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ABSTRACT

The physics solvers employed for neural network training are primarily itera-
tive, and hence, differentiating through them introduces a severe computational
burden as iterations grow large. Inspired by works in bilevel optimization, we
show that full accuracy of the network is achievable through physics significantly
coarser than fully converged solvers. We propose progressively refined differen-
tiable physics (PRDP), an approach that identifies the level of physics refinement
sufficient for full training accuracy. By beginning with coarse physics, adaptively
refining it during training, and stopping refinement at the level adequate for train-
ing, it enables significant compute savings without sacrificing network accuracy.
Our focus is on differentiating iterative linear solvers for sparsely discretized dif-
ferential operators, which are fundamental to scientific computing. PRDP is ap-
plicable to both unrolled and implicit differentiation. We validate its performance
on a variety of learning scenarios involving differentiable physics solvers such as
inverse problems, autoregressive neural emulators, and correction-based neural-
hybrid solvers. In the challenging example of emulating the Navier-Stokes equa-
tions, we reduce training time by 62%.

1 INTRODUCTION

Differentiable Physics is a paradigm which allows neural networks to interact with classical physics
solvers during training. This has proven effective across many domains, e.g., solving inverse prob-
lems (Bendsoe & Sigmund, 2013), for training neural networks to replace solvers (Bar-Sinai et al.,
2019; Brandstetter et al., 2022), integrating physical constraints (Raissi et al., 2019; Li et al., 2024),
and creating hybrid models that blend classical numerical techniques with learned components (Um
et al., 2020; Kochkov et al., 2021; 2024). Despite their promise, neural-hybrid models for differen-
tial equations face limited adoption due to the computational cost of executing and differentiating
through classical solvers during training. At the core of most classical solvers for differential equa-
tions are iterative processes that can be tuned for accuracy, typically by adjusting parameters such
as step size or iteration count. Traditionally, these methods prioritize achieving the highest possible
accuracy in the physics solver. In contrast, our work takes a novel approach, drawing inspiration
from bi-level optimization (Pedregosa, 2016). Rather than focusing solely on maximum physics
accuracy, we explore how numerical solvers can be strategically adjusted to substantially accelerate
the training process without losing network accuracy.

Figure 1: Example of a neural network train-
ing pipeline that uses a differentiable physics
solver PK in the loop. Black arrows show
the forward pass and red arrows represent the
backward pass. As the number of solver iter-
ations K grows, the cost of passes through
PK becomes severe.

Our work applies to training pipelines involving dif-
ferentiable physics, as exemplified in figure 1. Re-
peatedly querying a solver with several iterations in
the forward pass – and differentiating through its
iterations in the backward pass – introduces a se-
vere computational bottleneck during training. Since
deep learning is inherently based on noisy gradient
estimates, we show that neither the physics nor the
physics’ Jacobian must be fully converged at train-
ing time to attain a good generalization. Using dif-
ferentiable numerical solvers at a level significantly
coarser than needed for tight tolerances and progres-
sively refining it starting from an even coarser level
is already sufficient to achieve full accuracy of the
network.
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Figure 2: Progressively Refined Differentiable Physics (PRDP) reduces the training time of neural
networks containing numerical solver components (c). The fidelity of iterative components is in-
creased only if validation metrics plateau. This leads to savings by using fewer iterations in the
beginning (PR savings in (b)) and by ending at a refinement level significantly below full fidelity
(IC savings in (b)). The achieved validation error is identical (a).

Differentiable Physics can be understood as a type of bilevel optimization. In the context of hyper-
parameter optimization (a typical bilevel optimization problem), Pedregosa (2016) explored the idea
of successively refining an inner solver to make increasingly accurate updates in an outer optimizer.
Under strict assumptions of convexity, it was shown that with a summable sequence of refinement
levels (in terms of increasingly tighter tolerances for both forward and backward solve), conver-
gence in the low-dimensional hyperparameter space can be achieved. We build upon this work but
instead, treat the nonconvex learning of neural network parameters as an outer problem. Our in-
ner problem is the most elementary operation in any scientific computing, the solution of a linear
system of equations from the discretization of a physical model. In this more general setting, we
observe that we cumulatively reduce inner iterations not only by progressive refinement but also by
ending the refinement at a level significantly coarser than needed for full physics convergence. This
is possible because of the approximative nature of neural network training for which highly accurate
gradients are not required. Similar approaches have been investigated for Deep Equilibrium Models
(Bai et al., 2019), which have nonlinear root-finding with dense Jacobians as the inner problem, e.g.,
by (Shaban et al., 2019; Fung et al., 2021; Geng et al., 2021). In contrast, we focus on the sparse lin-
ear systems arising from the discretization of partial differential equations (PDEs) admitting special
solution characteristics that have been unexplored in the context of deep learning. For realistically
large and sparse linear systems of equations, the prevalent class of solution methods are iterative
linear solvers (Saad, 2003). By controlling the number of iterations in these solvers (and during
their backward passes), we can directly balance physics refinement and computational cost.

Reducing the cumulative number of solver iterations performed throughout the network training re-
sults in considerable compute savings since linear solves typically dominate run times. However,
the optimal refinement schedule and the sufficient level of refinement are problem-dependent. To
automatically determine them during the network training, we present a novel algorithm, Progres-
sively Refined Differentiable Physics, in which the refinement of the physics is adaptively increased
if a plateau in terms of validation metrics is encountered. This idea is visualized in figure 2.

Our experiments focus on efficiently training neural networks with differentiable linear solvers in the
loop. We address unrolled as well as implicit differentiation methods, showing that PRDP applies
effectively to both. The approach is tested on training tasks across a range of PDE problems, includ-
ing Poisson, heat diffusion, Burgers, and Navier-Stokes equations. Empirical insights into PRDP’s
behavior are presented for 1D problems, and its real-world performance is validated through more
complex 2D and 3D time-stepping problems. We demonstrate its effectiveness in a variety of set-
tings such as inverse problems, differentiable physics losses, and correction-based approaches.

In summary, our main contributions are the following.

• We empirically demonstrate that full network performance can be achieved with a coarse
level of physics refinement, well below the typical refinement required for full convergence,
leading to significant computational savings.
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• We introduce the Progressively Refined Differentiable Physics (PRDP) algorithm, which
adaptively identifies the optimal level of physics refinement during training.

• We validate the effectiveness of PRDP across various differentiable physics learning sce-
narios, demonstrating its broad applicability.

2 DIFFERENTIATING ITERATIVE LINEAR SOLVERS

A theoretical understanding of differentiating iterations can be gained through the example of an
inverse problem involving a parameterized linear system Auh = bh. Such systems arise in the
numerical solution of discretized PDEs, where h refers to the spatial discretization width (Ames
et al., 2014). For this, both system matrix A and right-hand side bh arise from the assem-
bly routines Λ(θ) and β(θ), respectively. An iterative solver Φ creates a sequence of guesses
{u[0]

h ,u
[1]
h , . . .u

[K]
h } = {Φk(u[0]

h ;A, bh)}Kk=0 which should converge to the analytical solution
u
[K]
h ≈ u∗

h = A−1bh, up to a given tolerance ϵ. We denote the number of solver iterations re-
quired to achieve this tolerance by Kϵ. Clearly, the set of parameters θ ∈ RP affect the solution
to this linear system of equations. Let PK denote a function mapping from the parameters θ to
the iterative solution of the linear system of equations u

[K]
h via first assembling the system matrix

A = Λ(θ) and right-hand side bh = β(θ) and then employing the iterator Φ for K steps. An
example of the corresponding compute graph is shown in figure 21 in the appendix. The inverse
problem is solved by performing an optimization over the parameter space, aiming to minimize the
discrepancy against a reference solution urh via

min
θ

L(θ) = l(uh(θ)) =
1

2
∥uh(θ)− urh∥22 s.t. Λ(θ)uh = β(θ). (1)

This forms a bilevel problem where the outer optimization concerns minimizing the loss L(θ), while
the inner optimization pertains to solving the linear system PK . Then, the loss function’s evaluation
can be explicitly written as L(θ) = l(PK(θ)).

Solving the outer optimization using a first-order method requires the gradient∇θL. We can differ-
entiate this chained function using reverse-mode automatic differentiation (AD, Griewank & Walther
(2008)) to find the (transposed) gradient as

(∇θL)T = θ̄T =

1⃗T Jl|PK(θ)︸ ︷︷ ︸
primal inacc.

 JPK
|θ︸ ︷︷ ︸

adjoint inacc.

. (2)

Clearly, the quality of the gradient depends on the number of iterator steps K. Inaccuracies in the
physics operator PK propagate to the loss gradient ∇θL through two sources: primal inaccuracy,
i.e., the Jacobian of the loss function Jl evaluated at the approximate solution PK(θ), and adjoint
inaccuracy, i.e., the Jacobian JPK

|θ of the (approximate) iterative solver itself.

2.1 LINEAR SOLVER VJPS

AD frameworks do not assemble the full Jacobian; rather, they employ vector-Jacobian products
(VJP) to reverse-propagate the gradient information (Murphy, 2023; Blondel & Roulet, 2024). The
programmatic implementation for the VJP of the loss function ūTh = 1⃗T Jl|PK(θ) is straightforward
to perform via AD. On the other hand, the VJP over the approximate physics PK requires reverse
propagation over the solver and the assembly routines, which we detail in appendix C. Conceptually,
there are two approaches.

Implicit Differentiation The backpropagation over the iterative linear solve can be framed as the
solution of another linear system in terms of an auxiliary variable λ with ATλ = ūh. This requires
the transpose system matrix AT . Implicit differentiation over any kind of implicit relation gives rise
to a linear solve with the system’s linearized form being transposed. It can be derived automatically
with AD tools (Blondel et al., 2022). Having a linear solve in the primal execution as well is a
special case, as the same system matrix appears in the forward as well as the backward pass. Hence,
it is reasonable to employ the same iterator in the VJP as in the primal, but with the transposed
system matrix and the different right-hand side Φ(· ;AT , ūh). The number of iterates required to
converge can be different from the primal and provide a way to control the adjoint inaccuracy.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Unrolled Differentiation Unrolled differentiation applies AD directly to an iterative program,
treating each iteration as an individual computational step. It thereby accesses the VJP through the
iterator Φ and accumulates each iterate’s contribution. This inherently requires access to all primal
iterates. Since the AD engine unrolls as many iterations as in the primal pass, the adjoint accuracy
is naturally coupled with the primal accuracy.

2.2 SCHEDULING INNER ITERATIONS

Since the outer problem of equation 1 is solved iteratively, the gradient ∇θL can be coarse at the
beginning of the outer iterations and only requires the highest fidelity towards the end (Pedregosa,
2016). This fundamental idea was developed in the domain of hyperparameter optimization, and we
demonstrate its application to physical inverse problems. Consider the Poisson equation, which is
a prototypical elliptic partial differential equation found in many areas of science and engineering.
Most discretization techniques lead to a linear system of equations with N degrees of freedom (for
an example discretization, refer to section D.1).

∆u(x) = −p(x, θ), x ∈ Ω ⊂ RD =⇒ Auh = bh, uh, bh ∈ RN ,A ∈ RN×N (3)

We consider a setting on the one-dimensional unit interval Ω = (0, 1) with homogeneous Dirichlet
boundary conditions, u(0) = 0 = u(1). Assuming the parameter space is one-dimensional, we
design the right-hand side as p(x, θ) = θ sin(2πx) and discretize it on the domain. The outer
optimization problem over θ ∈ R can be exactly solved in this case.
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Figure 3: Progressively refining the differentiable
physics during outer optimization of a Poisson inverse
problem achieves full convergence of the parameter
with fewer cumulative iterations of the physics solver,
leading to progressive refinement (PR) savings.

We employ a Jacobi scheme to solve the
linear system which converges to ϵ =
10−5 within Kϵ = 600 iterations; so does
its unrolled Jacobian. Under a gradient de-
scent optimizer in the parameter space of
θ, it requires a total of 125 outer iterations
to bring the relative parameter suboptimal-
ity against θr also down to 10−5. By using
simple scheduling that starts the outer op-
timization at a coarse inner resolution of
K = 25, and progressively increases the
inner iterations by ∆K = 6 in every outer
iteration, all the way to Kϵ, we can re-
duce the overall computational cost of the
optimization while achieving the same pa-
rameter suboptimality. These results are
visualized in figure 3. Despite requiring
slightly more outer iterations, fewer inner
iterations are necessary. This results in an
overall reduction of 28% of the total num-
ber of inner iterations. These savings represent one component of the final cost savings. As they are
obtained due to scheduling fidelity of the physics solve, we denote them as progressive refinement
(PR) savings.

2.3 NETWORK TRAINING UNDER INCOMPLETELY CONVERGED DIFFERENTIABLE PHYSICS

Going beyond simple convex inverse problems, more sophisticated compute graphs arise. For ex-
ample, assume the linear system is assembled from a prior variable that is given as the output of a
neural network gh := f(· ; θ) (ignoring the input to the network for now). In this case, we have
A = Λ(gh) and bh = β(gh). Hence, the optimization over θ turns into the nonconvex learning
problem in the weight space of the neural network. The extended reverse-mode AD operation reads

(∇θL)T = θ̄T =
((

1⃗T Jl|PK(f(· ;θ))

)
JPK
|f(· ;θ)

)
Jf |θ. (4)

The approximate solution to the linear system of equations using K steps and its differentiation
remain the sources of gradient inaccuracy. Yet, the effect of the neural network alters the solution
characteristics of the iterative linear solver through the assembly of the system matrix (influencing
its spectrum) and right-hand side.
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Conversely, we hypothesize that neural network training can also work under approximate gradients.
To illustrate this, consider the one-dimensional heat equation on a periodic unit interval with a time-
implicit discretization

∂u

∂t
= ν

∂2u

∂x2
, x ∈ (0, 1) =⇒ (I − ν∆tL1)u

[t+1]
h = u

[t]
h , (5)

where L1 represents the matrix from the spatial discretization of the second derivative (see sec-
tion D.2 for more details). The physics operator now advances from one step to the next u[t+1]

h =

P(u[t]
h )1. Consider the scenario in which a neural network performs a first prediction in time from an

initial state, i.e., u[1]
h = f(u

[0]
h ; θ), followed by the physics operator involvingK iterator steps which

provides the second time step solution u
[2][K]
h = PK(u

[1]
h ). The loss in equation 1 is computed

against a reference given by applying the converged physics operator twice u
[2],r
h = P2

Kϵ
(u

[0]
h ).

Hence, the network is trained to emulate one application of P . We solve the linear system of equa-
tions using the Jacobi method (B.1), which converges within Kϵ = 25 iterations. The implicit
differentiation’s linear solve requires equally many iterations.
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Figure 4: Network accuracy does not improve beyond
a refinement level of differentiable physics (Kmax) sig-
nificantly lower than full convergence (Kϵ) constitut-
ing incomplete convergence (IC) savings.

Figure 4 shows the results of multiple net-
work training runs performed at different
levels of physics refinement, i.e., different
values of K that are kept constant for each
training run. We observe that beyond a
refinement threshold Kmax, no further im-
provements of the neural emulator’s per-
formance on a validation metric are no-
ticeable. Hence, we conclude that net-
works can attain a high level of accuracy,
even when trained through incompletely
converged (IC) physics. As explained in
equation 2, this incomplete physics con-
vergence subsumes coarseness of its Jaco-
bian. In the example of the heat emula-
tor, we obtain Kmax = 10, which reduces
the number of physics solver iterations for
training by 60%. We denote this second
type of reductions as IC savings.

While we could not isolate a single cause
for these IC savings, we hypothesize that it is likely due to a combination of factors: (1) the more crit-
ical components of the gradient may converge more rapidly than less important ones, (2) the inherent
noisiness of neural network training due to stochastic mini-batching, (3) the usage of momentum-
based optimizers, and (4) the inherently approximative nature of machine learning models. Taken
together, these factors presumably reduce the need for full convergence in the differentiable physics
solver, resulting in very substantial cost savings.

3 PROGRESSIVELY REFINED DIFFERENTIABLE PHYSICS

The inner iterations saved by progressive refinement (PR) and incomplete convergence (IC) can
greatly reduce training time without impeding accuracy. However, a suitable refinement schedule
and Kmax are unknown a priori. They depend on the PDE, its discretization (given by Λ and β), the
iterative linear solver, and the learning dynamics.

To arrive at a practical method, we automate the progressive refinement and the detection of Kmax
based on the observation that training progress in terms of a validation metric stagnates when the
physics inaccuracy is too large. This stagnation corresponding to different physics refinement levels
is exemplified in figures 3 and 4. Conversely, we track training progress over time to automatically

1Throughout this work, we use superscripts in square brackets to denote sequence entries, for example for
temporal snapshots or iterates of a linear solver.
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def update(model, state_in, state_out, inner_iterations):
# neural network gives first time step, physics gives second time step
state_1 = model(state_in)
state_2 = physics(state_1, inner_iterations)
loss, grad = value_and_grad(loss_fn)(state_2, state_out)
model = update_model(model, grad)
return model, loss

inner_iterations = 1
val_loss_history = [evaluate(model, val_dataloader))]
for epoch in range(epochs):

for state_in, state_out in dataloader:
model, loss = update(model, state_in, state_out, inner_iterations)

val_loss_history.append(evaluate(model, val_dataloader))
if should_refine(val_loss_history):

inner_iterations += 1

Listing 1: A typical mixed-chain learning pipeline (figure 1) as used in our neural emulator learning
experiments. Training begins with coarse physics, using, e.g., 1 solver iteration. The should refine
function applies PRDP, determining when to refine and progressively increasing the inner solver
iterations during training.

increase physics refinement by ∆K linear solver iterations when training plateaus. Typically PRDP
starts at K0 = 1.

Figure 5: Top: the typ-
ical training progress of a
neural network supported by
PRDP, showing the ratios r
and rc. Bottom: a simpli-
fied flowchart representation
of the PRDP control algo-
rithm.

Controlling Refinement Given an exponentially smoothed his-
tory of validation metrics {L̃[e]

val}e after a representative training in-
terval, for which we can either use epochs or a fixed number of
update steps, we distinguish three trends:

1. Validation metric plateaus: If the ratio of the latest vali-
dation error and the value of several grace intervals δ ear-
lier, r = L̃

[−1]
val /L̃

[−δ]
val , is above a threshold r > τstep, it

indicates that the network has achieved the highest possi-
ble accuracy at the current refinement level. Then, sub-
ject to the following checks, the refinement is increased by
∆K. We record the validation metric before refinement
as a checkpoint c ← L̃

[−1]
val . Identifying this trend leads to

full utitilization of each refinement level and contributes
the PR savings.

2. Adequate refinement is achieved: We compute the
improvement of the current plateaued validation metric
against the checkpoint, rc = L̃

[−1]
val /c. If the stagnation

is greater than its threshold, i.e., rc > τstop, the refinement
level is retained This identifies the adequate level of refine-
ment necessary, Kmax, enabling the IC savings.

3. Initially divergent regime: For some scenarios, there is a
minimum number of iterations Kmin which if K < Kmin
lead to the convergence of the network to a worse value
than its initialization, e.g., for K = 1 and K = 2 in fig-
ure 4. To overcome this, we also refine if rc > 1.0.

Figure 5 illustrates the basic concept of the PRDP control algorithm. The exact algorithm is detailed
in pseudocode in Algorithm 4. Its implementation in a training pipeline that uses differentiable
physics is represented by the should_refine function in listing 1.

Applying Refinement Intrinsically, PRDP pertains to refinement of the primal physics. As we
showed in section 2.1, the adjoint refinement is controlled based on the kind of differentiation used.
In implicit differentiation, an additional linear system solve is performed via a custom differentia-
tion rule. This approach inherently decouples the convergence of the primal and its Jacobian. We

6
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Figure 6: PRDP achieves the same network accuracy as fully converged physics (baseline in dark
purple). It does so by adjusting physics accuracy adaptively over the training if validation perfor-
mance plateaus, which is particularly noticeable in Heat 2D.

maintain their coupling by using the same solver and number of inner iterations for the primal solve
and the VJP solve. This setup ensures that adjustments to the number of inner iterations consistently
affect the primal and the VJP. When using unrolled differentiation, progressive refinement of the
primal trivially extends to progressive refinement of the Jacobian. This is because the number of
iterations unrolled by the automatic differentiation engine is the same as that of the primal solve.

4 EXPERIMENTS

To validate our approach across problems of varying complexities, a combination of different learn-
ing and physics scenarios are chosen. This includes the convex optimization of an exactly solvable
inverse problem with the Poisson equation as described in section 2.2, the learning of autoregressive
neural emulators in the spirit of Bar-Sinai et al. (2019) and Brandstetter et al. (2022) for the diffusion
and Burgers equation but with a loss setup involving differentiable physics, and third, the learning of
a neural-hybrid emulator in a setting similar to Um et al. (2020). When training neural networks, our
results show the aggregation over ten different initialization seeds. The validation metric used is the
normalized mean squared error (nMSE) over the validation dataset. Further specifics are provided
in appendix F.

4.1 LINEAR INVERSE PROBLEM

In section 2.2, we demonstrated the potential progressive refinement savings on a doubly-
convex inverse Poisson problem when employing a pre-defined linear scheduling of in-
ner iterations across outer iterations. This schedule was hand-tuned based on exhaustive
runs. PRDP is designed to be problem-independent and adjust the inner iterations adap-
tively. To confirm this, we apply PRDP in the same setting and achieve a saving of 33%
due to progressive refinement. This is slightly higher than the manually achieved 28%.

P Type Diff Cost Red. PR. Sav.

1 Jac Unr 75K 24.87K 33%
1 Jac Impl 75K 24.87K 33%

3 Jac Unr 337.5K 163K 48%
3 Jac Impl 337.5K 163K 48%
3 SD Unr 192K 82.7K 43%
3 SD Impl 192K 82.7K 43%

Moreover, we extended this inverse prob-
lem to a three-dimensional parameter
space, with each entry scaling the first
three eigenmodes, and covered a combi-
nation of different setups, including the
steepest descent solver (SD), and implicit
differentiation (Impl) next to unrolled dif-
ferentiation (Unr). The results presented
in the table to the right show that PRDP
universally applies to each combination
and is, hence, agnostic to the linear solver
and the differentiation method. The qualitative behavior of all combinations is displayed in appendix
figure 15. For brevity, we only list the PR savings achieved using PRDP by displaying the cost of
optimization with Kϵ and the corresponding reduction (Red.). Importantly, under the larger param-
eter space within each of the four setups, PRDP works equally well, achieving PR savings of 48%
and 43% for the Jacobi method and the steepest descent solver, respectively.
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4.2 LINEAR NEURAL EMULATOR LEARNING
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Figure 7: Total Inner iters in Heat 1D, 2D & 3D.

We train a multilayer percep-
tron (outer problem) to func-
tion as an autoregressive em-
ulator, i.e., a replacement for
the numerical time stepper of
a heat diffusion equation. Fol-
lowing the differential physics
paradigm, the numerical heat
equation solver (inner problem)
is included in the gradient loop
during training. This training pipeline is depicted in figure 1. In section 2.3, using a 1D case of the
same setup, we demonstrated that savings due to incomplete convergence are actually achievable,
and that they are likely caused by the nature of the training in deep learning. We identified Kmax
based on an exhaustive search of different K values. This is infeasible in practice. Hence, PRDP
is designed to automatically find the upper refinement threshold and prevent further superfluous re-
finement. In figure 6(a), (b) & (c), this can be seen as its convergence follows certain refinement
levels. We can confirm that the same Kmax = 10 is found by PRDP constituting the aforementioned
60% IC savings. Moreover, as figure 7(a) reveals, the total PRDP savings are 79% against the fully
converged run withKϵ = 25 because PRDP additionally contributes 19% savings due to progressive
refinement. We repeated a similar experiment in two and three dimensional settings. In the 2D case,
the difference between Kϵ = 43 and Kmax = 12 constitutes 72% IC savings. Together with 14% PR
savings, this totals 86% savings due to applying PRDP as visualized in figure 7. Similarly, training a
ResNet (He et al., 2016) in the 3D case, the total savings due to PRDP were 81%. This corresponded
to a reduction in total training time by 24% and 78% in the 2D and 3D cases, respectively, which
underscores PRDP’s potential for large computational savings in more difficult, higher-dimensional
settings.

4.3 NONLINEAR NEURAL EMULATOR LEARNING
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Figure 8: Total inner
iters in Burgers.

The preceding tests constituted inner problems where only the linear sys-
tem’s right-hand side was dependent on the trainable parameters. We
expect our PRDP algorithm to work equally well when training through
inner problems with a non-constant matrix assembly function Λ. To il-
lustrate this, we train a ResNet to function as an autoregressive emulator
for the one-dimensional Burgers equation on a periodic unit interval with
a time-implicit upwinding discretization. Additionally, this yields a non-
symmetric matrix requiring the more sophisticated GMRES solver (Saad &
Schultz, 1986). We use a linearization around the previous point in time, re-
sulting in an Oseen problem (Turek, 1999). When training a ResNet under a similar mixed scenario
as in section 4.2, we can again confirm the working of PRDP in this case. It amounts to 30% savings
by incomplete convergence reducing Kϵ = 23 to Kmax = 16. An additional 29% PR savings yield
a total of 59% PRDP savings. The Burgers emulation was particularly challenging, requiring us to
set K0 = 4 to overcome a strongly divergent regime if the physics is too coarse at the beginning
of training. This is noticeable in the initial epochs in figure 6(c). This figure also shows that since
the fanning between the different (convergent) refinement levels is not as strong as before, the IC
savings are lower. However, we still see significant savings due to progressive refinement.

4.4 NEURAL-HYBRID EMULATOR FOR THE NAVIER-STOKES EQUATION

Tightly combining classical numerical solvers and neural networks is a promising research direction
(Kochkov et al., 2021; Um et al., 2020). It differs from our previous experiments in that the solver
is not just part of the training compute graph but will also be executed during the inference of the
model.

We mimic the setup of Um et al. (2020) to have a neural component cor-
rect the discretization error of an incompressible Navier-Stokes solver by train-
ing it against a reference produced on a higher resolution of discretization.
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Figure 9: The training (top) and evaluation (bot-
tom) pipelines for neural-hybrid emulator.

The training and evaluation setups are shown in
figure 9. The outer and inner problems corre-
spond to the network training and the Navier-
Stokes solver in the training loop, respectively.
Similarly to the Burgers example, we choose an
upwind-based discretization with the lineariza-
tion around the previous step in time. The
additional incompressibility constraint leads to
a saddle point structure (Turek, 1999). We
choose to solve it in a coupled form with the
GMRES algorithm (Saad & Schultz, 1986).
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Figure 10: Total inner
iters in Navier Stokes.

In this complex scenario, PRDP likewise gives substantial benefits: It is
able to save 65% inner iterations due to incomplete convergence and 16%
iterations in progressive refinement. Ultimately, reducing the number of
iterations by a total of 81% results in a reduction in wall clock training
time by 57%, as shown in figure 2(c). Since neural-hybrid approaches ex-
ecute the fully converged physics solver during inference and consequently
during validation, PRDP’s reliance on a validation metric necessitates this
additional cost. In our experiments, we found that compared to training
with fully converged physics without computing the validation loss, PRDP
was still faster by 57%.

5 RELATED WORK

Differentiation through implicit relations Fischer (1991) established an implementation frame-
work for unrolled differentiation and investigated the convergence of the derivative, focusing on
linear solvers. Charles (1992) extended this work to a broader class of iterative processes. As an
alternative to unrolled differentiation, Christianson (1998) derived the implicit differentiation rules
over linear solves. Beyond linear systems, implicit differentiation has since gained prominence in
the machine learning community, particularly for hyperparameter optimization (Bengio, 2000) and
other bilevel optimization (BLO) applications that require differentiating through inner optimiza-
tions, such as deep equilibrium models (Bai et al., 2019) and meta-learning (Andrychowicz et al.,
2016). We view differentiable physics (Thuerey et al., 2021) as another type of BLO with the spe-
cialty of sparse linear systems. The practicality of implicit differentiation is largely due to its reduced
memory footprint and lower reverse-mode computational cost, especially as modern automatic dif-
ferentiation (AD) tools can automatically handle the necessary propagation rules (Blondel et al.,
2022). Additionally, implicit differentiation allows for the black-box use of solver implementations,
enabling the integration of third-party components into differentiable computational graphs (Giles,
2008). However, unrolled differentiation remains an active research area, with work focusing on
non-asymptotic analyses (Scieur et al., 2022) and other aspects (Maclaurin et al., 2015; Franceschi
et al., 2017; Grazzi et al., 2020; Ji et al., 2021).

Analysis and cost-reduction of bilevel optimization To address the computational cost of bilevel
optimization, Fung et al. (2021) presented Jacobian-free backpropagation, where the Jacobian of the
implicit solver is approximated as the identity, eliminating the need for adjoint linear solves. Geng
et al. (2021) introduced phantom gradients, where the matrix inversion is replaced with an approxi-
mate inverse, and provided theoretical guarantees on the convergence of stochastic gradient descent
as the outer problem. Lorraine et al. (2020) approximates the implicit linear solves with a reduced
number of conjugate gradient steps. Moreover, Shaban et al. (2019) and recently Bolte et al. (2023)
discuss unrolled differentiation through only a reduced number of iterations. All the aforemen-
tioned works consider (what we call) incomplete convergence (IC) savings, albeit in the setting of
deep equilibrium models (Bai et al., 2019) or hyperparameter optimization (Feurer & Hutter, 2019).
On the other hand, Pedregosa (2016) studied approximate hypergradients by adjusting the tolerances
of inner primal and implicit linear solves following a pre-defined schedule. This work proves (what
we call) progressive refinement (PR) savings. Prior to this, Domke (2012) investigated outer train-
ing with unrolled AD through incompletely converged iterations, specifically for gradient descent,
heavy ball, and L-BFGS methods as inner optimizers. They note the advantage of implementing
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incomplete convergence using the number of inner iterations rather than inner tolerance. Our ap-
proach uniquely combines PR and IC savings – through both unrolled and implicit differentiation
– targeting iterative solvers for sparse linear systems embedded within neural network training. To
our knowledge, no prior work has applied these techniques in this context.

6 LIMITATIONS AND OUTLOOK

Limitations While PRDP is designed to work across a range of differentiable physics settings,
there are, of course, way more potential linear systems that can arise, all with their specific charac-
teristics. Albeit we believe that the approach using scheduling over iterations rather than scheduling
via tolerances might be more generally applicable, it remains to be tested how PRDP applies to un-
structured discretizations in higher dimensions potentially also involving multiple physics. PRDP is
limited to settings that involve iterative linear solvers. As such, it can not be used for purely explicit
numerical solvers (e.g., found in strongly hyperbolic problems) or when the linear systems are solved
spectrally (Kochkov et al., 2024). However, most other simulations in science and engineering en-
tail linear solvers either due to more efficient implicit time stepping or when solving steady-state
problems. Moreover, whenever dynamics are constrained, e.g., the incompressible Navier-Stokes
equations, even if purely explicit time stepping is used, iterative processes are required to resolve
the constraints.

Outlook and Impact Progressively Refined Differentiable Physics (PRDP) provides a means to
exploit both savings due to progressive refinement and incomplete convergence, thereby greatly re-
ducing the cost of neural network training with differentiable physics. This could enable settings that
so far have been infeasible due to prohibitive expenses like long temporal unrollings or differentiable
physics on high resolutions or in three dimensions.

Our work opens up many interesting directions for future investigations, such as smoother relations
between the achieved plateau ratio r and the conducted iterations/prescribed tolerance. Potentially,
those could be faster than the linear increments we used in this work. For neural-hybrid emulators IC
savings via Kmax might also extend to the inference stage. So far, PRDP couples primal and adjoint
(in-)accuracy. One can use the unique properties of either unrolled or implicit differentiation for
more sophisticated approaches. This can include an imbalanced number of iterations in the primal
solve and implicit linear solve. For unrolled differentiation, one can unroll a different number of
iterations either reversely following Bolte et al. (2023) or Shaban et al. (2019) or from the beginning.
Other levels of refinement than by the number of iterations of a linear solver are likewise interesting
directions for future work, e.g., using differences in spatial or temporal resolution together with
resolution-agnostic neural emulators.

7 CONCLUSION

This work investigated neural network training through incompletely converged differentiable
physics. Our objective was to reduce the cost of gradient computation without sacrificing training
accuracy. Prevalent research on training with incompletely converged gradients focuses on bilevel
optimization problems, primarily in meta-learning or hyperparameter optimization contexts. This
work extends the research in the differentiable physics space, focusing on iterative linear system
solves associated with discretized differential operators.

We have demonstrated that neural networks can be trained through differentiable physics solvers
significantly coarser than full convergence. Our approach of Progressively Refined Differentiable
Physics combines compute savings from both progressive refinement and incomplete convergence.
This yielded favorable outcomes across all our test scenarios. It makes initial training progress
cheap using coarse physics and carefully improves training accuracy using adaptive physics refine-
ment over time, ending the training at a refinement significantly below primal convergence. In total,
we achieve up to 86% fewer cumulative number of physics solver iterations than training with fully
converged physics, which corresponded to 78% reduction in the training time. Our approach has
the potential for numerous practical improvements in learning pipelines that involve differentiable
numerical solvers and could facilitate integrating simulators into training that were previously con-
sidered computationally infeasible.
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8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we detail all physics parameters, discretization schemes, boundary con-
ditions, iterative solvers, network architectures, optimizers, learning rate schedules, data generation
methods, train-test splits, and batch sizes in the appendix. Additionally, the full source code for
our experiments is included in the supplemental material and will be made publicly available upon
acceptance.
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A NOTATION

This section lists the primary notations used throughout the paper for clarity and ease of reference.

• Ω ⊂ RD: Spatial domain of the physics problem.
• h: Spatial discretization width.
• t: Time step index in time-stepping problems.

VARIABLES AND OPERATORS

• uh ∈ RN : The discretized solution vector.
• u∗

h: The direct solution to the linear system Auh = bh.

• A ∈ RN×N : The system matrix of the discretized PDE.
• bh ∈ RN : The right-hand side vector.
• ∆: The Laplacian operator, e.g., ∆u(x).
• ∇: The gradient operator.
• λ: Auxiliary variable used in implicit differentiation.
• β(θ): Function mapping parameters θ to bh.
• Λ(θ): Funcion mapping parameters θ to A.
• Φ(.): Function representing each iteration of an iterative solver.
• ∥ · ∥: Matrix or vector norm.
• f(.; θ): Neural network parameterized by θ.
• .T : Transpose of a matrix or vector.

• 1⃗: Identity matrix.
• θ: Trainable parameters of the neural network or physical model.
• K: Number of iterations performed by the iterative solver.
• Kϵ: Number of solver iterations required to achieve tolerance ϵ.
• PK : Differentiable physics operator, approximating the solution of a linear system after K

iterations.
• u

[K]
h : Approximate solution of the linear system after K iterations of the solver.

• urh: Reference solution to the linear system, computed using either a direct solver or a fully
converged iterative solver.

• L(θ): Outer loss function, which measures the discrepancy between the predicted solution
and a reference solution.

• Jl, JPK
: Jacobians of the loss function and the physics operator, respectively.

PARAMETERS AND TOLERANCES

• ϵ: Convergence tolerance for iterative solvers.
• τstep: Threshold for the stepping criterion in PRDP.
• τstop: Threshold for the stopping criterion in PRDP.
• δ: Grace window for epoch intervals.
• e: Exponential averaging window
• ∆K: Increment in solver iterations used in progressive refinement.
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MISCELLANEOUS

• Kϵ: Number of iterations required to reach a specified tolerance ϵ in the iterative solver.

• Kmax: Maximum number of inner iterations sufficient for training accuracy.

• Kmin: Minimum number of inner iterations required to prevent divergence during training.

• r, rc: Ratios used to evaluate the stepping and stopping criteria for progressive refinement,
based on the validation metric’s behavior.

B ITERATIVE LINEAR SOLVERS

The solution to linear systems of equations is fundamental to scientific computing. Especially for
partial differential equations discretized using fine resolutions or in higher dimensions, the discrete
linear systems become large and sparse. Oftentimes, iterative solvers are the only practical way of
solving them (Saad, 2003).

For our efforts to reduce the cost of differentiable physics as part of neural network training,
we consider three different iterative solvers. The Jacobi method belongs to the class of smooth-
ing/relaxation methods. When reformulating a linear system solve as a convex quadratic optimiza-
tion problem, the algorithm of steepest descent naturally arises. To solve asymmetric and compli-
cated systems, we also use the more sophisticated GMRES method. We implemented the Jacobi
method and steepest ourselves. For the GMRES, we used the version of JAX2.

In all tests, the linear solvers were zero-initialized. Convergence is achieved if the relative residuum
error using the 2-norm

ξ[k] =
∥Au

[k]
h − bh∥2
∥bh∥2

(6)

is below the threshold ϵ, which we set to ϵ = 10−5 due to single precision. We use the maximum
number of iterations K as a way to control the refinement of the physics simulation. The iterative
solvers return if either the maximum number of iterations K is reached or the tolerance threshold
ξ[k] < ϵ is met.

B.1 JACOBI RELAXATION

The Jacobi method is a relaxation-type method based on the decomposition of the system matrix
A into a strictly lower diagonal L, a diagonal D, and a strictly upper diagonal U part such that
A = L+D +U . We present its algorithm in 1.

Algorithm 1: Jacobi Method for Solving Auh = bh

Input: Matrix A ∈ RN×N , vector bh ∈ Rn, tolerance ϵ, maximum iterations K
Output: Approximation of the solution uh ∈ RN

Decompose L+D +U = A Initialize u
[0]
h ∈ RN to zeros u[0]

h = 0;
for k = 0, 1, . . . ,K − 1 do

u
[k+1]
h = D−1

(
bh − (L+D)u

[k]
h

)
Compute relative residuum norm: ξ[k+1] = ∥Au

[k+1]
h − bh∥2/∥bh∥2;

if ξ[k+1] < ϵ then
break;

end
end
return u

[k+1]
h

2https://jax.readthedocs.io/en/latest/_autosummary/jax.scipy.sparse.
linalg.gmres.html
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As a smoothing method, the convergence of the Jacobi method depends on the spectral radius of the
iterator matrix (Saad, 2003) via

∥r[k+1]
h ∥2 ≤ ρ(D−1(L+R))∥r[k]h ∥2. (7)

Loosely speaking, the condition number of the system matrix A affects the spectrum of the Ja-
cobi iterator matrix in that high condition numbers lead to spectral radii close to 1.0, causing slow
convergence.

B.2 STEEPEST DESCENT

The steepest descent method follows the gradient of the convex quadratic optimization problem
associated with solving a linear system of equations, which is also given by the negative residuum.
However, in contrast to the gradient descent methods typically found in more general optimization
problems (like for training neural networks), the optimal step size for maximum decrease α[k] can
be determined in each iteration (Saad, 2003). We present the steepest descent in algorithm 2.

Algorithm 2: Steepest Descent Method for Solving Auh = bh

Input: Matrix A ∈ RN×N , vector bh ∈ RN , tolerance ϵ, maximum iterations K
Output: Approximation of the solution uh ∈ RN

Initialize u
[0]
h ∈ RN to zeros u[0]

h = 0;
Set initial residual r[0]h = bh −Au

[0]
h ;

for k = 0, 1, . . . ,K − 1 do
Compute step size α[k] =

r
[k]
h ·r[k]

h

r
[k]
h ·Ar

[k]
h

;

Update solution u
[k+1]
h = u

[k]
h + α[k]r

[k]
h ;

Update residual r[k+1]
h = r

[k]
h − α[k]Ar

[k]
h ;

Compute relative residuum norm: ξ[k+1] = ∥r[k+1]
h ∥2/∥bh∥2;

if ξ[k+1] < ϵ then
break;

end
end
return u

[k+1]
h

It can be shown that the residuum norm converges exponentially linear in the asymptotic regime
based on the condition number of the system matrix κ(A) via (Saad, 2003)

∥r[k+1]
h ∥2 ≤

(
κ(A)− 1

κ(A) + 1

)
∥r[k]h ∥2. (8)

B.3 GMRES

The General Method of RESiduals (GMRES) builds a subset of the Krylov basis associated with
system matrix A and finds an approximation to the solution of the linear system via least-squares.
Typically, it is restarted to rebuild a new Krylov basis each m iteration. We call an iteration k the
construction of the entire m-dimensional Krylov subspace and subsequent least-squares solve. We
use the "batched" mode of the JAX implementation, which can only terminate after a restart but
not within a restart.

C MORE DETAILS ON DIFFERENTIATING OVER ITERATIVE LINEAR SOLVERS

For convenience, we restate the simple computational graph involving a linear solver with K steps
subject to reverse-mode automatic differentiation (AD) as

(∇θL)T = θ̄T =
((

1⃗T Jl|PK(f(· ;θ))

)
JPK
|f(· ;θ)

)
Jf |θ. (9)
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Algorithm 3: GMRES Method for Solving Auh = bh

Input: Matrix A ∈ RN×N , vector bh ∈ RN , tolerance ϵ, maximum iterations K, restart
parameter m

Output: Approximation of the solution uh ∈ RN

Initialize u
[0]
h ∈ RN to zeros u[0]

h = 0;
Set initial residual r[0]h = bh −Au

[0]
h ;

Set β = ∥r[0]h ∥2;
Set v1 = r

[0]
h /β (first Krylov basis vector);

for k = 0, 1, . . . ,K − 1 do
for j = 1, 2, . . . ,m do

Compute wj = Avj ;
for i = 1, . . . , j do

Compute hij = vi ·wj ;
Update wj = wj − hijvi;

end
Set hj+1,j = ∥wj∥2;
Normalize vj+1 = wj/hj+1,j ;

end
Solve the least-squares problem: minimize ∥βe1 −H [k]y[k]∥2;
Update solution: u[k+1]

h = u
[k]
h + v[k]y[k];

Compute relative residuum norm: ξ[k+1] = ∥r[k+1]
h ∥2/∥bh∥2;

if ξ[k+1] < ϵ then
break;

end
Restart GMRES after every m iterations if convergence not met;

end
return u

[k+1]
h
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In this setting, one has to compute three vector-Jacobian products (VJPs). The VJP over the loss
function ūTh = 1⃗T Jl|PK(f(· ;θ)) and into the network’s parameter space θ̄T = ḡTh Jf |θ can be
straightforwardly evaluated by the AD engine as they consist of explicit operations.

On the other hand, the VJP over the approximative solver ḡTh = ūThJPK
|f(· ;θ) is nontrivial as

it requires handling the iterative solver and the assembly routines. We detail the two prominent
approaches below. They are visually depicted in figure 11.

C.1 IMPLICIT DIFFERENTIATION

We first solve an auxiliary linear system for an adjoint variable λh (Christianson, 1998)

ATλh = ūh. (10)

Since the convergence behavior of most iterative linear solvers is dependent on the spectrum of
the system matrix and since transposition does not effectively change this, it is reasonable to em-
ploy the same iterator as in the primal solution but with a transposed system matrix and differ-
ent right-hand side Φ(· ;AT , ūh). The convergence of the iterates {λ[0]h , λ

[1]
h , λ

[2]
h , . . . , λ

[K̃]
h } =

{Φk(λ[0]h ;AT , ūh)}K̃k=0 can potentially be different than in the primal solution. In other words, K̃ϵ

for tolerance ϵ can be different from primal the Kϵ.

Once λh is determined, it directly equals the intermediate gradient on the right-hand side b̄h = λh.
The intermediate gradient on the system matrix arises as the negative outer product with the primal
solution Ā = −λhuTh . Hence, it is sufficient to only save the solution u

[K]
h from the primal pass;

no further iterates are required.

Then, the reversely propagated intermediate gradient on the input of the physics operator is given by

ūThJPK
|gh

= ḡTh = b̄ThJβ |gh
+ ĀTJΛ|gh︸ ︷︷ ︸

=Ā:JΛ|gh

, (11)

under the abuse of notation to consider the gradient matrix Ā as a vector. Alternatively, this can also
be expressed as the left double contraction. It must be noted that typically Ā is only evaluated on
the sparsity pattern of A, if it is materialized at all.

In case only the right-hand side bh is parameterized, there will be no reverse propagation through
the matrix assembly Λ. For example, this was the case for the Poisson and heat emulator examples
in section 2.2 and section 2.3, respectively.

Since we use matrix-free implementations for most linear solvers, the primal system is not solved
with a materialized matrix A but a function that is linear in its first argument

Λ(gh)uh
∧
= ψ(uh; gh). (12)

In this case, we compute the system matrix’ contribution to the previous intermediate gradient via
the negative VJP over its second argument

ūThJPK
|gh

= ḡTh = b̄ThJβ |gh
− λThJψ,2|gh

. (13)

To employ the iterator Φ on a matrix-free version of the transposed matrix, we need to program-
matically transpose the function ψ, which can be done with JAX (Bradbury et al., 2018). Moreover,
there is a function in JAX to automatically register linear solvers with correct propagation rules3.

More generally speaking, implicit differentiation is powerful because it allows differentiation over
various implicit relations simply by solving a linear system of equations. Modern AD engines
allow the effortless linearization of optimality conditions. This allows for easily registering custom
propagation rules by employing matrix-free Krylov solvers (Blondel et al., 2022). Note, however,
that the focus of this paper is the differentiation over linear system solutions in which the primal
operation is the same as in the implicit propagation rule.

3https://jax.readthedocs.io/en/latest/_autosummary/jax.lax.custom_
linear_solve.html
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C.2 UNROLLED DIFFERENTIAION

Unrolled differentiation of an iterative program is the direct application of standard automatic dif-
ferentiation tools to its algorithmic implementation. AD unrolls the program’s iterations and writes
them as individual computational steps.

We find the intermediate gradients on both the system matrix Ā and right-hand side b̄h via first
computing the intermediate gradient on all iterates using the VJP of the iterator Φ with respect to its
first argument (

ū
[k]
h

)T
= ūTh

k∏
l=K−1

JΦ,1|u[l]
h =Φl(u

[0]
h ;A,bh)

. (14)

Then we can aggregate each contribution using the VJP over the iterator Φ with respect to its condi-
tioned arguments

ĀT unroll
=

K−1∑
k=0

(
ū
[k]
h

)T
JΦ,2|u[k]

h =Φk(u
[0]
h ;A,bh)

, (15)

b̄Th
unroll
=

K−1∑
k=0

(
ū
[k]
h

)T
JΦ,3|u[k]

h =Φk(u
[0]
h ;A,bh)

. (16)

Since the VJP of the iterator has to be evaluated at primal inputs, typically, all iterates must be stored
on the tape or recomputed. There are approaches that balance compute and memory (Griewank,
1992). However, for simplicity, we only implement unrolled differentiation by retaining the entire
sequence of iterates.

After the intermediate gradients have been obtained, the gradients are further backpropagated via
equation 11. While the mathematical description of unrolled differentiation is more elaborate than
for implicit differentiation, its implementation in AD engines like JAX is easier given the algorithm
fully uses differentiable operations.

The non-asymptotic study of Scieur et al. (2022) revealed that the convergence of unrolled differen-
tiation can exhibit a burn-in phenomenon. We also investigated this for our iterative linear solvers
but found it to be practically irrelevant. While it theoretically can occur for problems with parame-
terized system matrices or for Krylov methods in general, we believe that for large enough parameter
spaces, the potential burn-in of some gradient components is compensated by the entirety. Moreover,
since we applied PRDP using both unrolled and implicit differentiation and observed almost identi-
cal savings in both cases, we further conclude that even if there was a burn-in, the PRDP approach
would be unaffected by it.

D DIFFERENTIABLE SOLVERS

In this section, we describe the discretization choices behind the differentiable solvers. They are
based on finite difference approximations on uniform cartesian grids with Dirichlet or periodic
boundary conditions. Linear PDEs naturally lead to a linear system of equations for which only
the right-hand assembly remains a dependency on the prior compute graph, e.g., is built upon infor-
mation previous in time. In the case of the nonlinear PDEs, we choose a Picard-based approximation
leading to Oseen-like problems (Turek, 1999). Those have both the right-hand side as well as the
system matrix depending on the prior parts of the compute graph.

The discretizations are implemented matrix-free in JAX (Bradbury et al., 2018). Matrices are only
materialized when needed for smoothing methods or for direct decomposition-based solvers.

Once fully discretized and re-formulated, each problem is cast in the standard form of a linear system
of equations

Auh = bh, (17)

using the assembly routines A = Λ(gh) and bh = β(gh). In the simplest case we have directly
gh = θ but other setups like information from a previous time step gh = u

[t−1]
h are common. Then,

we define the physics operator P as the function mapping from the prior point in the compute graph
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Figure 11: The iterative solution of a linear system of equations spawns a long sequential compute
graph that constitutes the primal pass (in black). The step from prior variable gh to approximate
solution u

[K]
h can be capsuled as the physics operator PK (in blue). Under reverse-mode AD,

differentiation over PK (blue curvy line) can be done in two ways. Implicit Differentiation spawns
an auxiliary iterative linear solve using the transposed matrix AT (in purple). On the other hand,
unrolled differentation opens the black box and reversely propagates through each iterator step Φ
(in yellow). Both approaches yield intermediate gradients on system matrix Ā and b̄h, which are
subsequently backpropagated into ḡh via the VJP over their assembly routines.

gh to the solution of the linear system of equations

P(gh) := uh = A−1bh = (Λ(gh))
−1
β(gh) (18)

If P is given without subscript this refers to an exact solver of the linear system. This can be a
direct method based on matrix decomposition or a fully converged iterative solver. Either way, the
residuum norm of this solver’s result is guaranteed to be below the relative tolerance threshold ϵ via

∥Λ(gh)P(gh)− β(gh)∥2
∥β(gh)∥2

< ϵ. (19)

If not mentioned otherwise, we set ϵ = 10−5 because we exclusively work in single precision
floating format. An approximate solver with K iterations is written PK(·). The iterative linear
solvers we employed are introduced in section B.

D.1 POISSON EQUATION IN 1D

We solve the Poisson equation on the unit interval with homogeneous Dirichlet boundary conditions
and a parameterized right-hand side

d2u(x)

dx2
= −p(x, θ) u(0) = 0 = u(1) (20)

For a finite difference discretization, the domain Ω = (0, 1) is divided equidistantly into N + 2
grid points, out of which two are related to the prescribed value on the boundary and can, hence,
be ignored. As such, there are N degrees of freedom that make up the discrete solution vector
uh ∈ RN . Equally, the right-hand side is discretized at the same points and negated, yielding bh.
At index i interior to the domain, the second derivative is approximated with the three-point stencil

1

(∆x)2
(ui−1 − 2ui + ui+1) = −bi, (21)
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with the spacing ∆x = 1
N+1 . This leads to the system of linear equations

1

(∆x)2


−2 1 0 . . . 0 0
1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
...

. . .
...

0 0 0 . . . 1 −2


︸ ︷︷ ︸

=:L̃1=A


u1
u2
u3
...
uN

 =


b1
b2
b3
...
bN

 , (22)

in which the first matrix is due to the discretized Laplace operator in one dimension. We denote it
L̃1 (the tilde is to distinguish it from the Laplacian matrices on periodic boundaries of the following
sections). The subscript is to indicate the one-dimensional setting. It is tridiagonal and solely defines
the system to be solved with A = L̃1 as

Auh = β(bh). (23)

with the right-hand side assembly function just element-wise negating the input. The system matrix
is not parameter-dependent, i.e., Λ(g) = L̃1.

D.2 HEAT DIFFUSION IN 1D

We consider the time-dependent diffusion equation in one dimension on the unit interval under
periodic boundary conditions

∂u

∂t
= ν

∂2u

∂x2
u(t, 0) = u(t, 1). (24)

Similarly to section D.1, we equidistantly divide the domain into N + 1 grid points. Under periodic
boundaries, only one of the boundary points can be eliminated. By convention, we choose the right-
most point, leaving N degrees of freedom (including the left-most point). The matrix associated
with the discretized second derivative in one dimension now reads

L1 :=
1

(∆x)2


−2 1 0 . . . 0 1
1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
...

. . .
...

1 0 0 . . . 1 −2

 . (25)

It differs from the former Laplacian matrix in that it is not exclusively tri-diagonal but also has
entries in the top right and bottom left corners. Additionally, we now have ∆x = 1/N . With the
periodic Laplacian matrix L1, equation 24 can be discretized in space via the method of lines

duh
dt

= νL1uh. (26)

Applying an implicit Euler discretization to the time derivative yields

u
[t+1]
h − u

[t]
h

∆t
= νL1u

[t+1]
h , (27)

with two subsequent time levels on the state vector. This can be rearranged into the standard form
of a linear system of equations as

(I − ν∆tL1)︸ ︷︷ ︸
:=A

u
[t+1]
h = u

[t]
h . (28)

This is also referred to as the backward-in-time central-in-space (BTCS) discretization of the dif-
fusion equation. Advancing the state by one time level requires solving a linear system with the
constant system matrix A and with the assembly function β(·) simply being the identity. Hence, the
physics operator maps to the next state in time with

u
[t+1]
h = P(u[t]

h ). (29)
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D.3 HEAT DIFFUSION IN 2D

The equation for heat diffusion in two dimensions using a bi-periodic domain reads

∂u

∂t
= ν

(
∂2u

∂x2
+
∂2u

∂y2

)
︸ ︷︷ ︸

∆u

u(t, 0, y) = u(t, 1, y), u(t, x, 0) = u(t, x, 1) (30)

Under a two-dimensional biperiodic domain, both the right-most and the top-most boundary nodes
are eliminated, see figure 12a. We consider the unit-square Ω = (0, 1)2 with equally many degrees
of freedom per dimension, in total N2.

The Laplacian matrix in two dimensions under biperiodic boundaries can be written in a block
structure using the one-dimensions Laplacian L1 and appropriately sized identity matrices I

L2 =
1

(∆x)2


(∆x)2L1 − 2I I 0 0 . . . 0 0 I

I (∆x)2L1 − 2I I 0 . . . 0 0 0
0 I (∆x)2L1 − 2I I . . . 0 0 0
...

. . .
...

I 0 0 0 . . . 0 I (∆x)2L1 − 2I

 .
(31)

With this two-dimensional Laplacian matrix, the state vector uh ∈ RN2

is advanced similarly via
solving

(I − ν∆tL2)︸ ︷︷ ︸
:=A∈RN2×N2

u
[t+1]
h = u

[t]
h . (32)

Similar to the one-dimensional BTCS scheme, the system matrix is constant. The right-hand side
assembly is again the identity.

D.4 HEAT DIFFUSION IN 3D

The equation for heat diffusion in three dimensions reads

∂u

∂t
= ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
︸ ︷︷ ︸

∆u

. (33)

We again use periodic boundary conditions on all 6 sides

u(t, 0, y, z) = u(t, 1, y, z), u(t, x, 0, z) = u(t, x, 1, z), u(t, x, y, 0) = u(t, x, y, 1). (34)

Similarly to the two-dimensional setting, the right-most, the top-most, and the rear-most boundary
nodes are eliminated. We consider the unit-cube Ω = (0, 1)3 with equally many degrees of freedom
per dimension, in total N3.

The Laplacian matrix in three dimensions under triperiodic boundaries can be written in a block
structure using the two-dimensional Laplacian L2 and appropriately sized identity matrices I

L3 =
1

(∆x)2


(∆x)2L2 − 2I I 0 0 . . . 0 0 I

I (∆x)2L2 − 2I I 0 . . . 0 0 0
0 I (∆x)2L2 − 2I I . . . 0 0 0
...

. . .
...

I 0 0 0 . . . 0 I (∆x)2L2 − 2I

 .
(35)

With this three-dimensional Laplacian matrix, the state vector uh ∈ RN3

is advanced similarly via
solving

(I − ν∆tL3)︸ ︷︷ ︸
:=A∈RN3×N3

u
[t+1]
h = u

[t]
h . (36)

Similar to the one-dimensional BTCS scheme, the system matrix is constant. The right-hand side
assembly is again the identity.
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D.5 BURGERS IN 1D

The Burgers equation on the one-dimensional unit interval in non-conservative form with periodic
boundary conditions reads

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
u(t, 0) = u(t, 1). (37)

For the diffusion term, we will use the same discretization approach as in section D.2. The con-
vection term requires special treatment because of its nonlinearity and the advection characteristic
of the first derivative. Let F1 and B1 represent the forward or backward approximation of the first
derivative in one dimension on periodic boundaries, respectively, via

F1 :=
1

∆x


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
...

. . .
...

1 0 0 . . . 0 −1

 B1 :=
1

∆x


1 0 0 . . . 0 1
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

. . .
...

0 0 0 . . . −1 1


(38)

Again, note the element in the corner entries of the matrices. Then, we can build an upwind differ-
entiation matrix based on the winds wh

Γ1(wh) = diag

max

(
s−1(wh) +wh

2
, 0

)
︸ ︷︷ ︸

positive winds

B1+diag

max

(
s1(wh) +wh

2
, 0

)
︸ ︷︷ ︸

negative winds

F1. (39)

Deducing the positive and negative winds from neighboring averages (using the periodic forward
shift s−1 and backward shift s1 operators) is necessary to have correct movement if the winds
change sign over the domain. If we use the discrete state vector uh as winds wh, we can discretize
the continuous equation via the method of lines as

duh
dt

+ Γ1(uh)uh = νL1uh. (40)

Naturally, the spatial discretization of a nonlinear PDE leads to a system of nonlinear ODEs. To
fully resolve the nonlinearity, one could resort to a Newton-Raphson or a quasi-Newton method.
However, for simplicity, we will apply the trick to linearize the upwind matrix using the state previ-
ous in time (Turek, 1999), which gives

u
[t+1]
h −∆tu

[t]
h

∆t
+ Γ1(u

[t]
h )u

[t+1]
h = ∆tνL1u

[t+1]
h . (41)

This can be rearranged into the standard form as(
I +∆tΓ1(u

[t]
h )−∆tνL1

)
︸ ︷︷ ︸

=A=Λ(u
[t]
h )

u
[t+1]
h = u

[t]
h . (42)

As such, the system matrix is dependent on the previous state in time, i.e., it is dependent on the
previous variables in the compute graph. The right-hand side assembly routine is again the identity.
However, different from before is that the system matrix A is now asymmetric, which necessitates
special linear solvers.

Iteration over re-assembly and solution is possible but we omit this for simplicity, accepting that
the nonlinear residuum is not fully converged. This introduces an error of order O(∆t), which is
acceptable since our temporal discretization is first order. It must be noted that despite the nonlin-
ear residuum is not fully converged, the linear residuum associated with the linearization will be,
assuming we use the converged solver P .
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D.6 BURGERS IN 2D

While we did not investigate any experiments with a two-dimensional Burgers solver, we will still
present it here as it naturally helps with understanding the two-dimensional Navier-Stokes solver.

In two dimensions, the continuous solution function to the Burgers PDE becomes vector-valued with
two channels. Using a symbolic notation, we can write

∂u

∂t
+ (u · ∇)u = ν∆u. (43)

We will use the same biperiodic boundary conditions as described in equation 37 identically for both
channels. An alternative way to write the two-dimensional Burgers equation is in its two components

∂u1
∂t

+ u1
∂u1
∂x

+ u2
∂u1
∂y

= ν∆u1,

∂u2
∂t

+ u1
∂u2
∂x

+ u2
∂u2
∂y

= ν∆u2.

(44)

Our domain Ω is again the unit square.

Let F2,1 F2,2 be the forward derivative operator in two dimensions in the direction of dimensions
one and two, respectively. Moreover, B2,1 and B2,2 are the same for the backward derivative opera-
tor. Hence, we can build an unwinding operator for the first direction as

Γ2,1(wh) = diag

max

(
s−1(wh,1) +wh,1

2
, 0

)
︸ ︷︷ ︸

positive winds

B2,1+diag

max

(
s1(wh,1) +wh,1

2
, 0

)
︸ ︷︷ ︸

negative winds

F2,1,

(45)
which only needs the winds in direction one. Similarly, we get for the other direction

Γ2,2(wh) = diag

max

(
s−1(wh,2) +wh,2

2
, 0

)
︸ ︷︷ ︸

positive winds

B2,2+diag

max

(
s1(wh,2) +wh,2

2
, 0

)
︸ ︷︷ ︸

negative winds

F2,2.

(46)
Let us combine these into one joint upwind discretization

Γ2(wh) = Γ2,1(wh) + Γ2,2(wh) (47)

This allows for discretizing the component-wise equation 44 first in space via the method of lines,
afterward similarly in time as before to get the Oseen problem

u
[t+1]
h,1 − u

[t]
h,1

∆t
+ Γ2(u

[t]
h )u

[t+1]
h,1 = νL2u

[t+1]
h,2 ,

u
[t+1]
h,2 − u

[t]
h,2

∆t
+ Γ2(u

[t]
h )u

[t+1]
h,2 = νL2u

[t+1]
h,2 .

(48)

Note that for the discretization of each component, we need both components from the previous
time level to assemble the unwinding matrix. We can re-arrange and write the system jointly as[

I +∆tΓ2(u
[t]
h )−∆tνB2 0

0 I +∆tΓ2(u
[t]
h )−∆tνB2

]
︸ ︷︷ ︸

=A=Λ(u
[t]
h )

[
u
[t+1]
h,1

u
[t+1]
h,2

]
︸ ︷︷ ︸
=u

[t+1]
h

=

[
u
[t]
h,1

u
[t]
h,2

]
︸ ︷︷ ︸
=β(u

[t]
h )

. (49)

The assembly routine for the system matrix yields a block-diagonal structure while the right-hand
side assembly is just the identity.
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D.7 COUPLED NAVIER-STOKES IN 2D

We solve the incompressible Navier-Stokes equations which can be written in symbolic notation as
∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u, (50)

∇ · u = 0. (51)

The domain is again unit-square with bi-periodic boundary conditions. This is a system of partial
differential equations for three unknowns, which are the two components of the velocity u and
the scalar pressure field p. The pressure acts as a constraint to enforce incompressibility given by
the second equation. The coupling of velocity and pressure can be challenging, but a simple way
for a finite difference discretization is the staggered grid (Harlow & Welch, 1965). As depicted in
figure 12b, it also accounts for bi-periodicity by ignoring the top-most and right-most grid points but
uses different locations to store the three unknowns. In this setting, there are equally many degrees
of freedom per variable and direction. Each variable contributes N2 entries. Hence, in total, there
are 3N2.

Evaluating the convection term for both derivative directions requires mapping between the two
staggered representations of the velocity grid. Let us denote the mapping operatorM1 that moves all
variables to the grid representation of the first velocity component. The operatorM2 does the same
for the second velocity component. These operators can be easily realized via bi-linear interpolation,
which in the uniform cartesian grid simply amounts to the average of the four neighbors. Then
the convection operator for velocity components one and two are Γ2(M1(uh)) and Γ2(M2(uh)),
respectively.

The discretization of the pressure gradient and the velocity divergence requires a mapping between
the velocity and the pressure representations. It turns out that a forward derivative F2,1 or F2,2

also maps from the velocity representation to the pressure representation. Hence, we can define the
divergence operator on velocity components as D1 = F2,1 and D2 = F2,2, respectively. Vice
versa, the gradient operators mapping from pressure to velocity representations are the backward
differences, i.e., G1 = B2,1 and G2 = B2,2.

The method of line discretization with the linearization of convection matrices around the previous
state in time then yields

u
[t+1]
h,1 − u

[t]
h,1

∆t
+ Γ2(M1(u

[t]
h ))u

[t+1]
h,1 = −G1u

[t+1]
h,3 + νL2u

[t+1]
h,1 (52)

u
[t+1]
h,2 − u

[t]
h,2

∆t
+ Γ2(M2(u

[t]
h ))u

[t+1]
h,2 = −G2u

[t+1]
h,3 + νL2u

[t+1]
h,2 (53)

D1u
[t+1]
h,1 +Du

[t+1]
h,2 = 0 (54)

We can write this in matrix form asI +∆tΓ2(M1(u
[t]
h ))−∆tνL2 0 G1

0 I +∆tΓ2(M2(u
[t]
h ))−∆tνL2 G2

D1 D2 0


︸ ︷︷ ︸

:=A=Λ(u
[t]
h )

u
[t+1]
h,1

u
[t+1]
h,2

u
[t+1]
h,3


︸ ︷︷ ︸

u
[t+1]
h

=

u[t]
h,1

u
[t]
h,2

0


︸ ︷︷ ︸
=β(u

[t]
h )

(55)
which reveals the saddle-point nature of the coupled Navier-Stokes system given by the zero block
in the bottom right (Turek, 1999) Many popular solution techniques to the Navier-Stokes equations,
like PISO (Issa et al., 1986), can be interpreted as efficient preconditioners to this coupled system
as argued in Perot (1993). For simplicity and to not get nested iterative linear solvers, we solve the
coupled system without further modifications, which is reasonable for the low employed resolution
despite the considerably high condition number.

Similar to the Burgers simulators, the system matrix A is asymmetric and needs to be re-assembled
from information given by the previous state in time. However, only the previous velocity compo-
nents in time u

[t]
h,1 and u

[t]
h,2 are needed. The previous pressure state u

[t]
h,3 does not affect the matrix

assembly. It is also not relevant for the right-hand side assembly function β(·).
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(a) Bi-periodic (collocated) grid. The top-most and
right-most vertices have no degrees of freedom due to
periodicity.
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(b) Backward Staggering for bi-periodic domain. Hor-
izontal arrows denote the location degrees of freedom
for the x-velocity are saved. Vertical arrows corre-
spond to y-velocity. Red circles are for pressure.

Figure 12: Arrangement of degrees of freedom on two-dimensional bi-periodic domains.

E MORE DETAILS ON PRDP PARAMETERS

Stepping Threshold τstep The stepping criterion defines the threshold at which the validation met-
ric is considered sufficiently flat before the physics is refined. This value should not exceed 1, as
values greater than 1 would trigger refinement only when the error increases. Higher values (less
than 1) allow the metric to be flatter before the physics is refined. In other words, a lower value
enables faster progressive refinement and trades off PR savings. Refinement can also be made faster
by making larger steps in refinement ∆K. In practice, we found that τstep values between 0.9 and 1
with ∆K = 1 sufficed in all our network training runs.

Stopping Threshold τstop The stopping criterion on the checkpoint ratio governs how strictly the
stagnation in network accuracy should be over different refinement levels. A lower value implies
a stricter check, and progressive refinement would stop in a lower Kmax region, and vice versa. In
other words, a lower value of τstop enables a more aggressive strategy for IC savings.

The grace window of intervals δ controls the length of lookback to calculate the stepping ratio r.
This is helpful in the case of strong epoch-to-epoch oscillations. On the other hand, the effect of
oscillations on the stepping ratio is mitigated through exponential smoothing. We found a window
of 3 worked for most scenarios. The grace window goes hand-in-hand with the stepping criterion -
a longer window requires stricter (smaller) τstep values.

F EXPERIMENTAL SETUPS

An algorithmic description of Progressively Refine Differentiable Physics is given in algorithm 4.
Our choice of PRDP parameters based on section E are listed in each problem setup as follows.
Our scheduling is via changing the number of inner iterations via ∆K each time PRDP triggers a
refinement. In figure 13, we demonstrate that this is identical to scheduling with relative tolerance
thresholds.

Validation Metric For test cases based on the Heat diffusion, Burgers equation, and Navier
Stokes, the validation metric we use for PRDP is the solution’s error against a reference solution
at a specific time step t, normed over space, and normalized against the reference solution. This
error is mean-squared over the validation set. Mathematically, this can be written as
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Figure 13: PRDP refines the physics by progressively increasing the solver iterations throughout
training until training accuracy in terms of a validation metric stagnates. Progressively increasing
the number of iterations is equivalent to progressively decreasing the tolerance threshold, as shown
here for the example of the training the Navier-Stokes emulator of section 4.4,

Validation Error =
1

|V|
∑
i∈V

(
∥u[t]

i − u
[t],r
i ∥2

∥u[t],r
i ∥2

)2

(56)

where:

• u
[t]
i : the predicted solution at time step t for validation example i,

• u
[t],r
i : the reference solution at time step t for validation example i,

• ∥ · ∥: the norm over the spatial domain,
• V: the validation set.

The corresponding specifics for the Poisson inverse problem are explained in F.1.

Seed statistics For the neural network training setups, we conducted trials with 10 different initial-
ization seeds. Each run uses a different network initialization and a different stochastic minibatching,
but the same data. The results shown in the work visualize the mean over these runs (shown as solid
lines), along with its variability (represented by the shaded area). The shaded areas indicate the
range within one standard deviation of the mean.

Algorithm 4: Determine Whether to Refine Physics
Input: τstep = 0.95, τstop = 0.9, δ = 3, ∆e = 6

Data: {L[e]
val}e

Output: Boolean indicating whether to refine
{L̃[e]

val}e = ema({L[e]
val}e,∆e) ▷ Smooth with Exponential Moving Average

r = L̃
[−1]
val /L̃

[−δ]
val ▷ Relative change to δ epochs prior

if r > τstep then
rc = L̃

[−1]
val /c ▷ Relative change to previous plateau

if rc < τstop ∨ rc > 1.0 then
c← L̃

[−1]
val ▷ Save current plateau

return True ▷ Refine!

else
return False ▷ Do not further refine because we reachedKmax, =⇒ yields IC savings

else
return False ▷ Do not refine to keep coarse physics for economic reasons, =⇒ yields PR savings

F.1 POISSON EQUATION - INVERSE PROBLEM

The Poisson inverse problem is our simplest test example that incorporates differentiable physics
into a learning pipeline for a doubly convex problem optimizing in a low-dimensional parameter
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Figure 14: The Poisson PDE can be interpreted as the deformation of a thin string subject to a load.
We consider two scenarios. In (a), the load (=right-hand side) only consists of one sine mode whose
amplitude is scaled by a single (1P) θ parameter. The second case (b) uses the first three sine modes
with a parameterized amplitude each.

space. We set up the discretized Poisson problem as described in section F.1 with degrees of freedom
N = 30. The resulting linear system is parameterized, similar to section 2. The iterative linear solver
applied to this system represents the physics PK in this problem.

For simplicity, we keep the system matrix A constant and only parameterize the right hand side
bh = β(θ). The map β is a sum of the first P sine modes in the unit interval whose amplitudes are
given by the parameter vector θ ∈ RP .

β(θ) =

P∑
i=1

θisin(2iπx)

We design two inverse problems, one with a single sine mode (P = 1), and one with three sine
modes (P = 3). A qualitative example is given in figure 14.

The outer optimization’s objective is the MSE (mean-squared error) in the physics solution of u[K]
h

against a reference solution uh,r. The reference is generated by direct solution of the linear system at
a reference parameter value θr. In other words, uh,r = A−1bh,r, where bh,r = β(θr). Optimization
is performed using gradient descent algorithm.

One-dimensional parameter space We use θr = 2.0, and an initial guess for gradient descent
θinit = 5.0. 170 update steps are performed with a constant learning rate of 275. For PRDP, we set
the control parameter values to τstep = 0.92, τstop = 0.98, δ = 2 . Training was started withK0 = 25
linear solver iterations. At every refinement, it was incremented by ∆K = 10. A relatively high
value for ∆K and a aggressive refinement strategy with relatively smaller value of τstep are suitable
for cases where Kmax is significantly higher than the number of outer iterations. In this case, the
physics converges at Kϵ = 600 (which is also Kmax due to the double-convex problem). PRDP was
successful at enabling 33% solver iteration savings

Three-dimensional parameter space We use θr = [0.62, 1.86, 5.1], and an initial guess for gra-
dient descent θinit = [3.0, 3.0, 3.0]. 750 update steps are performed when using Jacobi as the inner
problem and 800 when using steepest descent, with a constant learning rate of 3500. The physics
converged with 450 or 240 inner iterations when using Jacobi or steepest descent, respectively. In
this case, a less aggressive PRDP strategy was suitable since the update steps were much higher than
Kϵ. Hence, we found control parameter values τstep = 0.99, τstop = 0.99, δ = 2, with ∆K = 2
and K0 = 1 was suitable. PRDP was successful at enabling 40-50% savings for both Jacobi and
steepest descent with both unrolled and implicit differentiation.

The results of these experiments are presented in figure 15.
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Figure 15: Results of the Poisson equation inverse problem visualizing the parameter error during
training and the savings enabled by PRDP for both the 1 parameter and 3 parameter setup using dif-
ferent combinations of physics solvers (Jacobi, steepest descent) and solver differentiation methods
(unrolled, implicit).
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Figure 16: Example of three different trajectories over three temporal snapshots for the one-
dimensional heat equation.

F.2 HEAT DIFFUSION - AUTOREGRESSIVE NEURAL EMULATOR TRAINING

In this setup, a neural emulator learns the diffusion equation solvers presented in sections D.2 and
D.3. For the physics, we use a diffusivity of ν = 0.001 and a time-step size of ∆t = 1, see equa-
tion 5. We discretize the space, into 32 grid points (including boundaries) in each dimension, which,
after applying homogeneous Dirichlet boundary conditions, results in 30 and 900 degrees of free-
dom in the 1D and 2D cases, respectively. In the 3D case, we have 22 grid points, corresponding to
8000 degrees of freedom. The resulting linear system is solved using Jacobi method. This consti-
tutes the physics operator PK . We employ our own implementations of the Jacobi solver. The initial
conditions are generated as a truncated Fourier series. For 1D, we sum the first 5 sine and cosine
modes defined on the unit interval. For 2D, we use the products of the first 5 sine and cosine modes
defined as:

u0(x, y) =
∑
n

(an sin(2nπx) sin(2nπy) + bn cos(2nπx) cos(2nπy)+

cn sin(2nπx) cos(2nπy) + dn cos(2nπx) sin(2nπy))

We similarly extend this procedure to 3D. All amplitudes are randomly sampled from a uniform
distribution U(−1, 1). A qualitative example of the dynamics is given in figure 16 for 1D, figure 17
for 2D , and figure 18 for 3D.

Training Procedure We intentionally chose a simple architectures as the focus of this work is
not the architecture but the training methodology. For 1D and 2D cases, a multilayer perceptron
(MLP) fθ is trained to emulate PK . For the 1D case, the MLP has 3 hidden layers, each of width
64, and for the 2D case, 3 hidden layers each of width of 3000. Corresponding to the physical
problem’s degrees of freedom, it has 30 input and 30 output nodes (900 for 2D). For the 3D case,
we train a classic ResNet that supports 3 dimensional input and output tensors with 1 channel. It
contains 6 blocks, each with 32 hidden channels. Its convolutions implement homogeneous Dirichlet
boundary conditions. All networks are initialized with random weights. Non-linearization is enabled
by applying ReLU activation after each hidden layer.

The compute graph consists of the neural emulator fθ stepping from an initial condition to the first
time step solution, and the physics operator PK stepping from the neural network’s solution to the
solution at the second time-step. The nMSE between this solution at the second time-step against
a reference solution forms the loss function for training. This mixed-chain approach (depicted in
figure 22 allows gradients to flow through PK and lets the network training to be informed with the
physics’s dynamics. We use implicit differentiation for the 1D case, and unrolled differentiation for
the 2D and 3D cases. The custom VJP rules of the physics use the same iterative linear solvers as
the primal solve and are resolved to the same number of iterations as the primal, as explained in
section 2.1.
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Figure 17: Example of six different trajectories over three temporal snapshots for the two-
dimensional heat equation.

For the outer (training) problem, we use the Adam optimizer from the Optax library (DeepMind
et al., 2020). The learning rate is scheduled as exponentially decaying with an initialization of 10−3,
decay rate of 0.94 for 1D (0.9 for 2D), and 100 transition steps, while for 3D, the initialization is
10−4, with a decay rate of 0.92 and 100 transition steps. We train in mini-batches of 25 samples per
iteration and for a total of 70 epochs in the 1D case, and 100 epochs in the 2D and 3D cases.

Data Generation The reference solution at the second time-step is computed by two applications
of the physics operator on the initial condition, where the iterative solver is replaced by a direct
solver. Hence, the iterates {u[2][k]}Kk=0 converge to the reference solution. 205 samples are generated
for training, with a train:validation split of 200:5.

PRDP PRDP is controlled using the validation metric of equation 56 computed at t = 2, and
refinement is applied to the iterative linear solver PK that steps from u[1] to u[2]. For the 1D case,
we use parameter values τstep = 0.98, τstop = 0.9, δ = 3, exponential smoothing is performed
over a time window of 8. The 2D case uses fewer epochs, hence a less aggressive refinement using
τstep = 0.9 with a smoothing window of 6 was suitable. In the 3D case, which uses 100 epochs, used
a less aggressive refinement with τstep = 0.97, similar to the 1D case, along with τstop = 0.9, δ = 3,
exponential smoothing is performed over a time window of 6.

F.3 BURGERS EQUATION - AUTOREGRESSIVE NEURAL EMULATOR

We solve the discretized Burgers equation presented in section D.5 on the unit interval with
ν = 0.001 and time step size ∆t = 0.01. The spatial domain is discretized into 257 points in-
cluding the boundaries, which results in N = 256 degrees of freedom when applying a periodic
boundary condition. Since the system matrix A is now asymmetric, we use the GMRES linear
solver (B.3) with restart set to 2. Although much higher restarts are possible and preferred in prac-
tice, we used fewer restarts to emphasize the difference between network accuracies trained using
different number of GMRES iterations since our test problem was relatively easy to solve.

Data Generation The initial conditions are generated as a truncated Fourier series as described
in section F.2. The first 20 sine and cosine modes defined over the unit interval are summed, with
their amplitudes sampled from a uniform distribution U(−1, 1). Qualitative example trajectories are
given in figure 19

Training Procedure We train a neural network fθ to learn the Burgers stepper which represents
the physics P . We use a classic ResNet architecture (He et al., 2016) consisting of 6 blocks, each
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Figure 18: Example of six different trajectories over three temporal snapshots for the three-
dimensional heat equation.
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Figure 19: Three example trajectories of the one-dimensional Burgers equation.
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Figure 20: Three example trajectories of the Navier-Stokes scenario with the two velocity compo-
nents each.

with 32 hidden channels, and ReLU activation. The convolutions implement the physics’ periodic
boundary condition by circular padding. The weights are randomly initialized. We use our own
implementation of the architecture using the Equinox library (Kidger & Garcia, 2021).

The loss function for training the network is defined similarly to the mixed-chain setup of section
F.2. The ResNet steps from an initial condition to the first time step solution, and the physics PK
steps from the first to the second time-step solution. The nMSE error between this solution at the
second time-step against a reference solution forms the loss function for training.

The reference solution at the second time-step is computed by two applications of the physics,
with a direct solver replacing the iterative solver. 205 samples are generated for training, with a
train:validation split of 200:5.

We use the Adam optimizer from the Optax library, with an exponential learning rate decay using
an initialization of 10−3, a decay rate of 0.7, and 100 transition steps. We train in mini-batches of
25 samples per iteration.

PRDP PRDP is controlled using the validation metric of equation 56 computed at t = 5, and
refinement is applied to the iterative linear solver PK that steps from u[1] to u[2]. This presents an
interesting application scenario, where the training objective uses a relatively short temporal rollout
of 2 steps while PRDP favors generalization over a longer rollout at the fifth time step. We use
PRDP parameter values τstep = 0.9, τstop = 0.9, and δ = 3. Due to high oscillations in the validation
metric, we used exponential smoothing with a longer window of 15.

F.4 NAVIER STOKES - NEURAL-HYBRID CORRECTOR LEARNING

In this example, we train a network to learn to correct for discretization errors in the solver described
in section D.7. Such neural-hybrid methods apply to correction learning setups as investigated by
Um et al. (2020). Our problem setup is visualized in figure 23.

We distinguish between a spatially-coarse solver, Ps,K , and a spatially-fine solver, Pr (following the
terminology of source and reference from Um et al. (2020)). In our test problem, Ps,K operates on
a solution manifold that has half the spatial resolution of Pr. We use 97 spatial degrees of freedom
for Pr (i.e., a total of 291 degrees of freedom considering the three components of u ), and 48 for
Ps,K (i.e., a total of 144). Both solvers are set up for ν = 0.0001 and ∆t = 0.1 and employ the
GMRES solver (section B.3) with restart set to 8.
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Figure 21: The compute graph and the reverse pass associated with the Poisson inverse problem.

Data generation To generate initial conditions for the data, we initialize a solution field in the
manifold of Pr with each component sampled from the standard normal distribution. This random
field is passed through a low pass filter, then normalized to have zero mean and standard deviation of
1, and finally passed through an incompressibility projection, giving u[0]r . Data trajectories {u[t]r }Tt=0

are produced by repeated applications of Pr (uses a fully-converged GMRES) to u[0]r . These tra-
jectories are then downsampled to the source manifold {u[t]s }Tt=0. 205 trajectories are generated for
training, with a train:validation split of 200:5. Qualitative example trajectories are given in figure 20.

Training Procedure The neural-hybrid model operates in the source manifold. We use a classic
ResNet architecture (He et al., 2016) consisting of 3 blocks, each with 64 hidden channels. The
convolutions implement the physics’ periodic boundary condition by circular padding. The weights
are randomly initialized. We implement the network architecture using the Equinox library (Kidger
& Garcia, 2021).

The loss function is defined as the sum of MSE errors of the first and second time-step solutions. We
use the Adam optimizer from the Optax library, with a cosine learning rate decay schedule using an
initialization of 10−3 and decay steps = 800. We train in mini batches of 25 samples per iteration
and for a total of 100 epochs, i.e., 800 update steps.

PRDP PRDP is controlled using the validation metric of equation 56 computed on the x-velocity
at t = 5. We used parameter values τstep = 0.98, τstop = 0.9, and δ = 3. For the exponential
smoothing, we used a window size of 6. Since this problem setup has 2 executions of PK (refer
figure 23), three options arise for applying progressive refinement - a) progressively refining only
the first execution, b) progressively refining only the second execution, and c) progressively refining
both executions. We opted for c in order to gain savings from both solvers. In general, correction
learning setups would have as many physics executions as the number of temporal unrolling steps
in the loss function.

G SUPPLEMENTARY EXPERIMENTAL RESULTS

G.1 PRDP SAVINGS IN TERMS OF COMPUTE TIME

In figure 24, we present wall-clock training times with PRDP and with a fully converged differen-
tiable solver. For the smaller 1D problems with small system matrices of the order of ≈ 100× 100,
other overhead in the compute graph dominates the training runtime. As such, the reduction in inner
iterations does not translate to savings in wall clock time. Starting with 2D problems leading to
larger matrices, decreases in training time converge to the reductions in inner iterations. For exam-
ple, in the 3D heat emulator scenario, 81% reduction in inner iteration count aligned with wall clock
time savings of 78%. As the share of iterative linear solves in the total training cost increases, e.g.
in high-dimensional problems, so do the savings enabled by PRDP.

G.2 NEURAL NETWORK PERFORMANCE - PRDP VS. BASELINE
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Figure 22: In the mixed-chain approach an emulator prediction is chained with an application of the
differentiable solver, effectively to the training loss computed over a two step unrolling. Reference
data is computed with full refinement, only the physics of the second step solver is refined with
PRDP. The yellow reversely pointing error indicates the differentiable physics over the approximate
solver.

(a) Sequential Correction Setup (b) Two-step supervised unrolling

Figure 23: The neural hybrid emulator is at the place of ”NN” in the right figure. Each
backpropagation-through-time also triggers the differentiation over the physics. Note that even if
there is no differentiation over the first neural-hybrid emulator application (i.e., no differentiation
over the first coarse solver usage), it is also affected by PRDP because we also limit its exactness
in the primal execution. Here, one could think of it as ”Progressively Refined Physics” instead of
”Progressively Refined Differentiable Physics”.
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compute graph, and hence, PRDP can deliver the highest amount of savings in wall clock time.
Eventually, savings in training compute time converge against the reductions in inner iterations.
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Figure 25: As expected with neural networks, the validation error falls over the number of pa-
rameters due a larger network indicating a higher expressiveness. However, PRDP savings remain
unaffected.

The PRDP method is aimed at reducing the end-to-end computational cost of training neural net-
works with physics solvers in the loop, without significantly affecting the trained neural network’s
performance. This is depicted qualitatively in figure 6. Below we provide the mean validation error
values at the last epoch of training along with standard deviation over 10 seeds used for network
initialization and stochastic minibatching.

Outer training task Inner physics Val. error with Converged Physics Val. error with PRDP

Neural Emulator Heat 1D 0.021± 0.0039 0.021± 0.0038
Neural Emulator Heat 2D 0.014± 0.0008 0.011± 0.0006
Neural Emulator Heat 3D 0.004± 0.0009 0.005± 0.0010
Neural Emulator Burgers 0.055± 0.0138 0.062± 0.0213

Neural-Hybrid Emulator Navier Stokes 0.006± 0.0005 0.007± 0.0004

G.3 PRDP SAVINGS VS. NEURAL NETWORK EXPRESSIVENESS

In figure 25 we present the results of an ablation study over the neural network size and how this
affects its validation performance and the savings achievable with PRDP. For this study, we used the
1D heat equation neural emulator learning setup from section 4.2.
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