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Abstract

Linguistic accounts show that a word’s poly-001
semy structure is largely governed by system-002
atic sense alternations that form overarching003
patterns across the vocabulary. While psy-004
cholinguistic studies confirm the psychological005
validity of regularity in human language pro-006
cessing, in the research on large language mod-007
els (LLMs) this phenomenon remains largely008
unaddressed. Revealing models’ sensitivity to009
systematic sense alternations of polysemous010
words can give us a better understanding of011
how LLMs process ambiguity and to what ex-012
tent they emulate representations in the human013
mind. For this, we employ the measures of014
surprisal and semantic similarity as proxies of015
human judgment on the acceptability of novel016
senses. We focus on two aspects that have not017
received much attention previously – metaphor-018
ically motivated patterns and the continuous019
nature of regularity. We find evidence that sur-020
prisal from language models represents regu-021
larity of polysemic extensions in a human-like022
way, discriminating between different types of023
senses and varying regularity degrees, and over-024
all strongly correlating with human acceptabil-025
ity scores.026

1 Introduction027

Polysemy, a linguistic phenomenon whereby a028

word is associated with multiple related senses,029

is fundamental to language. As most lexical words030

are polysemes to varying degrees (Zipf, 1945;031

Durkin and Manning, 1989; Haber and Poesio,032

2024), this form of ambiguity remains a challenge033

for NLP. However, recent studies show that cur-034

rent language models (LMs) based on Transform-035

ers are able to reveal the degree of a word’s pol-036

ysemy, meaningfully cluster word senses, distin-037

guish homonymy from polysemy or perform su-038

perior word sense disambiguation (see Garí Soler039

and Apidianaki, 2021; Li and Joanisse, 2021; Nair040

et al., 2020; Wiedemann et al., 2019 for each of the041

above). 042

We focus on the topic that received less atten- 043

tion in LM research – the regularity dimension of 044

polysemy and its continuous nature. The defini- 045

tion and scope of regular polysemy vary depending 046

on the linguistic theory. The widely cited defini- 047

tion has been proposed by Apresjan (1974, p. 16) 048

and states that “Polysemy of the word A with the 049

meanings ai and aj is called regular if [...] there 050

exists at least one other word B with the meanings 051

bi and bj, which are semantically distinguished 052

from each other in exactly the same way as ai and 053

aj [...]”. Pustejovsky’s (1991) approach, also fre- 054

quently adopted, frames regular polysemy as an 055

ability of words that belong to one semantic type 056

to act as members of another, behaving predictably, 057

unlike irregular (accidental) polysemes. 058

Regular polysemy forms patterns of meaning 059

structure across vocabulary. Some of the widely 060

used examples of such patterns are ANIMAL - 061

MEAT pattern (instantiated by chicken or salmon) or 062

CONTAINER - CONTENT (e.g. cup, glass). These 063

examples are an instance of metonymy – a sense ex- 064

tension device that is based on contiguity (associa- 065

tion, referential co-existence) of two concepts. The 066

theoretical approaches mentioned above largely at- 067

tribute regular polysemy to this figure, and so do the 068

researchers in computational linguistics who adopt 069

these theories (see Section 2 for their overview). 070

There is, however, another cognitive tool that 071

structures polysemy – metaphor. Unlike metonymy, 072

it is based on analogy, or referential disjunction 073

(Lombard et al., 2023). Regular polysemy by 074

metaphor can be exemplified by such polysemes as 075

antenna (insect’s organ, signal transmission device) 076

or leg (limb, table support) instantiating the pat- 077

tern BODY PART - OBJECT PART. The two figures 078

are based on different cognitive mechanisms, have 079

different processing profiles in our brain (Klepous- 080

niotou et al., 2012), but, as recent psycholinguis- 081

tic studies show, they equally govern polysemous 082
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sense extensions (Lombard et al., 2023, 2024).083

Another important aspect of regular polysemy is084

its continuous nature. In a recent study, Lombard085

et al. (2024) introduce a method to extract regular086

polysemes (including metaphors) from WordNet087

and suggest metrics to measure the degree of regu-088

larity of the pattens they are governed by (Table 1).089

Their findings are in contrast with the widely ap-090

plied categorical approach to polysemy, where a091

sense extension of a polyseme is labeled in a binary092

way, i.e. as either regular or irregular.093

Here we adopt this continuous view, aligning094

with recent work that argues that word meaning,095

polysemy regularity, and productivity form a con-096

tinuum rather than discrete representations (Trott097

and Bergen, 2023; Li, 2024). To the best of our098

knowledge, no experimental design has previously099

targeted the graded aspect of regularity in LLMs,100

although researchers have noted that some patterns101

seemed more regular or productive than others (Li102

and Armstrong, 2024). We also contribute by focus-103

ing on metaphorically motivated regular polysemy.104

Only a handful of works in computational linguis-105

tics include regular metaphor in their experiments,106

and even less in the experiments with LMs in par-107

ticular.108

In order to investigate the effect of graded regu-109

larity on models’ representation of metaphorically110

motivated polysemes, we rely on datasets compiled111

for psycholnguistic studies on human polysemy112

processing in French and English (Lombard et al.,113

2023, 2024). The datasets feature semantic neol-114

ogisms – novel senses of existing words created115

using polysemy patterns of varying regularity de-116

grees. These are compared against attested, exist-117

ing polysemes and nonsensical derivations (refer118

to Table 2 for the examples). Human acceptability119

assessment confirmed the psychological validity of120

graded regularity for human processing: the more121

regular the polysemy pattern, the more acceptable122

its novel senses. Using surprisal and semantic sim-123

ilarity measures, we aim to find out how closely124

language model processing of semantic neologisms125

aligns with human processing, and whether the de-126

gree of regularity plays a role in it. With this in127

mind, we outline the following research questions:128

RQ1. Which of the two measures (surprisal or129

semantic similarity) would be a better proxy for hu-130

man behaviour in our task? As discussed in Meth-131

ods section, both proved to have psycholinguistic132

predictive power, despite operating at different lev-133

els of language structure.134

RQ2. Are the results consistent across model 135

types and sizes? Oh and Schuler (2022) show, e.g., 136

that larger models do not necessarily deliver more 137

human-like linguistic representations. 138

RQ3. Do models distinguish between the novel 139

senses based on existing regular polysemy patterns 140

and the senses created using the patterns that do not 141

exist? To match human behaviour, models should 142

be able to discriminate between these groups. 143

RQ4. Are LMs sensitive to the varying degrees 144

of regularity of polysemy patterns? If their pro- 145

cessing matches human ratings, we should expect 146

the models to be less surprised by neologisms from 147

highly regular patterns and vice versa. 148

RQ5. What type of regularity metrics (as defined 149

in Table 1) are models more sensitive to: count- 150

based or consistency-based? Do word frequency 151

and word length play a role, and how does this 152

compare with data from human evaluators? 153

In the case of LLMs, evaluating novel senses 154

allows us to test their ability to generalize beyond 155

previously seen material and avoid data contamina- 156

tion. Additionally, on a higher level, we can assess 157

their sensitivity to the polysemy patterns abstracted 158

from concrete, previously seen words. 159

Our results show that LLMs could discriminate 160

between different sense types and regularity grada- 161

tions in a human-like way, and overall correlated 162

well with human sense plausibility judgment. 163

In the following sections we will briefly discuss 164

the existing work on regular polysemy (§2), justify 165

our methodology (§3), present the experiments (§4) 166

and discuss their results (§5). 167

2 Related Work 168

Aside from the theoretical frameworks cited in the 169

Introduction, regular polysemy is studied in several 170

areas dealing with language processing. 171

Psycholinguistics. In psycholinguistics, regular 172

polysemy is addressed in the discussion about the 173

meaning representation in human mind and the na- 174

ture of restrictions that govern polysemy patterns in 175

language. Many authors defend hybrid approaches 176

to these problems. Rabagliati and Snedeker (2013) 177

suggest that irregular senses are stored separately, 178

while senses that follow regular patterns form core 179

meanings. Analyzing co-predication acceptability 180

and sense similarity of polysemes and homonyms, 181

Haber and Poesio (2020) suggest that senses form 182

groups according to their similarity (in line with 183

Ortega-Andrés and Vicente, 2019), and reject the 184
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idea of a fully underspecified representation. In185

contrast, Vicente (2024) analyses regular and ir-186

regular polysemy along several dimensions and187

defends the one-representation hypothesis.188

In the discussion on whether linguistic conven-189

tions or an underlying conceptual structure re-190

strict polysemy patterns, Srinivasan and Rabagliati191

(2015) propose the “conventions-constrained-by-192

concepts” model. Their study across 15 languages193

suggests that while the conceptual structure gov-194

erns the patterns, the language-specific conventions195

define senses that instantiate them. A hybrid ap-196

proach is also supported by the investigations in lan-197

guage learning: Zhu (2021) studies how preschool-198

ers acquire regular metonymies, highlighting their199

ability to quickly grasp semantic generalizations200

without extensive prior exposure. Children rely on201

an early-emerging conceptual structure, although202

at later stages linguistic generalizations also play a203

crucial role in word learning.204

Mental processing of ambiguous words is af-205

fected by the degree of relatedness of meanings in206

memory. This is demonstrated by Brocher (2016;207

2018), who report increased processing effort asso-208

ciated with disambiguation of unrelated meanings.209

Computational Linguistics. In this field, reg-210

ular polysemy is addressed in a variety of works,211

such as Boleda et al. (2012a,b); Lopukhina and212

Lopukhin (2016), who model systematic poly-213

semy, or Del Tredici and Bel (2015), exploring the214

representations of polysemous and monosemous215

words in static word embeddings. A number of216

researchers propose methods of sense annotation217

for regular polysemy (Nimb and Pedersen, 2000;218

Freihat et al., 2013; Martinez Alonso, 2013), while219

other authors use WordNet to automatically extract220

regular polysemes (Peters and Peters, 2000; Barque221

and Chaumartin, 2009; Lombard et al., 2024). Inter-222

estingly, the latter authors recognize metaphoric ex-223

tensions as types of systematic polysemy patterns,224

in contrast to most of the previously mentioned225

studies. Peters and Peters (2000) depart from an226

assumption that metaphoric alternations are irreg-227

ular, but after applying their extraction method,228

“stumble upon” the instances of metaphoric sense229

extensions that can only be described as regular.230

Only a few more works mentioned in this section231

fully recognize that regular polysemy by metaphor232

is possible: Nimb and Pedersen, 2000; Freihat et al.,233

2013; Lopukhina and Lopukhin, 2016; Lombard234

et al., 2023 and Lombard et al., 2024.235

Language models. Regarding regular polysemy236

and neural language models, Haber and Poesio 237

(2021) test BERT’s ability to predict human as- 238

sessment of sense similarity degree. They report 239

that BERTLARGE captures distinctions between pol- 240

ysemic, homonymic and same-sense samples in a 241

human-like way. BERT delivers sensible results in 242

sense clustering, suggesting that this model is sen- 243

sitive to polysemy patterns. Sørensen et al. (2023) 244

explore BERT sense clustering as a guidance tool 245

for annotation of systematic polysemy in lexical re- 246

sources. Similarly to Haber and Poesio (2021), they 247

got mixed results but see potential: for one of the 248

patterns, BERT discovered a sense that the authors 249

overlooked when creating the dataset. Finally, Li 250

and Armstrong (2024) use sense analogy questions 251

to investigate how regular polysemy is represented 252

in BERT embeddings. The authors observe that the 253

pattern of BERT’s sense similarity score distribu- 254

tion reflects differences not only in the processing 255

of regular polysemes and irregular/homonymous 256

controls, but also of distinct polysemy patterns. 257

They also note on the scalar nature of regularity, an 258

observation that contributes to Li’s (2024) compre- 259

hensive approach to polysemy as continuous in its 260

sense individuation, regularity, and productivity. 261

The present paper adopts the recent insights 262

about the graded nature and metaphoric motiva- 263

tion of regular patterns and incorporates them in 264

the experimental design. 265

3 Materials and Methods 266

3.1 Data 267

To answer our research questions, we evaluated 268

two datasets compiled by Lombard et al. (2023) and 269

Lombard et al. (2024)1. Both data sets were created 270

for psycholinguistic experiments investigating the 271

effect of graded regularity on the human perception 272

of neology in English and French2. 273

The stimuli. The datasets contain sentences 274

with target words of three types: 275

1. Semantic neology: words used in a novel, 276

unattested sense. The derived metaphoric sense, 277

together with the base sense, represent a polysemy 278

pattern that a given word has never developed, un- 279

like other words from its semantic field. To ex- 280

1Licensed under Creative Commons Attribution 4.0 Inter-
national (CC-BY-4.0)

2The more recent study is in English and focuses solely
on regular metaphor, whereas the earlier one is in French and
involves both metaphor and metonymy. Since the present
research focuses on metaphoric polysemy, we only evaluate
the part of the French dataset containing metaphors.
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Metr. Definition Formula

R1 Number of words having SENSE1 and SENSE2 in a given pattern. R1 = NS2

R2 Ratio of R1 and the number of words with SENSE1, whether or not
they have SENSE2.

R2 =
NS2
NS1

R3 R1 weighted by the log-frequency of occurrence of the word. R3 =
NS2X

w=1

log(fw)

R4 R2 weighted by the log-frequency of occurrence of the word R4 =
PNS2

w=1
log(fw)PNS1

w=1
log(fw)

Table 1: Regularity metrics as proposed by (Lombard et al., 2024, pp. 4–5). While R1 and R3 capture the number
of pattern instantiations, R2 and R4 reflect the consistency with which words having a base sense (SENSE1) also
have a derived sense (SENSE2) within a pattern.

Type Pattern Example W. S.

new

ANIMAL - ARTIFACT My sister cleaned the porcupine of the brush.

35 70

ANIMAL - PERSON The chessplayer is always a cruel spider with his opponents.
ARTIFACT - MESSAGE A mean spear slipped through her lips in an angry tone.
BODY PART - OBJECT PART We can see the knee of the chair getting damaged.
NATURAL EVENT - HAPPENING There was a huge tornado of claps at the final of the challenge.
PERSON - ANIMAL Some zoos are trying to protect the doctor from extinction.
PHYS. PROP. - PSYCHOL. PROP. She said that the density of the project was an issue.

illegal My brother painted the curry of the controller in blue. 40 80
existing My dog chewed the tongue of my new shoes 40 40
all 115 190

Table 2: Sentence examples of each sense type, labeled in the original dataset as new, illegal, and existing. New
senses include 7 polysemy patterns (5 words per pattern). Illegal and existing senses are not annotated with patterns
in the original dataset. The column W. lists the number of words per sense type, while S. – the number of sentences.

emplify, the word knee represents a pattern BODY281

PART-OBJECT PART and is used in the sentence282

We can see the knee of the chair getting damaged.283

For comparison, some of the words that actually284

developed both senses are leg, heart, artery, vein,285

antenna, wing, head, skeleton, brow, tongue etc.286

2. Non-sensical derivation: semantic neolo-287

gisms that follow a non-existent pattern in each lan-288

guage. For instance, curry in My brother painted289

the curry of the controller in blue represents an290

unattested pattern FOOD-OBJECT PART.291

3. Existing polysemy: words used in an attested292

sense of a valid, existing polysemy pattern. For293

example, tongue in My dog chewed the tongue of294

my new shoes is used in an attested sense of an295

OBJECT PART. An overview of the English dataset296

with sentence examples is presented in Table 2.297

The dataset is annotated with human acceptabil-298

ity scores, regularity degree of polysemy patterns,299

word frequency and word length.300

Human acceptability rating. Human accept-301

ability scores are derived from the initial psycholin-302

guistic experiment. They reflect how plausible the303

annotators found each sentence on a scale from ‘no304

sense at all’ (0) to ‘completely acceptable’ (100). 305

Regularity. Each target word is annotated with 306

a score reflecting the degree of regularity of a poly- 307

semy pattern it instantiates. For the two languages, 308

this metric has been calculated using different pro- 309

cedures. For English, the authors developed an 310

automatic extraction technique using WordNet and 311

proposed several formulas to calculate the regular- 312

ity degree of a pattern based on the extracted data. 313

These regularity metrics are summarized in Table 1. 314

For French, the authors relied on the judgment of 315

experts in French lexicology to assess the degree 316

of regularity for each pattern. The methodologi- 317

cal differences in the compilation of both datasets 318

seem to affect our results, which will be discussed 319

in more detail in Section 4.2. 320

3.2 Methods 321

To answer our research questions, we explore two 322

common methods in NLP and computational psy- 323

cholinguistics – surprisal and semantic similarity 324

from large language models. 325

Surprisal. Surprisal is the negative log- 326

probability of a token given its immediate con- 327
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text. Surprisal theory (Hale, 2001; Levy, 2008)328

assumes that the processing difficulty of the word329

is based on its predictability. This information-330

theoretic measure is typically used in the studies on331

human reading, where it proved to predict reading332

times and, consequently, cognitive processing dif-333

ficulty in multiple languages (for recent work, see334

de Varda and Marelli, 2022; Nair and Resnik, 2023;335

Wilcox et al., 2023; Xu et al., 2023). It is also used336

to assess the models’ ability to predict linguistic337

acceptability (grammaticality) of sentences (Noh338

et al., 2024). In our study, we use surprisal from339

language models as a proxy of human acceptability340

judgment of novel word senses: we assume that341

higher surprisal values assigned to a target word342

by an LM correspond to lower acceptability scores343

obtained from human evaluation.344

Semantic relatedness. Semantic similarity be-345

tween a word and its context is used along with346

surprisal to predict reading times, assess process-347

ing difficulty and explain brain activity during lan-348

guage processing (Leal et al., 2021; Salicchi et al.,349

2021; Kun et al., 2023). Specifically, we apply the350

cosine similarity between the vector of the target351

word and the vector of the sentence obtained by352

mean-pooling. Additionally, since a few rogue di-353

mensions often dominate similarity measures in354

transformer models (Timkey and van Schijndel,355

2021), we compare the original and normalized356

vectors (z-scoring) to assess their impact. We also357

use Spearman’s ⇢ as a similarity metric, another358

technique suggested by Timkey and van Schijn-359

del (2021) and replicated by Lyu et al. (2023) and360

Salicchi et al. (2023).361

In reading experiments, low similarity between362

a word and its context is associated with increased363

human reading difficulty. In our study, we expect364

to associate low similarity rating from LMs with365

low human acceptability of semantic neologisms.366

As shown by Salicchi et al. (2023), both surprisal367

and semantic relatedness equally contribute to the368

prediction of reading difficulty, despite operating369

at different levels of language structure. While370

surprisal operates at the syntagmatic level and re-371

flects how predictable the word is from its context,372

semantic relatedness reflects coherence of a word373

with its context modeling paradigmatic dimension.374

Both surprisal and semantic relatedness proved to375

predict brain activity during language comprehen-376

sion and are associated with signals from distinct377

brain areas (Frank and Willems, 2017; Michaelov378

et al., 2023; Salicchi and Hsu, 2025).379

3.3 Models 380

We used a set of masked language models and com- 381

pared them with an autoregressive Llama. 382

For English, we use the monolingual BERT as 383

well as RoBERTa. For French, we took the BERT- 384

based FlauBERT, and the RoBERTa-based Camem- 385

BERTv2. We also evaluate multilingual models on 386

both languages: mBERT and XLM-RoBERTa. 387

Surprisal experiments typically use unidirec- 388

tional decoder models (e.g., GPT), as they rely only 389

on left-context to emulate human reading, avoiding 390

access to future words. In our case, the experi- 391

mental settings of the initial psycholinguistic study 392

entail the choice of a masked model: the evaluators 393

were first presented with the context on both sides 394

before seeing the full sentence. We still include 395

an autoregressive LM to compare the results and 396

challenge our assumption about masked language 397

modeling being more suitable for our task. For 398

this, we chose Llama 3.1 8B and Llama 3.2 3B, 399

which we oppose to BERT as more recent and sig- 400

nificantly larger multilingual models that include 401

English and French. For all models, weights were 402

taken off HuggingFace. Additional information on 403

these models is presented in Table 5 of Appendix A. 404

4 Experiments and Results 405

4.1 Experiments 406

We feed the sentences into each of the language 407

models and compute3 the surprisal and semantic 408

relatedness scores as described in Methods section. 409

For this, we use the minicons library provided by 410

Misra (2022). For bi-directional models, we rely 411

on the ‘pseudo-log-likelihood’ proposed by Kauf 412

and Ivanova (2023), which takes into account multi- 413

token and out-of-vocabulary words.4 414

We then compute the Spearman correlation be- 415

tween the human acceptability scores and each of 416

the measures (target word surprisal and the similar- 417

ity between the target word and its context). 418

4.2 Results 419

Surprisal. Across models, we observe moderate 420

to strong correlation with human judgment. As 421

expected, models correlate negatively, showing that 422

more acceptable senses elicit lower surprisal. 423

3The information on GPU use and computation time is
reported in Appendix B.

4We also tested the standard scoring based on Salazar et al.,
2020, and that of PsychoFormers (Michaelov and Bergen,
2022), obtaining generally lower results, as shown in Table 3.
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Models Default K & I PF

BERTBASE -0.65 -0.63 -0.61
BERTLARGE -0.68 -0.65 -0.64
RoBERTaBASE -0.67 -0.76 -0.68
RoBERTaLARGE -0.72 -0.78 -0.70
XLM-RoBERTaBASE -0.38 -0.56 -0.39
XLM-RoBERTaLARGE -0.44 -0.63 -0.43
mBERTBASE -0.26 -0.47 -0.47

Llama 3.1 8B -0.65 - -
Llama 3.2 3B -0.65 - -

Table 3: Results of the surprisal experiment in English.
The column Default reports results obtained from the
default implementation of minicons (Misra, 2022), the
column K & I reports the results from the method by
Kauf and Ivanova (2023), and PF – from the PsychForm-
ers application (Michaelov et al., 2023). All results are
statistically significant. Bold formatting points to the
strongest correlation achieved by each model.

Among masked models, the strongest correlation424

was achieved by RoBERTaLARGE at -0.78, p<.001.425

It is followed by BERTLARGE showing moderate426

negative correlation of -0.68, p<.001. Multilingual427

models demonstrated poorer results with correla-428

tion coefficients of -0.63 for XLM-RoBERTaLARGE429

(p<.001), as well as -0.47 for mBERT (p<.001).430

As mentioned previously, the method of Kauf and431

Ivanova (2023) yielded the best results, except for432

the BERT models which performed slightly better433

using the standard metric. See Table 3 for a com-434

plete overview of the different models and metrics.435

As for autoregressive models, Llama 3.1 8B and436

Llama 3.2 3B achieved correlation of -0.65 (p<.001437

for both), yielding the best results among the mul-438

tilingual models but exhibiting a lower correlation439

than the smaller monolingual encoders.440

In French, none of the models gave statistically441

significant correlation at the word level. We at-442

tribute this to the much smaller dataset size (42443

sentences). However, we could still obtain usable444

results by changing the experimental settings: we445

checked correlation of sentence-wise surprisal with446

human judgment (obtained by sum and mean) and447

received statistically significant results for XLM-448

RoBERTaLARGE, at -0.32, p=.039 (sum). We com-449

pared this result with the sentence surprisal of the450

English version from XLM-RoBERTa, and curi-451

ously, for English, this was the only model that452

showed stronger correlation when computing sen-453

tence surprisal instead of the target word surprisal454

(-0.65 vs. -0.63, p<.001 in both cases). Table 6455

in Appendix C presents all scores obtained from456

the sentence-wise correlation experiment. Addi- 457

tionally, it reports correlation of sentence surprisal 458

with the acceptability of polysemy patterns, where 459

XLM-RoBERTaLARGE achieved moderate signifi- 460

cant correlation. 461

Semantic relatedness. The results of the experi- 462

ment with semantic relatedness are more difficult 463

to summarize, as the data does not allow to dis- 464

cern clear trends. In different models, the high- 465

est correlation was achieved across varying layers, 466

model sizes and normalization approaches. More- 467

over, some models show positive correlation with 468

human judgment, while others correlate negatively. 469

This is not expected, as usually we assume a better 470

word/context coherence to elicit higher acceptabil- 471

ity scores. We will highlight the best results to give 472

an idea of the final picture, while Tables 7 to 10 of 473

Appendix D offer an additional illustration of cor- 474

relation scores distribution within several selected 475

models: masked RoBERTa and FlauBERT for En- 476

glish and French, as well as a significantly bigger 477

multilingual autoregressive Llama 3.1 8B. 478

The strongest correlation was reached by Llama 479

3.1 8B (32 layers) in the layer 4 using Spearman’s 480

⇢ instead of cosine, the correlation being positive 481

(0.66, p<.001). RoBERTaBASE (12 layers) follows 482

with coefficient of -0.58, p<.001 in the ninth layer 483

without applying any normalization techniques. 484

Finally, BERTBASE (12 layers) achieved the cor- 485

relation of 0.52 in the last layer when applying 486

Spearman’s ⇢ instead of the cosine (p<.001). Mul- 487

tilingual models score 0.5 and below, their best 488

achieved correlation coefficients being scattered 489

across different experimental settings. 490

For French, the scores lie in the same range, but 491

with the strongest correlation achieved by a smaller 492

Llama 3.2 3B (-0.53, p<.001, in the last 28th layer, 493

non-normalized). 494

Lyu et al. (2023) report similar outcome of their 495

study of lexical stylistic features in language mod- 496

els: although normalization generally improves the 497

results (especially for the multilingual models), it 498

is hard to single out the best technique for all mod- 499

els and experimental settings. As for Salicchi et al. 500

(2023), they do not notice any effect of BERT’s 501

embedding anisotropy on reading times prediction. 502

Overall, semantic relatedness results show no 503

clear interpretable trend across models and settings. 504
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Figure 1: Distribution of English surprisal scores by condition labeled in the original dataset as new, illegal and
existing. These correspond to the groups (1), (2) and (3) respectively, as described in the Section 3.1.

Figure 2: Distribution of surprisal scores by regularity degrees labeled as high, medium and low for the English data.

5 Discussion505

In this section, we will address the research ques-506

tions presented in the Introduction.507

RQ1. Regarding the choice of measure (surprisal508

or semantic relatedness), the results suggest that509

surprisal is preferable. Not only because it achieved510

strong correlation (-0.78 for RoBERTaLARGE in sur-511

prisal vs. -0.61 for Llama 3.2 3B in similarity512

setting), but also because it is consistent, more in-513

terpretable, and easier to obtain. While we can con-514

firm the assumption that surprisal is in an inverse515

relationship with sense plausibility as assessed by516

humans, the semantic similarity scores correlated517

both negatively and positively depending on the518

model, its layer and the embedding normalization519

technique (see Tables in Appendix D). Finding the520

most suitable configuration thus demands running521

a considerable number of trials.522

RQ2. In surprisal setting, masked LMs performed523

better, confirming our assumption that masked524

model scoring with its access to the bi-directional525

context would be more suitable for our task. Pre-526

vious research has repeatedly shown that larger527

model size delivers a poorer prediction of process-528

ing difficulty (Oh and Schuler, 2022; Salicchi et al.,529

2023; Liu et al., 2024; Shain et al., 2024). In con-530

trast, in our experiments, large varieties of the same531

models always performed above the base ones (see532

Table 3). Interestingly, much larger Llama 3.1 8B 533

and 3.2 3B did not outperform masked monolin- 534

gual BERT and RoBERTa (330M and 355M re- 535

spectively for large varieties). We attribute this to 536

differences in model architecture, although it re- 537

quires further investigation. In the case of semantic 538

similarity, results are not consistent enough to draw 539

conclusions on this topic, as explained in Results 540

section. 541

We further analyse the results to test the models’ 542

sensitivity to such features as sense types, regular- 543

ity degrees, word frequency and word length. 544

RQ3. We run a series of tests to confirm whether 545

the models discriminate between the senses de- 546

rived using the existing and non-existing patterns, 547

as well as to see if they are sensitive to the vary- 548

ing pattern regularity degrees. We took our best- 549

performing masked model RoBERTaLARGE and an 550

autoregressive Llama 3.1 8B, for comparison. For 551

French, we picked the same Llama model and 552

FlauBERTLARGE. A Mann-Whitney U test on two 553

independent samples for the two sense types (two- 554

sided, p<0.05) shows that the difference is signif- 555

icant for RoBERTa, Llama and human evaluators. 556

They could distinguish between all three groups 557

of senses (Figure 1). For French, FlauBERT and 558

Llama 3.1 8B did not yield significancy (see Fig- 559

ure 4 in Appendix E for score distribution). 560
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RQ4. In the same way, we established that lan-561

guage models were sensitive to the degrees of reg-562

ularity of the polysemy patterns the senses instanti-563

ated, although not as fine-grained as humans: while564

the Mann-Whitney U test shows significancy in the565

difference between low, medium and high regular-566

ity of patterns for humans, the models only discrim-567

inate between high/low and medium/low groups568

(Figure 2). Again, neither Llama nor FlauBERT569

reached statistical significance in French. The dis-570

tribution plot can be found in Appendix E, Figure 5.571

RQ5. We also establish whether there is a relation572

between the model scoring and such factors as the573

degree of polysemy pattern regularity, word fre-574

quency and word length. The latter two factors con-575

tribute to the cognitive processing load in humans576

since less frequent and longer words require more577

time to process (Pollatsek et al., 2008). Figure 3578

illustrates the pattern of correlation (Spearman) be-579

tween four regularity metrics and the measures of580

semantic similarity and surprisal from RoBERTa581

and Llama, as compared to human evaluators. As582

described in Table 1, we consider a count-based583

metric R1, consistency-based metric R2 and two584

metrics that weight them by the log-frequency of585

the occurrence of the word – R3 and R4. The586

measure of surprisal closely follows the line rep-587

resenting human judgment correlated with regu-588

larity, with Llama showing almost identical coef-589

ficients. The same as for human evaluators, for590

both language models, the regularity metrics that591

reflect how consistently words instantiate a poly-592

semy pattern appeared to be more relevant than the593

sheer number of words having the SENSE1 and the594

SENSE2. Weighting R1 and R2 by word frequency595

generally did not improve the correlation coeffi-596

cients (except for RoBERTa in R4 where it gains597

one point). Again, the correlation scores for the598

measure of semantic relatedness are generally low,599

with apparent preference for consistency-based and600

frequency-weighted metrics. All correlation coeffi-601

cients are listed in Table 11, Appendix E.602

As for the effect of the word frequency and word603

length, the models in general do not show high cor-604

relation, which is in line with the results from hu-605

man evaluation. The two exceptions are RoBERTa606

in the similarity setting and FlauBERT in the sur-607

prisal setting relying on these features more and608

correlating moderately (see Table 4 for correlation609

scores and Figure 6 in Appendix E for visualiza-610

tion).611

Figure 3: Spearman’s rho for regularity metrics as de-
scribed in Section 5, in absolute numbers.

English

Models W. freq. W. length

RoBERTaLARGE SURP 0.16 0.11
EN Llama 3.1 8B SURP 0.27* 0.01
RoBERTaLARGE SIMIL 0.4* 0.04
Llama 3.1. 8B SIMIL 0.04 0.16
Human acceptability rating 0.17* 0.18*

French

FlauBERTLARGE SURP 0.38* 0.41*
Llama 3.1 8B SURP 0.19 0.1
FlauBERTLARGE SIMIL 0.06 0.07
Llama 3.1 8B SIMIL 0.15 0.06
Human acceptability rating 0.15 0.17

Table 4: Correlation of word length and word frequency
with model scoring and human evaluation.

6 Conclusions 612

In this paper, we investigated the effect of the 613

graded regularity of polysemy patterns on the pro- 614

cessing of novel metaphorical word senses by large 615

language models. Using surprisal and semantic re- 616

latedness as proxies, we found evidence that mod- 617

els represent regularity of polysemy extensions in a 618

human-like way. Especially surprisal proved to ad- 619

equately model sense plausibility, showing a strong 620

correlation with human judgment. Among models, 621

RoBERTa delivered the best results. Furthermore, 622

the distributions of model scores suggest sensitivity 623

to different types of sense extensions and regularity 624

degrees. Similarly to humans, LLMs could dis- 625

criminate between attested polysemes, novel senses 626

derived from regular polysemy patterns and non- 627

sensical derivations. They were, however, less re- 628

sponsive to the gradations in regularity, only differ- 629

entiating very regular and weakly regular patterns. 630

These observations allow us to better understand 631

how LLMs model lexical ambiguity and to what ex- 632

tent such factors as regularity, continuity and sense 633

relatedness affect model representations. 634
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