.

AlignIQL: In Equation 50, α(s) serves as a normalization term, which does not affect the action
evaluation when 1

2

(
−α(s)− η (Q(s,a)− V (s))

2
)
+ 1

2 ≥ 0. To simply the training process, we

assume 1
2

(
−α(s)− η (Q(s,a)− V (s))

2
)
+ 1

2 ≥ 0 and ignore α(s). Since we use the energy-based
implementation and select the action with maximum weight, such simplification is reasonable and
avoids training an extra multiplier network. We set η = 1 in the Antmaze umaze experiment.

AlignIQL-hard: Similar to Lemma 5.3, we can train our multiplier through the following loss
function (we replace 1

2 (−α(s)− β(s)Q(s,a)) + 1
2 with wlinear for simplicity)

min
α,β
LM = Ea∼µ

[
1 (wlinear > 0)w2

linear

]
+ α(s) + β(s)V (s), (52)

Proof. This proof can be obtained by setting the gradient of Equation 52 to 0 with respect to α, β.

Table 9: Performance of different regularizers in D-AlignIQL and D-AlignIQL-hard

Regularizers D-AlignIQL D-AlignIQL-hard
umaze-p umaze-d umaze-p umaze-d

f(x) = log x 94.8 82.4 84.7 74.0
f(x) = x− 1 95.0 87.0 92.0 70.0

The results of f(x) = x−1 in Table 9 is evaluated over 2 random seed. We found that the performance
of the linear regularizer is comparable to the results of D-AlignIQL in Table 9. This is because both
place more weight on actions with higher − (Q(s,a)− V (s))

2. For f(x) = x− 1 in D-AlignIQL-
hard, we found that it like f(x) = log x, is susceptible to hyperparameters, especially the learning
rate of the Lagrange multiplier network, and both showed a certain decline in performance by the
end of training. We attribute this performance drop to the susceptibility of the multiplier network
to hyperparameters, and future improvements to the multiplier network and hyperparameters may
address this issue.

I NOISE DATA EXPERIMENT

In this chapter, we follow the Yang et al. (2023) to test the robustness of our method. Specifically, we
evaluate the performance of our method across diverse data corruption scenarios, including random
attacks on states, actions, rewards, and next-states. The random corruption is applied by adding
random noise to the attacked elements of a c portion of the datasets. The corruption scale is controlled
by ϵ. The details of data corruption can be found in Yang et al. (2023) (Appendix D). Here we briefly
introduce the random data corruption on states, actions, rewards, and next-states.
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Random observation attack: ŝ = s+ λ · std(s). λ ∼ Uniform [−ϵ, ϵ]
Random action attack: â = a+ λ · std(a). λ ∼ Uniform [−ϵ, ϵ].
Random reward attack: r̂ ∼ Uniform [−30 · ϵ, 30 · ϵ].

Random dynamics attack: ŝ′ = s′ + λ · std(s′). λ ∼ Uniform [−ϵ, ϵ].
We train for 2e6 steps on the D4RL halfcheetah-medium-replay-v2 robust tasks with ϵ = c = 0.5.
Note that we use policy-based AlignIQL (Algorithm 1) in robust experiments (Appendix I) and
image-based control (Appendix J]), which means employing a Gaussian-based policy instead of
the diffusion model. The reason for using a Gaussian-based policy is to prove our method can be
generalized to any type of policy. We reimplement our method based on the official code from
Yang et al. (2023), a robust version of IQL with Q-ensemble and Huber regression. As shown in
Appendix F.2, implementing our code based on IQL is very straightforward, requiring only changes to
the policy extraction step. We use β = η = 3 for both IQL+AWR (Abbreviated as IQL) and AlignIQL.
For τ , we adopt the default value τ = 0.7 provided in the official code from Yang et al. (2023).
We report the 5-Running average at step 2e6. Our method, AlignIQL, achieves the highest average

Table 10: Results of Robust Experiment in Halfcheetah-medium-replay-v2 over 3 random seeds.
AlignIQL outperforms IQL a lot under observation attack.

Halfcheetah
Method Reward Action Dynamics Observation Average

AlignIQL 40.2 40.23 37.20 29.05 36.50
IQL 42.15 39.47 37.40 23.14 35.54
CQL 43.56 44.76 0.06 28.51 29.22

scores compared to other methods. More importantly, AlignIQL demonstrates greater robustness
against observation attacks compared to IQL. While CQL performs well under attacks on actions,
observations, and rewards, it fails to learn under dynamics attacks. Since policy alignment relies
on the value function, the performance of AlignIQL may degrade under reward attacks. However,
AlignIQL demonstrates greater robustness against observation attacks, as it assigns higher weights to
actions for whichQ approaches V (s). V (s) is learned by a neural network, which exhibits robustness
against corrupted inputs (e.g., corrupted observations) because similar states tend to have similar
V (s). However, in the context of RL, Q(s,a) may vary significantly across similar states. This may
explain why our method performs better under observation attacks.

J VISION-BASED CONTROL

In this chapter, we report the results of AlignIQL and IQL on the Atari tasks (Agarwal et al., 2020).
Specifically, we choose three image-based Atari games with discrete action spaces: Breakout, Qbert,
and Seaquest. We use d3rlpy, a modularized offline RL library that includes several SOTA offline RL
algorithms and offers an easy-to-use wrapper for the offline Atari datasets introduced by Agarwal
et al. (2021). To increase the task difficulty, we use only 1% or 0.5% of the transitions from all
epochs in the original datasets. (1M× 50epoch× 1% or 0.5%)

We implement the discrete version of AlignIQL (D-AlignIQL) based on the discrete IQL (D-IQL)
from d3rlpy. As shown in Appendix F.2, there is no price to implement AlignIQL based on IQL.
For D-IQL+AWR (Abbreviated as IQL), we report the average score of the last 3 evaluations by
selecting the minimal standard deviation from τ ∈ [0.5, 0.7, 0.9] in the last 3 evaluations. Similarly,
for D-AlignIQL with η = 1, we report the average score of the last 3 evaluations by selecting the
minimal standard deviation from τ ∈ [0.5, 0.7, 0.9] in the last 3 evaluations. We do this because
vision-based methods are unstable, and their performance may fluctuate significantly across different
seeds or training steps.

The only difference between AlignIQL and IQL lies in the method of extracting policies. AlignIQL
achieves the best performance in 5 out of 6 games and exhibits a smaller standard deviation compared
to IQL. We also observed that in certain tasks, AlignIQL or IQL performs better on smaller datasets.
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This phenomenon was also observed when training CQL on Atari tasks, as reported in Xu et al.
(2023).

Table 11: Performance in setting with 1% or 0.5% Atari dataset. AlignIQL achieves the best
performance in 5 out of 6 games.

Breakout Qbert Seaquest
Method 1% 0.5% 1% 0.5% 1% 0.5%

AlignIQL 9.23± 0.8 7.13± 2.5 7170± 877 7512± 548 192.7± 30.02 371.3± 1.1
IQL 6.87± 1.1 5.3± 3.2 4160± 1473 3773.3± 780.2 238.7± 21.6 306.7± 25.2
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K TRAINING CURVES OF ANTMAZE TASKS
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Figure 3: Training curves of D-AlignIQL, IDQL, and Diffusion+AWR. The normalized score
is calculated by averaging the scores across three different N (N = 16, 64, 256) except for
Medium tasks, where N represents the number of actions generated by the diffusion-based be-
havior policy. For Medium tasks, the normalized score is calculated by averaging the scores for N
(N = 256, 1024, 2048).
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